

DETAILED DESIGN REPORT i

Contents
L-INErOAUCTION ... bttt ekt et e bt e s sttt e bt e e e e nnr e e nn e 5
1-1 Project Definition and GOAIScooeiiiiiiieiie i 5
1-2 PUIPOSE OF DOCUIMENT.....c.utiiiieiieeiieettesit ettt sttt sttt ettt et e sbe e st e b e sbe e st e b e saneeaneennees 6
2-DESIGN CONSIIANES. ... etttk ettt b et b e e e bt e st e bt e b et st e bt e ebe e et e e beenneennnean 6
2-1 RESOUICE CONSTIAINTS.eeiutieitieiiteeiee it sttt sttt sttt e b e st e bt e sbe e st e e bt e sae e sabeenbeesaneenbeenaeenaee 6
2-2 POWET CONSEIAINES ..ottt st sb et b e bt e s 6
2-3 THME CONSIIAINTS....ccueitiiiiiitiiteeee ettt sb e bt e sbe e s 7
2-4 ErgONOMIC CONSIIAINTSvviiieiieeitieesiieesteeesteeete e st e eseteesteeesbeeessseesssaeessseeessseesssseesnseeesnsesenssenans 7
2-5 Performance CONSIIAINTSooiiiirieiirieie ettt 7
2-6 EXPErienCe OF MEIMIDELScccuviiiiiee ettt ettt ettt e et e e st e e te e e taeesateeessbeesssaeessreeesnseeennseenns 7
3-SYSLEM ATCNITECTUIE ...ttt ettt b e bttt e bt e sbe e st e enbeesneesneeen 7
3-1 OVEIVIEW OF HSIML... .ottt ettt sb et 7
3-2 AFCHITECTURAL DESIGN ..vveeiiieeciiee ettt et s e et e et e e st e e s et e e sbaeesabeeessbeeessseeensaeesnsesennneeans 8
K R o T 0 1 LT Tty T | o TSRO 8
3-2-2 SOFEWAIE DESION. ..eei ettt e e et e e st e e et e e e ta e e e be e e s raeeenraeas 12
Y To o =11 o [SRS UPS 13
4-1 Data FIOW DIAQIAMSeeoviieiiie ettt ettt e st stre e e te e e s te e e seveestaeessbaeesnsaessaeesnraeesnseesnneeas 13
B-1-T LBVEI O.o e 13
4-1-2 LEVEI 1 I HSIM ..ot 14
4-1-3 LeVel 2 : FPGA MODULEcccoiiiiiieiie ettt 15
L O F- Tl BT Vo | 7= 41 TSP PP 17
4-2-1 ETNErnet MOTUIEc.ooiiiiii e 17
4-2-2 FPGA MOUUIE ...ttt ettt ettt e re et e e b e eneeenaeeneas 19
4-3 ACHVITY DIAGIAMS ...eeiitiiiiitiieciee ettt e ettt e ste e et e e s be e e stbeesbbeesbeeestbeeesbseesabeeesstaeesaeesatesesnseeeseeas 26
4-3-1 Ethernet ACLIVItY DIAGIAMuiiiiiie ettt e et e e eee e s e e nneeeeees 26
I o C N ot 1Y 1V T o | - o o SRR 27
4-4 SEOUENCE DIAGIAMS.eieeiiee et eeiee ettt et e et e ettt e eate e s bt e e s beeesatee s neeesabeeesaseesnseesnseeesnseeeneens 28

MAHOHard Software Inc. .

DETAILED DESIGN REPORT !

4-4-1- PACKEt TraNSPOITALIONeiveiiiiiiieeii ettt e s 28
4-4-2 Microcontroller — Crypto Module INteractioncocoveriiiiieiiciieceee e 29

5- Microprocessor/MICIOCONEIONIEYeoiiiiiiiie e 30
5-1- TSKBOOODA ..ottt ettt et e e ettt e e sttt e e s s aba e e e saabbeeessaabaeessnbeeeessanbaeessaaseaeesansaeessnns 31
5-1-1 PiN DESCIIPLION ...ttt ettt b ettt e bt et e et e b e e nneennnean 31

B- INTERFAGCE ..ottt e e ettt e e s sttt e e e e sttt e e e anbb et e e e bbb e e e s anbaeeeeane 36
B-1 EXternal INTErTaACE.ccviiiiiiiiiiic e e e 36
B-1-1 ETNEINEE POIT.. ..ottt ettt e e 36
B-1-2 EhErNet INTEITACE.cviiiie ittt 37

6-2- INEINAL INTEITACE ..ot s 39
6-2-1- WISNDONE INTEITACE ... coiiiiiiiiii et 39

7- Language SPECITICATIONSeciviiiiiiii ettt ettt e nneas 40
7-1- EMDEAAR € /CH .ottt 40
T-2- WHDL ettt ettt et sttt e e ab e s bt e e s bt e s bt e e hb e e ebe e sttt e nabeeeaneas 40
8- TeStiNG AN DEDUGGING .. vveeiirree ittt e e st e et e e et e e asbeeestaeeatsaeasteeessseeenreeeans 41
S =11] SRR 41
S U T A =1 oo USSP 41
S R 01 (=0T L o] N =1S) (1o T USSP 41
B-1-3- SYSEM TESIING ...vveeitiree ittt e et e e st e e et e e e te e e stbeeestaeeanteeeanbaeesnaeeenseeas 42

SR D=l oTU Lo o oo F RSP RPR 42
0= GANTE CRAIT.... e bbbt bt bbbt b et 43
9-1- TerM 1 GANE CREAIT.....c.viiiiiitiiiiite ettt et sb e b e nbe e 43
9-2- TermM 2 GANE CRAIT......coeiiiiiiiiiet ettt s nn e 44
10- RETEIBNCES ...ttt bbbt bbbtk bbbttt 45

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

Table of Figures

FIQUIE 1: DESIGN OVEIVIBWccuveiiiieiiieieesiteeiie ettt ettt ettt et sttt e b e st st e b saeeebeenbeesaneebeenaeesaneens 8
Figure 2: Functional Overview Of NAN0D0AIT.c.eeriiriieiierieiieetee et 10
Figure 3: Overal Component of Hardware ArChiteCtUIe..........couevveerieerierieesee ettt 11
Figure 4: Features OF AILIUM DESIGNEccuuiiiiiiieiteriie ettt ettt e bt e saeesaneens 12
FIgure 5: CONEEXE LEVEI DFDcocuiiiiiiieeieeeiteee ettt ettt ettt sttt sae e st e b e sanesaneens 13
FIgure 6: LeVEIL DFD i HSM...co ittt ettt ettt e ste e st e e st e e snbeesnnneesnteeesnneeennes 14
Figure 7: Level 2 DFD: FPGA MOUUIESccuvieeriieiee ettt ettt et e s sttt e sea e st eesnnee e 16
Figure 8: EtNErNet MOGUIEooeeeieecee ettt et sebe e e snteessnaeesnreeesnseeennes 17
FIGUPE 9: FPGA IMOUUIE......co ottt ettt e st e st e e st e e e te e e sebeeenseeensseesnteeenseennnes 19
Figure 10: General Structure of ENCryption/DeCryPtionc.ceecveeeeieeiieeeiiee e seeesree e sree e saee e 22
Figure 11: EACh roUNd OF AESooooiieeeee ettt ettt e e ae e e st e e e at e e sraa e e sntaeesnneeennes 22
Figure 12: Working prinCipal Of DES.........coooiiiiieiiee ettt e ste e e eaeeeaees 23
Figure 13: EACh round OF DESooooiiiiee ettt sttt e sare e s aa e e stae e naeeennes 24
Figure 14: Ethernet ACHVILY DIAQIamc.ccoovieicieiiiiee ettt e e sre e st e e st e e sreeeaaeesetee e nreeennes 26
Figure 15: FPGA ACHVILY DIAQram.......ccccueeiiiieiieeeiiee et stee st et sre e e sire e e saveesebeeesareesnneesnteeesnseeennns 27
Figure 16: Packet TranSpOrtatioN.........c..cccveeiiiieeiieciiiee ettt ste e e sve e st e e st e e e sabeesabaeesereeesnreeennns 28
Figure 17: Interaction between Microcontroller and Crypto Module..........cccveeeieiiceieiiee e 29
FIgUIE 18: TSKKBOOOA ... eee ettt et ettt e ettt st e e streeste e e st e e esaaeessaaeesabeeessseesaseeesabeeessseeansseesnseeenseennses 31
Figure 19: Ethernet network packet holding an IP packet.............cccoeoii 38
Figure 20: High-level illustration of C-to-Hardware compilation in Altium Designer................................ 40

