

MAHOHard
Software Inc.

Hardware Security Module

DETAILED DESIGN REPORT

e1502228 Ali CANDER
e1502152 Ozan Erdem BAYCAN
e1502764 Haldun TOPÇUOĞLU
e1503028 Mustafa ŞİŞMAN

2010

MAHOHard Software Inc.
01/18/2010

DETAILED DESIGN REPORT 2

MAHOHard Software Inc.

Contents
1-Introduction ... 5

1-1 Project Definition and Goals ... 5

1-2 Purpose of Document .. 6

2-Design Constrants .. 6

2-1 Resource Constraints... 6

2-2 Power Constraints ... 6

2-3 Time Constraints ... 7

2-4 Ergonomic Constraints .. 7

2-5 Performance Constraints ... 7

2-6 Experience of Members .. 7

3-System Architecture .. 7

3-1 Overview of HSM ... 7

3-2 Architectural Design ... 8

3-2-1 Hardware Design ... 8

3-2-2 Software Design..12

4- Modeling ..13

4-1 Data Flow Diagrams ..13

4-1-1 Level 0..13

4-1-2 Level 1 : HSM ..14

4-1-3 Level 2 : FPGA MODULE ...15

4-2 Class Diagrams ..17

4-2-1 Ethernet Module ...17

4-2-2 FPGA Module ..19

4-3 Activity Diagrams ..26

4-3-1 Ethernet Activity Diagram ..26

4-3-1 FPGA Activity Diagram..27

4-4 Sequence Diagrams ..28

DETAILED DESIGN REPORT 3

MAHOHard Software Inc.

4-4-1- Packet Transportation ..28

4-4-2 Microcontroller – Crypto Module Interaction ..29

5- Microprocessor/Microcontroller ...30

5-1- TSK3000A ...31

5-1-1 Pin Description ...31

6- INTERFACE ...36

6-1 External Interface ...36

6-1-1 Ethernet Port ...36

6-1-2 Ethernet Interface ..37

6-2- Internal Interface ..39

6-2-1- Wishbone Interface ..39

7- Language Specifications ...40

7-1- Embedded C /C++ ..40

7-2- VHDL ..40

8- Testing and Debugging ..41

8-1- Testing ...41

8-1-1- Unit Testing ...41

8-1-2- Integration Testing ...41

8-1-3- System Testing ..42

8-2- Debugging ..42

9- Gantt Chart ..43

9-1- Term 1 Gantt Chart ...43

9-2- Term 2 Gantt Chart ...44

10- References ...45

DETAILED DESIGN REPORT 4

MAHOHard Software Inc.

Table of Figures

Figure 1: Design Overview ... 8

Figure 2: Functional Overview of nanoboard. ...10

Figure 3: Overal Component of Hardware Architecture ..11

Figure 4: Features of Altium Designer..12

Figure 5: Context Level DFD ...13

Figure 6: Level1 DFD : HSM ..14

Figure 7: Level 2 DFD: FPGA Modules ...16

Figure 8: Ethernet Module ...17

Figure 9: FPGA Module...19

Figure 10: General Structure of Encryption/Decryption ..22

Figure 11: Each round of AES ...22

Figure 12: Working principal of DES ...23

Figure 13: Each round of DES ...24

Figure 14: Ethernet Activity Diagram ..26

Figure 15: FPGA Activity Diagram ..27

Figure 16: Packet Transportation..28

Figure 17: Interaction between Microcontroller and Crypto Module ...29

Figure 18: TSK3000A ..31

Figure 19: Ethernet network packet holding an IP packet ...38

Figure 20: High-level illustration of C-to-Hardware compilation in Altium Designer40

DETAILED DESIGN REPORT 5

MAHOHard Software Inc.

1-Introduction

1-1 Project Definition and Goals

 Securely managing keys is one of the most important and resource consuming tasks

required to guarantee the security on a public key crypto system. This is due to a close

relationship between security and the proper management of private keys. A public key crypto

system can be considered secure as long as the private keys are secured. Taking this as a

premise, it should be guaranteed that a (private) key is strictly secure during all events in its life

cycle. This goal can be achieved by designing systems to securely create, manage and destroy

(private) keys, maintaining an audit trail of every operation which was done during their

existence. Such systems are known as Hardware Security Modules (HSMs).

HSMs are specialised tamper-proof devices in which cryptographic functions and

embedded software have been built to properly manage keys and control their life cycles. They

are designed in such a way that if an unauthorised attempt to access them is made, this is

considered an attempt to tamper and all critical internal parameters and keys are destroyed.

Although very common in the banking industry, HSMs are also desirable in PKI, but not

always implemented. As shown in Table 1, their common usage in the banking industry leads to

specialisation of the HSMs to perform tasks such as PIN calculations or payment protocols, that

are suitable in such industry.

Bank HSMs PKI HSMs

PIN Calculation Strong Authentication

Role Based Authentication Identity Based Authentication

Dual Key Entry Strict Key-life Cycle Control

Payment Protocols Fully Auditable Operation

Cryptographic Speed Triggered Group Mechanisms

Table 1: Comparison Between Bank HSMs and PKI HSM

DETAILED DESIGN REPORT 6

MAHOHard Software Inc.

