Sirius Software

Duygu Yapa 1449222

Ayse Turan 1449164

Duygu Altinok 1502095

Elif Kamer Karatas 1448836

Climb Planner

[Initial Design Report]

16.12.2008

Contents

INTRODUCTION Lt et ettt et et e eeeenees 4

1.1, Purpose of the DOCUMENtot 4
1.2. Project DefInition.c.iuiui e 4
1.3. ProJeCt SCOPEoiviiii 4
2. DESIGN CONSIDER A TTO N S e e e 5

2.1. Constraints and LIMItations et 5
2.1.1. EIEIE et e 5
2.1.2. PErfOTTanceiuie e 5
2.2, Design Goals and Objectives..............ooooiiiiiiii 6
2.2.1. Portability 6
2.2.2. Usability ... 6
2.2.3. Reliability ... 6
2.2.4. Approach and Modeling................... 6

3. FILE AND FOLDER FORM AT S ... e 7

3010 MAP FIES ..ot 7
3.2, System Files and Folders.................oooi 7
3.3, Tmageand Video Files............oooiiiii 9
4. LIBRARIES AND TOOLS ..ottt 11

4.1, Languages and Platforms 11
4.1.1. AV e 11
4.1.2. ECIIPSE .o 11
4.1.3. INEBEANS ..ttt e 12
4.2. Geographical Information Systems.................oiiiiii 12
4.2.1. GEOT OIS et 12
4.3, Graphics LIbrarieso 12
4.4, Other Tools and LIDrarieso 13
4.4.1. D2 PP 13
442, MyYSQL .o 13

5. USER INTERFACE DESIGN ...t et e e 14

5010 Main WINAOW ..o 15
5.2 FHE MEIU .ottt 16

5.3. Terralnl IMENU. ..o e e 16

5.4. Weather MENUu e e 19

550 Help Menu.. ..o 19
5.6. Member Information Panel 19
5.7. Constraints Panel 21
5.8. 3D Visualization of the Mountain Panel.............coooiiiii 22
5.9. Get Activity Plan Window ... 23
6. ARCHITECTURAL DESIGN ...t e 24

6.1, Overall ArchiteCtureot 24
6.2. Package and Class Design.............oooiiiiiiiiiiiiii 25
6.2.1. GUIPACKAZE ... 25
6.2.2. GISPackage..........ooiii i 30
6.2.3. MemberPackage...............oo 31
6.2.4. EquipmentPackage..............ooiiiiiiii 32
6.2.5. PlannerPackageoooiiiiiii 33
6.3. Behavioral Design...............oooi 35
6.4. Functional Modeling 36
6.4.1. Data Flow Diagramsoooiiiiiii 36
6.4.2. Data DICONATYiieiiii 41
6.5. Database Design............ooooiiiiiiii 49
6.5.1. TablS e 49
6.5.2. ER DIAGIamisovuiiniiiiiiiii it 50

T IMPLEMEN T AT ION .. e ettt et e et et e e e e e reeans 52

Tl CUITENE SEALE ...ttt 52
7.2. Prototype Implementationcooiiiiiiiiiiiiiii 52
7.3, Future Work oo 52
8. CONCLUSION ..ttt ettt et et e e e e 53

0. AP PEN DD X .o i e 54

1. INTRODUCTION

Climb Planner Software Project is developing by Sirius Software to ODTU DKSK. This
project’s mission is providing efficient and well-organized climbing experiences to
mountaineers. Climb Planner will correspond to mountaineers’ needs about planning an

activity.

1.1. Purpose of the Document

This report is written to show initial design of climb planner software by Climb Planner
project team. The headings and parts of this document are divided appropriately by
grouping relevant subjects of whole system. Project group has tried to give the definition
and design of the software system by dividing subsystems and showing the relations with
each other. In addition, the other necessary issues like implementation requirements,

specifications are handled.

1.2. Project Definition

The software basically finds a route on a terrain for mountaineers. It will provide the best
activity plan for reaching a selected mountain peak by taking into account the specified constraints.
In addition, it makes a visualization of the terrain and a simulation of the route. Software
uses some kind of information from mountaineers, database and website to make all of

these facilities.

1.3. Project Scope
The scope of the project has been described in the Requirement Analysis Report. Here, a

brief of the scope will be given.

The software should be used by instructor mountaineer, because only instructor can

know about the capabilities of the mountaineers in a club or decide to the date of an activity

This guy has some responsibilities and abilities on the software;

e He should give the climbers’ information in the club to the system any time and
this information will be kept in system until an instructor delete or update them.

e Before running system for getting an activity plan, he should give terrain
information to the system by giving a “.dted” or “.dem” format map, the region
(ex; Ankara, Turkey) and optionally vector map and satellite image.

e He can give some constraints like safest route, time and distance constraints and

checkpoints.

After giving a raster map, program will show a visualization of the terrain. Then he can run
the program. The program gives an activity plan (optionally in a report) which includes
climbing route, estimated duration of climbing, food and equipment list, emergency
equipment list and camping plan. He can see a simulation of the route on the terrain, if he

wants. The additional features will be described in the rest of this document.

2. DESIGN CONSIDERATIONS

2.1. Constraints and Limitations

2.1.1. Time

The project should be completed until July 2009. In addition a demo of this project
should be prepared until the end of January 2009. The detailed project schedule is given as a

Gantt chart in Appendix.

2.1.2. Performance

Performance is an important issue and makes us anxious, because finding an optimum
way in a terrain with lots of constraints which have different priorities is a hard problem.
Hence we will try different solutions for this problem to reach the best performance. In

addition, the visualization and simulation part we will use efficient ways.

2.2. Design Goals and Objectives

2.2.1. Portability
We have thought about this issue and decided to use portable languages and tools. In
other words, this was a constraint to choose libraries and toolkits. So, we will try to make

software portable on Windows and Linux platforms.

2.2.2. Usability

We have tried to design a user friendly software and correspond to mountaineers needs.
In this context, we have made interviews with professional mountaineers and obtained their
ideas about planning a climb. We have examined how much we make this software useful
for mountaineers. At the end, we canceled some unnecessary and absurd parts from the
project. For example, we canceled rafting or skiing experience of climbers because a climber
never carries rafting or skiing equipments when he goes to climbing even if he has these
kinds of experiences. We also added some extra features that make software better for

users like visualization of the terrain.

2.2.3. Reliability

As we mentioned before, we have made our studies in wide range. So, we have thought
almost all aspects of the climbing issue. We have taken up references from the
mountaineers Hasan Hiiseyin BOGAZ and Tung¢ FINDIK and the book of “Zirvelerin
Ozgiirligti”. Besides we have searched lots of libraries, tools and algorithms for the

implementation part and selected the most appropriate ones for our project.

2.2.4. Approach and Modeling

Because of the complexity of our project, we have decided to use Object Oriented
Approach. This approach models our system so makes the design more understandable and
the Object Oriented Design elaborates the models to produce implementation
specifications. For representing these models, we use Unified Modeling Language (UML) that

has a number of different notations for representing models.

3. FILE AND FOLDER FORMATS

In this project, we use some kind of file formats and folder arrangement. We will mention
about these formats under map files, image and video files and system files and folders

headings.

3.1. Map Files

We will use map files for getting terrain information in a format from user. We have
thought the consistency of the file formats with our GIS tool, when searching map files. The
“.dted” and “.dem” raster map formats are suggested to us for elevation information of the
terrain by Aselsan. We have searched on them and we saw that they are usable and
readable for our GIS tool. As satellite image we also think about the easy access from
internet. Hence we have found the “.geotiff” format. On the other hand, as vector file, we
have decided to use shape file format (.shp) because it contains the necessary information

that we want.

