

MAHOHard
Software Inc.

Hardware Security Module

INITIAL DESIGN REPORT

e1502228 Ali CANDER
e1502152 Ozan Erdem BAYCAN
e1502764 Haldun TOPÇUOĞLU
e1503028 Mustafa ŞİŞMAN

2009

MAHOHard Software Inc.
12/18/2009

INITIAL DESIGN REPORT 2

MAHOHard Software Inc.

Contents

1-Introduction ... 5

1-1 Project Definition and Goals ... 5

1-2 Purpose of Document .. 6

2-Design Constrants .. 6

2-1 Resource Constraints... 6

2-2 Power Constraints ... 6

2-3 Time Constraints ... 7

2-4 Ergonomic Constraints .. 7

2-5 Performance Constraints ... 7

2-6 Experience of Members .. 7

3-System Architecture .. 7

3-1 Overview of HSM ... 7

3-2 Architectural Design ... 8

3-2-1 Hardware Design ... 8

3-2-2 Software Design..12

4- Modeling ..13

4-1 Data Flow Diagrams ..13

4-1-1 Level 0..13

4-1-2 Level 1 : HSM ..14

4-1-3 Level 2 : FPGA MODULE ...15

4-2 Class Diagrams ..17

4-2-1 Ethernet Module ...17

4-2-2 FPGA Module ..19

4-3 Activity Diagrams ..23

4-3-1 Ethernet Activity Diagram ..23

4-3-1 FPGA Activity Diagram..24

INITIAL DESIGN REPORT 3

MAHOHard Software Inc.

5- INTERFACE ...25

5-1 External Interface ...25

5-1-1 Ethernet Port ...25

5-1-2 Ethernet Interface ..25

5-2 Internal Interface ..26

5-2-1 Wishbone Interface ...26

6- Language Specifications ...27

6-1 Embedded C /C++ ...27

6-2 VHDL ...27

7- Testing and Debugging ..28

7-1 Testing ...28

7-1-1 Unit Testing ..28

7-1-2 Integration Testing ..28

7-1-3 System Testing ...28

7-2 Debugging ...29

8- Gantt Chart ..30

8-1 Term 1 Gantt Chart ..30

8-2 Term 2 Gantt Chart ..31

8- References ...32

INITIAL DESIGN REPORT 4

MAHOHard Software Inc.

Table of Figures

Figure 1: Design Overview ... 8

Figure 2: Functional Overview of nanoboard. ...10

Figure 3: Overal Component of Hardware Architecture ..11

Figure 4: Features of Altium Designer..12

Figure 5: Context Level DFD ...13

Figure 6: Level1 DFD : HSM ..14

Figure 7: Level 2 DFD: FPGA Modules ...16

Figure 8: Ethernet Module ...17

Figure 9: FPGA Module...19

Figure 10: Ethernet Activity Diagram ..23

Figure 11: FPGA Activity Diagram ..24

INITIAL DESIGN REPORT 5

MAHOHard Software Inc.

1-Introduction

1-1 Project Definition and Goals

 Securely managing keys is one of the most important and resource consuming tasks required to

guarantee the security on a public key crypto system. This is due to a close relationship between security

and the proper management of private keys. A public key crypto system can be considered secure as long

as the private keys are secured. Taking this as as a premise, it should be guaranteed that a (private) key is

strictly secure during all events in its life cycle. This goal can be achieved by designing systems to

securely create, manage and destroy (private) keys, maintaining an audit trail of every operation which

was done during their existence. Such systems are known as Hardware Security Modules (HSMs).

HSMs are specialised tamper-proof devices in which cryptographic functions and embedded

software have been built to properly manage keys and control their life cycles. They are designed in such

a way that if an unauthorised attempt to access them is made, this is considered an attempt to tamper and

all critical internal parameters and keys are destroyed.

Although very common in the banking industry, HSMs are also desirable in PKI, but not always

implemented. As shown in Table 1, their common usage in the banking industry leads to specialisation of

the HSMs to perform tasks such as PIN calculations or payment protocols, that are suitable in such

industry.

Bank HSMs PKI HSMs

PIN Calculation Strong Authentication

Role Based Authentication Identity Based Authentication

Dual Key Entry Strict Key-life Cycle Control

Payment Protocols Fully Auditable Operation

Cryptographic Speed Triggered Group Mechanisms

Table 1: Comparison Between Bank HSMs and PKI HSM

INITIAL DESIGN REPORT 6

MAHOHard Software Inc.