In this project, it will be tried to develop a PKI HSM. The goals of this HSM are :

 onboard secure generation

 onboard secure storage

 use of cryptographic and sensitive data material

 offloading application servers for complete asymmetric and symmetric cryptography

HSMs provide both logical and physical protection of these materials from non-authorized use

and potential adversaries. In short, they protect high-value cryptographic keys.

1-2 Purpose of Document

The purpose of this document is to show the detailed design concepts about HSM project.

In this document it will be given details of this project according to requirements explained in

the requirement analysis report.

2-Design Constrants

2-1 Resource Constraints

There will be need of datasheets of the devices that will be used for this project and

manuals of the software development environment that will be used for coding. These

documents will be supplied by teaching assistant and whenever extra information is needed,

internet resources will be used. Since this project is an hardware project and similar projects are

commercial and are not open source, it will be hard to find related resources. That is why there

will be limitations in the development progress.

2-2 Power Constraints

Since Hardware Security Module (HSM) has very critical task, which has not to be

interrupted, the power must have some features:

DETAILED DESIGN REPORT 7

MAHOHard Software Inc.

 Power must be supplied continuously without any drop and rising.

 Power supply must supply a voltage in a range. For example, 90-132 and 175-264

VAC.

2-3 Time Constraints

The deadline of the project is June and a prototype should be provided at the end of this

semester. Since this project is an embedded project, time is very important constraint.Time have

to be used very effective in order to achieve some results.

2-4 Ergonomic Constraints

Since new platforms such as ―Altium Designer‖ will be used which is new for all team

members, there may be some problem.

2-5 Performance Constraints

First, the HSM must provide a significant speed for data transferring and all other

functionality. Besides, when number of transferred data increase, the HSM must also provide

parallelism. For example if there are more than one data will be encrypted, the HSM must share

these data between suitable modules. By that way, in one time more than one data can be

encrypted. Supplying these features will be big deal.

2-6 Experience of Members

 Lack of experience of the team members on coding for embedded device is one of the

restrictions. Sometimes, some difficulties may be faced with managing unexpected problems and

unforeseen details of the project.

3-System Architecture

3-1 Overview of HSM

As it is explained throughout the report, the HSM system needs a complex architecture

because lots of modules will work cooperatively. Therefore, the architecture should be easily

modifiable according to changes and it should allow developers for developing new modules.

Moreover, it should make this complex system's development phase less difficult with good

separation of layers. General overview of the HSM can be seen at Figure 1.

DETAILED DESIGN REPORT 8

MAHOHard Software Inc.

Server

Ether

net

Modu

le

HSM

Wishbone

Interface

Secure

Storage

Encryption

Package

Decryption

Package

Hash

Package

Random

Key

Package

Digital

Signature

Package

TCP/IP

Micro

Processor

Figure 1: Design Overview

3-2 Architectural Design

3-2-1 Hardware Design

The HSM will be designed on a board which is called Altium Nanoboard 3000. This board

has been chosen because of some of its features and advantages. Some advantages of this board

are:

 Perfect entry-point to discover and explore the world of FPGA-based embedded systems

design. Programmable hardware realm allows designer to update the design quickly and

many times over without incurring cost or time penalties

 Reprogrammable hardware development platform that harnesses the power of a dedicated

high-capacity, low-cost programmable device to allow rapid and interactive

implementation and debugging of our designs

 High-capacity FPGA located on the motherboard, and provision for a single plug-in

peripheral board (Altium or user’s own) for additional system flexibility.

 Automatic peripheral board detection and configuration.

DETAILED DESIGN REPORT 9

MAHOHard Software Inc.

This board has some basic and important features which make us choose it. Some of them are:

 NanoBoard 3000XN – with fixed Xilinx® Spartan™-3AN device (XC3S1400AN-

4FGG676C)

 Variety of standard communications interfaces: RS-232, RS-485, PS/2, 10/100 Fast

Ethernet, USB 2.0, S/PDIF, MIDI.

 On-board memories accessible by user FPGA 256KB x 32-bit common-bus SRAM

(1MB), 16M x 32-bit common-bus SDRAM (64MB), 8M x 16-bit common-bus 3.0V

Page Mode Flash memory (16MB), dual 256KB x 16-bit independent

 SRAM (512KB each).

 Four 8Mbit SPI flash memory devices – one containing Primary boot image for Host

Controller, one containing golden boot image for Host Controller, two for use by user

FPGA (for boot/embedded purposes).

 Host (NanoTalk) Controller hosts the NanoBoard firmware. Responsibilities include

managing JTAG communications (with Altium Designer/User FPGA/connected

peripheral board), as well as access to common-bus SPI resources.

 High-speed PC interconnection through USB 2.0 allows for fast downloading and

debugging.
i

Since the HSM implementation will be on Altium nanoboard, all basic functionality and

peripherals of board have to be known. Below in Figure 2, there is functional overview of this

board.

DETAILED DESIGN REPORT 10

MAHOHard Software Inc.

