

INITIAL DESIGN REPORT)

Contents
L-INErOAUCTION ...ttt sat e eshe e st e s bt e s et e et e e nbeesaneebeenneenaneens 5
1-1 Project Definition and GOAIScooeeriiiiiiiiieiieeee e 5
1-2 PUIPOSE OF DOCUMENT.....c.ueiiiiiiieeiieettesie ettt sttt ettt e st e esbe e st enbeesaeesareennees 6
2-DESIGN CONSIIANES.......eeeeieritieitt ettt ettt ettt sb et e bt she et e bt e sbe e sat e e bt e sbeesabeenbeesabesabe e beenanenaneens 6
2-1 RESOUICE CONSTIAINTS.eeiutietieriteeie et eit ettt ettt ste et e b e sat e e bt e sbe e st et esbee st e enbeesateenbeenseenaee 6
2-2 POWET CONSTIAINES ...ttt sttt sb e sb e sbeenesre e 6
2-3 THME CONSIIAINTS....cueitieiiiitiet ettt e b e sb e sbeenesae e 7
2-4 ErgONOMIC CONSIIAINTSeiiieiiieiieeeiieesieeesteeeitee st e estreesteeesbeeesstessssaeessseeessseesssseesnseeesnsessnssenans 7
2-5 Performance CONSIIAINTScoviiiiiiiiinieie et s 7
2-6 EXPErienCe OF MEIMIDELSccuviiiiiee ettt ettt e et e e st e e te e esa e e s teeessbeesssaeesareeesnseeennseeans 7
KB (=] AN 11 (<ol (1 - S 7
3-1 OVEIVIEW OF HSIML.... .ottt ettt st 7
3-2 AFCHITECTURAL DESIGN ..vveeiieeeceiee ettt ettt e st e e st e e st e e sbaeesabeeessbeearsaeesnraeesssesenseeans 8
K o T 0 LV LT DTty T | o SR 8
R o] 1 VL=l B =] o PSR 12
|V To o =11 o [PPSR 13
4-1 Data FIOW DIAQIAMSeocviieiiii ettt ettt e st e e stte e e br e e s te e e saveestaeessbeeesaseeensaeesateeesnseeennneas 13
B-1-T LEVET O.nee ettt ettt 13
4-1-2 LEVEI 1 I HSIM oottt be et s 14
4-1-3 LeVel 2 : FPGA MODULEccoiiieiecee ettt sttt sttt st st enaeenneas 15
A O I Tl BT Vo | -1 41 TSR TTRPR 17
4-2-1 ETNernet MOGUIEcc.oiiiiiieie ettt 17
4-2-2 FPGA MOUUIE ...ttt st ettt e b e s ae e snbeenbeesneeenteeneas 19
4-3 ACHVILY DIAGIAMS ...eeiitiiiiitiieciee ettt ettt e sttt e et e e s te e e stbeesbbeesbeeesateeebaeesabeeesssaesasaeesasesesnseseseeas 23
4-3-1 Ethernet ACLIVItY DIAgIAMeeeiiii ettt sttt s e e e s be e estbeeebae e sareeenareeennes 23
4-3-1 FPGA ACLIVILY DIAgrAM.....ceiciiieiiieeitiee ettt et e et ste e e eate e ete e e ebe e e sbeeeetbeeenbaeesareeennseeennns 24

MAHOHard Software Inc. .

INITIAL DESIGN REPORT !

B INTERFAGCE ...t ettt ettt e e sttt e s s abe e e e s s bbe e e s sabeeeesaabeeeessbreeeesans 25
5-1 EXIEINAl INTEITACE.eieieiieett ettt et e n e nee e 25
5-1-1 EENEINEE POIT....coeieeeeeee ettt s s bt sat e sb e naeesaneens 25
5-1-2 EherNet INTEITACE.ccoueiiieiteetee ettt sttt et sat e beesanesaneens 25

5-2 INEINAI INTEITACE. ... ettt sttt sb e sttt enbe e st e neenbee e 26
5-2-1 WIiSNDONE INEEITACEeeeiiieiieeieecie ettt sttt et ettt e beesaee e ens 26

6- Language SPECITICALIONSvieiiieeiiie ettt ettt e ettt e et eeea e e sate e e ssseeesneeesnteeessseeenseenns 27
6-1 EMDEAUEd C /CH+ ..o 27
B-2 WHDLL .ttt ettt st e s bbbt s bt e st e sa bt e e be e e s bt e nab e e bbeeenneas 27
7- TeStiNG aNd DEDUGGING ...vveeeevreeieieeeitiee ettt e sttt eesteeetee e st e esereesteeessbeeesaseeeseeessseeessseeesseesnsesesssesensseesns 28
I o R 28
o =T T SRS 28
A 1] 1o = Vo] T I o S 28
R Y] (=] (T I AT o SR 28

A B L= o1V To o 1 oo RS 29
R CT a1 A O - | o ST TUPT P PPPPOPPPPP 30
8-1Term 1 Gantt Chart ..ccoeeeiiiieee ettt st e st e e st e e s snreee s e 30
8-2Term 2 GANtE Chart ..ottt e st e e s e e s snreee e e 31
8- RETEIEINCES ...ttt ettt sttt e s ettt e s s e e sttt e s st e e s abe e e e saabreeeenans 32

MAHOHard Software Inc. .