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

1-Introduction

1-1 Project Definition and Goals

Securely managing keys is one of the most important and resource consuming tasks
required to guarantee the security on a public key crypto system. This is due to a close
relationship between security and the proper management of private keys. A public key crypto
system can be considered secure as long as the private keys are secured. Taking this as a
premise, it should be guaranteed that a (private) key is strictly secure during all events in its life
cycle. This goal can be achieved by designing systems to securely create, manage and destroy
(private) keys, maintaining an audit trail of every operation which was done during their
existence. Such systems are known as Hardware Security Modules (HSMs).

HSMs are specialised tamper-proof devices in which cryptographic functions and
embedded software have been built to properly manage keys and control their life cycles. They
are designed in such a way that if an unauthorised attempt to access them is made, this is

considered an attempt to tamper and all critical internal parameters and keys are destroyed.

Although very common in the banking industry, HSMs are also desirable in PKI, but not
always implemented. As shown in Table 1, their common usage in the banking industry leads to
specialisation of the HSMs to perform tasks such as PIN calculations or payment protocols, that

are suitable in such industry.

Bank HSMs PKI HSMs
PIN Calculation Strong Authentication
Role Based Authentication Identity Based Authentication
Dual Key Entry Strict Key-life Cycle Control
Payment Protocols Fully Auditable Operation
Cryptographic Speed Triggered Group Mechanisms

Table 1: Comparison Between Bank HSMs and PKI HSM

MAHOHard Software Inc. .

DETAILED DESIGN REPORT -

In this project, it will be tried to develop a PKI HSM. The goals of this HSM are :
e onboard secure generation
e onboard secure storage
e use of cryptographic and sensitive data material
e offloading application servers for complete asymmetric and symmetric cryptography

HSMs provide both logical and physical protection of these materials from non-authorized use
and potential adversaries. In short, they protect high-value cryptographic keys.

1-2 Purpose of Document
The purpose of this document is to show the detailed design concepts about HSM project.
In this document it will be given details of this project according to requirements explained in

the requirement analysis report.

2-Design Constrants

2-1 Resource Constraints

There will be need of datasheets of the devices that will be used for this project and
manuals of the software development environment that will be used for coding. These
documents will be supplied by teaching assistant and whenever extra information is needed,
internet resources will be used. Since this project is an hardware project and similar projects are
commercial and are not open source, it will be hard to find related resources. That is why there

will be limitations in the development progress.

2-2 Power Constraints
Since Hardware Security Module (HSM) has very critical task, which has not to be

interrupted, the power must have some features:

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

e Power must be supplied continuously without any drop and rising.
e Power supply must supply a voltage in a range. For example, 90-132 and 175-264
VAC.

2-3 Time Constraints

The deadline of the project is June and a prototype should be provided at the end of this
semester. Since this project is an embedded project, time is very important constraint. Time have
to be used very effective in order to achieve some results.

2-4 Ergonomic Constraints
Since new platforms such as “Altium Designer” will be used which is new for all team

members, there may be some problem.

2-5 Performance Constraints

First, the HSM must provide a significant speed for data transferring and all other
functionality. Besides, when number of transferred data increase, the HSM must also provide
parallelism. For example if there are more than one data will be encrypted, the HSM must share
these data between suitable modules. By that way, in one time more than one data can be

encrypted. Supplying these features will be big deal.

2-6 Experience of Members
Lack of experience of the team members on coding for embedded device is one of the
restrictions. Sometimes, some difficulties may be faced with managing unexpected problems and

unforeseen details of the project.

3-System Architecture

3-1 Overview of HSM

As it is explained throughout the report, the HSM system needs a complex architecture
because lots of modules will work cooperatively. Therefore, the architecture should be easily
modifiable according to changes and it should allow developers for developing new modules.
Moreover, it should make this complex system's development phase less difficult with good

separation of layers. General overview of the HSM can be seen at Figure 1.

MAHOHard Software Inc. .

DETAILED DESIGN REPORT -

HSM
Server [

Encryption
Package

—

| EtherY 1

net .
Decryption
Modu Package

le

TCP/IP—»

Wishbone

Interface

Hash
Package
1
Micro

Processor Random

Key
Package

—
—

Digital
Secure Signature
Storage Package

Figure 1: Design Overview

3-2 Architectural Design

3-2-1 Hardware Design

The HSM will be designed on a board which is called Altium Nanoboard 3000. This board
has been chosen because of some of its features and advantages. Some advantages of this board
are:

e Perfect entry-point to discover and explore the world of FPGA-based embedded systems
design. Programmable hardware realm allows designer to update the design quickly and
many times over without incurring cost or time penalties

e Reprogrammable hardware development platform that harnesses the power of a dedicated
high-capacity, low-cost programmable device to allow rapid and interactive
implementation and debugging of our designs

e High-capacity FPGA located on the motherboard, and provision for a single plug-in
peripheral board (Altium or user’s own) for additional system flexibility.

e Automatic peripheral board detection and configuration.

MAHOHard Software Inc. .

DETAILED DESIGN REPORT -

This board has some basic and important features which make us choose it. Some of them are:

NanoBoard 3000XN — with fixed Xilinx® Spartan™-3AN device (XC3S1400AN-
4FGG676C)

Variety of standard communications interfaces: RS-232, RS-485, PS/2, 10/100 Fast
Ethernet, USB 2.0, S/PDIF, MIDI.

On-board memories accessible by user FPFGA 256KB x 32-bit common-bus SRAM
(IMB), 16M x 32-bit common-bus SDRAM (64MB), 8M x 16-bit common-bus 3.0V
Page Mode Flash memory (16MB), dual 256KB x 16-bit independent

SRAM (512KB each).

Four 8Mbit SPI flash memory devices — one containing Primary boot image for Host
Controller, one containing golden boot image for Host Controller, two for use by user
FPGA (for boot/embedded purposes).

Host (NanoTalk) Controller hosts the NanoBoard firmware. Responsibilities include
managing JTAG communications (with Altium Designer/User FPGA/connected
peripheral board), as well as access to common-bus SPI resources.