Figure 2: Functional Overview of nanoboard.
ii

DETAILED DESIGN REPORT 11

MAHOHard Software Inc.

3-2-1-1 Hardware Components

The hardware components are on the User FPGA part of nanoboard. Other peripherals of

nanoboard will be used in order to communication, storage, debugging etc. For example,

Ethernet port will be used for communication with server. Besides, all components inside User

FPGA will talk with each other by wishbone interface. Main picture of components are shown

in Figure 3:

FPGA Management

HSM executive

Decrypt Function

External Communication Management

Digital Signature Functions

Ethernet Management

Microcontroller Unit

Random KeygenEncrypt Function Hash Function

Wishbone Interface

Figure 3: Overal Component of Hardware Architecture

DETAILED DESIGN REPORT 12

MAHOHard Software Inc.

HSM Executive is main picture of our HSM project. It has two main parts, which are

external communication and FPGA management parts. External communication part is used for

communication with server. FPGA management part is used for cryptographic functions, time

scheduling and data management. FPGA will be composed of 6 parts. Five of them are for

cryptographic functions and one is for microcontroller/microprocessor. All data management and

time scheduling will be controlled by using microcontroller unit. In this report working hierarchy

of all parts will be explained in detail with data flow and class diagrams.

3-2-2 Software Design

 Since Altium Nanoboard will be used, ―Altium Designer‖ is chosen as a product

development system. Altium Designer involves all needed libraries for the board and other

devices that is need in the project development. This system offers a single solution to develop

hardware, programmable hardware and software. Besides, it is very easy to debug the work by

using this system. Figure 4 briefly shows features of Altium Designer.

Figure 4: Features of Altium Designer
iii

DETAILED DESIGN REPORT 13

MAHOHard Software Inc.

4- Modeling

4-1 Data Flow Diagrams

4-1-1 Level 0

Server

HSM

 Packet to be

processed

Processed

Packet

Figure 5: Context Level DFD

As it can be seen from the Figure 5, basically HSM will be in communication with server.

Server will send a packet which cover request and data. HSM will process the packet and will

return an answer. The answer will change according to request.

DETAILED DESIGN REPORT 14

MAHOHard Software Inc.

 4-1-2 Level 1 : HSM

HSM

Packet to be

processedProcessed

Data packet

FPGA Module

Receive

Packet

Send

Packet

Ethernet

Module
S

e
c
u

re
 S

to
ra

g
e

Supply

Data

Request

Data

Figure 6: Level1 DFD : HSM

DETAILED DESIGN REPORT 15

MAHOHard Software Inc.

Packet coming from server comes to ethernet module by TCP/IP protocol at first. Then

packet is transferred to the FPGA by wishbone interface. FPGA modules process packet and if

there is a request about secure storage, FPGA module reaches to secure storage again with

wishbone interface. After process, FPGA sends packet back to the ethernet module by wishbone

interconnection. Finally, ethernet module sends answers back to server.

4-1-3 Level 2 : FPGA MODULE

 FPGA module includes six processes :

 Encryption : It will have encryption function with strong cryptographic algorithm such

AES,DES.

 Decyrption : It will have decryption function.

 Hashing : It will have hash function with strong algorithm.

 Key Generation : It will have a function that generate random keys when key is needed.

 Digital Signature : It will have a function that produce digital signature or verify the

signature that is produced by itself.

 Microcontroller : Microcontroller will manage all data flows in the system.

As it can be seen below, wishbone interface is used for all connection between all FPGA

components and peripherals. All Cryptographic functions will be explained in class hierarchy in

this report. Besides, wishbone interface will be explained in interface chapter in detail. The most

important component of FPGA module, microcontroller, will briefly be explained in

microcontroller/microprocessor chapter.

DETAILED DESIGN REPORT 16

MAHOHard Software Inc.

WISHBONE INTERCONNECTION

Encryption

Decryption

Hashing

Key generation

Digital

Signature

Send Packet Recieve Packet

Encrypted Data

Data to be

Encrypted

Decrypted

Data

Data to be

Decrypted

Hash value

Data
Generated

Key

ID

ID

Signature

FPGA Module

Micro

Processor

Request

data

/ Data

Packet

Produced

Data

/ Packet

Supply

Data

Request

Data

Figure 7: Level 2 DFD: FPGA Modules

DETAILED DESIGN REPORT 17

MAHOHard Software Inc.

4-2 Class Diagrams

4-2-1 Ethernet Module

+getPendingPacketCount()() : int

+readPacket() : Packet

+readMultiplePackets()() : Packet Sequence

+pendingPacketCount : int

Packet Reader

+destinationAddress : string

+destinationPort : short

+payload : string

+payloadSize : uint

+sequenceNumber : int

-sourceAddress : string

-sourcePort : short

Packet

+getDestinationAdress()() : string

+getDestinationPort()() : short

+getPacket(int)() : Packet

+getPacketCount() : uint

+getSourceAddress()() : string

+getSourcePort()() : short

-packetCount : int

-packets : Packet

Packet Sequence

+getDestinationAddress()() : string

+getDestinationPort()() : short

+getPacket(int)() : Packet

+getSourceAddress()() : string

+getSourcePort()() : short

+orderedPacketd() : bool

OrderedPacket

+dequeuePacket()() : Packet

+dequeuePacketSequence(int)() : Packet Sequence

+enqueuePacket(Packet)() : void

+enqueuePacketSequence(PacketSequence)() : void

+isEmpty()() : bool

+isFull()() : bool

-contents : Packet

-count : int

-empty : bool

-full : bool

PacketBuffer

0..*

reads

Figure 8: Ethernet Module

DETAILED DESIGN REPORT 18

MAHOHard Software Inc.