INITIAL DESIGN REPORT

Table of Figures

FIQUIE 12 DESIGN OVEIVIBW ...ttt ettt b ettt b ettt bt e e e e e e e s e nnneen 8
Figure 2: Functional Overview of NAN0D0AIT.ciiiiiiiiieiieiic e 10
Figure 3: Overal Component of Hardware ArChiteCtUIe............cuvivieiiiiieiie e 11
Figure 4: Features OF AILIUM DESIGNELcc.uiiiiiiieitieiie ettt sb e nnne e 12
FIgure 5: CONEEXE LEVEI DFDccuiiiiiiiieiti ettt ettt ettt 13
FIgure 6: LEVEIL DFD D HSIM. ..ottt et 14
Figure 7: Level 2 DFD: FPGA MOUUIEScc.eiiiiiiieiie et 16
Figure 8: EtNernet MOTUIEooiuiiii et 17
FIQUIE 91 FPGA MOUIE. ...ttt ettt e e 19
Figure 10: Ethernet ACHIVILY DIAGIAMccviiiiiiieiie ittt 23
Figure 11: FPGA ACHIVILY DIBQIAM.....ciuiiitiiiiiiiieitie sttt ettt et e e sne e 24

MAHOHard Software Inc. .

INITIAL DESIGN REPORT [

1-Introduction

1-1 Project Definition and Goals

Securely managing keys is one of the most important and resource consuming tasks required to
guarantee the security on a public key crypto system. This is due to a close relationship between security
and the proper management of private keys. A public key crypto system can be considered secure as long
as the private keys are secured. Taking this as as a premise, it should be guaranteed that a (private) key is
strictly secure during all events in its life cycle. This goal can be achieved by designing systems to
securely create, manage and destroy (private) keys, maintaining an audit trail of every operation which

was done during their existence. Such systems are known as Hardware Security Modules (HSMs).

HSMs are specialised tamper-proof devices in which cryptographic functions and embedded
software have been built to properly manage keys and control their life cycles. They are designed in such
a way that if an unauthorised attempt to access them is made, this is considered an attempt to tamper and

all critical internal parameters and keys are destroyed.

Although very common in the banking industry, HSMs are also desirable in PKI, but not always
implemented. As shown in Table 1, their common usage in the banking industry leads to specialisation of

the HSMs to perform tasks such as PIN calculations or payment protocols, that are suitable in such

industry.

Bank HSMs PKI HSMs
PIN Calculation Strong Authentication
Role Based Authentication Identity Based Authentication
Dual Key Entry Strict Key-life Cycle Control
Payment Protocols Fully Auditable Operation
Cryptographic Speed Triggered Group Mechanisms

Table 1: Comparison Between Bank HSMs and PKI1 HSM

MAHOHard Software Inc. .

INITIAL DESIGN REPORT

In this project, it will be tried to develop a PKI HSM. The goals of this HSM are :

onboard secure generation

onboard secure storage

use of cryptographic and sensitive data material

offloading application servers for complete asymmetric and symmetric cryptography

HSMs provide both logical and physical protection of these materials from non-authorized use and
potential adversaries. In short, they protect high-value cryptographic keys.

1-2 Purpose of Document

The purpose of this document is to show our initial design concepts about HSM project. In this
document it will be given details of this project according to requirements explained in the requirement

analysis report.

2-Design Constrants

2-1 Resource Constraints

There will be need of datasheets of the devices that will be using for this project and manuals of
the software development environment that will be used for coding. These documents will be supplied by
our teaching assistant and whenever extra information is needed, internet resources will be used. Since
this project is an hardware project and similar projects are commercial and are not open source , it will be

hard to find related resources. That is why there will be limitations in our development progress.

2-2 Power Constraints

Since Hardware Security Module (HSM) has very critical task, which has not to be interrupted,

the power must have some features :

e Power must be supplied continuously without any drop and rising.

e Power supply must supply a voltage in a range. For example, 90-132 and 175-264 VAC.

MAHOHard Software Inc. .

INITIAL DESIGN REPORT

2-3 Time Constraints

The deadline of the project is June and a prototype should be provided at the end of this semester.
Since this project is an embedded project, time is very important constraint. We have to use time very

effective in order to achieve some results.

2-4 Ergonomic Constraints

Since new platforms such as “Altium Designer” will be used which is new for all team members,
there may be some problem.

2-5 Performance Constraints

First, HSM must provide a significant speed for data transferring and all other functionality.
Besides, When number of transferred data increase, HSM must also provide parallelism. For example if
there are more than one data will be encrypted, HSM must share these data between suitable modules.

By that way, in one time more than one data can be encrypted. Supplying these features will be big deal.

2-6 Experience of Members

Lack of experience of the team members on coding for embedded device is one of the restrictions.
Sometimes, some difficulties may be faced with managing unexpected problems and unforeseen details of

the project.

3-System Architecture
3-1 Overview of HSM

As it is explained throughout the report, HSM system needs a complex architecture because lots of
modules will work cooperatively. Therefore, the architecture should be easily modifiable according to

changes and it should allow developers for developing new modules. Moreover, it should make this

complex system's development phase less difficult with good separation of layers.

MAHOHard Software Inc. .

INITIAL DESIGN REPORT

HSM
Server 1

Encryption
Package

| EtherY 1

net)
Decryption
Modu Package

le

TCP/IP—»

—

Wishbone
Interface Hash
Package

1 /
Micro _l

Processor Random
Key
Package

—
—

= Digital
Secure Signature
Storage Package

Figure 1: Design Overview

3-2 Architectural Design

3-2-1 Hardware Design
HSM will be designed on a board which is called Altium Nanoboard 3000. This board has been
chosen this board because of some of its features and advantages. Some advantages of this board are:

e Perfect entry-point to discover and explore the world of FPGA-based embedded systems design.
Programmable hardware realm allows designer to update the design quickly and many times over
without incurring cost or time penalties

e Reprogrammable hardware development platform that harnesses the power of a dedicated high-
capacity, low-cost programmable device to allow rapid and interactive implementation and
debugging of our designs

e High-capacity FPGA located on the motherboard, and provision for a single plug-in peripheral
board (Altium or user’s own) for additional system flexibility.

e Automatic peripheral board detection and configuration.