High-speed PC interconnection through USB 2.0 allows for fast downloading and
debugging. '

Since the HSM implementation will be on Altium nanoboard, all basic functionality and

peripherals of board have to be known. Below in Figure 2, there is functional overview of this

board.

MAHOHard Software Inc. .

DETAILED DESIGN REPORT i)

PC-USE Interface

Independent > « »! SD Card Reader
Host SPI Flash | » |
(Primary Boot Image) System JTAG
G:l;m gF;Im Fllash . .| Host Controller FPGA I ———
(Rl Gl =) (NanoTalk Controller)
P
UserSPIFlsh |, | N + > RTC
(Boot and Embedded) [* >
i o o Diagnaostic
i ;__') g Interfaca
(== med J i
| T .
B Peripheral Board | wrevemory | | [systemClock | | p{ TFTLCD Panel
v v B
Commaon-Bus | . : |
Memory . L i Status LEDs
SD Card Reader |« > — p USBPor
Independent N L .| RS-232 Serial
SRAM : Interface
DIP-Switch > - | USBHIb
PDA Swilches > e p| [0S Ser
Prototyping Area |« - + » Ethemnet Port
User FPGA
User 110 Headers (4 > — pf P52 Kerboard
Video Output | i » PWS\.:NF;{::M
MIDI Interface |« > — p PSS
Tes\Raset ; > Relays
SIPDIF Interface | + + i | ADC Interface
E # DAC Interface
Audio CODEC |« » : #| RGB User LEDs
Delta-Sigma DAC output e ____i
B 5 ;
* uzs ' Power Supplies
. 2 N 5V Jack
» Stereo Audio » Stereo Speaker Board 1.8V e)
2.5V
Ling In ——, kY
BV

Vo

Line Out Headphones

Figure 2: Functional Overview of nanoboard."

MAHOHard Software Inc. .

DETAILED DESIGN REPORT [l

3-2-1-1 Hardware Components

The hardware components are on the User FPGA part of nanoboard. Other peripherals of
nanoboard will be used in order to communication, storage, debugging etc. For example,

Ethernet port will be used for communication with server. Besides, all components inside User
FPGA will talk with each other by wishbone interface. Main picture of components are shown

in Figure 3:

HSM executive
~
N
FPGA Management
A

!
!
/
!
!
/
/
!
/
! _ -,
i e SN
Il - PO N
- 7/
- /// // \\ AN
=" ! N
Ethernet Management -~ P / N N
-
- , / \ ~
Pid 7/ ! \ AN
e // I \ N
L , / \ ~
. / | \ N
// / ! N
- 4 / \ N
s 7/ \ N
P / ! \ N
- h N
- 4 \ N
- / 1 \ ~
7 / / \ AN
- / I \ >
- / N
- , / \ N
Rd / / \ AN
s 7/ 1 \ N
e 4 | \ N
- 7/ ~
- , / \ N
- ; h \ N
i ’ / \ N
s // ! \\ AN
e ’ \ AN
// 7/ \ N
~ // \ N
/ ! \ N
! \
7/ I ~
Hash Function Digital Signature Functions Random Keygen

-
-
-
Encrypt Function Decrypt Function

Figure 3: Overal Component of Hardware Architecture

DETAILED DESIGN REPORT ¥

HSM Executive is main picture of our HSM project. It has two main parts, which are
external communication and FPGA management parts. External communication part is used for
communication with server. FPGA management part is used for cryptographic functions, time
scheduling and data management. FPGA will be composed of 6 parts. Five of them are for
cryptographic functions and one is for microcontroller/microprocessor. All data management and
time scheduling will be controlled by using microcontroller unit. In this report working hierarchy
of all parts will be explained in detail with data flow and class diagrams.

3-2-2 Software Design

Since Altium Nanoboard will be used, “Altium Designer” is chosen as a product
development system. Altium Designer involves all needed libraries for the board and other
devices that is need in the project development. This system offers a single solution to develop
hardware, programmable hardware and software. Besides, it is very easy to debug the work by
using this system. Figure 4 briefly shows features of Altium Designer.

DXP Platform Software integration platform, consistent GUI provided for all supporting editors and viewers, Design Insight for design document preview,
design release management, design compiler, file management, version control interface and scripting engine

Schematic - Viewer Open, view and print schematic documents and libraries

PCB - Viewer Open, view and print PCB documents, additionally view and navigate 30 PCBs

CAM File - Viewer Open CAM and mechanical files

Schematic — Soft Design Editing 4| schematic and schematic library editing capabilities (except in PCE Projeds and Free Documents), netlist generation

Simulation - VHDL WHDL simulation engine, integrated debugger and waveform viewer, with third-party support for ModelSim and Active-HOL

NanoBoard Support Range of auto-configured, swappable target FPGA daughter boards (from all chip vendors) are supported plus plug-in peripheral boards for
mmplete flexibility in system architecture, Power Monitor for FPGA designs

FPGA Design Custom FPGA Logic Development in C, OpenBus, Schematic, VHOL and Verilog design synthesis, Custom Wishbone Interface Component

FPGA Processor Cores Support for a range of 32-bit soft processors for use in FPGA design: TSK30004, Xilinx MicroBlaze®, Altera Nios 112, Adel CoreMP7E,

Also support for the PowerPC (PPC405A) discrete processor, immersed in the Xilink Virtex || Pro®, as well as a number of legacy, 8-bit
Mcrocontrollers (TSK51, TSK52, TSK80 and TSK.165)

Processor Core Embedded Tools Full software development tool chain - C compiler/assembler/source-leve| debugger/profiler for each supported 32-bit processor, Plug-n-Play

Software Platform Builder for easier hardware access

Programmable FPGA-Based Instruments Presynthesized FPGA-ready instruments including Custom Instrument, Terminal Emulator, igital 1/, Crosspoint Switch, Logic Analyzer,
frequency Generator, Freguency Counter, Field Dashboard for remote access

Soft Device ITAG Support Live connection to soft devices such as virtual instruments and processors running inside an FPGA

Hard Device JTAG Support Interactive menitering of pin status for any JTAG device

P Care Design Re-Use Support for importing third-party FPGA IP cores, developing and reusing IP libraries

Import/Export Supports import andlor export of designs and library data created in OrCAD, Allegro, PADS, DxDesigner, Cadstar, P-CAD, CircuitMaker, Protel
and more

Schematic — Editing 4| schematic document and library editing capabilities, netlist generation

Figure 4: Features of Altium Designer"

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

4- Modeling
4-1 Data Flow Diagrams

4-1-1 Level O

Server
Processed Packet to be
Packet processed

Figure 5: Context Level DFD

As it can be seen from the Figure 5, basically HSM will be in communication with server.
Server will send a packet which cover request and data. HSM will process the packet and will

return an answer. The answer will change according to request.
MAHOHard Software Inc. .

DETAILED DESIGN REPORT

4-1-2 Level 1 : HSM

Packet to be

Prqgcessed processed

Data packet

HSM

Ethernet

Module

Send
Packet eceive
acket

FPGA Module

Request
Supply Data
Data
Q
(o))
g
2
0
<
>
(8]
Q
0]

Figure 6: Levell DFD : HSM

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

Packet coming from server comes to ethernet module by TCP/IP protocol at first. Then
packet is transferred to the FPGA by wishbone interface. FPGA modules process packet and if
there is a request about secure storage, FPGA module reaches to secure storage again with
wishbone interface. After process, FPGA sends packet back to the ethernet module by wishbone

interconnection. Finally, ethernet module sends answers back to server.