In this project, it will be tried to develop a PKI HSM. The goals of this HSM are :

 onboard secure generation

 onboard secure storage

 use of cryptographic and sensitive data material

 offloading application servers for complete asymmetric and symmetric cryptography

HSMs provide both logical and physical protection of these materials from non-authorized use and

potential adversaries. In short, they protect high-value cryptographic keys.

1-2 Purpose of Document

The purpose of this document is to show our initial design concepts about HSM project. In this

document it will be given details of this project according to requirements explained in the requirement

analysis report.

2-Design Constrants

2-1 Resource Constraints

There will be need of datasheets of the devices that will be using for this project and manuals of

the software development environment that will be used for coding. These documents will be supplied by

our teaching assistant and whenever extra information is needed, internet resources will be used. Since

this project is an hardware project and similar projects are commercial and are not open source , it will be

hard to find related resources. That is why there will be limitations in our development progress.

2-2 Power Constraints

Since Hardware Security Module (HSM) has very critical task, which has not to be interrupted,

the power must have some features :

 Power must be supplied continuously without any drop and rising.

 Power supply must supply a voltage in a range. For example, 90-132 and 175-264 VAC.

INITIAL DESIGN REPORT 7

MAHOHard Software Inc.

2-3 Time Constraints

The deadline of the project is June and a prototype should be provided at the end of this semester.

Since this project is an embedded project, time is very important constraint. We have to use time very

effective in order to achieve some results.

2-4 Ergonomic Constraints

Since new platforms such as ―Altium Designer‖ will be used which is new for all team members,

there may be some problem.

2-5 Performance Constraints

First, HSM must provide a significant speed for data transferring and all other functionality.

Besides, When number of transferred data increase, HSM must also provide parallelism. For example if

there are more than one data will be encrypted, HSM must share these data between suitable modules.

By that way, in one time more than one data can be encrypted. Supplying these features will be big deal.

2-6 Experience of Members

 Lack of experience of the team members on coding for embedded device is one of the restrictions.

Sometimes, some difficulties may be faced with managing unexpected problems and unforeseen details of

the project.

3-System Architecture

3-1 Overview of HSM

As it is explained throughout the report, HSM system needs a complex architecture because lots of

modules will work cooperatively. Therefore, the architecture should be easily modifiable according to

changes and it should allow developers for developing new modules. Moreover, it should make this

complex system's development phase less difficult with good separation of layers.

INITIAL DESIGN REPORT 8

MAHOHard Software Inc.

Server

Ether

net

Modu

le

HSM

Wishbone

Interface

Secure

Storage

Encryption

Package

Decryption

Package

Hash

Package

Random

Key

Package

Digital

Signature

Package

TCP/IP

Micro

Processor

Figure 1: Design Overview

3-2 Architectural Design

3-2-1 Hardware Design

HSM will be designed on a board which is called Altium Nanoboard 3000. This board has been

chosen this board because of some of its features and advantages. Some advantages of this board are:

 Perfect entry-point to discover and explore the world of FPGA-based embedded systems design.

Programmable hardware realm allows designer to update the design quickly and many times over

without incurring cost or time penalties

 Reprogrammable hardware development platform that harnesses the power of a dedicated high-

capacity, low-cost programmable device to allow rapid and interactive implementation and

debugging of our designs

 High-capacity FPGA located on the motherboard, and provision for a single plug-in peripheral

board (Altium or user’s own) for additional system flexibility.

 Automatic peripheral board detection and configuration.

INITIAL DESIGN REPORT 9

MAHOHard Software Inc.

This board has some basic and important features which make us choose it. Some of them are:

 NanoBoard 3000XN – with fixed Xilinx® Spartan™-3AN device (XC3S1400AN-4FGG676C)

 Variety of standard communications interfaces: RS-232, RS-485, PS/2, 10/100 Fast Ethernet,

USB 2.0, S/PDIF, MIDI.

 On-board memories accessible by user FPGA 256KB x 32-bit common-bus SRAM (1MB), 16M

x 32-bit common-bus SDRAM (64MB), 8M x 16-bit common-bus 3.0V Page Mode Flash

memory (16MB), dual 256KB x 16-bit independent

 SRAM (512KB each).