MAHOHard Software Inc. .

INITIAL DESIGN REPORT -

This board has some basic and important features which make us choose it. Some of them are:

e NanoBoard 3000XN — with fixed Xilinx® Spartan™-3AN device (XC3S1400AN-4FGG676C)

e Variety of standard communications interfaces: RS-232, RS-485, PS/2, 10/100 Fast Ethernet,
USB 2.0, S/PDIF, MIDI.

e On-board memories accessible by user FPGA 256KB x 32-bit common-bus SRAM (1MB), 16M
X 32-bit common-bus SDRAM (64MB), 8M x 16-bit common-bus 3.0V Page Mode Flash
memory (16MB), dual 256KB x 16-bit independent

e SRAM (512KB each).

e Four 8Mbit SPI flash memory devices — one containing Primary boot image for Host Controller,
one containing golden boot image for Host Controller, two for use by user FPGA (for
boot/embedded purposes).

e Host (NanoTalk) Controller hosts the NanoBoard firmware. Responsibilities include managing
JTAG communications (with Altium Designer/User FPGA/connected peripheral board), as well
as access to common-bus SPI resources.

e High-speed PC interconnection through USB 2.0 allows for fast downloading and debugging.

Since the HSM implementation will be on Altium nanoboard, all basic functionality and peripherals

of board have to be known. Below, there is functional overview of this board. '

MAHOHard Software Inc. .

INITIAL DESIGN REPORT kv

PC-USE Interface

Independent > « »! SD Card Reader
Host SPI Flash | » |
(Primary Boot Image) System JTAG
G:l;m gF;Im Fllash . .| Host Controller FPGA I ———
(Rl Gl =) (NanoTalk Controller)
P
UserSPIFlsh |, | N + > RTC
(Boot and Embedded) [* >
i o o Diagnaostic
i ;__') g Interfaca
(== med J i
| T .
B Peripheral Board | wrevemory | | [systemClock | | p{ TFTLCD Panel
v v B
Commaon-Bus | . : |
Memory . L i Status LEDs
SD Card Reader |« > — p USBPor
Independent N L .| RS-232 Serial
SRAM : Interface
DIP-Switch > - | USBHIb
PDA Swilches > e p| [0S Ser
Prototyping Area |« - + » Ethemnet Port
User FPGA
User 110 Headers (4 > — pf P52 Kerboard
Video Output | i » PWS\.:NF;{::M
MIDI Interface |« > — p PSS
Tes\Raset ; > Relays
SIPDIF Interface | + + i | ADC Interface
E # DAC Interface
Audio CODEC |« » : #| RGB User LEDs
Delta-Sigma DAC output e ____i
B 5 ;
* uzs ' Power Supplies
. 2 N 5V Jack
» Stereo Audio » Stereo Speaker Board 1.8V e)
2.5V
Ling In ——, kY
BV

Vo

Line Out Headphones

Figure 2: Functional Overview of nanoboard."

MAHOHard Software Inc. .

INITIAL DESIGN REPORT [l

Other peripherals of

3-2-1-1 Hardware Components
The hardware components are on the User FPGA part of nanoboard.
nanoboard will be used in order to communication, storage, debugging etc. For example, Ethernet port

will be used for communication with server. Besides, all components inside User FPGA will talk with

each other by wishbone interface. Main picture of components are below:

HSM executive
~
FPGA Management
A

1
!
1
!
!
!
!
1
!
/ - ///’// \:\\
L -7 e NN
- A
——= POV NN
—— 7/ N
Ethernet Management -~ S ! \ N
L / / \ N
L / i \ ~
e 7 1 \ AN
g s ! \\ AN
- / N
- ’ ! \ N
e / | \ N
7z / i \ \\
4 / \ N
e ’ ! \ N
- ’ ! \ N
/// / ! \ ~
- ’ ! \ AN
- , 1 \ ~
e ’ 1 \ AN
- / \ ~
. / \ N
P / h \ N
- / N
- / / \ N
e ’ / \ AN
-7 i / Y\ N
L , / \ N
- / ! \ AN
s ’ / \ ~
- , N
e / ! \ N
4 / \ \\
L / \ N
L
Encrypt Function Decrypt Function Hash Function Digital Signature Functions Random Keygen
MAHOHard Software Inc. .

Figure 3: Overal Component of Hardware Architecture

INITIAL DESIGN REPORT &

HSM Executive is main picture of our HSM project. It has two main parts, which are external
communication and FPGA management parts. External communication part is used for communication
with server. FPGA management part is used for cryptographic functions, time scheduling and data
management. FPGA will be composed of 6 parts. Five of them are for cryptographic functions and one is
for microprocessor. We will doing all data management and time scheduling by using microcontroller
unit. In this report we will explain working hierarchy of all parts in detail with data flow and class
diagrams.

3-2-2 Software Design

Since Altium Nanoboard will be used, “Altium Designer” is chosen as a product development
system. Altium Designer involves all needed libraries for the board and other devices that is need in the
project development. This system offers a single solution to develop hardware, programmable hardware
and software. Beside that, it is very easy to debug the work by using this system. Figure 4 will briefly

shows features of Altium Designer.