3.2. System Files and Folders

The software will use some file and folder format specifications. We have designed a file
format which contains all existing information of a project when it is saved. We will save the
project file with a “.srs” format because we want to use an original file format and this file
will have the project’s information in XML format. Because XML is a useful format and Java

has ready functions for reading, writing or parsing etc. for this file format.

The Climb Planner’ sample workspace view is below.

&% Aladaglar1

Dosya Dizen Gordndm Sk Kullanlanlar — Araclar Yardim

7 . =) . .|
@ e ol ? 7 Ara l-IL.'- Klasérlzr I!{‘} Folder Sync
Adres il_'.' C:h\ClimbPlanneraladaglar
Klastr x _F'.dl Bowut | Tir Deuji_;tirilrne Tarihi
= W Bigisayanm | =] aladaglart srs 2KB SRS Dosyas 14.12.2008 20:03
B % Verel Disk () B aladadlar. doc S6KE Microsoft Office Wo... 14.12.2008 12:47
B) Addon &l Aladadlar. PG 52KE PG Dosyas 14.12.2008 12:43
E [aTI {0 pladadlar. gt 2.343KB QT Dosyas) 14.12,2008 15:44
= 1) ClimbPlanner
|} Aladaglart
I Aladaglarz
I Demirkazik

Figure 3.1. ClimbPlanner workspace

As we mention above the “.srs” file contain the project current state information. It is in

XML format. The Aladaglarl.srs file’s content is like that;

<?xml version="1.0" encoding="UTF-8" ?>
<projectDescription>

<projectName>Aladaglarl</projectName>
<projectPath>C:\ClimbPlanner\Aladaglarl </projectPath>
- <climbers>
<id>1449222</id>
<id>1449164</id>
<id>1502095</id>
<id>1448836</id>
</climbers>
- <projectMaps>
<rasterMaps>C:\ClimbPlanner\aladag.dem</rasterMaps>
<vectorMaps>C:\ClimbPlanner\aladag.shp</vectorMaps>
</projectMaps>
<climbRegion>
<country>Turkey</country>
<city>Kayseri</city>
</climbRegion>
<weather>
<lowTemp>2</lowTemp>
<highTemp>20</highTemp>
<pressure>1024.7</pressure>
<windSpeed>4</windSpeed>
<windDirection>2</windDirection>
<season>2</season>

<rain>false</rain>
</weather>

- <projectConstraints>
<number>1</number>
<number>4</number>

</projectConstraints>

- <climbDate>
<day>20</day>
<mounth>6</mounth>
<year>2009</year>

</climbDate>
<l-- Start Coordinate -->
<coordinate>
<longtitude />
<latitude />
<elevation />
</coordinate>
<!-- End Coordinate -->
- <coordinate>
<longtitude />
<latitude />
<elevation />
</coordinate>
<l-- Check Points (if exist) -->
-<avalanche>
<longtitude />
<latitude />
<elevation />
</avalanche>
- <fallingRock>
<longtitude />
<latitude />
<elevation />
</fallingRock>

</projectDescription>

3.3. Image and Video Files

We will use the image and video files for saving the visualization and simulation of the
terrain. For image file we will use a generic file format “.jpeg”. We think that this file format
will be consistent with the systems of users. The user can save the visualization of terrain as

an image, which is a screenshot of the visualization, anytime.

The “.jpeg” file of this image is like that;

Microsoft Office Picture Manager |Z][@|Z|
i File Edit Yiew Picture Tools Help Typa a question for help. =
 f@hshorteuts,,. | Gl 2 | o6 S3 @ X |9 o 52% - 4._: DA% S | [EdiPictures.,. | 7] Auto Correct o
Zaa

Aladadlar. PG 4 b Zoom: (=l 3 @),

Figure 3.2. Visualization of the terrain

In the simulation part, user can save the simulation as a “.qt” file that can be opened with
QuikTime multimedia framework. A screenshot of this video is below. In this video, camera

will follow the red colored route which is planned by Climb Planner from the start coordinate

to the end coordinate.

B cooer g

Figure 3.3. Simulation of the route

4. LIBRARIES AND TOOLS

4.1. Languages and Platforms

4.1.1. Java

Java is a programming language originally developed by Sun Microsystems and released
in 1995 as a core component of Sun Microsystems' Java platform. The language derives
much of its syntax from C and C++ but has a simpler object model and fewer low-level
facilities. Java applications are typically compiled to bytecode that can run on any Java
virtual machine (JVM) regardless of computer architecture. The syntax of Java is largely
derived from C++. Unlike C++, which combines the syntax for structured, generic, and object-
oriented programming, Java was built almost exclusively as an object oriented language. All
code is written inside a class and everything is an object, with the exception of the intrinsic
data types (ordinal and real numbers, boolean values, and characters), which are not classes
for performance reasons. [1] We preferred Java for its high-level object orientation, its rich
IDEs, wide developer support and documentation, wide library choices; but the our main
reason was that we wanted to use GeoTools which is a Java library. Also for our project's

visualization & simulation parts, Java was the best choice for its available libraries.
4.1.2. Eclipse

Eclipse is a software platform comprising extensible application frameworks, tools and a
runtime library for software development and management. It is written primarily in Java to
provide software developers and administrators an integrated development environment
(IDE). In its default form it is meant for Java developers, consisting of the Java Development
Tools (JDT). Users can extend its capabilities by installing plugins written for the Eclipse
software framework, such as development toolkits for other programming languages, and
can write and contribute their own plug-in modules. Language packs provide translations
into over a dozen natural languages. It was easy for us to decide to use Eclipse as it's the
most powerful Java IDE; it has dozens of plugins to support our work, it has automatic code

generation as well as easy usage such as showing and explaining runtime, compile-time and

code mistakes. Also Eclipse is easy to use with “svn” as well as it provides the Eclipse
Workbench - views, editors, perspectives, wizards; Equinox OSGi - a standard bundling
framework, Core platform - boot Eclipse, run plug-ins, the Standard Widget Toolkit (SWT) - a
portable widget toolkit, JFace - viewer classes to bring model view controller programming

to SWT, file buffers, text handling, text editors etc.[2]
4.1.3. NetBeans

A free, open-source Integrated Development Environment for software developers. The
NetBeans IDE provides several new features and enhancements, such as rich PHP, JavaScript
and Ajax editing features, improved support for using the Hibernate web framework and the
Java Persistence API, and tighter GlassFish v3 and MySQL integration. [3] We used NetBeans
for designing our GUI interfaces; as we use Java by far NetBeans is the best choice for

interface design for its easy usage and developer-friendly.

4.2. Geographical Information Systems

4.2.1. GeoTools

GeoTools is an open source (LGPL) Java code library which provides standards compliant
methods for the manipulation of geospatial data, for example to implement Geographic
Information Systems (GIS). [4] We decided to use GeoTools as we needed a GIS library and
GeoTools provides all GIS capabilites. Moreover , as we use Java ; GeoTools & Java

combination would be powerful enough.

4.3. Graphics Libraries

We decided to use GeoTools' graphic capabilities for our project's visualization and

simulation parts, since we mostly use GeoTools for the other parts of our project.