There are explanations of Ethernet module’s classes below:

PacketReader is an abstract class that is responsible for reading packets from an input

source. It includes methods for reading either a single packet or multiple packets at once. The

pendingPacketCount member returns the unread packet count waiting at the input source.

Packet class is the data structure that is used to define a single packet. The member

variables of this class are filled by the object that reads the packet from the input source.

PacketSequence is the collection class for packets that have the same source and

destination addresses and same ports. It includes methods that provide random access to packets

stored in the collection.

OrderedPackets extends the PacketSequence class to add functionality that orders the

packets in the sequence based on their sequence number.

PacketBuffer implements a simple FIFO queue mechanism that is able to store a

predefined number of packets in a queue data structure.

DETAILED DESIGN REPORT 19

MAHOHard Software Inc.

4-2-2 FPGA Module

Figure 9: FPGA Module

DETAILED DESIGN REPORT 20

MAHOHard Software Inc.

Classes of FPGA modules are explained below in details:

Wishbone is the interface which is responsible for data transfers between Controller and

other modules. Therefore every module is dependent to this Wishbone interface. getPrivateKey

and getPublicKey functions are generic and polymorphic functions that can be redefined in its

subclasses. Other methods are redefined in Controller class.

Key is a simple class that holds a single private key. This key is used in other classes.

getKey() method returns the value of key that is stored in ‖key‖ field.

Storage is the class where exists an array of keys which are stored in the secure storage.

Requested key values which are needed by other classes (i.e. AES, DES) are found on this class’

―keys‖ field. When a request comes, requested key is going to be found and sent back from here.

Controller is the class where all request are going to be sent. It holds a data which is going

to be processed by AES, DES, Digital Signature, Hash classes’ methods.

 hashSignal method sends the data with a signal which is used to tell Wishbone interface

that the request is a hash request.

 signatureSignal method sends the data with a signal which is used to tell Wishbone

interface that the request is a digital signature request.

 encrypt method sends the data with a signal which is used to tell Wishbone interface that

the request is an encryption request.

 decrypt method sends the data with a signal which is used to tell Wishbone interface that

the request is a decryption request.

 Keygen method sends only a signal that requests random key generation.

HASH is the class where the hash requests are handled. The hash algorithm will be MD5

algorithm. The main MD5 algorithm
iv

operates on a 128-bit state, divided into four 32-bit words,

denoted A, B, C and D. These are initialized to certain fixed constants. The main algorithm then

operates on each 512-bit message block in turn, each block modifying the state. The processing

of a message block consists of four similar stages, termed rounds; each round is composed of 16

similar operations based on a non-linear function F, modular addition, and left rotation. There are

four possible functions F; a different one is used in each round:

DETAILED DESIGN REPORT 21

MAHOHard Software Inc.









Encrypt class is the class where encryption requests are handled. There will be several

encryption functions to encrypt data.

 encryptAES method uses Advanced Encryption Standard algorithm in order to encrypt

data.

Advanced Encryption Standard Algorithm :

AES is based on a design principle known as a Substitution permutation network. It is fast in

both software and hardware. Unlike its predecessor, DES, AES does not use a Feistel network.

AES has a fixed block size of 128 bits and a key size of 128, 192, or 256 bits, whereas

Rijndael can be specified with block and key sizes in any multiple of 32 bits, with a minimum of

128 bits and a maximum of 256 bits.

AES operates on a 4×4 array of bytes, termed the state (versions of Rijndael with a larger

block size have additional columns in the state). Most AES calculations are done in a special

finite field.

The AES cipher is specified as a number of repetitions of transformation rounds that convert

the input plaintext into the final output of cipher text. Each round consists of several processing

steps, including one that depends on the encryption key. A set of reverse rounds are applied to

transform cipher text back into the original plaintext using the same encryption key.

DETAILED DESIGN REPORT 22

MAHOHard Software Inc.

Figure 10: General Structure of Encryption/Decryption
v

Figure 11: Each round of AES
vi

DETAILED DESIGN REPORT 23

MAHOHard Software Inc.

 encryptDES method Data Encryption Standard algorithm in order to encrypt data.

Data Encryption Standard Algorithm:

There are 16 identical stages of processing, termed rounds. There is also an initial and final

permutation, termed IP and FP, which are inverses (IP "undoes" the action of FP, and vice

versa). IP and FP have almost no cryptographic significance, but were apparently included in

order to facilitate loading blocks in and out of mid-1970s hardware, as well as to make DES run

slower in software.
 vii

Figure 12: Working principal of DES
viii

Before the main rounds, the block is divided into two 32-bit halves and processed alternately;

this criss-crossing is known as the Feistel scheme. The Feistel structure ensures that decryption

and encryption are very similar processes — the only difference is that the sub keys are applied

in the reverse order when decrypting. The rest of the algorithm is identical. This greatly

DETAILED DESIGN REPORT 24

MAHOHard Software Inc.

simplifies implementation, particularly in hardware, as there is no need for separate encryption

and decryption algorithms.