DXP Platform Software integration platform, consistent GUI provided for all supporting editors and viewers, Design Insight for design document preview,
design release management, design compiler, file management, version control interface and scripting engine

Schematic - Viewer Open, view and print schematic documents and libraries

PCB - Viewer Open, view and print PCE documents, additionally view and navigate 30 PCEs

CAM File - Viewer Open CAM and mechanical files

Schematic — Soft Design Editing Al schematic and schematic library editing capabilities (except in PCB Projecs and Free Documents), netlist generation

Simulation - VHDL DL simulation engine, integrated debugger and waveform viewer, with third-party suppart for ModelSim and Active-HDL

NanoBoard Support Range of auto-configured, swappable target FPGA daughter boards (from all chip vendors) are supported plus plug-in peripheral boards for
cmplete flexibility in system architecture, Power Moniter for FPGA designs

FPGA Design Custom FPGA Logic Development in C, OpenBus, Schematic, VHDL and Verilog design synthesis, Custom Wishbone Interface Component

FPGA Processor Cores Suppart for a range of 32-bit soft processors for use in FPGA design: TSK3000A, Xilinx MicroBlaze® Altera Nios II®, Adel CoreMPT®,

Also support for the PowerPC (PPC405A) discrete processer, immersed in the Xiling Virtex || Pro® as well as a number of legay, 8-bit
Merocontrollers (TSK51, TSK52, TSKB0 and T5K 165)

Processor Core Embedded Tools Full software development tool chain - C compiler/assembler/scurce-level debugger/profiler for each supported 32-bit processor, Plug-n-Play
Software Platform Builder for easier hardware access

Programmable FPGA-Based Instruments Presynthesized FRGA-ready instruments including Custom Instrument, Terminal Emulator, Digital /0, Crosspoint Switch, Logic Analyzer
frequency Generator, Frequency Counter, Field Dashboard for remote access

Soft Device ITAG Support Live connection to soft devices such as virtual instruments and processors running inside an FPGA

Hard Device JTAG Support Interactive manitoring of pin status for any JTAG device

P Core Design Re-Use Support for importing third-party FPGA IP cores, developing and reusing IF librries

Import/Export Supports import and/or export of designs and librry data created in OrCAD, Allegro, PADS, DxDesigner, Cadstar, P-CAD, CircuitMaker, Frotel
and more

Schematic - Editing 4| schematic document and library editing capabilities, netlist generation

Figure 4: Features of Altium Designer"

MAHOHard Software Inc. .

INITIAL DESIGN REPORT [EE]

4- Modeling
4-1 Data Flow Diagrams

4-1-1 Level O

Server
Processed Packet to be
Packet processed

Figure 5: Context Level DFD

As it can be seen from the figure 5, HSM will basically be in communication with server. Server
will send a packet which cover request and data. HSM will process the packet and will return answer. The
answer will change according to request.

MAHOHard Software Inc. .

INITIAL DESIGN REPORT

4-1-2 Level 1 : HSM

Packet to be

Prqgcessed processed

Data packet

HSM

Ethernet

Module

Send
Packet eceive
acket

FPGA Module

Request
Supply Data
Data
Q
(o))
g
2
0
<
>
(8]
Q
0]

Figure 6: Levell DFD : HSM

MAHOHard Software Inc. .

INITIAL DESIGN REPORT &

Packet coming from server comes to ethernet module by TCP/IP protocol at first. Then packet is
transferred to the FPGA by wishbone interface. FPGA modules process packet and if there is a request
about secure storage, FPGA module reaches to secure storage again with wishbone interface. After
process, FPGA sends packet back to the ethernet module by wishbone interconnection. Finally, ethernet
module sends answers back to server. Ethernet module, TCP/IP protocol and wishbone interface will be
explained in this document.

4-1-3 Level 2 : FPGA MODULE

FPGA module includes six processes :
e Encryption : It will have encryption function with strong cryptographic algorithm such AES,DES.
e Decyrption : It will have decryption function.
e Hashing : It will have hash function with strong algorithm.
e Key Generation : It will have a function that generate random keys when key is needed.

e Digital Signature : It will have a function that produce digital signature or verify the signature
that is produced by itself.

e Microcontroller : Microcontroller will manage all data flows in the system.

As it can be seen below, wishbone interface is used for all connection between all FPGA components
and peripherals. All Cryptographic functions will be explained in class hierarchy in this report. Beside
that, wishbone interface will be explained in interface chapter in detail. The most important component of

FPGA module, microcontroller, will briefly be explained in processor chapter.

MAHOHard Software Inc. .

INITIAL DESIGN REPORT

Send Packet Rec)kc

16

FPGA Module

Micro
Processor

Reque!
data

Decrypted
Data

Data to be
_ Decrypted Data
Decryption
Hash valu

st
/ Data
Packet

Digital
Signature
ID

ﬁnature

D

Geqerated Key generation
Ke

WISHBONE INTERCONNECTION

upply
ta

Figure 7: Level 2 DFD: FPGA Modules

MAHOHard Software Inc. .