4-1-3 Level 2 : FPGA MODULE

FPGA module includes six processes :

e Encryption : It will have encryption function with strong cryptographic algorithm such
AES,DES.

e Decyrption : It will have decryption function.
e Hashing : It will have hash function with strong algorithm.
e Key Generation : It will have a function that generate random keys when key is needed.

e Digital Signature : It will have a function that produce digital signature or verify the

signature that is produced by itself.
e Microcontroller : Microcontroller will manage all data flows in the system.

As it can be seen below, wishbone interface is used for all connection between all FPGA
components and peripherals. All Cryptographic functions will be explained in class hierarchy in
this report. Besides, wishbone interface will be explained in interface chapter in detail. The most
important component of FPGA module, microcontroller, will briefly be explained in

microcontroller/microprocessor chapter.

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

Send Packet Rec)kc

16

FPGA Module

Digital
Signature
ID

ﬁnature

D

Geqerated Key generation
Ke

Micro
Processor
Request
data
Produced / Data
Packet

WISHBONE INTERCONNECTION

Decrypted
Data

Data to be

_ Decrypted Data
Decryption
Hash valu

upply
ta

Figure 7: Level 2 DFD: FPGA Modules

MAHOHard Software Inc. .

4-2 Class Diagrams

4-2-1 Ethernet Module

Packet Reader

+pendingPacketCount : int

+readPacket() : Packet

+getPendingPacketCount()() : int

+readMultiplePackets()() : Packet Sequence

reads

DETAILED DESIGN REPORT

Packet

Packet Sequence

+destinationPort : short
+payload : string
+payloadSize : uint
+sequenceNumber : int
-sourceAddress : string
-sourcePort : short

+destinationAddress : string

-packetCount : int
-packets : Packet

+getDestinationAdress()() : string
+getDestinationPort()() : short
+getPacket(int)() : Packet
+getPacketCount() : uint
+getSourceAddress()() : string
+getSourcePort()() : short

AN

OrderedPacket

+getDestinationAddress()() : string
+getDestinationPort()() : short
+getPacket(int)() : Packet
+getSourceAddress()() : string
+getSourcePort()() : short

+orderedPacketd() : bool

Figure 8: Ethernet Module

PacketBuffer

-contents : Packet
-count : int
-empty : bool

-full : bool

+dequeuePacket()() : Packet
+enqueuePacket(Packet)() : void

+isEmpty()() : bool
+isFull()() : bool

+dequeuePacketSequence(int)() : Packet Sequence

+enqueuePacketSequence(PacketSequence)() : void

17

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

There are explanations of Ethernet module’s classes below:

PacketReader is an abstract class that is responsible for reading packets from an input
source. It includes methods for reading either a single packet or multiple packets at once. The
pendingPacketCount member returns the unread packet count waiting at the input source.

Packet class is the data structure that is used to define a single packet. The member
variables of this class are filled by the object that reads the packet from the input source.

PacketSequence is the collection class for packets that have the same source and
destination addresses and same ports. It includes methods that provide random access to packets
stored in the collection.

OrderedPackets extends the PacketSequence class to add functionality that orders the
packets in the sequence based on their sequence number.

PacketBuffer implements a simple FIFO queue mechanism that is able to store a

predefined number of packets in a queue data structure.

MAHOHard Software Inc. .

4-2-2 FPGA Module

DETAILED DESIGN REPORT

alypem
VHDL
HASH

+F() Lint

5[int

tHI Cint

+i) sint
+modularAddition]) : void
+lafiRotate() : void

+getPrivateley() . sting

+getPublicKey() ; string

Key 0.* Storage
Fvalue ; siring ays 1 Key
+oeikey() : sting +retumkeyl) : string
ulypen
C44

Controller
-itata | string
+hashSignal{string)() : string ™ o -
+signatureSignal{sting)|) - string e ainterfacen #
+encrypl{stringli) : sting e Wishbone e
+decrypt{siring){) . string +getPublicKey() - string e
+hayganSignali)() | string +getPrivatekay() string |

Srencrypt() L
. # |vhashSignal()
+aignaturel Signature(] -
P +decrypl() S
¥typen i Hheygen) AN
VHDL p s il W; S
Random Key Generator | ~ IF \
/ i)

A
+producePrivatakay() : string ‘," \
+producePublicKey() : sting F Y

%
;r A
/ A}
/ 4
/ by e
/ VHDL
£ Digital Signature
atypes
WHDL
Decrypt +getMassagal() | bool

FoetPrivateleyl) © void

+oetPublickeyi) : siring
+oetPrivatekeyl) : siring

+decryptAEST) - sfring

+getPublicKey() : void
+ProduceSignature() ¢ string
+kayGenerats() : string
+aign() - void

+oecryptDES() : siring

Figure 9: FPGA Module

+yenfy(l - bool

wlypes
VHDL

Encrypt

+oetPrivatekiey(] : string
+getPublickeyl) : siring
toryptAES() - string
+oryptDES() sting

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

Classes of FPGA modules are explained below in details:

Wishbone is the interface which is responsible for data transfers between Controller and
other modules. Therefore every module is dependent to this Wishbone interface. getPrivateKey
and getPublicKey functions are generic and polymorphic functions that can be redefined in its
subclasses. Other methods are redefined in Controller class.

Key is a simple class that holds a single private key. This key is used in other classes.

getKey() method returns the value of key that is stored in ’key” field.

Storage is the class where exists an array of keys which are stored in the secure storage.
Requested key values which are needed by other classes (i.e. AES, DES) are found on this class’

“keys” field. When a request comes, requested key is going to be found and sent back from here.

Controller is the class where all request are going to be sent. It holds a data which is going

to be processed by AES, DES, Digital Signature, Hash classes’ methods.

¢ hashSignal method sends the data with a signal which is used to tell Wishbone interface
that the request is a hash request.

e signatureSignal method sends the data with a signal which is used to tell Wishbone
interface that the request is a digital signature request.

e encrypt method sends the data with a signal which is used to tell Wishbone interface that
the request is an encryption request.

e decrypt method sends the data with a signal which is used to tell Wishbone interface that
the request is a decryption request.

e Keygen method sends only a signal that requests random key generation.

HASH is the class where the hash requests are handled. The hash algorithm will be MD5
algorithm. The main MD5 algorithm “operates on a 128-bit state, divided into four 32-bit words,
denoted A, B, C and D. These are initialized to certain fixed constants. The main algorithm then
operates on each 512-bit message block in turn, each block modifying the state. The processing
of a message block consists of four similar stages, termed rounds; each round is composed of 16
similar operations based on a non-linear function F, modular addition, and left rotation. There are

four possible functions F; a different one is used in each round:

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

F(X,)Y,Z)=(XANY)V(=~X AZ)
. GX,)Y,Z)= (X ANZ)V (Y A-Z)
. HXY,Z)=XaYaZ
XY, Z)=Y @&(XV-2)

Encrypt class is the class where encryption requests are handled. There will be several
encryption functions to encrypt data.

e encryptAES method uses Advanced Encryption Standard algorithm in order to encrypt
data.