 Four 8Mbit SPI flash memory devices – one containing Primary boot image for Host Controller,

one containing golden boot image for Host Controller, two for use by user FPGA (for

boot/embedded purposes).

 Host (NanoTalk) Controller hosts the NanoBoard firmware. Responsibilities include managing

JTAG communications (with Altium Designer/User FPGA/connected peripheral board), as well

as access to common-bus SPI resources.

 High-speed PC interconnection through USB 2.0 allows for fast downloading and debugging.

Since the HSM implementation will be on Altium nanoboard, all basic functionality and peripherals

of board have to be known. Below, there is functional overview of this board.
i

INITIAL DESIGN REPORT 10

MAHOHard Software Inc.

Figure 2: Functional Overview of nanoboard.
ii

INITIAL DESIGN REPORT 11

MAHOHard Software Inc.

3-2-1-1 Hardware Components

The hardware components are on the User FPGA part of nanoboard. Other peripherals of

nanoboard will be used in order to communication, storage, debugging etc. For example, Ethernet port

will be used for communication with server. Besides, all components inside User FPGA will talk with

each other by wishbone interface. Main picture of components are below:

FPGA Management

HSM executive

Decrypt Function

External Communication Management

Digital Signature Functions

Ethernet Management

Microcontroller Unit

Random KeygenEncrypt Function Hash Function

Wishbone Interface

Figure 3: Overal Component of Hardware Architecture

INITIAL DESIGN REPORT 12

MAHOHard Software Inc.

HSM Executive is main picture of our HSM project. It has two main parts, which are external

communication and FPGA management parts. External communication part is used for communication

with server. FPGA management part is used for cryptographic functions, time scheduling and data

management. FPGA will be composed of 6 parts. Five of them are for cryptographic functions and one is

for microprocessor. We will doing all data management and time scheduling by using microcontroller

unit. In this report we will explain working hierarchy of all parts in detail with data flow and class

diagrams.

3-2-2 Software Design

 Since Altium Nanoboard will be used, ―Altium Designer‖ is chosen as a product development

system. Altium Designer involves all needed libraries for the board and other devices that is need in the

project development. This system offers a single solution to develop hardware, programmable hardware

and software. Beside that, it is very easy to debug the work by using this system. Figure 4 will briefly

shows features of Altium Designer.

Figure 4: Features of Altium Designer
iii

INITIAL DESIGN REPORT 13

MAHOHard Software Inc.

4- Modeling

4-1 Data Flow Diagrams

4-1-1 Level 0

Server

HSM

 Packet to be

processed

Processed

Packet

Figure 5: Context Level DFD

As it can be seen from the figure 5, HSM will basically be in communication with server. Server

will send a packet which cover request and data. HSM will process the packet and will return answer. The

answer will change according to request.

INITIAL DESIGN REPORT 14

MAHOHard Software Inc.

 4-1-2 Level 1 : HSM

HSM

Packet to be

processedProcessed

Data packet

FPGA Module

Receive

Packet

Send

Packet

Ethernet

Module
S

e
c
u

re
 S

to
ra

g
e

Supply

Data

Request

Data

Figure 6: Level1 DFD : HSM

INITIAL DESIGN REPORT 15

MAHOHard Software Inc.

Packet coming from server comes to ethernet module by TCP/IP protocol at first. Then packet is

transferred to the FPGA by wishbone interface. FPGA modules process packet and if there is a request

about secure storage, FPGA module reaches to secure storage again with wishbone interface. After

process, FPGA sends packet back to the ethernet module by wishbone interconnection. Finally, ethernet

module sends answers back to server. Ethernet module, TCP/IP protocol and wishbone interface will be

explained in this document.

4-1-3 Level 2 : FPGA MODULE

 FPGA module includes six processes :

 Encryption : It will have encryption function with strong cryptographic algorithm such AES,DES.

 Decyrption : It will have decryption function.

 Hashing : It will have hash function with strong algorithm.

 Key Generation : It will have a function that generate random keys when key is needed.

 Digital Signature : It will have a function that produce digital signature or verify the signature

that is produced by itself.

 Microcontroller : Microcontroller will manage all data flows in the system.

As it can be seen below, wishbone interface is used for all connection between all FPGA components

and peripherals. All Cryptographic functions will be explained in class hierarchy in this report. Beside

that, wishbone interface will be explained in interface chapter in detail. The most important component of

FPGA module, microcontroller, will briefly be explained in processor chapter.