4-2 Class Diagrams

4-2-1 Ethernet Module

Packet Reader

+pendingPacketCount : int

+getPendingPacketCount()() : int
+readPacket() : Packet
+readMultiplePackets()() : Packet Sequence

INITIAL DESIGN REPORT =¥

+getPacket(int)() : Packet
+getSourceAddress()() : string
+getSourcePort()() : short
+orderedPacketd() : bool

Figure 8: Ethernet Module

reads
Packet Packet Sequence
+destinationAddress : string -packetCount : int
+destinationPort : short 0 -packets : Packet
*payload : string +getDestinationAdress()() : string
*payloadSize : uint +getDestinationPort()() : short
+sequenceNumber : int +getPacket(int)() : Packet
-sourceAddress : string +getPacketCount() ; uint
-sourcePort : short +getSourceAddress()() : string
+getSourcePort()() : short
OrderedPacket PacketBuffer
-contents : Packet
+getDestinationAddress()() : string -count - int
+getDestinationPort()() : short -empty : bool
-full : bool

+dequeuePacket()() : Packet
+dequeuePacketSequence(int)() : Packet Sequence
+enqueuePacket(Packet)() : void
+enqueuePacketSequence(PacketSequence)() : void
+isEmpty()() : bool

+isFull()() : bool

MAHOHard Software Inc. .

INITIAL DESIGN REPORT

There are explanations of Ethernet module’s classes below:

PacketReader is an abstract class that is responsible for reading packets from an input source. It
includes methods for reading either a single packet or multiple packets at once. The
pendingPacketCount member returns the unread packet count waiting at the input source.

Packet class is the data structure that is used to define a single packet. The member variables of
this class are filled by the object that reads the packet from the input source.

PacketSequence is the collection class for packets that have the same source and destination
addresses and same ports. It includes methods that provide random access to packets stored in
the collection.

OrderedPackets extends the PacketSequence class to add functionality that orders the packets
in the sequence based on their sequence number.

PacketBuffer implements a simple FIFO queue mechanism that is able to store a predefined

number of packets in a queue data structure.

MAHOHard Software Inc. .

4-2-2 FPGA Module

INITIAL DESIGN REPORT

alypem
VHDL
HASH

+F() Lint

5[int

tHI Cint

+i) sint
+modularAddition]) : void
+lafiRotate() : void

+getPrivateley() . sting

+getPublicKey() ; string

Key 0.* Storage
Fvalue ; siring ays 1 Key
+oeikey() : sting +retumkeyl) : string
ulypen
C44

Controller
-itata | string
+hashSignal{string)() : string ™ o -
+signatureSignal{sting)|) - string e ainterfacen #
+encrypl{stringli) : sting e Wishbone e
+decrypt{siring){) . string +getPublicKey() - string e
+hayganSignali)() | string +getPrivatekay() string |

Srencrypt() L
. # |vhashSignal()
+aignaturel Signature(] -
P +decrypl() S
¥typen i Hheygen) AN
VHDL p s il W; S
Random Key Generator | ~ IF \
/ i)

A
+producePrivatakay() : string ‘," \
+producePublicKey() : sting F Y

%
;r A
/ A}
/ 4
/ by e
/ VHDL
£ Digital Signature
atypes
WHDL
Decrypt +getMassagal() | bool

FoetPrivateleyl) © void

+oetPublickeyi) : siring
+oetPrivatekeyl) : siring

+decryptAEST) - sfring

+getPublicKey() : void
+ProduceSignature() ¢ string
+kayGenerats() : string
+aign() - void

+oecryptDES() : siring

Figure 9: FPGA Module

+yenfy(l - bool

wlypes
VHDL

Encrypt

+oetPrivatekiey(] : string
+getPublickeyl) : siring
toryptAES() - string
+oryptDES() sting

MAHOHard Software Inc. .

INITIAL DESIGN REPORT [l

Classes of FPGA modules are explained below in details:

Wishbone is the interface which is responsible for data transfers between Controller and other modules.
Therefore every module is dependent to this Wishbone interface. getPrivateKey and getPublicKey
functions are generic and polymorphic functions that can be redefined in its subclasses. Other methods
are redefined in Controller class.

Key is a simple class that holds a single private key. This key is used in other classes. getKey() method

returns the value of key that is stored in ’key” field.

Storage is the class where exists an array of keys which are stored in the secure storage. Requested key
values which are needed by other classes (i.e. AES, DES) are found on this class’ “keys” field. When a
request comes, requested key is going to be found and sent back from here.

Controller is the class where all request are going to be sent. It holds a data which is going to be

processed by AES, DES, Digital Signature, Hash classes’ methods.

e hashSignal method sends the data with a signal which is used to tell Wishbone interface that the
request is a hash request.

e signatureSignal method sends the data with a signal which is used to tell Wishbone interface that
the request is a digital signature request.

e encrypt method sends the data with a signal which is used to tell Wishbone interface that the
request is an encryption request.

e decrypt method sends the data with a signal which is used to tell Wishbone interface that the
request is a decryption request.

e Keygen method sends only a signal that requests random key generation.

HASH is the class where the hash requests are handled. The hash algorithm will be MD5 algorithm. The
main MD5 algorithm iVoperates on a 128-bit state, divided into four 32-bit words, denoted A, B, C and D.
These are initialized to certain fixed constants. The main algorithm then operates on each 512-bit message
block in turn, each block modifying the state. The processing of a message block consists of four similar
stages, termed rounds; each round is composed of 16 similar operations based on a non-linear function F,
modular addition, and left rotation. There are four possible functions F; a different one is used in each

round:

. F(X,Y,Z)= (XAY)V(-X AZ)
. GX)Y.Z)=(XANZ)V (Y A-Z)
. HX,Y,Z)=XaYaZ
XY, Z)=Y @(XV-2)

MAHOHard Software Inc. .

INITIAL DESIGN REPORT

Encrypt class is the class where encryption requests are handled. There will be several encryption
functions to encrypt data.

e encryptAES method uses Advanced Encryption Standard algorithm in order to encrypt data.

Advanced Encryption Standard ‘algorithm :

AES is based on a design principle known as a Substitution permutation network. It is
fast in both software and hardware. Unlike its predecessor, DES, AES does not use a Feistel

network.