Advanced Encryption Standard Algorithm :

AES is based on a design principle known as a Substitution permutation network. It is fast in
both software and hardware. Unlike its predecessor, DES, AES does not use a Feistel network.

AES has a fixed block size of 128 bits and a key size of 128, 192, or 256 bits, whereas
Rijndael can be specified with block and key sizes in any multiple of 32 bits, with a minimum of
128 bits and a maximum of 256 bits.

AES operates on a 4x4 array of bytes, termed the state (versions of Rijndael with a larger
block size have additional columns in the state). Most AES calculations are done in a special
finite field.

The AES cipher is specified as a number of repetitions of transformation rounds that convert
the input plaintext into the final output of cipher text. Each round consists of several processing
steps, including one that depends on the encryption key. A set of reverse rounds are applied to

transform cipher text back into the original plaintext using the same encryption key.

MAHOHard Software Inc. .

DETAILED DESIGN REPORT vk

plaintext 4 plainfext
| oaddroundkey |J——— w[0.3]— » oddroundkey |
. z
[substifufe bytes | [inverse subs bytes | 3
:é | prra— | | inverse shift rows | ©
: -
2| mix columns | | inverse mix columns |
| oddroundkey — wl4.7]— | _oddroundkey |2
imerse subs a
0
.
k- | inverse shift rows |
| substitute bytes | g
% | shift rows | g—
3 | mix columns | [inverse mix columns |
[addroundkey | -w[36.39]— [oddround key | 3
S [substitutebyfes | |_inverse subs bytes | &
2| S | | inverse shift rows |
£ odd round key | - wl40.43]— o[addroundkey |
¥ ciphertext T ciphertext

Figure 10: General Structure of Encryption/Decryption”

shift row
:'-IJ:I :'-I:ll. 5I:’E 5']3 l'-l:l:l sI:ll. 5I:’E 5']3
Sio| Sy S [Sa— LROT1 Sy | 512|513 |50
5| 52| S| Sag————— L ROT2 S22 | Saa| San | 521
San| 52y | Faz | Sa LROT3 Saz| Fap| Far [Fa
mix column
1 (2311 i
- 1231 _ 3
1123 |% - 3
" [3112 :

multiplications and additions |;

3 [[[
~ - are performed over SF(2%) | - o
Spa| 3o | Sz | o i I iE IR imiTirimEiitimi ~oa slm slcz ~ o3
0] %0 | %z | 5 e BT T
1 i) IJ IJ
S0 52| 5ez 522 S 2|5 21|5 225 23
1 IJ IJ
Sag| 51|53z |52 530 slztslr"zsg

Figure 11: Each round of AES"

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

e encryptDES method Data Encryption Standard algorithm in order to encrypt data.

Data Encryption Standard Algorithm:

There are 16 identical stages of processing, termed rounds. There is also an initial and final
permutation, termed IP and FP, which are inverses (IP "undoes” the action of FP, and vice
versa). IP and FP have almost no cryptographic significance, but were apparently included in
order to facilitate loading blocks in and out of mid-1970s hardware, as well as to make DES run

slower in software. V"

X e4)

. inpu1' size: 64

[Initial Permutation }: . OLI‘|'PLI‘|' size: 64

g T o o i

[3234 1) » key size: 56
) % » 16 rounds
L e (48) i :
nd-r-*— F L HKJ ,: » Feistel structure
______;1n:_;_____ 1 -
I . |
14] :43 =
:||_'x F Bl KJ _ﬁ-
— N 8k
lv_______ — S =6
u e
OER e !
—_— e :
v
(+)+— F [(48)
i Km

[Initial Permutation]

[:’Irnint.ﬁ-x]u. (3

Figure 12: Working principal of DES""

Before the main rounds, the block is divided into two 32-bit halves and processed alternately;
this criss-crossing is known as the Feistel scheme. The Feistel structure ensures that decryption
and encryption are very similar processes — the only difference is that the sub keys are applied

in the reverse order when decrypting. The rest of the algorithm is identical. This greatly

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

simplifies implementation, particularly in hardware, as there is no need for separate encryption
and decryption algorithms.

Lo

Figure 13: Each round of DES

Decrypt class is the class where decryption requests are handled. There will be several

decryption functions to decrypt data.

e decryptAES uses the same AES algorithm with sub keys in reverse order to decrypt data.
e decryptDES uses the same DES algorithm with sub keys in reverse order to decrypt data.

Random Key Generator is the class that produces public and private keys.
producePrivateKey: Produces the private key and returns it.

producePublicKey: Produces the public key and returns it.

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

Digital Signature class will produce unique signatures according to the public key, private
key and the message.

A digital signature scheme typically consists of three algorithms:

e A key generation algorithm that selects a private key uniformly at random from a set of
possible private keys. The algorithm outputs the private key and a corresponding public
key.

e Assigning algorithm which, given a message and a private key, produces a signature.

e Asignature verifying algorithm which given a message, public key and a signature, either
accepts or rejects the message's claim to authenticity.

Two main properties are required. First, a signature generated from a fixed message and
fixed private key should verify the authenticity of that message by using the corresponding
public key. Secondly, it should be computationally infeasible to generate a valid signature for a
party who does not possess the private key.

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

4-3 Activity Diagrams

Basic activity diagrams of HSM system are below. Activity diagrams enclose FPGA and
Ethernet modules.

4-3-1 Ethernet Activity Diagram

Get Packet Ethernet Port Send Packet
from Server Ready 1o FPGA

.W VRN Ethermat Moduls
_/ Yas

Mo

Figure 14: Ethernet Activity Diagram

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

4-3-1 FPGA Activity Diagram

Get Data from Ethernet
Module

Hashing Data Encrypt Data

Yes Yes

Module

No ‘ Idle Module No —
Idle ‘ Waiting State
Waiting State

Process data

Module
Idle
Yes

Yes

Modulg Decrypt Data

(Random Key Generator dle ‘ yp
Module No
Idle
" No "
Waiting State Waiting State
Yes No

Digital Sig nature)

Waiting State

®

Send Answer
Back to Ethernet
Module

Figure 15: FPGA Activity Diagram

MAHOHard Software Inc. .

DETAILED DESIGN REPORT vk

4-4 Sequence Diagrams

4-4-1- Packet Transportation

Server Ethernet Port
| |
| |
| |
[ConnectReguest [
:)
| |
| |
| |
: ConnectRequestAck |
T . .
| | If server-side request a processed
: | packet received packet will be
: SendPacket : processed in FPGA modules and
3 it will be the resulting packet.
I
T
-
=
-
-
-
ResultingPacket =~
T TTTTTTTTTTTTomTeommmsommmmmomonneonnee]
: DisconnectRequest :
[4
l DisconnectRequestAck l
:f\L ___

Figure 16: Packet Transportation

Figure 16 shows the packet transportation between server side and HSM side. The
connection between server side and HSM side is accomplished via ethernet connection. The

procedure for data transported is explained below:

MAHOHard Software Inc. .

DETAILED DESIGN REPORT [vEi

1- Server side sends a request in order to establish a connection with the HSM.

2- HSM sends an acknowledgement signal as a response to a connection request.

3- Server side sends a packet to HSM which is to be processed.

4- If server side request a processed packet, this data in the packet will be processed and the
result is returned as “resulting packet”.