4.4, Other Tools and Libraries

4.4.1. XML

Extensible Markup Language (XML) provides a foundation for creating documents and
document systems. XML operates on two main levels: first, it provides syntax for document
markup; and second, it provides syntax for declaring the structures of documents. XML's
simplicity is its key selling point, perhaps even its strongest feature. Our team have plenty of
reasons to use XML : simplicty , extensibility ,interopability.For the simplicity , XML's rigid set
of rules helps make documents more readable to both humans and machines. XML
document syntax contains a fairly small set of rules, making it possible for our team to get
started right away. For the extensibility; XML is extensible in two senses. First, it allows
developers to create their own DTDs, effectively creating 'extensible' tag sets that can be
used for multiple applications. Second, XML itself is being extended with several additional
standards that add styles, linking, and referencing ability to the core XML set of capabilities.
XML complements Java, a force for interoperability, very well, and a considerable amount of
early XML development has been in Java. A generic application programming interface (API)

for parsers, the Simple APl in XML (SAX), is freely available. [5]
4.4.2. MySql

MySQL database is the world's most popular open source database because of its fast
performance, high reliability, ease of use, and dramatic cost savings. Our team preferred
MySQL for its easy usage and mostly for its Java compability. [6] Since MySQL is also a Sun
Microsystems product ; not only Java has JDBC support for SQL , also the combination of

Java & MySQL is a very powerful combination due to its high performance.

5. USER INTERFACE DESIGN

In the stage of designing a user interface, the most important point that should be paid
attention is that the application should be easy to use and understand. Although the
functionality that an application provides to users is important, the way in which it provides
that functionality is just as important. An application that is difficult to use or understand

won’t be used.
For designing clear and easy to use user interface the following points should be considered:

e Consistency : The user interface should work consistently. Tools like buttons, lists etc.

should be put in consistent places, and a consistent color scheme should be used.

e Ease of navigation between windows: If it is difficult to get from one screen to
another, then users will quickly become frustrated and give up. When the flow
between screens matches the flow of the work the user is trying to accomplish, then

the application will make sense to users.

o Effective labeling: The displayed text on the screens is a primary source of
information for users. If the text is worded poorly, then the user interface will be
perceived poorly by users. Using full words and sentences, as opposed to

abbreviations and codes, makes text easier to understand.

o Effective handling of mistakes made by users: The user interface should be designed

to recover from mistakes made by users.

e Avoiding unnecessary items: Crowded screens are difficult to understand and,

hence, are difficult to use.

o Effective grouping: Items that are logically connected should be grouped together on
the screen to communicate they are connected, whereas items that have nothing to

do with each other should be separated.

These are all known issues of designing user interfaces. Considering these, we have

developed a prototype of our application just to show the main design we made in our mind.

There may be some changes in the design in the next steps of the project. In the following
sections, we will explain the main points of our graphical user interface.
5.1. Main Window

Climb Planner ™.

File Terrain Weather Help

[=I[=][3]:

-Member Information

~3D Visualization of the Mountain

Chosen Members For Climbing:

| Rotate Left | | Rotate Right |
Member [D Name Surname
| Zoom In | | Zoom Qut |
1 Aoyrse TURAN
22 Duygu YAPA

| Remowve | | Update |

| See All Members |

~Constraints

[] safestRoute [] shortest Route

[] Minimizing Tims
[Longest Time Walked Per Dav

[] Longest Distance Walked Per Day

o el S \

[] Longest Distance Climbed Per Day

Start time | l@ : l@

Longitude Latitude
Start date ! |01|-| |01|-| [2005|-| 121.0713 441128

=

Elewvation

1020.1 m

Get Activity Plan

Exit

Figure 5.1. Main Window of ClimbPlanner

In Figure 5.1, you see the main window of Climb Planner Software. It consists of a
menubar including File, Terrain, Weather and Help menus, Member Information, Constraints

and 3D Visualization of the Mountain Panels and Get Activity Plan and Exit buttons.

5.2. File Menu

From File Menu, the following options can be chosen:

o New Project: If New Project is clicked; after closing the old one, a new project will be

open with default values (Default values are explained in the following sections).

4

e Open Project: If Open Project is clicked a file chooser for opening a “.srs” file will
appear. Clicking the desired project with “.srs” extension, and “Open”, the project

will be open.

e Save Project: If Save Project is clicked, a file chooser for saving the current project
will appear and writing the name and clicking “Save” will save the project to the

desired location.

o Exit: When Exit is clicked, if the current project has not saved recently, first an option
pane that asks whether to save the project before exiting or not, will appear.
According to chosen option, the Climb Planner will exit either with saving the project

or without saving it.

5.3. Terrain Menu

From Terrain Menu, the following options can be chosen:

e Browse Data: If Browse Data is clicked, the window given in Figure 5.2 will appear.

From Browse Data window,

o User enters the Country and City of the mountain. After the feedback we have
gotten from Aselsan, we have changed the taking weather information part a
bit. In the new version, the weather information is not taken manually any
more; instead, it is taken from a website that makes forecasting. And country
and city information is put for that purpose. After user enters the country and

city of the mountain, the weather information is taken from the website even

Bl

without informing the user. (But if user wants to see the weather information,

he can see by clicking “See Weather Information” under Weather Menu). At

the beginning of a new project country is “Turkey” and city is “Ankara” as

default. And an elevation data will be given as default (for visualization

purposes) and there is no shape file and satellite image.

Country: ITEljkey City I,ﬂﬁkal‘a

Type

File Name Folder MName

Elevation Data

map.dted CADocuments and Settingshaysel. ..

Shape File

Satallite Image

(0]

Add File | Remuowve File | | Close

Figure 5.2. Browse Data Window

If one of the rows in table is chosen and then “Add File Button” is pressed, a

file chooser will appear.

If the chosen row is

= Elevation Data, then user can give only elevation files with “.dted” or

“.dem” extensions. The given elevation file is replaced by the old one
and it is reflected to the Elevation Data row. There should be exactly

one elevation data file.

= Shape File or Satellite Image then a similar procedure will apply with

file extensions “.shp” and “.geotiff” respectively. Here, the shape file
can represent water wells, rivers and lakes. Different from elevation

data, there can be no shape file or satellite image. These files are not

e Add

necessary but the presence of them makes activity plan more

accurate.

If one of the rows in table is chosen and then “Remove File Button” is
pressed, the chosen file is removed from the project. Since without an
elevation data, it is impossible to get any output (activity plan, visualization,
simulation etc.) removing an elevation data is impossible. The change in

elevation data can only be made by “Add File Button”.

If “Close Button” is pressed, the Browse Data Window is closed returning to

the main window of Climb Planner. (Figure 5.1)

Map: If adding map is chosen, then a file chooser that shows files with “.dted”
and “.dem” extensions will appear. Choosing one of them and pressing “Add”

will replace the elevation data file with the newly selected file.

Shape File: If adding a shape file is chosen, then a file chooser that shows files
with “.shp” extensions will appear. Choosing one of them and pressing “Add”
will replace the lake file with the newly selected file if an old one exists. If not,

the newly selected lake file is simply added to the project.

Satellite Image: Same procedure as adding a shape file will apply with

“.geotiff” extension.

e Remove

(0]

Shape File: Selecting “Remove Shape File” will just remove the previously
selected shape file from the project. If there is no shape file before, nothing

will happen.

Satellite Image: Selecting “Remove Satellite Image” will just remove the
previously selected satellite image file from the project. If there is no satellite

image before, nothing will happen.

Adding and Removing data from Terrain Menu is functionally the same as in the Browse

Data Window.

5.4. Weather Menu

In Weather Menu there is only one option : “See Weather Information”. If this option is
chosen, then the data gathered from the website using the given Country and City will be

shown to the user.

5.5. Help Menu

From Help Menu, the following Options can be chosen:

e Help Topics: If Help Topics option is chosen, then a window showing the user

documentation for the user interface will appear.

e About ClimbPlanner: If this option is chosen, then a short description and the

developers of ClimbPlanner will appear.

5.6. Member Information Panel

In Member Information Panel,

e There is a list of members (their ids and names) that will go climbing. If user chooses

one of them and presses
o “Remove Button”, then that member is removed from chosen members list.

o “Update Button”, then a window (given in Figure 5.5) that will contain the
information of the selected member is shown. Updating the necessary field

and pressing “OK” will updates the information of the selected member.

e There is a button to see the information of all existing members (both chosen for
climbing and not) If user presses this button, the window given in Figure 5.3 will

appear.