AES has a fixed block size of 128 bits and a key size of 128, 192, or 256 bits, whereas
Rijndael can be specified with block and key sizes in any multiple of 32 bits, with a

minimum of 128 bits and a maximum of 256 bits.

AES operates on a 4x4 array of bytes, termed the state (versions of Rijndael with a larger
block size have additional columns in the state). Most AES calculations are done in a special
finite field.

The AES cipher is specified as a nhumber of repetitions of transformation rounds that
convert the input plaintext into the final output of ciphertext. Each round consists of several
processing steps, including one that depends on the encryption key. A set of reverse rounds
are applied to transform ciphertext back into the original plaintext using the same encryption

key.

e encryptDES method Data Encryption Standard algorithm in order to encrypt data.

Data Encryption Standard “algorithm:

There are 16 identical stages of processing, termed rounds. There is also an initial and
final permutation, termed IP and FP, which are inverses (IP "undoes" the action of FP, and
vice versa). IP and FP have almost no cryptographic significance, but were apparently
included in order to facilitate loading blocks in and out of mid-1970s hardware, as well as to

make DES run slower in software.

Before the main rounds, the block is divided into two 32-bit halves and processed

alternately; this criss-crossing is known as the Feistel scheme. The Feistel structure ensures

MAHOHard Software Inc. .

INITIAL DESIGN REPORT

that decryption and encryption are very similar processes — the only difference is that the
subkeys are applied in the reverse order when decrypting. The rest of the algorithm is
identical. This greatly simplifies implementation, particularly in hardware, as there is no need

for separate encryption and decryption algorithms.

Decrypt class is the class where decryption requests are handled. There will be several decryption
functions to decrypt data.

e decryptAES uses the same AES algorithm with subkeys in reverse order to decrypt data.

e decryptDES uses the same DES algorithm with subkeys in reverse order to decrypt data.

Random Key Generator is the class that produces public and private keys.
producePrivateKey: Produces the private key and returns it.
producePublicKey: Produces the public key and returns it.

Digital Signature class will produce unique signatures according to the public key, private key and the

message.
A digital signature scheme typically consists of three algorithms:

e A key generation algorithm that selects a private key uniformly at random from a set of possible
private keys. The algorithm outputs the private key and a corresponding public key.

e Asigning algorithm which, given a message and a private key, produces a signature.

e Asignature verifying algorithm which given a message, public key and a signature, either accepts

or rejects the message's claim to authenticity.

Two main properties are required. First, a signature generated from a fixed message and fixed private
key should verify the authenticity of that message by using the corresponding public key. Secondly, it
should be computationally infeasible to generate a valid signature for a party who does not possess the

private key.

MAHOHard Software Inc. .

INITIAL DESIGN REPORT BPE

4-3 Activity Diagrams
Basic activity diagrams of HSM system are below. Activity diagrams enclose FPGA and Ethernet

modules. Detailed information and other important features (Ethernet signals, FPGA pins and packet
content etc.) will be explained in “Detailed Design Report”.

4-3-1 Ethernet Activity Diagram

Get Packet Ethernet Port Send Packet
from Server Ready 1o FPGA

.W VRN Ethermat Moduls
_/ Yas

Mo

Figure 10: Ethernet Activity Diagram

MAHOHard Software Inc. .

INITIAL DESIGN REPORT

4-3-1 FPGA Activity Diagram

Get Data from Ethernet
Module

Hashing Data Encrypt Data

Yes Yes

Module

No ‘ Idle Module No —
Idle ‘ Waiting State
Waiting State

Process data

Module
Idle
Yes

Yes

Modulg Decrypt Data

(Random Key Generator dle ‘ yp
Module No
Idle
" No "
Waiting State Waiting State
Yes No

Digital Sig nature)

Waiting State

®

Send Answer
Back to Ethernet
Module

Figure 11: FPGA Activity Diagram

MAHOHard Software Inc. .

INITIAL DESIGN REPORT [k

5- INTERFACE
According to HSM’s working principal, two interface will be used. Contrary to expectations,

these interfaces will not be graphical user interfaces. These interfaces are called physical interfaces and
they will be used for connecting hardware component to each other and making connection available
between them. One of the interfaces is internal interface which connects HSM’s internal components with

each other and the other one is external interface which is used for connecting HSM with outside world.

5-1 External Interface
External interface is between HSM and “Server”. This psyhical connection will be provided by

ethernet interface. Altuim Nanoboard provides a fast Ethernet connection, supporting 10Base-T and
100Base-TX, for operational speeds of up to 10Mbps and 100Mbps respectively. Before explaining
ethernet interface, some information about ethernet port will be given in order to understand easily how

ethernet connection works.

5-1-1 Ethernet Port

An 8P8C ('RJ45") modular connector is used to provide the Ethernet port (a FC0901238, from
Konvee). The connector has integrated 10/100Base-T Ethernet Isolation Transformers and two indication
LEDs. The latter — one yellow and one green — have been wired to reflect the Link status and 100Mbps
activity, respectively. Connection to the external network is made using standard Category 5 unshielded

twisted pair (UTP) network cable.

Providing the interface between an Ethernet Media Access Controller in an FPGA design and the
external network, is an RTL8201CL 10/100M Fast Ethernet PHYceiver[1] device (from Realtek). "

5-1-2 Ethernet Interface

Table 2 summarizes the available design interface component that can be placed from the FPGA
Nanoboard 3000 Port-Plugin.IntLib to access the Ethernet interface. Port-Plugin.IntLib is coming ready
with “Altium Designer” and it will make job easier for the project. Detailed information about ethernet

interface will be given in Detailed Design Report.