5- After server side finished its job with the HSM, it will send a disconnection request.

6- In response to disconnection request, HSM will send a disconnection acknowledgement
signal.

4-4-2 Microcontroller — Crypto Module Interaction

For each crypto module,

"hash", "encrypt", "decrypt",

"key generation”, "digital signature”,
similar operations are applied.

/
/

MicroController Any Crypto Module

Requestlsidle

<nwCw

IdleSignal

SendData

ProcessedData

s it mS

Figure 17: Interaction between Microcontroller and Crypto Module

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

The sequence diagram in figure 17 shows the interaction between microcontroller unit
and a cryptographic module basically. Since the logic behind all of the modules are similar, it is
enough to explain all of them in this sequence diagram.

Firstly, microcontroller requests information from the crypto module to learn that
whether the module is idle or not. If the module is busy, after the module finishes its job it will
send idle signal to the microcontroller. Then, microcontroller will send the data to be processed
to related crypto module. After the data is processed it will be send back to microcontroller from
the crypto module.

5- Microprocessor/Microcontroller

Microprocessor/Microcontroller is used in order to accomplish data management, time
scheduling and easily communicate with peripheral devices. There are number of benefits to be

gained from using soft processors on reconfigurable hardware.
The following sections are some of the more significant of these benefits.

e coprocessors Field reconfigurable hardware

e Faster time to market

e Improving and extending product life-cycles

e Creating application-specific

e Implementing multiple processors within a single device
e Lowering system cost

e Avoiding processor obsolescence

In this project, Altium TSK3000A is going to be used as the processor. TSK 3000A is a 32-
bit, Wishbone-compatible, RISC processor. Instructions are 32-bits and execute in single clock

cycle.

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

5-1- TSK3000A

TSK3000A 32-Bit RISC Processor

ME_STE_O
ME_CYC_0
ME_ACK_I
ME_ADR_O[F1.0]
ME_DAT IE1.0]
ME_DAT_0[F1.0)
ME_SEL_O[3.0]
ME_WE_0

Current Configuration

Ll ! Mok Inatalled
Dabug Hardwara t Inatallad
Internal Mammey ! 4 XB

TSE30004 CLE I |

RST I

Figure 18: TSK3000A™

5-1-1 Pin Description

The pin out of the TSK3000A has not been fixed to any specific device 1/O - allowing
flexibility with user application. The TSK3000A contains only unidirectional pins (inputs or

outputs).

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

Name Type | Polarity/Bus Description
size
Control Signals
CLK I I Rise External (system) clock
RST I I High External (system) reset
Interrupt Signals

INT I I 32 Interrupt inputs. Each input can be configured
to operate as level-sensitive or edge-triggered
by clearing or setting the corresponding bit in the
IMode register respectively. Interrupts can be
configured in one of two modes — Standard or
Vectored — determined by the VIE bit of the Status
register (Status.9)

Wishbone External Memory Interface Signals

ME _STB O | O High Strobe signal. When asserted, indicates the start of
a valid Wishbone data transfer cycle

ME CYC O | O High Cycle signal. When asserted, indicates the start of
a valid Wishbone bus cycle. This signal
remains asserted until the end of the
bus cycle, where sucha cycle can include
multiple data transfers

ME_ACK_ I |1 High Standard Wishbone device acknowledgement signal.

When this signal goes High, an external
Wishbone slave memory device has finished

execution of the requested action and the current

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

bus cycle is terminated

ME_ADR O

32

Standard Wishbone address bus, used to select
an address in a connected Wishbone slave memory
device for writing to/reading from

ME_DAT |

32

Data received from an external Wishbone slave

memory device

ME_DAT O

32

Data to be sent to an external Wishbone

slave memory device

ME_SEL_O

Select output, used to determine where data is
placed on the ME_DAT _O line during a Write cycle
and from where on the ME_DAT _| line data is
accessed during a Read cycle. Each of the data ports
is 32-bits wide with 8-bit granularity, meaning data
transfers can be 8-, 16- or 32-bit. The four select bits
allow targeting of each of the four active bytes of a
port, with bit 0 corresponding to the low byte (7..0)
and bit 3 corresponding to the high byte (31..24)

ME_WE_O

Level

Write enable signal. Used to indicate whether

the current local bus cycle is a Read or Write cycle.
0 = Read

1=Write

ME_CLK O

Rise

External (system) clock signal (identical to

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

CLK_1), made available for connecting to the
CLK_I input of a slave memory device. Though not
part of the standard Wishbone interface, this signal is

provided for convenience when wiring your design

ME_RST_O

High

Reset signal made available for connection to

the input of a slave memory device. This signal goes
High when an external reset is issued to

the processor on its RST_I pin. When this signal
goes Low, the reset cycle has completed and the
processor is active again. Though not part of the
standard Wishbone interface, this signal is provided

for convenience when wiring your design

Wishbone Peripheral 1/0 Interface Signals

I0_STB_O

High

Strobe signal. When asserted, indicates the start of

a valid Wishbone data transfer cycle

I0_CYC_O

High

Cycle signal. When asserted, indicates the start of a valid
Wishbone bus cycle. This signal remains asserted until
the end of the bus cycle, where such a cycle can include

multiple data transfers

10_ACK_I

High

Standard Wishbone device acknowledgement

signal. When this signal goes High, an external
Wishbone slave peripheral device has finished execution
of the requested action and the current bus cycle

is terminated

IO_ADR_O

24

Standard Wishbone address bus, used to select an internal
register of a connected Wishbone slave peripheral device

for writing to/reading from

IO_DAT |

32

Data received from an external Wishbone

MAHOHard Software Inc. .

DETAILED DESIGN REPORT BeE

slave peripheral device

IO_DAT O

32

Data to be sent to an external Wishbone slave peripheral

device

I0_SEL_O

Select output, used to determine where data is placed on
the I0_DAT_O line during a Write cycle and from where
on the IO_DAT _I line data is accessed during a Read
cycle. Each of the data ports is 32-bits wide with 8-bit
granularity, meaning data transfers can be 8-, 16- or 32-
bit. The four select bits allow targeting of each of the four
active bytes of a port, with bit 0 corresponding to the low
byte (7..0) and bit 3 corresponding to the high byte
(31..24)

I0O_WE_O

Level

Write enable signal. Used to indicate whether the current

local bus cycle is a Read or Write cycle.
0 = Read

1 = Write

I0_CLK_O

Rise

External (system) clock signal (identical to

CLK_I), made available for connecting to the CLK I
input of a slave peripheral device. Though not part of
the standard Wishbone interface, this signal is

provided for convenience when wiring your design

IO_RST_O

High

Reset signal made available for connection to the input of
a slave peripheral device. This signal goes High when an
external reset is issued to the processor on its RST_I pin.
When this signal goes Low, the reset cycle has completed
and the processor is active again. Though not part of the
standard Wishbone interface, this signal is provided

for convenience when wiring your design

Table 2: TSK3000A Pins Description*

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

6- INTERFACE

According to HSM’s working principal, two interface will be used. Contrary to
expectations, these interfaces will not be graphical user interfaces. These interfaces are called
physical interfaces and they will be used for connecting hardware component to each other and
making connection available between them. One of the interfaces is internal interface which
connects HSM’s internal components with each other and the other one is external interface

which is used for connecting HSM with outside world.