Figure 13: Each round of DES

Decrypt class is the class where decryption requests are handled. There will be several

decryption functions to decrypt data.

 decryptAES uses the same AES algorithm with sub keys in reverse order to decrypt data.

 decryptDES uses the same DES algorithm with sub keys in reverse order to decrypt data.

Random Key Generator is the class that produces public and private keys.

producePrivateKey: Produces the private key and returns it.

producePublicKey: Produces the public key and returns it.

DETAILED DESIGN REPORT 25

MAHOHard Software Inc.

Digital Signature class will produce unique signatures according to the public key, private

key and the message.

A digital signature scheme typically consists of three algorithms:

 A key generation algorithm that selects a private key uniformly at random from a set of

possible private keys. The algorithm outputs the private key and a corresponding public

key.

 A signing algorithm which, given a message and a private key, produces a signature.

 A signature verifying algorithm which given a message, public key and a signature, either

accepts or rejects the message's claim to authenticity.

Two main properties are required. First, a signature generated from a fixed message and

fixed private key should verify the authenticity of that message by using the corresponding

public key. Secondly, it should be computationally infeasible to generate a valid signature for a

party who does not possess the private key.

DETAILED DESIGN REPORT 26

MAHOHard Software Inc.

4-3 Activity Diagrams

Basic activity diagrams of HSM system are below. Activity diagrams enclose FPGA and

Ethernet modules.

4-3-1 Ethernet Activity Diagram

Figure 14: Ethernet Activity Diagram

DETAILED DESIGN REPORT 27

MAHOHard Software Inc.

4-3-1 FPGA Activity Diagram

Process data

Hashing Data

Waiting State

Encrypt Data

Waiting State

Decrypt Data

Waiting State

Random Key Generator

Waiting State

Digital Signature

Waiting State

Module

Idle
No

Yes

Module

Idle

Yes

No

Module

Idle

Yes

No
Module

Idle

Module

Idle

Yes

Yes
No

No

Send Answer

Back to Ethernet

Module

Get Data from Ethernet

Module

Figure 15: FPGA Activity Diagram

DETAILED DESIGN REPORT 28

MAHOHard Software Inc.

4-4 Sequence Diagrams

4-4-1- Packet Transportation

Figure 16: Packet Transportation

 Figure 16 shows the packet transportation between server side and HSM side. The

connection between server side and HSM side is accomplished via ethernet connection. The

procedure for data transported is explained below:

DETAILED DESIGN REPORT 29

MAHOHard Software Inc.

1- Server side sends a request in order to establish a connection with the HSM.

2- HSM sends an acknowledgement signal as a response to a connection request.

3- Server side sends a packet to HSM which is to be processed.

4- If server side request a processed packet, this data in the packet will be processed and the

result is returned as ―resulting packet‖.

5- After server side finished its job with the HSM, it will send a disconnection request.

6- In response to disconnection request, HSM will send a disconnection acknowledgement

signal.

4-4-2 Microcontroller – Crypto Module Interaction

MicroController Any Crypto Module

RequestIsIdle

IdleSignal

B

U

S

Y

SendData

ProcessedData

For each crypto module,

"hash", "encrypt", "decrypt",

"key generation", "digital signature",

similar operations are applied.

Figure 17: Interaction between Microcontroller and Crypto Module

DETAILED DESIGN REPORT 30

MAHOHard Software Inc.

The sequence diagram in figure 17 shows the interaction between microcontroller unit

and a cryptographic module basically. Since the logic behind all of the modules are similar, it is

enough to explain all of them in this sequence diagram.

Firstly, microcontroller requests information from the crypto module to learn that

whether the module is idle or not. If the module is busy, after the module finishes its job it will

send idle signal to the microcontroller. Then, microcontroller will send the data to be processed

to related crypto module. After the data is processed it will be send back to microcontroller from

the crypto module.

5- Microprocessor/Microcontroller

Microprocessor/Microcontroller is used in order to accomplish data management, time

scheduling and easily communicate with peripheral devices. There are number of benefits to be

gained from using soft processors on reconfigurable hardware.

The following sections are some of the more significant of these benefits.

 coprocessors Field reconfigurable hardware

 Faster time to market

 Improving and extending product life-cycles

 Creating application-specific

 Implementing multiple processors within a single device

 Lowering system cost

 Avoiding processor obsolescence

In this project, Altium TSK3000A is going to be used as the processor. TSK 3000A is a 32-

bit, Wishbone-compatible, RISC processor. Instructions are 32-bits and execute in single clock

cycle.

DETAILED DESIGN REPORT 31

MAHOHard Software Inc.

5-1- TSK3000A

Figure 18: TSK3000A
ix

5-1-1 Pin Description

The pin out of the TSK3000A has not been fixed to any specific device I/O - allowing

flexibility with user application. The TSK3000A contains only unidirectional pins (inputs or

outputs).