MAHOHard Software Inc. .

INITIAL DESIGN REPORT [l

Component Symbol Component Name Description

Place this component to

¢ ETH TXD[3.0] fkw ETH_PHY
ETHH—_S::-H?%E . access the RTL8201CL

ETH FXD[3 0] A= PHYceiver device and

ETH_RXDV 4=
ETH RXER - subsequent Ethernet port.

! e ETH_RAC t—
‘ ‘ ETH COL Jo—

ETH_CRS t—

ETH_RESETB_E |-

ETH MDC |

ETH_MDIO i~

Vil

Table 2: Ethernet Interface port-plugin component.

5-2 Internal Interface
Wishbone interface will be used for making connection between HSM’s internal components

with each other. “Altium Designer” will also provides wishbone interconnection for designer. There are
various wishbone interconnections for different aims. Basically custom wisbone interface will be

explained. Detailed information about wishbone interface will be given in Detailed Design Report.

5-2-1 Wishbone Interface

Wishbone Interface

WE_INTERFACE_1

WE_IMTEEFLACE

MAHOHard Software Inc. .

INITIAL DESIGN REPORT vk

The Wishbone Interface component (WB_INTERFACE) enables designer to build a custom
Wishbone peripheral in a design, extending your 32-bit FPGA systems through the creation of custom
FPGA logic.

The Wishbone Interface component has a fully configurable interface for transferring data
to/from connected logic, and a Wishbone bus to interface with a host processor. The individual units of
this configurable interface are referred to as 'items'. The interface can include a combination of one or

more of the following items:

e Internal Registers — which allow values to be read from, and/or written to, connected logic.
e Command Sets — which allow operations to be enabled on connected logic.

e External Address Ranges — which allow access to blocks of addresses on connected

In addition to making the task of building Wishbone peripherals far easier, the Wishbone Interface
component also provides the ability to generate C code based on the items specified in the interface

ix

simplifying interaction with the component from the embedded code running on the host processor.

6- Language Specifications

6-1 Embedded C /C++
C and C++ are general programming languages and can be used for implementing software

system and portable application software. Programmers around the world embrace C and C++ because it

gives maximum control and efficiency to the programmer.

Microprocessor (TSK 3000A) and wishbone connections will be implemented by using these

languages.

6-2 VHDL
VHDL is a programming language that has been designed and optimized for describing the

behavior of digital systems. VHDL has many features appropriate for describing the behavior of
electronic components ranging from simple logic gates to complete microprocessors and custom chips.
Features of VHDL allow electrical aspects of circuit behavior (such as rise and fall times of signals,
delays through gates, and functional operation) to be precisely described. The resulting VHDL simulation
models can then be used as building blocks in larger circuits (using schematics, block diagrams or
system-level VHDL descriptions) for the purpose of simulation. VHDL will be used in order to design
FPGA. Cryptographic modules such as Encryption and Decryption module will be designed by using
VHDL programming Language.”

MAHOHard Software Inc. .

INITIAL DESIGN REPORT [k

7- Testing and Debugging

7-1 Testing
The aim of this part is to detect errors and bugs of the hardware security module. A good testing

strategy hopefully will make the project work fully. There are the testing strategies which are going to be
used in testing part.

7-1-1 Unit Testing

The aim of this kind of testing is to verify whether the smallest testable pieces of the application
are working properly or not. In this phase of testing each unit will be tested seperately before integrating
it to the whole system. ,Since finding the possible error in the integrated project is crucial, this stage is
relatively important. Also this stage ensures that integration test may only have integration errors and

hopefully has no unit dependent errors appear.

7-1-2 Integration Testing

This testing stage is a little extended form of unit testing. It occurs after unit testing and before
system testing. Integration testing takes as its input modules that have been unit tested, groups them in
larger aggregates, applies tests defined in an integration test plan to those aggregates, and delivers as its

output the integrated system ready for system testing.

The purpose of integration testing is to verify functional, performance, and reliability
requirements placed on major design items. These "design items", i.e. assemblages (or groups of units),
are exercised through their interfaces using Black box testing, success and error cases being simulated via
appropriate parameter and data inputs. Simulated usage of shared data areas and inter-process
communication is tested and individual subsystems are exercised through their input interface. Test cases
are constructed to test that all components within assemblages interact correctly, for example across
procedure calls or process activations, and this is done after testing individual modules, i.e. unit testing.
The overall idea is a "building block" approach, in which verified assemblages are added to a verified

base which is then used to support the integration testing of further assemblages.

7-1-3 System Testing

System testing of software or hardware is testing conducted on a complete, integrated
system to evaluate the system's compliance with its specified requirements. System testing falls
within the scope of black box testing, and as such, should require no knowledge of the inner

design of the code or logic.

MAHOHard Software Inc. .

INITIAL DESIGN REPORT

As a rule, system testing takes, as its input, all of the "integrated" software components
that have successfully passed integration testing and also the software system itself integrated
with any applicable hardware system(s). The purpose of integration testing is to detect any
inconsistencies between the software units that are integrated together (called assemblages) or
between any of the assemblages and the hardware. System testing is a more limiting type of
testing; it seeks to detect defects both within the "inter-assemblages” and also within the system

as a whole.

7-2 Debugging

Debugging is the act of testing designer hardware design and any embedded software (running on
'soft' processors therein), to obtain the desired (correct) performance and functionality. Debugging is an
important element of the overall design strategy, and effective debugging can save a lot of time and

money when it comes time to deploy your end design in the field.