INITIAL DESIGN REPORT 16

MAHOHard Software Inc.

WISHBONE INTERCONNECTION

Encryption

Decryption

Hashing

Key generation

Digital

Signature

Send Packet Recieve Packet

Encrypted Data

Data to be

Encrypted

Decrypted

Data

Data to be

Decrypted

Hash value

Data
Generated

Key

ID

ID

Signature

FPGA Module

Micro

Processor

Request

data

/ Data

Packet

Produced

Data

/ Packet

Supply

Data

Request

Data

Figure 7: Level 2 DFD: FPGA Modules

INITIAL DESIGN REPORT 17

MAHOHard Software Inc.

4-2 Class Diagrams

4-2-1 Ethernet Module

+getPendingPacketCount()() : int

+readPacket() : Packet

+readMultiplePackets()() : Packet Sequence

+pendingPacketCount : int

Packet Reader

+destinationAddress : string

+destinationPort : short

+payload : string

+payloadSize : uint

+sequenceNumber : int

-sourceAddress : string

-sourcePort : short

Packet

+getDestinationAdress()() : string

+getDestinationPort()() : short

+getPacket(int)() : Packet

+getPacketCount() : uint

+getSourceAddress()() : string

+getSourcePort()() : short

-packetCount : int

-packets : Packet

Packet Sequence

+getDestinationAddress()() : string

+getDestinationPort()() : short

+getPacket(int)() : Packet

+getSourceAddress()() : string

+getSourcePort()() : short

+orderedPacketd() : bool

OrderedPacket

+dequeuePacket()() : Packet

+dequeuePacketSequence(int)() : Packet Sequence

+enqueuePacket(Packet)() : void

+enqueuePacketSequence(PacketSequence)() : void

+isEmpty()() : bool

+isFull()() : bool

-contents : Packet

-count : int

-empty : bool

-full : bool

PacketBuffer

0..*

reads

Figure 8: Ethernet Module

INITIAL DESIGN REPORT 18

MAHOHard Software Inc.

There are explanations of Ethernet module’s classes below:

PacketReader is an abstract class that is responsible for reading packets from an input source. It

includes methods for reading either a single packet or multiple packets at once. The

pendingPacketCount member returns the unread packet count waiting at the input source.

Packet class is the data structure that is used to define a single packet. The member variables of

this class are filled by the object that reads the packet from the input source.

PacketSequence is the collection class for packets that have the same source and destination

addresses and same ports. It includes methods that provide random access to packets stored in

the collection.

OrderedPackets extends the PacketSequence class to add functionality that orders the packets

in the sequence based on their sequence number.

PacketBuffer implements a simple FIFO queue mechanism that is able to store a predefined

number of packets in a queue data structure.

INITIAL DESIGN REPORT 19

MAHOHard Software Inc.

4-2-2 FPGA Module

Figure 9: FPGA Module

INITIAL DESIGN REPORT 20

MAHOHard Software Inc.

Classes of FPGA modules are explained below in details:

Wishbone is the interface which is responsible for data transfers between Controller and other modules.

Therefore every module is dependent to this Wishbone interface. getPrivateKey and getPublicKey

functions are generic and polymorphic functions that can be redefined in its subclasses. Other methods

are redefined in Controller class.

Key is a simple class that holds a single private key. This key is used in other classes. getKey() method

returns the value of key that is stored in ‖key‖ field.

Storage is the class where exists an array of keys which are stored in the secure storage. Requested key

values which are needed by other classes (i.e. AES, DES) are found on this class’ ―keys‖ field. When a

request comes, requested key is going to be found and sent back from here.

Controller is the class where all request are going to be sent. It holds a data which is going to be

processed by AES, DES, Digital Signature, Hash classes’ methods.

 hashSignal method sends the data with a signal which is used to tell Wishbone interface that the

request is a hash request.

 signatureSignal method sends the data with a signal which is used to tell Wishbone interface that

the request is a digital signature request.

 encrypt method sends the data with a signal which is used to tell Wishbone interface that the

request is an encryption request.

 decrypt method sends the data with a signal which is used to tell Wishbone interface that the

request is a decryption request.

 Keygen method sends only a signal that requests random key generation.

HASH is the class where the hash requests are handled. The hash algorithm will be MD5 algorithm. The

main MD5 algorithm
iv
operates on a 128-bit state, divided into four 32-bit words, denoted A, B, C and D.