6-1 External Interface

External interface is between HSM and “Server”. This psyhical connection will be
provided by ethernet interface. Altuim Nanoboard provides a fast Ethernet connection,
supporting 10Base-T and 100Base-TX, for operational speeds of up to 10Mbps and 100Mbps
respectively. Before explaining ethernet interface, some information about ethernet port will be

given in order to understand easily how ethernet connection works.

6-1-1 Ethernet Port
An 8P8C (‘RJ45") modular connector is used to provide the Ethernet port (a FC0901238,

from Konvee). The connector has integrated 10/100Base-T Ethernet Isolation Transformers and
two indication LEDs. The latter — one yellow and one green — have been wired to reflect the Link
status and 100Mbps activity, respectively. Connection to the external network is made using

standard Category 5 unshielded twisted pair (UTP) network cable.

“Providing the interface between an Ethernet Media Access Controller in an FPGA
design and the external network, is an RTL8201CL 10/100M Fast Ethernet PHY ceiver device.”

X1

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

6-1-2 Ethernet Interface
Table 2 summarizes the available design interface component that can be placed from the

FPGA Nanoboard 3000 Port-Plugin.IntLib to access the Ethernet interface. Port-Plugin.IntLib is
coming ready with “Altium Designer” and it will make job easier for the project. Ethernet
interface is going to be used for transferring network packets. The network packet is explained in

the next chapter.

Component Symbol Component Name Description
¢ ETH TAD[3.0] fw ETH_PHY Place this component to
| ETEI;H?%E j;: access the RTL8201CL

PHYceiver device and

ETH RXD[3.0] =

ETH_RXDV st—
ETH RER subsequent Ethernet port.

! =N ETH_RXC »—
‘ ‘ ' ETH _COL t—

ETH_CRS &—

ETH_RESETB_E |+

ETH MDC |-

ETH_MDIO i~

Xii

Table 2: Ethernet Interface port-plugin component.

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

6-1-2-1 Network Packet

Network packets are like Russian dolls. An IP-packet resides within an Ethernet-packet.
A TCP-packet resides within an IP-packet. A HTTP-packet resides within a TCP-packet.

Ethernet Packet I
Receiver Sender Mumber Data
MaC-address | MAC-address| of bytes
Ethernet netweork packet holding an [P packet
IP Packet
I
| THL| Tos| L| | FL| Fo ttl | prot| chs | 2ENder Receiver Data
IP-address | IP-address
TCP Packet
!
Sender Receiver
Port number | Part number S# | Acka | Fl| CHs Data /f

Figure 19: Ethernet network packet holding an IP packet

The data part of an Ethernet packet can hold up to 1500 bytes. All requests that are used
in HSM system are introduced in first four bits of data part. MAC-addresses (48bits) are 6 bytes
wide each and the Number of Bytes field is 2 byte wide. That gives the maximum size of an
Ethernet frame to be 1514 bytes.

When introducing the IP-protocol on Ethernet the Number of Bytes field is used to mark
that the Ethernet frame holds an IP-packet by the number of 0x0800. By using a number that is
greater than the maximum length an Ethernet frame can hold indicates that the Ethernet frame
holds another protocol frame in the data part. The Ethernet standard says that if the Number of

Bytes field is greater than 0x0600, the Ethernet frame holds another protocol.

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

6-2- Internal Interface

Wishbone interface will be used for making connection between HSM’s internal
components with each other. “Altium Designer” will also provides wishbone interconnection for
designer. There are various wishbone interconnections for different aims. Basically custom
wisbone interface will be explained. Detailed information about wishbone interface will be given

in Detailed Design Report.

6-2-1- Wishbone Interface

Wishbone Interface

i;;-o‘

WE_INTERFACE_1

WE_IMTEEFLACE

The Wishbone Interface component (WB_INTERFACE) enables designer to build a
custom Wishbone peripheral in a design, extending your 32-bit FPGA systems through the

creation of custom FPGA logic.

The Wishbone Interface component has a fully configurable interface for transferring
data to/from connected logic, and a Wishbone bus to interface with a host processor. The
individual units of this configurable interface are referred to as 'items'. The interface can include

a combination of one or more of the following items:

e Internal Registers — which allow values to be read from, and/or written to, connected
logic.
e Command Sets — which allow operations to be enabled on connected logic.

e External Address Ranges — which allow access to blocks of addresses on connected

MAHOHard Software Inc. .

DETAILED DESIGN REPORT n

In addition to making the task of building Wishbone peripherals far easier, the Wishbone
Interface component also provides the ability to generate C code based on the items specified in
the interface simplifying interaction with the component from the embedded code running on the
host processor. "

7- Language Specifications

7-1- Embedded C /C++

C and C++ are general programming languages and can be used for implementing
software system and portable application software. Programmers around the world embrace C

and C++ because it gives maximum control and efficiency to the programmer.

Microprocessor (TSK 3000A) and wishbone connections will be implemented by using
these languages.

Altium Designer which will be used for developing HSM, provides C-to-Hardware
Compilation (CHC) technology. The Compiler takes C source code as input and produces FPGA

logic as output.

Cc C-to-Hardware .
Source Code »| Compilation Technology [> FPGA Logic
Sofismn farcion(s) Hardware circuit description(s)

of transkated function(s)

Figure 20: High-level illustration of C-to-Hardware compilation in Altium Designer

7-2- VHDL

VHDL is a programming language that has been designed and optimized for describing
the behavior of digital systems. VHDL has many features appropriate for describing the behavior

of electronic components ranging from simple logic gates to complete microprocessors and
MAHOHard Software Inc. .

DETAILED DESIGN REPORT

custom chips. Features of VHDL allow electrical aspects of circuit behavior (such as rise and fall
times of signals, delays through gates, and functional operation) to be precisely described. The
resulting VHDL simulation models can then be used as building blocks in larger circuits (using
schematics, block diagrams or system-level VHDL descriptions) for the purpose of simulation.
VHDL will be used in order to design FPGA. Cryptographic modules such as Encryption and
Decryption module will be designed by using VHDL programming Language.™

8- Testing and Debugging

8-1- Testing

The aim of this part is to detect errors and bugs of the hardware security module. A good
testing strategy hopefully will make the project work fully. There are the testing strategies which

are going to be used in testing part.

8-1-1- Unit Testing

The aim of this kind of testing is to verify whether the smallest testable pieces of the
application are working properly or not. In this phase of testing each unit will be tested
seperately before integrating it to the whole system. ,Since finding the possible error in the
integrated project is crucial, this stage is relatively important. Also this stage ensures that
integration test may only have integration errors and hopefully has no unit dependent errors

appear.

8-1-2- Integration Testing

This testing stage is a little extended form of unit testing. It occurs after unit testing and
before system testing. Integration testing takes as its input modules that have been unit tested,
groups them in larger aggregates, applies tests defined in an integration test plan to those

aggregates, and delivers as its output the integrated system ready for system testing.

The purpose of integration testing is to verify functional, performance, and reliability
requirements placed on major design items. These "design items", i.e. assemblages (or groups of
units), are exercised through their interfaces using Black box testing, success and error cases
being simulated via appropriate parameter and data inputs. Simulated usage of shared data areas

and inter-process communication is tested and individual subsystems are exercised through their

MAHOHard Software Inc. .