[~ 'See All Members . EEx

All Mermnbers
Member ID Name Surname Walking Speed (kmyh) | Climbing Speed (m/h) |Carriage Capacity (kg)| Experience Level
1 Ayse TURAN 5. L | 3 Level 1
5 Elif Kamer KARATAS 2 5 [Level 2
22 Duygu YAPA 2.5] 3 Level 2
150 Duygu ALTINOK] 15 110 Level 3
Choose for Climbing | | Add New Member ‘ | Remove | ‘ Update ‘ ‘ Cloze

Figure 5.3. See All Members

From See All Members Window, user can perform the following actions:

e Choose a Member for Climbing: If one of the member is selected and “Choose for
Climbing Button” is pressed, the member is added to the chosen members list and is

shown in the member information panel of the Main Window.

e Add New Member: If user presses “Add New Member Button”, then the window
given in Figure 5.4 will appear. Filling the informations, and pressing “OK” gives the
member a unique id and adds member to the database (Member Table in Section

6.4) and See All Members window is updated accordingly.

e Remove an Existing Member: If user selects a member and presses “Remove
Button”, then the selected member is removed from the database permanently and
See All Members Window is updated accordingly. If the removed user is in chosen

members for climbing list, he will also be removed from that list.

e Update Member Information: If user selects a member and presses “Update
Button”, then the information of the selected member will appear. (Figure 5.5)
Changing the necessary fields and pressing “OK”, updates the information of the

selected member.

Add New Member "B =|[=1[x] " Update Member " MIETES]

~New Member Infarmation { rSelected Member Information-
Name | | Narme : Ayse
surname : | Surname : TURAN
Walking Speed (km/h) —| Walking Speed (krn/h) : ’T|
Clirmbing Speed (m/h) —| Climbing Speed (m/h) ’37|
Carriage Capacity (kg —| Carriage Capacity (ka) | ’37|

Experince Level ; Level 1 .'| Experince Level | Level 1 |»

| QK | | Cancel | | QK | | Cancel |

Figure 5.4. Add New Member Window Figure 5.5. Update Member Window

e Close Window: If “Close” is pressed, See All Members Window will be closed

returning back to the main window. (Figure 5.1)

5.7. Constraints Panel

In Constraints Panel, there are constraints that are taken into account when preparing the
activity plan. User can choose more than one constraint. He also specifies the start date and
time of the activity. Since weather is one of the major factors in preparing activity plan and
weather forecast can be made up to fifteen days, the start date combo boxes will be
updated for a 15 days period. The default start date will be the day that the Climb Planner is
currently used. For example, if the software is used at 15.12.2008, then the start date can be

chosen from 15.12.2008 up to 30.12.2008.

5.8. 3D Visualization of the Mountain Panel

In this panel the 3D visualization of the mountain using all of the given maps will be

shown.

e As user moves the mouse on the terrain, the longitude, latitude and elevation of the

terrain will be shown in given boxes.

e If user clicks left mouse button then a popup menu will appear. In the popup menu

the following options exist:

o Start coordinate: If this option is chosen, then the clicked position will be the
start coordinate. If there is a start point given before, that point will be

removed since there can be only one start point.

o End coordinate: If this option is chosen, then the clicked position will be the
end coordinate. If there is an end point given before, that point will be

removed since there can be only one end point.

o Checkpoint: If this option is chosen, the clicked position will be added to the
checkpoints list. During the preparation of the activity plan, passing through

the given checkpoints will be taken into account as a constraint.

o Risk of avalanche: By choosing this option, user can point the risk of

avalanche.

o Risk of falling rocks: By choosing this option, user can point the risk of falling

rocks.

e If user clicks right mouse button, if there exists any points defined on that position, it

will be removed.

e If user clicks the save image button, a file chooser will appear and pressing save,

saves the image to a desired location.

e User can view the other sides of the mountain by pressing “Rotate Left” and “Rotate

Right” buttons or keyboard’s left and right arrow keys.

e User can zoom in and out the terrain by pressing “Zoom In” and “Zoom Out” buttons

or keyboard’s up and down arrow keys.

5.9. Get Activity Plan Window

When user presses Get Activity Plan Button, if the start or end coordinate was not given,
the software will give warning. After marking the missing coordinate(s), the window shown

in Figure 5.6 will appear.

[~ Activity Plan ™ L=lizlE
- Simulation of the Climbing ~Activity Plan

Estimated Duration: 10 h 10 min
Camping Time : .10 : .10
Camping Duration; 10 ki 110 min
Food Amount : 10 kg pasta
Water Amount : 10 liter
Emergency List: Equipment List

- Save Report | | Close

Play Save

Figure 5.6. Activity Plan Window

From the Activity Plan Window, user can simulate the climbing by pressing “Play Button”. If
he presses “Save Button”, a file chooser appears and pressing “Save”, saves the simulation

to the desired location.

In the Activity Plan Panel, there exists the generated output about the climbing. In case of
more than one camping, all of the campings will be listed. If there is no camping, nothing will

be displayed for camping.

If user presses “Save Report”, a file chooser for saving the activity plan will appear. Pressing
“Save”, saves the report. If user presses “Close”, the Activity Plan will be closed without

saving the activity plan report.

6. ARCHITECTURAL DESIGN

6.1. Overall Architecture

Climb Planner Software is designed to be composed of 5 different packages namely GUI
package, GIS package, Equipment package, Planner package and Member package that
interact with each other. You can see the general view of the system in Figure 6.1. detailed

design and explanations of the packages are given in following subsections.

ClimbPlannerSystemPackage

GUIPackage <<UBERD GlSPackage
Coordinate
<<USE=> @1 longtitude: fioat
<<USEH @'I latitude: float
@1 elevation fieat
: =ZZesm A Lk
—‘—l MemberPackage
PlannerPackage H

<2UBEFE

=LUBEEE

EquipmentPackage

6.1. General View of the System

6.2. Package and Class Design

6.2.1. GUIPackage

GUIPackage is the package that handles the user interaction and commands. Inputs are
obtained from the user to be used in other packages for planning. Some important features

it provides to user can be listed as follows:

e User can manage the member database of the club

e User can see the 3D visualization of the terrain and can mark coordinates on the
image for different purposes: start and end point specification, checkpoint
specification, avalanche risk specification, falling rock risk specification.

e User can see the simulation of the prepared plan.

Below you can find the class diagram of the GUIPackage.

As you can see in the in Figure 6.2 we have omitted the class data and method fields to
fit the diagram into the page. Below you can find the individual classes of the package in

their expanded forms.

wpabpiqg ssp|D aboyIpdIND *Z°9 24nbi4

..............

nnnnnn

Q3g/NDINLLISIONDT
SINIOIAO3HDSSYd
ODITYMIINVLSIALSIONOT
Q38MMI3IONVASIALSIONDT
ODNVYMINLLLSIONOT
HIVdIS34VS
3NLI2VENN
HIVAISIHOHS
._....E_._E._."_Euu NHLNY
<<uon »
HINWINS
YL
uoseasg
[-
P 1SIMHLHON
: 15am
i 1SIMHLNOS
i HLNOS
i 1SYIHLNOS
i . 15v3
i £ ' SYIHLYON
Lt .__._H.U w ——.—.§
| uode.n0
m H << UDNRIUNUS>:
; <<afn=» =
AAAAAA
TE. ‘ abensEdIaqwan
| L |