These are initialized to certain fixed constants. The main algorithm then operates on each 512-bit message

block in turn, each block modifying the state. The processing of a message block consists of four similar

stages, termed rounds; each round is composed of 16 similar operations based on a non-linear function F,

modular addition, and left rotation. There are four possible functions F; a different one is used in each

round:

INITIAL DESIGN REPORT 21

MAHOHard Software Inc.

Encrypt class is the class where encryption requests are handled. There will be several encryption

functions to encrypt data.

 encryptAES method uses Advanced Encryption Standard algorithm in order to encrypt data.

Advanced Encryption Standard
v
algorithm :

AES is based on a design principle known as a Substitution permutation network. It is

fast in both software and hardware. Unlike its predecessor, DES, AES does not use a Feistel

network.

AES has a fixed block size of 128 bits and a key size of 128, 192, or 256 bits, whereas

Rijndael can be specified with block and key sizes in any multiple of 32 bits, with a

minimum of 128 bits and a maximum of 256 bits.

AES operates on a 4×4 array of bytes, termed the state (versions of Rijndael with a larger

block size have additional columns in the state). Most AES calculations are done in a special

finite field.

The AES cipher is specified as a number of repetitions of transformation rounds that

convert the input plaintext into the final output of ciphertext. Each round consists of several

processing steps, including one that depends on the encryption key. A set of reverse rounds

are applied to transform ciphertext back into the original plaintext using the same encryption

key.

 encryptDES method Data Encryption Standard algorithm in order to encrypt data.

Data Encryption Standard
vi
algorithm:

There are 16 identical stages of processing, termed rounds. There is also an initial and

final permutation, termed IP and FP, which are inverses (IP "undoes" the action of FP, and

vice versa). IP and FP have almost no cryptographic significance, but were apparently

included in order to facilitate loading blocks in and out of mid-1970s hardware, as well as to

make DES run slower in software.

Before the main rounds, the block is divided into two 32-bit halves and processed

alternately; this criss-crossing is known as the Feistel scheme. The Feistel structure ensures

INITIAL DESIGN REPORT 22

MAHOHard Software Inc.

that decryption and encryption are very similar processes — the only difference is that the

subkeys are applied in the reverse order when decrypting. The rest of the algorithm is

identical. This greatly simplifies implementation, particularly in hardware, as there is no need

for separate encryption and decryption algorithms.

Decrypt class is the class where decryption requests are handled. There will be several decryption

functions to decrypt data.

 decryptAES uses the same AES algorithm with subkeys in reverse order to decrypt data.

 decryptDES uses the same DES algorithm with subkeys in reverse order to decrypt data.

Random Key Generator is the class that produces public and private keys.

producePrivateKey: Produces the private key and returns it.

producePublicKey: Produces the public key and returns it.

Digital Signature class will produce unique signatures according to the public key, private key and the

message.

A digital signature scheme typically consists of three algorithms:

 A key generation algorithm that selects a private key uniformly at random from a set of possible

private keys. The algorithm outputs the private key and a corresponding public key.

 A signing algorithm which, given a message and a private key, produces a signature.

 A signature verifying algorithm which given a message, public key and a signature, either accepts

or rejects the message's claim to authenticity.

Two main properties are required. First, a signature generated from a fixed message and fixed private

key should verify the authenticity of that message by using the corresponding public key. Secondly, it

should be computationally infeasible to generate a valid signature for a party who does not possess the

private key.

INITIAL DESIGN REPORT 23

MAHOHard Software Inc.

4-3 Activity Diagrams

Basic activity diagrams of HSM system are below. Activity diagrams enclose FPGA and Ethernet

modules. Detailed information and other important features (Ethernet signals, FPGA pins and packet

content etc.) will be explained in ―Detailed Design Report‖.

4-3-1 Ethernet Activity Diagram

Figure 10: Ethernet Activity Diagram

INITIAL DESIGN REPORT 24

MAHOHard Software Inc.

4-3-1 FPGA Activity Diagram

Process data

Hashing Data

Waiting State

Encrypt Data

Waiting State

Decrypt Data

Waiting State

Random Key Generator

Waiting State

Digital Signature

Waiting State

Module

Idle
No

Yes

Module

Idle

Yes

No

Module

Idle

Yes

No
Module

Idle

Module

Idle

Yes

Yes
No

No

Send Answer

Back to Ethernet

Module

Get Data from Ethernet

Module

Figure 11: FPGA Activity Diagram

INITIAL DESIGN REPORT 25

MAHOHard Software Inc.