DETAILED DESIGN REPORT 32

MAHOHard Software Inc.

Name Type Polarity/Bus

size

Description

Control Signals

 CLK_I I Rise External (system) clock

 RST_I I High External (system) reset

Interrupt Signals

 INT_I I 32 Interrupt inputs. Each input can be configured

to operate as level-sensitive or edge-triggered

by clearing or setting the corresponding bit in the

IMode register respectively. Interrupts can be

configured in one of two modes – Standard or

Vectored – determined by the VIE bit of the Status

register (Status.9)

Wishbone External Memory Interface Signals

 ME_STB_O O High Strobe signal. When asserted, indicates the start of

a valid Wishbone data transfer cycle

 ME_CYC_O O High Cycle signal. When asserted, indicates the start of

a valid Wishbone bus cycle. This signal

remains asserted until the end of the

bus cycle, where such a cycle can include

multiple data transfers

 ME_ACK_I I High Standard Wishbone device acknowledgement signal.

When this signal goes High, an external

Wishbone slave memory device has finished

execution of the requested action and the current

DETAILED DESIGN REPORT 33

MAHOHard Software Inc.

bus cycle is terminated

 ME_ADR_O O 32 Standard Wishbone address bus, used to select

an address in a connected Wishbone slave memory

device for writing to/reading from

 ME_DAT_I I 32 Data received from an external Wishbone slave

memory device

 ME_DAT_O O 32 Data to be sent to an external Wishbone

slave memory device

ME_SEL_O O 4 Select output, used to determine where data is

placed on the ME_DAT_O line during a Write cycle

and from where on the ME_DAT_I line data is

accessed during a Read cycle. Each of the data ports

is 32-bits wide with 8-bit granularity, meaning data

transfers can be 8-, 16- or 32-bit. The four select bits

allow targeting of each of the four active bytes of a

port, with bit 0 corresponding to the low byte (7..0)

and bit 3 corresponding to the high byte (31..24)

ME_WE_O O Level Write enable signal. Used to indicate whether

the current local bus cycle is a Read or Write cycle.

0 = Read

1=Write

ME_CLK_O O Rise External (system) clock signal (identical to

DETAILED DESIGN REPORT 34

MAHOHard Software Inc.

CLK_I), made available for connecting to the

CLK_I input of a slave memory device. Though not

part of the standard Wishbone interface, this signal is

provided for convenience when wiring your design

ME_RST_O O High Reset signal made available for connection to

the input of a slave memory device. This signal goes

High when an external reset is issued to

the processor on its RST_I pin. When this signal

goes Low, the reset cycle has completed and the

processor is active again. Though not part of the

standard Wishbone interface, this signal is provided

for convenience when wiring your design

Wishbone Peripheral I/O Interface Signals

IO_STB_O O High Strobe signal. When asserted, indicates the start of

a valid Wishbone data transfer cycle

IO_CYC_O O High Cycle signal. When asserted, indicates the start of a valid

Wishbone bus cycle. This signal remains asserted until

the end of the bus cycle, where such a cycle can include

multiple data transfers

IO_ACK_I I High Standard Wishbone device acknowledgement

signal. When this signal goes High, an external

Wishbone slave peripheral device has finished execution

of the requested action and the current bus cycle

is terminated

IO_ADR_O O 24 Standard Wishbone address bus, used to select an internal

register of a connected Wishbone slave peripheral device

for writing to/reading from

IO_DAT_I I 32 Data received from an external Wishbone

DETAILED DESIGN REPORT 35

MAHOHard Software Inc.

slave peripheral device

IO_DAT_O O 32 Data to be sent to an external Wishbone slave peripheral

device

IO_SEL_O O 4 Select output, used to determine where data is placed on

the IO_DAT_O line during a Write cycle and from where

on the IO_DAT_I line data is accessed during a Read

cycle. Each of the data ports is 32-bits wide with 8-bit

granularity, meaning data transfers can be 8-, 16- or 32-

bit. The four select bits allow targeting of each of the four

active bytes of a port, with bit 0 corresponding to the low

byte (7..0) and bit 3 corresponding to the high byte

(31..24)

IO_WE_O O Level Write enable signal. Used to indicate whether the current

local bus cycle is a Read or Write cycle.

0 = Read

1 = Write

IO_CLK_O O Rise External (system) clock signal (identical to

CLK_I), made available for connecting to the CLK_I

input of a slave peripheral device. Though not part of

the standard Wishbone interface, this signal is

provided for convenience when wiring your design

IO_RST_O O High Reset signal made available for connection to the input of

a slave peripheral device. This signal goes High when an

external reset is issued to the processor on its RST_I pin.

When this signal goes Low, the reset cycle has completed

and the processor is active again. Though not part of the

standard Wishbone interface, this signal is provided

for convenience when wiring your design

Table 2: TSK3000A Pins Description
x

DETAILED DESIGN REPORT 36

MAHOHard Software Inc.