T o=

ﬁ] camps: Vector<T-=Camping= ﬁﬂ route Vector=T-=Coordinate=
@] route’Vector<T-=Coordinate=

e £ » simulateClimbingi}void
¢1 equipments:Vector<T-=Equipment= ot

3 % Simulation(in route Wector«=T->Coordinate=}
gl durationint > @ !
<% =aveSimulation()void

<% saveRepor()void ¥ Setroute(in route'Vector<T-=Coordinate=} void
a} Setcamps(in camps: Vector<T=-Camping=}; void -;} Getroute(yVector=T-=Coordinate=

\"} Getcamps() Vector<T->Camping=

-1} Setroute(in routeVector<T-=Coordinate=) void
» Getroute() Vector<T-=Coordinates Figure 6.4. Simulation Class
<% Seteguipments(in eguipments:Vector<T->Eguipment=)
':,} Getequipmentz() Vector<T-=Equipment=

% Setduration(in duration:int):void

<% Getduration()int

Figure 6.3. ActivitiyPlan Class

> showAllMembers()void

<» emaveMember(in idint) void

<% updateMember(in id int} void

<» addNewMember(in mem:Member)void

<» showChosenMember(in list:Vector<T-=int>}.void
:l'} chooseMember(in id-int}:void

% removeChosenMember(in id:int)-void

Figure 6.5. GUIMember Class

Underlined methods represent Static methods.Vector<T->type_name> representation is
used to show Vector<type_name> data types on this document. Also italic class names

represents abstract classes.

start:Coordinate

end:Coordinate

checkPoints \Vector<T->Coordinate>
avalanche: \Vector<T-=Coordinate>
fallingRocks:Vector<T-=Coordinate=
maps.Vector<T-=Map=

currentPoint: Coordinate

handleMouselMaotion()void

handleMouseClick().void

remove StartPoint()vaid

removeStatPaint()void

removeCheckPoint() void

removeAvalanche()void

removeFalingRock()void

renderTerrain()void

saveTerrain|)void

rotatel eft() void

rotateRight():void

handleKeyboard(in leftornght-boolean)void

Setstart{in start:Coordinate).void

Getstart().Coordinate

Setend(in end:Coordinate} void

Getend():Coordinate

SetcheckPoints(in checkPoints:Vector<T-=Coordinate>)void
GetcheckPoints() Vector<T-=Coordinates

Setavalanche(in avalanche Vector<T-=Coordinate=) void
Getavalanche() Vectar<T-=Coordinate>

SetfallingRocks(in fallingRocks Vector<T-=Coordinate=):void
GetfallingRocks() Vector<T-=Coordinate=

Setmaps(in maps: Vector<T-=Map=>)void

Getmaps() Vector<T-=Map:=

SetcurrentPoint(in currentPoint: Coardinatejvoid
GetcurrentPoint() Coordinate

Visualization()

Visualization(in start:Coordinate. in end:-Coordinate, in check: Vector<T-=Coordinate>, in c

Figure 6.6. Visualization Class

profectMame:String
projectPath:String

chosenMembers Vector<T-=Member>
projectPathMaps:Vector<T-=5Stnng>
country String

city:String

projectCons Vector<T->Constraint>
startDate Date

terrain:Visualization

weather:Weather

createNewProject() void

loadProject(in path:String)void

saveFroject(in path-Stning)woid

SetprojectMame(in projecthame:Stnng)void
(SetprojectMamel)-String

SetprojectPath{in projectPath:-String)-veid

Get projectPath{) String

SetchosenMembers(in chosenMembers:Vector<T—>Member>}void
GetchosenMembers({) Vector<T-=Member>
SetprojectPathMaps(in projectPathMaps:Vector<T-=5tring=) void
GetprojectPathiMaps() Vector<T-=5String:

Setcountrny(in country-String) void

Getcountny():String

Setaity(in city:Stnng)void

Geteity(}-5tring

SetprojectCons{in projectCons:Vector<T-=Constraint>) void
GetprojectCons()Vector<T-=Constraint=

SetstanDate(in statDate:Date).void

GetstartDate() Date

Setterrain(in terrain:Visualization) void

Setterrain() Visualization

Setweather(in weather. Weather)void

Getweather{):Weather

Figure 6.7. Project Class

Vicather

ﬁ] low_temperature: finat
o pressure: float

g] windSpeed float

@_] windDirection Direction
@] season:Zeason

@1 rain:boolean

ﬁ] high_temperature: fioat

<™ Weatheriin lowt fioat, in hight: fioat, m p:fioat, in ws:fioat, in wd:Constraint, in
O Weather(}

% Setpressurelin pressure: float)void

» Getpressure(); fioat

% SetwindSpeed(in windSpeed: floaty:void

» GetwindSpesd() float

» SetwindDirection(in windDirection Direction j void
% GetwindDirection():Direction

<™ Seiseason(in season:Season) void

» Getseason()Season

% Setrain(in rainboolsan)void

«» Getrain(} boolean

% Setiow_temperature(in low_temperature: flioat)void
-;j) Getlow_temperature() float

r‘_} Sethigh_temperature(in high_temperature: floaty void

% Gethigh_temperature() float

Figure 6.8. Weather Class

6.2.2. GISPackage
This is the package that extracts data from the map file paths obtained from GUIPackage.
This package is capable to get features of both raster and vector maps. Below you can find

the class diagram of GISPackage.

|' Map

» readMap()void

«» getFeatures()FeatureCallection

RasterMap | VectorMap
ﬁ.'l url: String lfﬂ url. String
¥ getUr():String «» getUd{) String
<» setUrl(in wl Stnng) o setlr(in url String
<» readMap{) void » readMap()void
<» getFeatures() FeatureCollection » getFeatures()FeaturaCollzction
g g

Figure 6.9. GISPackage Class Diagram

6.2.3. MemberPackage

MemberPackage is the package that apply the changes and operations to the database
of members. User always interacts with the GUIPackage when applying some changes to the
member database but these changes are actually applied and reflected to the database by
MemberPackage. GUIPackage is not allowed to access database directly. Below you can find

the class diagram of this package.

Member ==enumerationz=

Level
g1 name:String
&1 sumname:String LEVELT
g1 idint LEVEL2
gﬂ walkingSpeed: float LEVEL3
@] climbingSpeed float LEVEL4

fﬂ carriageCapacity:finat EEVES S

g1 experienceLevel

f\} Setname(in name; String):void

» Getnamei) String

1} Setsurname(in surname:3tring)void

» Getsurname(}:String

&y Setid(in idiint):void

<» Getd()int

» SetwalkingSpeed(in walkingSpeed: float)void
» GetwalkingSpeed() float

i_} SetcimbingSpeediin cimbingSpeed: ficat) void
O GetclimbingSpesd(): fioat

"} SetcarriageCapacity(in carriageCapacity: float) void
» BGetcarriageCapacity(): flost

» Setexperience(in experience: Level) void

a) Getexperience{}:Level

» showaAlMembers()void

» removelember(in d-int}:void

a} updatetember(in id:nt}); void

» addNewMember(in mem Member) void

Figure 6.10. Member Class

6.2.4. EquipmentPackage

EquipmentPackage has only one class named Equipment. It is for getting data from the

database of equipments.

Equipment

@] name:String

{ﬁa] weight:float

g1 countint

@'1 idint

'EP] walking:boolean
@] climbing:boolean
'E‘rﬂ camping:boolean
g1 season Season
@] duration;int

{ﬁu] isEmergency:boolean

Getname(} Siring
Getweeightl}; float
Getcount(};int
Getid(}int
Getwalking():boolean
Getclimbing(yboolean
Getcampingl) boolean
Getseasonij Season
Getduration(}:int

Setduration(in duration:int) void

VWYYV

GetizEmergency():boolean

s

Figure 6.11. Equipment Class

6.2.5. PlannerPackage

PlannerPackage is the package that the plan of the activity is prepared. There are two
classes in this package: Camping class and Planner class. Planner class has the method to

prepare the plan, Camping is a helper class.