5- INTERFACE

 According to HSM’s working principal, two interface will be used. Contrary to expectations,

these interfaces will not be graphical user interfaces. These interfaces are called physical interfaces and

they will be used for connecting hardware component to each other and making connection available

between them. One of the interfaces is internal interface which connects HSM’s internal components with

each other and the other one is external interface which is used for connecting HSM with outside world.

5-1 External Interface

 External interface is between HSM and ―Server‖. This psyhical connection will be provided by

ethernet interface. Altuim Nanoboard provides a fast Ethernet connection, supporting 10Base-T and

100Base-TX, for operational speeds of up to 10Mbps and 100Mbps respectively. Before explaining

ethernet interface, some information about ethernet port will be given in order to understand easily how

ethernet connection works.

5-1-1 Ethernet Port

An 8P8C ('RJ45') modular connector is used to provide the Ethernet port (a FC0901238, from

Konvee). The connector has integrated 10/100Base-T Ethernet Isolation Transformers and two indication

LEDs. The latter – one yellow and one green – have been wired to reflect the Link status and 100Mbps

activity, respectively. Connection to the external network is made using standard Category 5 unshielded

twisted pair (UTP) network cable.

Providing the interface between an Ethernet Media Access Controller in an FPGA design and the

external network, is an RTL8201CL 10/100M Fast Ethernet PHYceiver[1] device (from Realtek).
vii

5-1-2 Ethernet Interface

Table 2 summarizes the available design interface component that can be placed from the FPGA

Nanoboard 3000 Port-Plugin.IntLib to access the Ethernet interface. Port-Plugin.IntLib is coming ready

with ―Altium Designer‖ and it will make job easier for the project. Detailed information about ethernet

interface will be given in Detailed Design Report.

INITIAL DESIGN REPORT 26

MAHOHard Software Inc.

Component Symbol Component Name Description

ETH_PHY

Place this component to

access the RTL8201CL

PHYceiver device and

subsequent Ethernet port.

Table 2: Ethernet Interface port-plugin component.
viii

5-2 Internal Interface

 Wishbone interface will be used for making connection between HSM’s internal components

with each other. ―Altium Designer‖ will also provides wishbone interconnection for designer. There are

various wishbone interconnections for different aims. Basically custom wisbone interface will be

explained. Detailed information about wishbone interface will be given in Detailed Design Report.

5-2-1 Wishbone Interface

INITIAL DESIGN REPORT 27

MAHOHard Software Inc.

The Wishbone Interface component (WB_INTERFACE) enables designer to build a custom

Wishbone peripheral in a design, extending your 32-bit FPGA systems through the creation of custom

FPGA logic.

The Wishbone Interface component has a fully configurable interface for transferring data

to/from connected logic, and a Wishbone bus to interface with a host processor. The individual units of

this configurable interface are referred to as 'items'. The interface can include a combination of one or

more of the following items:

 Internal Registers – which allow values to be read from, and/or written to, connected logic.

 Command Sets – which allow operations to be enabled on connected logic.

 External Address Ranges – which allow access to blocks of addresses on connected

In addition to making the task of building Wishbone peripherals far easier, the Wishbone Interface

component also provides the ability to generate C code based on the items specified in the interface

simplifying interaction with the component from the embedded code running on the host processor.
ix

6- Language Specifications

6-1 Embedded C /C++

 C and C++ are general programming languages and can be used for implementing software

system and portable application software. Programmers around the world embrace C and C++ because it

gives maximum control and efficiency to the programmer.

 Microprocessor (TSK 3000A) and wishbone connections will be implemented by using these

languages.

6-2 VHDL

 VHDL is a programming language that has been designed and optimized for describing the

behavior of digital systems. VHDL has many features appropriate for describing the behavior of

electronic components ranging from simple logic gates to complete microprocessors and custom chips.

Features of VHDL allow electrical aspects of circuit behavior (such as rise and fall times of signals,

delays through gates, and functional operation) to be precisely described. The resulting VHDL simulation

models can then be used as building blocks in larger circuits (using schematics, block diagrams or

system-level VHDL descriptions) for the purpose of simulation. VHDL will be used in order to design

FPGA. Cryptographic modules such as Encryption and Decryption module will be designed by using

VHDL programming Language.
x

INITIAL DESIGN REPORT 28

MAHOHard Software Inc.