6- INTERFACE
 According to HSM’s working principal, two interface will be used. Contrary to

expectations, these interfaces will not be graphical user interfaces. These interfaces are called

physical interfaces and they will be used for connecting hardware component to each other and

making connection available between them. One of the interfaces is internal interface which

connects HSM’s internal components with each other and the other one is external interface

which is used for connecting HSM with outside world.

6-1 External Interface

 External interface is between HSM and ―Server‖. This psyhical connection will be

provided by ethernet interface. Altuim Nanoboard provides a fast Ethernet connection,

supporting 10Base-T and 100Base-TX, for operational speeds of up to 10Mbps and 100Mbps

respectively. Before explaining ethernet interface, some information about ethernet port will be

given in order to understand easily how ethernet connection works.

6-1-1 Ethernet Port

An 8P8C ('RJ45') modular connector is used to provide the Ethernet port (a FC0901238,

from Konvee). The connector has integrated 10/100Base-T Ethernet Isolation Transformers and

two indication LEDs. The latter – one yellow and one green – have been wired to reflect the Link

status and 100Mbps activity, respectively. Connection to the external network is made using

standard Category 5 unshielded twisted pair (UTP) network cable.

―Providing the interface between an Ethernet Media Access Controller in an FPGA

design and the external network, is an RTL8201CL 10/100M Fast Ethernet PHYceiver device.‖

xi

DETAILED DESIGN REPORT 37

MAHOHard Software Inc.

6-1-2 Ethernet Interface

Table 2 summarizes the available design interface component that can be placed from the

FPGA Nanoboard 3000 Port-Plugin.IntLib to access the Ethernet interface. Port-Plugin.IntLib is

coming ready with ―Altium Designer‖ and it will make job easier for the project. Ethernet

interface is going to be used for transferring network packets. The network packet is explained in

the next chapter.

Component Symbol Component Name Description

ETH_PHY

Place this component to

access the RTL8201CL

PHYceiver device and

subsequent Ethernet port.

Table 2: Ethernet Interface port-plugin component.
xii

DETAILED DESIGN REPORT 38

MAHOHard Software Inc.

6-1-2-1 Network Packet

Network packets are like Russian dolls. An IP-packet resides within an Ethernet-packet.

A TCP-packet resides within an IP-packet. A HTTP-packet resides within a TCP-packet.

Figure 19: Ethernet network packet holding an IP packet

The data part of an Ethernet packet can hold up to 1500 bytes. All requests that are used

in HSM system are introduced in first four bits of data part. MAC-addresses (48bits) are 6 bytes

wide each and the Number of Bytes field is 2 byte wide. That gives the maximum size of an

Ethernet frame to be 1514 bytes.

When introducing the IP-protocol on Ethernet the Number of Bytes field is used to mark

that the Ethernet frame holds an IP-packet by the number of 0x0800. By using a number that is

greater than the maximum length an Ethernet frame can hold indicates that the Ethernet frame

holds another protocol frame in the data part. The Ethernet standard says that if the Number of

Bytes field is greater than 0x0600, the Ethernet frame holds another protocol.

DETAILED DESIGN REPORT 39

MAHOHard Software Inc.

6-2- Internal Interface

 Wishbone interface will be used for making connection between HSM’s internal

components with each other. ―Altium Designer‖ will also provides wishbone interconnection for

designer. There are various wishbone interconnections for different aims. Basically custom

wisbone interface will be explained. Detailed information about wishbone interface will be given

in Detailed Design Report.

6-2-1- Wishbone Interface

The Wishbone Interface component (WB_INTERFACE) enables designer to build a

custom Wishbone peripheral in a design, extending your 32-bit FPGA systems through the

creation of custom FPGA logic.

The Wishbone Interface component has a fully configurable interface for transferring

data to/from connected logic, and a Wishbone bus to interface with a host processor. The

individual units of this configurable interface are referred to as 'items'. The interface can include

a combination of one or more of the following items:

 Internal Registers – which allow values to be read from, and/or written to, connected

logic.

 Command Sets – which allow operations to be enabled on connected logic.

 External Address Ranges – which allow access to blocks of addresses on connected

DETAILED DESIGN REPORT 40

MAHOHard Software Inc.

In addition to making the task of building Wishbone peripherals far easier, the Wishbone

Interface component also provides the ability to generate C code based on the items specified in

the interface simplifying interaction with the component from the embedded code running on the

host processor.xiii

7- Language Specifications

7-1- Embedded C /C++

 C and C++ are general programming languages and can be used for implementing

software system and portable application software. Programmers around the world embrace C

and C++ because it gives maximum control and efficiency to the programmer.

 Microprocessor (TSK 3000A) and wishbone connections will be implemented by using

these languages.

 Altium Designer which will be used for developing HSM, provides C-to-Hardware

Compilation (CHC) technology. The Compiler takes C source code as input and produces FPGA

logic as output.