The method makePlan() in the Planner class prepares the activity plan. Our algorithm
will work in makePlan() function. Since we do not have a well-defined algorithm to prepare
plan at this step, we will only give some information about the working principals of our

planner algorithm.

Activity plan consists of a route, a camping plan including camping regions and camping
duration, the optimized list of equipments that are required for the climbing and an
optimized food list. Among these members of the plan, route is the one that dominates the
others. So the algorithm should first find an optimized route for the activity meeting the

constraints specified by the user.

The algorithm will make decision on paths considering the least experienced, slowest
and weakest members of the group as a basis. The paths that require more experience than
the least experienced member of the group will not be chosen. Duration of the activity will

be decided according to the speed of slowest member in climbing or walking.

Walking speed of the members will be reduced at nights, at snowy and rainy weathers.
At rainy and snowy weathers walking will be preferred climbing, actually climbing will not be

an option.

Safest route is the route that there is less or no avalanche and falling rocks risks. Also
walking will be taken as safer than climbing. When minimizing time of the activity is a
constraint, safest route will be considered as shortest route in duration, because the risky
activities like climbing, passing rivers, are time consuming activities even if they are on the

shortest path. This is one of the mountaineering knowledge obtained from reliable sources.

Camping is not mandatory. However, if necessary, the duration of the camping will
always be minimized. Equipment list will be prepared according to the requirements of the
path and will be optimized. Food list will be prepared according to the duration of the

activity. The load of the group should be minimized.

Below you can find the class diagram of PlannerPackage.

| Camping Planner
§1'| duration; int “ﬂ camps: Vector<T-~Campnge
(&1 siariTime Dae . T §1 duraionnt

] place Coordinaia
i % makePlan|

» Getduration()ini » Setcamps(in camps Vector<T-»Camping

» GetstarTme{).Date » Geicamps() Vecior<T-=Campnigs

» Gelpisce(] Coordinate »

% ",‘_“-.&lﬂ,l’ﬁll._,-'luﬂ gurstan nty Vo LY

% SetstariTime{in starfTime Date} void

4] ?.":Ll SCE N piace. LoDroinate |

Figure 6.12. PlannerPackage Class Diagram

wp.iboig uonIsun. 21031S ‘€19 ainbi4

I—GBugoas
PaEs 0] wniasl ﬁmﬁEwﬁ_ & =
: . 1senbel Iaquispyoiess
Jaquisw T Buiyoaeas
1Eenbel UNIBINWIE 2ARS 21epdnT ol LA L
SAOWEL 0] uinial
RE e S TN 1=anbai l3quapyoiess
1=anbal Jaquapyoeas
= = - Eanbal Iaquapoees
1Santal uoipEnuS B
15anbsl UOIETIENSIA [SAES o SEAREEY nEpdn
ap pungal Jaquusi T BurAcaa
| B[umal
ug|daiedaad
WELI2) SZlEnsiA 1sanbal laquispatepdn | JsenbauTIaquspydless
_ 1sanball ueldApmioE _ |
aprumns B wmal 1sanbasllagquaanowsl
JEenbel uoHEZIENSIA Sipr LAl S uanEl 3P uangad
aloid anes e
ﬁ 3pi wayshs
1sanbal 2AES _/. _._
4 SanbelIaqua B
_ _ | isanbasdepasmoig wsanbarojupsuieapusuas |} s 1sanbaiuensuo)amt
g Uingaa 3jpE wnad 158nbsl” SajEUIpl00iajus

1sgnbaldepasowal o " _ : . " - = -
Sanbalpey) _M dewBuismoig u ma_:_q Eﬁmu_stmu mﬂEﬂzdﬁw m T :Ecu:mu muuﬁﬁ__E &U
= .NT_.._,_DEI_.:_.:E

1s2nbal depaaowsal deuwr ppe U

Eanbel deyppe

ugisaQ |eJoineyag ‘€9

6.4. Functional Modeling

6.4.1. Data Flow Diagrams

e Context Level Data Flow Diagram

_usear commands and data

project

chosen member [ist

Al mambears infa

waather info

ACtivily plarn

current coordinat

.'_._._'_'_'_'_'_,_,_,-o—"'_

ppeilizadlaly]

Figure 6.14. Context Level DFD

e Level 1 Data Flow Diagram

chosen members

map paths

members info current coordinate data

member commands and data

coordinates

—Uuser commands and data-

< project
<4—chosen member list

visualization data

w—al| members info

«—weather info

4—activity plan

<4——yisualization _) :
 simulate commands

“4——current coordinate—

4——=simulation

project commands and data

weather data Equipment

country and city info

project data

Figure 6.15. Level 1 DFD

e Level 2 Data Flow Diagram : Visualize

zoom in command

data after zoom in

Zoom out command
——visudization command

data after zoom out

4+—visualzation data—— |
otate left command

data after |eft rotatio

4—current coordinate data rotate right command

il

moLse move event /

coordinate

data after right rotation

save terrain command

maouse riaht click

maouse feft click

Figure 6.16. Level 2 DFD: Visualize

Level 2 DataFlowDiagram : Manage Project

new project data

—project commands and data
save project command

current project data
4——project data

apen project command

apened project dat

Figure 6.17. Level 2 Data Flow Diagram: Manage Project

Level 2 Data Flow Diagram : Manage Member

new meambeér info

-member commands and data

A—members info

mamber id

Figure 6.18. Level 2 DFD: Manage Member

6.4.2. Data Dictionary

Name: user commands and data

From: USER

To: Graphical User Interface

Description: Contains all commands and data taken from user

Name: member commands and data

From: Graphical User Interface

To: Member-User Interaction

Description: Contains all commands and data related to
member

Name: add command

From: Member-User Interaction

To: Add New Member

Description: The command for adding a new member to the
system

Name: new member info

From: Member-User Interaction

To: Add New Member

Description: Holds the information about the member that
will be added to the system

Name: remove command

From: Member-User Interaction

To: Remove Member

Description: The command for removing a member from the
system

Name: remove member id

From: Member-User Interaction

To: Remove Member

Description: The id of the member who will be removed from
the system permanently

Name: update command

From: Member-User Interaction

To: Update Member

Description: The command for updating an existing member

in the system

Name: member info

From: Member-User Interaction

To: Update Member

Description: The member whose information will be updated

Name: remove from chosens command

From: Member-User Interaction

To: Remove Member from Chosen Members List

Description: The command for removing a member from the
list that contains the members who are going to
participate in the activity (chosen member list)

Name: member id

From: Member-User Interaction

To: Remove Member from Chosen Members List

Description: The member id of the person who will be
removed from the chosen members list (not
from the system)

Name: choose command

From: Member-User Interaction

To: Choose Member for Climbing

Description: The command for choosing a member to
participate in the activity

Name: chosen member

From: Choose Member for Climbing

To: Member-User Interaction

Description: Holds information about the recently chosen
member for climbing

Name: see members command

From: Member-User Interaction

To: See All Members

Description: The command for showing information about all
members registered in the system

Name: existing members info

From: See All Members

To: Member-User Interaction

Description: Holds information about all members registered

in the system

Name: members info

From: Member-User Interaction

To: Graphical User Interface

Description: Holds information about all members to show
them to the user

Name: chosen members

From: Member-User Interaction

To: Graphical User Interface, Prepare Plan

Description: Holds the information about the members
chosen for climbing to show those members to
the user and to help preparing activity plan

Name: chosen member list

From: Graphical User Interface

To: USER

Description: Holds the members chosen for the climbing to
show those members to the user

Name: all members info

From: Graphical User Interface

To: USER

Description: Holds the information of all members existing in
the system to show those members information
to the user

Name: map paths

From: Graphical User Interface

To: GIS

Description: Contains all given map locations given by the
user (it includes “dted”, “dem”, “geotiff” and
“shp” file paths)

Name: map data

From: GIS

To: Visualize, Prepare Plan

Description: The map data gathered after reading the map
files by GIS.