Since “Altium Designer* will be used for this project, Altium Designer’s debugging environment
will be used. In Altium Designer, debugging of hardware is provided courtesy of 'virtual' instruments —
components which are ‘wired' into the actual FPGA design but which, on programming the physical
device, offer software-based controls for interrogation and control of nodes within the design. Imagine
being able to walk around inside the physical FPGA device, armed with your favorite test instruments,
and programmer will have some idea of what these instruments can offer as part of a 'live’ debugging

environment.

MAHOHard Software Inc. .

30

INITIAL DESIGN REPORT

8- Gantt Chart

8-1 Term 1 Gantt Chart

Wi II0IZML OV WIZUL shep g sy f g
OV VOB 3L 0FI0ekanL ep) Bugtnge | T
DFI0BV N OV IshnuL shemg oeq adums i Bugse) a
OFLOEY B3I OV W oj shep g npepuauiapdy dfmosg | |
OFV'HZ NUL OV Lol sfepg adhoosy | &7
T 0VI000MS OVI0LS sfep) e Lbisa pateiEq sujgal K4
00204 OFIgpanL shepy poday Usaq pepeiag By 4
DVI0F0 N GOZVeZaNL Sfeps uisa smpsyary pyea | % |
SIZVGZUON BOTVEZPaM Shepp wages gy [¢ |
INTIESIELTON PR NV R Rl T T T | 1|
OFB0N G0THIYY sfepg) wsaqpamag | 7
BUZVIZUON G0ZFIZUON sfep) uojmueselpdog sy B 7z
BTN 0ZVRl sfep) odayulseq g aogay R 47
B0TVOMMY BDZVINMS SMEpg oday ufisa gy Guadaly |
BOZVOMMUL B0ZHZ0P3M e 1530 MY 6|
: B0TVIOSNL GFSI e SAEROL WBsseY EUGDR] pER] KX
[BOTHERL 60D PN shep g usageny L
Wi $ SUVVLVAIL GDFLANL Shep By sl |9 |
BUVVAVANL GDFZV3NL o) ifmeuy sueulanbsy aZjel 5
4 BOLV9 N B Loy fep fugapoy ase) 35 i
BULVELMS RIS ey fuapoy juggouny L8|
BULLZINUL BV D2 ShepZ fug3poy; 28 i)
SULLOVSIL GDIFAILS shep Slzwntal fuugng mﬂ
AULVSIMUL BOHSOMAL fep) Rang jayey L
IR T AUT s LpEasay EO0E] |6
SO0V OZPRML GODFOZREM o) Buinpauos pue g ety KR
BOOLLZeNL ROD) 2 eNL E: hE:m_uEEmS %
BU0VIZANL GOOFLZanL fep) g sdaag KR
BHFLH N GV IZ 0L shepy) poday sisfeeuyewanmbay | ¢
AT TR TR AT st syl [5
CRAT TR TR R Undzy jesadnly Lt
T T [Uogagas 3o 1
W BU0KSE UOW GOOKTONY sfep gy sisfjeuy |
B EEEE R EE R BRI EEEEN R EE R EE R EEEE 0
EEE ENE:E_ N TEREN] £007 Jaquakay| mgfg%g 5007 Jaquayda . g | ey ey st 1

MAHOHard Software Inc.

31

INITIAL DESIGN REPORT

8-2 Term 2 Gantt Chart

0SIREY OVSIERal sfep SRR |)
DSUSZEL OIS sfepp pegapbuzeny | g
0VSDOZIUL 050y Uoh Sfepy uojganan] |)
0VS07H04 VSN UON Shepg) o) waghs | 1)
O00EL OV0TIUON sheps) sl uomeay |)
01906004 OVers) W stepgz Subingegplugelin | 7)
m m OVSOREUS - OVE0'SH ol Sfepgg NS 1)
0 00ZEnL OVZ0ETanL shep WL | Ol
D00ZENL OFS09l shep sanpojoueliEy |
OV0SHIL OFF0T)UON Shepy Lmua) fyuopuey |
0080 OVSULOREN Sfept ampopampubg Ry |)
0L 0903NL OEDIEPal Sfeps N | g
DVEDTEENL DVE0S UL Siepg mate | g
DEOLRN DTN sy Ao |y
OV EDIOUON OZOEZEnL Sfeps LR
_ FHEOE0L VIFCEnL SIeplp NOLLYLIONTIGN) 7
0L Z0ZZU0 OVZ0%IMAL Sfepg tenendadfonigpuesdsag |
g:%z_mgﬁ HEEN EEE%EE 129115121 60 2 1| %%%% EIE0EID ﬁ_m%%%:Eg:ﬁzﬁi_N
I W Ao W 1| Mz el I MBgRy| su g | N) g

MAHOHard Software Inc.

INITIAL DESIGN REPORT ¥

9- References

http://wiki.altium.com/display/ADOH/Key+Features+of+the+NanoBoard+3000 i
http://wiki.altium.com/display/ADOH/Functional+Overview+of+the+NanoBoard+3000 !
http://www.altium.com/files/pdfs/Altium-Designer-Feature-Set-Summary.pdf i
http://www.ietf.org/rfc/rfc1321.txt"
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf "
http://wiki.altium.com/display/ADOH/Ethernet+Protocol vi
http://wiki.altium.com/display/ADOH/Ethernet+Protocol vi

http://wiki.altium.com/display/ADOH/WB_INTERCON+-+Configurable+Wishbone+Interconnect ix

http://www.altium.com/files/AltiumDesigner6/LearningGuides/TR0114%20VHDL%20Language%20Reference.pdf*

MAHOHard Software Inc. .