Figure 20: High-level illustration of C-to-Hardware compilation in Altium Designer

7-2- VHDL

 VHDL is a programming language that has been designed and optimized for describing

the behavior of digital systems. VHDL has many features appropriate for describing the behavior

of electronic components ranging from simple logic gates to complete microprocessors and

DETAILED DESIGN REPORT 41

MAHOHard Software Inc.

custom chips. Features of VHDL allow electrical aspects of circuit behavior (such as rise and fall

times of signals, delays through gates, and functional operation) to be precisely described. The

resulting VHDL simulation models can then be used as building blocks in larger circuits (using

schematics, block diagrams or system-level VHDL descriptions) for the purpose of simulation.

VHDL will be used in order to design FPGA. Cryptographic modules such as Encryption and

Decryption module will be designed by using VHDL programming Language.
xiv

8- Testing and Debugging

8-1- Testing

The aim of this part is to detect errors and bugs of the hardware security module. A good

testing strategy hopefully will make the project work fully. There are the testing strategies which

are going to be used in testing part.

8-1-1- Unit Testing

The aim of this kind of testing is to verify whether the smallest testable pieces of the

application are working properly or not. In this phase of testing each unit will be tested

seperately before integrating it to the whole system. ,Since finding the possible error in the

integrated project is crucial, this stage is relatively important. Also this stage ensures that

integration test may only have integration errors and hopefully has no unit dependent errors

appear.

8-1-2- Integration Testing

This testing stage is a little extended form of unit testing. It occurs after unit testing and

before system testing. Integration testing takes as its input modules that have been unit tested,

groups them in larger aggregates, applies tests defined in an integration test plan to those

aggregates, and delivers as its output the integrated system ready for system testing.

The purpose of integration testing is to verify functional, performance, and reliability

requirements placed on major design items. These "design items", i.e. assemblages (or groups of

units), are exercised through their interfaces using Black box testing, success and error cases

being simulated via appropriate parameter and data inputs. Simulated usage of shared data areas

and inter-process communication is tested and individual subsystems are exercised through their

DETAILED DESIGN REPORT 42

MAHOHard Software Inc.

input interface. Test cases are constructed to test that all components within assemblages interact

correctly, for example across procedure calls or process activations, and this is done after testing

individual modules, i.e. unit testing. The overall idea is a "building block" approach, in which

verified assemblages are added to a verified base which is then used to support the integration

testing of further assemblages.

8-1-3- System Testing

System testing of software or hardware is testing conducted on a complete, integrated

system to evaluate the system's compliance with its specified requirements. System testing falls

within the scope of black box testing, and as such, should require no knowledge of the inner

design of the code or logic.

As a rule, system testing takes, as its input, all of the "integrated" software components

that have successfully passed integration testing and also the software system itself integrated

with any applicable hardware system(s). The purpose of integration testing is to detect any

inconsistencies between the software units that are integrated together (called assemblages) or

between any of the assemblages and the hardware. System testing is a more limiting type of

testing; it seeks to detect defects both within the "inter-assemblages" and also within the system

as a whole.

8-2- Debugging

Debugging is the act of testing designer hardware design and any embedded software

(running on 'soft' processors therein), to obtain the desired (correct) performance and

functionality. Debugging is an important element of the overall design strategy, and effective

debugging can save a lot of time and money when it comes time to deploy your end design in the

field.

Since ―Altium Designer― will be used for this project, Altium Designer’s debugging

environment will be used. In Altium Designer, debugging of hardware is provided courtesy of

'virtual' instruments – components which are 'wired' into the actual FPGA design but which, on

programming the physical device, offer software-based controls for interrogation and control of

nodes within the design. Imagine being able to walk around inside the physical FPGA device,

armed with your favorite test instruments, and programmer will have some idea of what these

instruments can offer as part of a 'live' debugging environment.

DETAILED DESIGN REPORT 43

MAHOHard Software Inc.

9- Gantt Chart

9-1- Term 1 Gantt Chart

DETAILED DESIGN REPORT 44

MAHOHard Software Inc.

9-2- Term 2 Gantt Chart

DETAILED DESIGN REPORT 45

MAHOHard Software Inc.

10- References

http://wiki.altium.com/display/ADOH/Key+Features+of+the+NanoBoard+3000 i

http://wiki.altium.com/display/ADOH/Functional+Overview+of+the+NanoBoard+3000 ii

http://www.altium.com/files/pdfs/Altium-Designer-Feature-Set-Summary.pdf iii

http://www.ietf.org/rfc/rfc1321.txt iv

http://www.crysys.hu/courses/adatbiztonsag/DES-AES.pdfv

http://www.crysys.hu/courses/adatbiztonsag/DES-AES.pdfvi

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
 vii

http://www.absoluteastronomy.com/topics/Feistel_cipher
viii

http://www.altium.com/files/learningguides/.%5CCR0121%20TSK3000A%2032%20bit%20RISC%20Processor.pdfix

https://altium.onconfluence.com/display/ADOH/TSK3000A+Data+Organizationx

http://wiki.altium.com/display/ADOH/Ethernet+Protocol xi

http://wiki.altium.com/display/ADOH/Ethernet+Protocol xii

http://wiki.altium.com/display/ADOH/WB_INTERCON+-+Configurable+Wishbone+Interconnect xiii

http://www.altium.com/files/AltiumDesigner6/LearningGuides/TR0114%20VHDL%20Language%20Reference.pdf

xiv