Name: visualization commands

From: Graphical User Interface

To: Visualize-User Interaction

Description:

commands to change the settings of visualization

Name: coordinates

From: Visualize-User Interaction

To: Graphical User Interface

Description: Holds the start and end coordinates, checkpoints
and the points that has avalanche or falling rock
risks to mark those point in the visualization of
the terrain

Name: current coordinate data

From: Visualize-User Interaction

To: Graphical User Interface

Description:

As mouse moves on the terrain, the
corresponding coordinate is shown. Current
coordinate data holds longitude, latitude and
elevation of the corresponding coordinate

Name: current coordinate
From: Graphical User Interface
To: USER

Description:

Current coordinate shown to the user

Name: zoom in command
From: Visualize-User Interaction
To: Zoom In

Description:

The command for zooming in the terrain

Name: visualization data
From: Visualize-User Interaction
To: Graphical User Interface, Simulation

Description:

Holds the necessary information to visualize the
terrain

Name: data after zoom in
From: Zoom In
To: Visualize-User Interaction

Description:

Holds the visualization data after zooming in the
terrain to show the effect of zooming in to the
user

Name: zoom out command
From: Visualize-User Interaction
To: Zoom Out

Description:

The command for zooming out from the terrain

Name: data after zoom out

From: Zoom Out

To: Visualize-User Interaction

Description: Holds the visualization data after zooming out
from the terrain to show the terrain with
zoomed out to the user

Name: rotate left command

From: Visualize-User Interaction

To: Rotate Left

Description:

The command for rotating left in the terrain

Name: data after rotate left
From: Rotate Left
To: Visualize-User Interaction

Description:

Holds the visualization data after rotating left in
the terrain

Name: rotate right command
From: Visualize-User Interaction
To: Rotate Right

Description:

The command for rotating right in the terrain

Name: data after rotate right
From: Rotate Right
To: Visualize-User Interaction

Description:

Holds the visualization data after rotating right
in the terrain

Name: save terrain command
From: Visualize-User Interaction
To: Save Terrain

Description:

The command for saving the terrain in a user
defined location

Name: mouse move event
From: Visualize-User Interaction
To: Get Coordinate

Description:

Action of mouse movement in the terrain to get
the corresponding coordinate

Name: coordinate

From: Get Coordinate

To: Visualize-User Interaction

Description: Contains the coordinate of the corresponding
point in the terrain

Name: mouse left click

From: Visualize-User Interaction

To: Set Coordinate

Description: If user clicks the left button of the mouse on the
terrain, the corresponding coordinate is set as
one of the followings : start, end, checkpoint,
avalanche risk, falling rock risk

Name: mouse right click

From: Visualize-User Interaction

To: Remove Coordinate

Description:

If user clicks the right button of the mouse on
the terrain, if there exists a predefined
coordinate (start, end, etc.), that coordinate will
be removed.

Name: project commands and data
From: Graphical User Interface
To: Project-User Interaction

Description:

Contains all commands and data related to
project

Name: project data
From: Project-User Interaction
To: Graphical User Interface

Description:

Holds the current project data that are
necessary when loading a project

Name: create project command
From: Project-User Interaction
To: Create New Project

Description:

The command for creating a new project

Name: new project data
From: Create New Project
To: Project-User Interaction

Description:

Holds the data of the newly created project

Name: save project command

From: Project-User Interaction

To: Save Project

Description: The command for saving the project
Name: current project data

From: Project-User Interaction

To: Save Project

Description: Holds the current project data to be saved
Name: open project command

From: Project-User Interaction

To: Open Existing Project

Description:

The command for opening an existing project

Name: opened project data
From: Open Existing Project
To: Project-User Interaction

Description:

Holds the data of the opened project

Name: project
From: Graphical User Interface
To: USER

Description:

The data to show the current settings of the
project to the user

Name: simulation data
From: Graphical User Interface
To: Simulate

Description:

The data combined with route and terrain

Name: simulate commands

From: Graphical User Interface

To: Simulate

Description: Contains playing and saving simulation
commands

Name: country and city info

From: Graphical User Interface

To: Get Weather From Website

Description:

Country and city of the mountain to get the
weather conditions from a website

Name: weather data

From: Get Weather From Website

To: Graphical User Interface, Prepare Plan

Description: Weather data taken from the website to show
the user and to use in preparing plan

Name: weather info

From: Graphical User Interface

To: USER

Description: Weather information shown to the user

Name: constraints

From: Graphical User Interface

To: Prepare Plan

Description: Holds all given constraints by user

Name: route

From: Prepare Plan

To: Simulate

Description: The route of the climbing that is shown to the
user in simulation

Name: activity plan data

From: Prepare Plan

To: Graphical User Interface

Description: Generated activity plan data to show the user
and save the activity plan report

Name: activity plan

From: Graphical User Interface

To: USER

Description: The activity plan shown to the user including the
duration of the climbing, camping location and
times, food, equipment and emergency
equipment list

Name: visualization

From: Graphical User Interface

To: USER

Description:

Visualization of the terrain shown to the user

Name: simulation

From: Graphical User Interface

To: USER

Description: Simulation of the climbing shown to the user

6.5. Database Design

Since the GIS tool that we are going to use (GeoTools) is capable of storing the map

information in its own data store, we don’t need to create any table for storing maps. So, the data

that we will store is not complex. We have two basic tables for storing member information and

equipment information.

6.5.1. Tables

e Member Table

Member Table holds the basic information about a member. As user adds, removes or

updates a member, his information is saved to database by using this table. In the next steps of

the project, new fields can be added to this table when needed.

" T T T T T T Tt T T T T T T T T ST T T T T T T T T TTT T T TT T T T T r—_-—"—"" Y . T TTTTTTTTTTTTTT T T T T l
| Field Name i Data Type i Description i
S S e j
L ld | INTEGER : Unique id of the member |
N A] i
i Name : VARCHAR(15) : Name of the member :
i i i i
i e oo :
i Surname i VARCHAR(20) i Surname of the member i
| | | |
i i i i
i ClimbingSpeed —: FLOAT irCIimbing speed of the member in—i
i i | m/h. i
e S S A
iWaIkingSpeed : FLOAT iWaIking speed of the member in :
| | ' km/h. |
| | | |
: CarriageCapacity : FLOAT . Carriage capacity of the member in .
i i | Ke. i
b] L b] !
i Experiencelevel : INTEGER : Experience level of the member. :
| | ! (Levell — Level 5) |
o e T L i

Table 6.1. Member Table

e Equipment Table

Equipment Table holds the basic information about an equipment. It also includes the
equipments that are needed in case of emergency. This table is needed for preparing the activity
plan. User will not be able to access Equipment Table. In the next steps of the project, new fields can

be added to this table as needed.

 FieldName i DataType | Descripton 1
A e j
i Id : INTEGER : Unique id of the equipment :
S O] i
E Name : VARCHAR(30) : Name of the equipment :
S | —— S 4
I Weight I FLOAT i Weight of the equipment 5
| | | |
i i i i
i NeededforClimbing 1. BOOLEAN irTrue if the equipment is needed for—i
| | | |
i : : climbing :
| NeededforWalking | ' BOOLEAN | True if the equipment is needed for |
| | | |
i i i walking i
| | | |
: NeededforCamping : BOOLEAN : True if the equipment is needed for :
i i i camping i
] o b] |
ESeason : INTEGER Eseason in which the equipment isi
| | | used |
e — L — S —]
' Emergency ' BOOLEAN ' True if the equipment is an !
| | | |
; ; | emergency equipment |

Table 6.2. Equipment Table

6.5.2. ER Diagrams
Since we don’t store any complex data and the data that we store are not related to each other,

the ER diagrams are not complex, also. We have ER diagrams of only our database tables.