DETAILED DESIGN REPORT

input interface. Test cases are constructed to test that all components within assemblages interact
correctly, for example across procedure calls or process activations, and this is done after testing
individual modules, i.e. unit testing. The overall idea is a "building block" approach, in which
verified assemblages are added to a verified base which is then used to support the integration
testing of further assemblages.

8-1-3- System Testing

System testing of software or hardware is testing conducted on a complete, integrated
system to evaluate the system's compliance with its specified requirements. System testing falls
within the scope of black box testing, and as such, should require no knowledge of the inner
design of the code or logic.

As a rule, system testing takes, as its input, all of the "integrated™" software components
that have successfully passed integration testing and also the software system itself integrated
with any applicable hardware system(s). The purpose of integration testing is to detect any
inconsistencies between the software units that are integrated together (called assemblages) or
between any of the assemblages and the hardware. System testing is a more limiting type of
testing; it seeks to detect defects both within the "inter-assemblages” and also within the system

as a whole.

8-2- Debugging

Debugging is the act of testing designer hardware design and any embedded software
(running on 'soft' processors therein), to obtain the desired (correct) performance and
functionality. Debugging is an important element of the overall design strategy, and effective

debugging can save a lot of time and money when it comes time to deploy your end design in the
field.

Since “Altium Designer® will be used for this project, Altium Designer’s debugging
environment will be used. In Altium Designer, debugging of hardware is provided courtesy of
'virtual' instruments — components which are ‘wired' into the actual FPGA design but which, on
programming the physical device, offer software-based controls for interrogation and control of
nodes within the design. Imagine being able to walk around inside the physical FPGA device,
armed with your favorite test instruments, and programmer will have some idea of what these

instruments can offer as part of a 'live’ debugging environment.

MAHOHard Software Inc. .

43

DETAILED DESIGN REPORT

9- Gantt Chart

9-1- Term 1 Gantt Chart

Wi

wo d

-
!

DVIDIZINL OV HIZRUL sfepg adfojuy - sunjsapy

ST T] fudtngap
0VI0BIUON VIOHTLL sfepg wagadues e Bujs)
OVVOTHPA OV I o sfepg Lopeplaady 200y
DRV UL OV U 33fep g adfjojog
DVI0B0B4 OVI0YS sfep) 2y LGSR papea0 oy
DFI0B0MS 0VIDSDanL sfepy poday ufjsa payeia fumy
0VI0F0UON BOZVazanL sfeps ulisa)ampziuay paEel
B0ZVETUON GUTVSTOEM Sfepy vag < fI5H UOjELLMLD)
DVI0S0SNL BUZVNYy Sfepgl waessay|eALLIE] paYRGR
OHB0M TRy shepg ublsag payiag

B0ZVIZUON BTV IZ V0N Sfepl UnjEpuasalq el US|
B7I8M G0TIILY slep

B0TVON BOTVMLS sepg wody ulisaq gy Buedalg

10day Ursa) (e auajsay

B0ZVOLIUL TV Z0 e sfep | UBlsaq ey
B0ZVI0SNL GLY9) 2 SCER () | IEosaY B3] PayRlE
BUTVEHIS 60D pam shen g7 Ubisaq e
BOUVLLENL GO LVaL Sfepy HiH - AUojEsll|
BUUVLVEL BUWZVANL fEp) U SURINGaY RTjEUS

Bujapay) ase) 23
fuapoy[puojauny

AL 3 UON 6L 9L Ui A)
BUWEH BTN Rep)

E

BOVLTINUL BV PE StEpZ fugapoyy e
SUIOLANL ROV AN sfepg sjiauynbal fuung B
BULVSOMUL BHSOMAL fep) Kaning ey L0
ALV SO PRI BODLAZIUL heps (P IBEse B 6
BUTVOTPRMA GUOVSTREM et Buinpatas pue ey el KR
BO0VIZANL g0V iznL fep) Aaking Jauen) L]
FO0VIZANL GO0V iZanL fep) fuyugng adoas KR
BVFLh N GUOVIZONL shepy) podoysishepuyewaimbay
AR TR TRATR) st cus | 5 |
B0TVGT U GUOVELanL stepg) Jndzy fesdoly £
T T T [T Ungoages ado) A
m B0K9Z WO BIOKTONY sfep gy sisfjeuy |
Bl AN _N_E_g_g_iﬁa_m_m N EDEEE R R R E R E N R 0
EEE_ ﬁE:E_ 6007 Jaquao3q 6007 J2gWaA0y gﬁ_g%o_ 6007 Joquayda sy | ey gy 1

MAHOHard Software Inc.

DETAILED DESIGN REPORT

9-2- Term 2 Gantt Chart

0SUEZL 05Uz Belh Sfen SRR |)
DAL DS st pegagbuzeny | g
OVSDUZIL 01504 U Sfepy unjearan] |)
0VSUrHLd OVSUEDUon sheng) by ugls | 51
O0UELS OV30TIUOH sfeps) sl uomeday |)
00604 04E05H o sfepqz GubbnogsBusseLun |)
m m OVSOTHS OVE0'SH ol Sfep g5 NS 1
OA0ZanL OVZDETanL sien iy YOMREL | Ol
D0IZANL OL0alld sfep samponjoumdiay |
OV0SHIL 0507V UOH Sfepy LoD fayuopuey |
060N OLDLORRM SHept ampopampubgRng | |
0L s0903nL 0LEDIEBolh Sfeps e | g
DVEDIEENL 0LE0SIL Siepg oyt | g
DL RN sy Ao |
OVEDI0UON 0Z0EZENL Sfeps PN | g
_ OOz 3L OVTETanL sep iy NOLLY LN 7
| 02072000 0VZ0BITUL Sfept Iemenadfopig pue e |

|90(50[20] 08| 22| |84 Sh |2 | 60] 90|01 0] 2|42 V2 05420 60| S0]€0] 62 522261 9 |00 10|30 0] G2 02 L)| 1) 0 801201 & 2 2

T 0N 1B W 1| DM o I LBGR4| su | g | en]

MAHOHard Software Inc.

DETAILED DESIGN REPORT &

10- References

http://wiki.altium.com/display/ADOH/Key+Features+of+the+NanoBoard+3000 '
http://wiki.altium.com/display/ADOH/Functional+Overview+of+the+NanoBoard+3000 !
http://www.altium.com/files/pdfs/Altium-Designer-Feature-Set-Summary.pdf i
http://www.ietf.org/rfc/rfc1321.txt"
http://www.crysys.hu/courses/adatbiztonsag/DES-AES.pdf"
http://www.crysys.hu/courses/adatbiztonsag/DES-AES.pdfVi

vii

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://www.absoluteastronomy.com/topics/Feistel_cipher""
http://www.altium.com/files/learningguides/.%SCCROlZ1%20TSK3000A%2032%20bit%20R|SC%ZOProcessor.pdfiX
https://altium.onconfluence.com/display/ADOH/TSK3000A+Data+Organization”
http://wiki.altium.com/display/ADOH/Ethernet+Protocol .
http://wiki.altium.com/display/ADOH/Ethernet+Protocol X

http://wiki.altium.com/display/ADOH/WB_INTERCON+-+Configurable+Wishbone+Interconnect i

http://www.altium.com/files/AltiumDesigner6/LearningGuides/TR0114%20VHDL%20Language%20Reference.pdf

XIvV

MAHOHard Software Inc. .