7- Testing and Debugging

7-1 Testing

The aim of this part is to detect errors and bugs of the hardware security module. A good testing

strategy hopefully will make the project work fully. There are the testing strategies which are going to be

used in testing part.

7-1-1 Unit Testing

The aim of this kind of testing is to verify whether the smallest testable pieces of the application

are working properly or not. In this phase of testing each unit will be tested seperately before integrating

it to the whole system. ,Since finding the possible error in the integrated project is crucial, this stage is

relatively important. Also this stage ensures that integration test may only have integration errors and

hopefully has no unit dependent errors appear.

7-1-2 Integration Testing

This testing stage is a little extended form of unit testing. It occurs after unit testing and before

system testing. Integration testing takes as its input modules that have been unit tested, groups them in

larger aggregates, applies tests defined in an integration test plan to those aggregates, and delivers as its

output the integrated system ready for system testing.

The purpose of integration testing is to verify functional, performance, and reliability

requirements placed on major design items. These "design items", i.e. assemblages (or groups of units),

are exercised through their interfaces using Black box testing, success and error cases being simulated via

appropriate parameter and data inputs. Simulated usage of shared data areas and inter-process

communication is tested and individual subsystems are exercised through their input interface. Test cases

are constructed to test that all components within assemblages interact correctly, for example across

procedure calls or process activations, and this is done after testing individual modules, i.e. unit testing.

The overall idea is a "building block" approach, in which verified assemblages are added to a verified

base which is then used to support the integration testing of further assemblages.

7-1-3 System Testing

System testing of software or hardware is testing conducted on a complete, integrated

system to evaluate the system's compliance with its specified requirements. System testing falls

within the scope of black box testing, and as such, should require no knowledge of the inner

design of the code or logic.

INITIAL DESIGN REPORT 29

MAHOHard Software Inc.

As a rule, system testing takes, as its input, all of the "integrated" software components

that have successfully passed integration testing and also the software system itself integrated

with any applicable hardware system(s). The purpose of integration testing is to detect any

inconsistencies between the software units that are integrated together (called assemblages) or

between any of the assemblages and the hardware. System testing is a more limiting type of

testing; it seeks to detect defects both within the "inter-assemblages" and also within the system

as a whole.

7-2 Debugging

Debugging is the act of testing designer hardware design and any embedded software (running on

'soft' processors therein), to obtain the desired (correct) performance and functionality. Debugging is an

important element of the overall design strategy, and effective debugging can save a lot of time and

money when it comes time to deploy your end design in the field.

Since ―Altium Designer― will be used for this project, Altium Designer’s debugging environment

will be used. In Altium Designer, debugging of hardware is provided courtesy of 'virtual' instruments –

components which are 'wired' into the actual FPGA design but which, on programming the physical

device, offer software-based controls for interrogation and control of nodes within the design. Imagine

being able to walk around inside the physical FPGA device, armed with your favorite test instruments,

and programmer will have some idea of what these instruments can offer as part of a 'live' debugging

environment.

INITIAL DESIGN REPORT 30

MAHOHard Software Inc.

8- Gantt Chart

8-1 Term 1 Gantt Chart

INITIAL DESIGN REPORT 31

MAHOHard Software Inc.

8-2 Term 2 Gantt Chart

INITIAL DESIGN REPORT 32

MAHOHard Software Inc.

9- References

http://wiki.altium.com/display/ADOH/Key+Features+of+the+NanoBoard+3000

i

http://wiki.altium.com/display/ADOH/Functional+Overview+of+the+NanoBoard+3000
ii

http://www.altium.com/files/pdfs/Altium-Designer-Feature-Set-Summary.pdf iii

http://www.ietf.org/rfc/rfc1321.txt iv

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf v

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
 vi

http://wiki.altium.com/display/ADOH/Ethernet+Protocol vii

http://wiki.altium.com/display/ADOH/Ethernet+Protocol viii

http://wiki.altium.com/display/ADOH/WB_INTERCON+-+Configurable+Wishbone+Interconnect ix

http://www.altium.com/files/AltiumDesigner6/LearningGuides/TR0114%20VHDL%20Language%20Reference.pdf x