Figure 6.19. ER Diagram of Member

Figure 6.20. ER Diagram of Equipment

/. IMPLEMENTATION

7.1. Current State

We have started to use tools and libraries. To determine the GIS tool capabilities we have
played with Geotools and seen some extra features more than that we had hoped like
rendering terrain in 3D and lots of 3D graphics methods. On the other hand, when we
designed the packages and classes of the project in Architectural Design part, we have
determined the methods of classes as good as possible and defined some of their contents

like database connections, graphical user interface interactions etc.

7.2. Prototype Implementation

The prototype of ClimbPlanner sould contain an understandable graphical user interface
with its main features. The software main features are opening a new project, saving and
loading it. In addition to these, gui should be able to get user inputs and show a 3D
visualization of the terrain. There should be a database connection for chosing climber for
current plan and actions on climbers who exist in database. There can be a network

connection for getting weather conditions.

Of course all these considerations will become final with respect to Aselsan’s demands.

We will do our implementation on prototype in this direction.

7.3. Future Work

In addition to these design decisons, we have thought about the Aselsan’s feedback on
equipment list issue.They suggested that we should think on a tool identification interface.
We have discussed about it and we have realized that we can do it. We have thought it such
that we will design a sheet which contains the possible features of equipments. If user wants
to introduce a new equipment to the system, after asking the features of equipment
particularly, the software can store it to equipment database. However, we can’t add this
interface to our design until now because of time shortness. In the detailed design report,

we will add that interface. In addition, we will also add the equipments that will be used, to

the database in detailed design. We will also start the prototype implementation according

to the specifications given by Aselsan on prototype demands.

8. CONCLUSION

During the preparation of this document, our team was aware of how important this
stage of the project is, as initial design forms a basis for the future design works. Therefore,
first we deepened our searches about the technical issues to create a realistic view. We
considered every possible choice for libraries, tools and platforms and make more research
on our choices. After this part, we needed to embody our abstractions in a clear,
comprehensive, objective way to make this document lead us through the implementation
smoothly. In the light of these beliefs, we tried to be clear during the design of hierarchy of
the whole system, modules and classes. Moreover, we needed to specify and draw class,
activity and ER diagrams so that any developer -including us should understand the
architecture and design by analyzing the diagrams; we needed objectivity as well as realism.
For the main architecture, we mostly considered consistency and performance; our team did

its best for these purposes.

To summarize, Sirius Software team performed its best for this stage of project as our
team is aware of the importance of the initial design mile stone. This document's aim is to
enlighten us and readers through our project's development; therefore it will be upgraded

after getting feedback from ASELSAN and our project advisor.

10Y) 33UD9H ‘T°6 3.nbi4

BOOT S 20 Cuwib) i [

BOOE S0 BT GOOT L 0T R U]
BO0Z 50 BOUTS0E0 bunbfngag g Bugsay .
MNTEIY0 AODE WO CERRD,) Ry o
BORIE 0 BT Bugeay vowerwag oo
BO0Z ¥ BOOZED O woqunueg Bupsuandiey

BOOT 00 BOOT 00T Buiiss wipabng
GNEENEE GODEEO0 oty woguERUnas, SutiuBitil L.

NI TNl BODZ EOCD Buiia) LCyETBNAL,
BO0E 20T 0O0Z LO'BE womguzgnm,, Bunususgda) .

BOOT LO'ET T MAC

B LT BOOZ 5020 L o iy B et

SO0Z LO'BE il ulhBog) paRISg

BO0E LEY FOOTEL 80 ulimar) s uag=ny

= e F] 'z ufena] om0

B L BOOZ ZL'80 BRI DoUIS]

BO0Z ZL'50 iy ulsse pou

BO0Z TLE0 BOOZ L Suauodue) o ulkean

BOOT ZE G0 BT LI BUNSAPLEI IGUOT)

BOOT 4 podayy aredjEny Gy

BOUZ LE #OOT 04 Busjapony am-asp)

RO L HOOE 0L Enapoy [uuoan

LE BOOZ 01 PRI U i S

0T oL ISR LA ML

BOOZ O Aanng waypoding uoiemundn

BOOT 08B0 wIRasaY K0y

< EOOT 0 L e

FOOZ 0L’ Uy e Bunadiy

BOOT B0 T2 uorEeges edoy puw dn Buws g

_ =] _ =] [T _ By = S
EyEng BT

XIAN3dddV 6

10. REFERENCES

[1]. Java Programming Language,
http://en.wikipedia.org/wiki/Java (programming_language)

[2]. Eclipse Platform, http://en.wikipedia.org/wiki/Eclipse_(software)

[3]. Netbeans IDE, http://www.netbeans.org/features/4

[4]. GeoTools, Open Source Java GIS Tool, http://geotools.codehaus.org/

[5]Extensible Markup Language, http://www.xml.com/

[6] MySQL, http://www.mysqgl.com/

[7] User Interfacer Desing Tips, Techniques, and
Principles: http://www.ambysoft.com/essays/userInterfaceDesign.html

http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://www.netbeans.org/features/4
http://geotools.codehaus.org/
http://www.xml.com/
http://www.mysql.com/
http://www.ambysoft.com/essays/userInterfaceDesign.html

	Duygu Yapa 1449222
	Ayşe Turan 1449164
	Duygu Altınok 1502095
	Elif Kamer Karataş 1448836
	INTRODUCTION

	1.1. Purpose of the Document
	1.2. Project Definition
	1.3. Project Scope
	
	2. DESIGN CONSIDERATIONS

	2.1. Constraints and Limitations
	2.1.1. Time
	2.1.2. Performance

	2.2. Design Goals and Objectives
	2.2.1. Portability
	2.2.2. Usability
	2.2.3. Reliability
	2.2.4. Approach and Modeling
	3. FILE AND FOLDER FORMATS

	3.1. Map Files
	3.2. System Files and Folders
	3.3. Image and Video Files
	
	4. LIBRARIES AND TOOLS

	4.1. Languages and Platforms
	4.1.1. Java
	4.1.2. Eclipse
	4.1.3. NetBeans

	4.2. Geographical Information Systems
	4.2.1. GeoTools

	4.3. Graphics Libraries
	4.4. Other Tools and Libraries
	4.4.1. XML
	4.4.2. MySql
	5. USER INTERFACE DESIGN

	5.1. Main Window
	5.2. File Menu
	5.3. Terrain Menu
	5.4. Weather Menu
	5.5. Help Menu
	5.6. Member Information Panel
	5.7. Constraints Panel
	5.8. 3D Visualization of the Mountain Panel
	5.9. Get Activity Plan Window
	
	6. ARCHITECTURAL DESIGN

	6.1. Overall Architecture
	6.2. Package and Class Design
	6.2.1. GUIPackage
	6.2.2. GISPackage
	6.2.3. MemberPackage
	6.2.4. EquipmentPackage
	6.2.5. PlannerPackage

	6.3. Behavioral Design
	6.4. Functional Modeling
	6.4.1. Data Flow Diagrams
	6.4.2. Data Dictionary

	6.5. Database Design
	6.5.1. Tables
	6.5.2. ER Diagrams
	7. IMPLEMENTATION

	7.1. Current State
	7.2. Prototype Implementation
	7.3. Future Work
	
	8. CONCLUSION
	9. APPENDIX
	10. REFERENCES

