
Software Design Description for AJCON

Page 1 of 53

Software Design

Description

for

AJCON, Applet to JSF Converter

Version 1.0

Prepared by

Anıl Sevim

Berkan KISAOĞLU

Özge TOKGÖZ

26.12.2010

Software Design Description for AJCON

Page 2 of 53

Table of Contents

1. Introduction 6

 1.1. Problem Definition 6

 1.2. Purpose 6

 1.3. Scope 7

 1.4. Overview 7

 1.5. Definitions, Acronyms and Abbreviations 8

 1.6. References 8

2. System Overview 9

3. Design Considerations 10

 3.1. Design Assumptions, Dependencies and Constraints 10

 3.1.1. Design Assumptions 10

 3.1.2. Design Dependencies 11

 3.1.3. Design Constraints 11

 3.1.3.1. Time 11

 3.1.3.2. Performance 12

 3.2. Design Goals and Guidelines 12

 3.2.1. Portability 12

 3.2.2. Reliability 12

 3.2.3. Correctness 12

4. Data Design 12

 4.1. Data Description 12

 4.1.1. Data Objects 13

 4.1.1.1. External Data Objects 13

 4.1.1.2. Internal Data Objects 15

 4.1.2. Data Models 16

 4.1.3. Data Dictionary 16

5. System Architecture 16

 5.1. Architectural Design 16

 5.2. Description of Components 17

 5.2.1. UI Component 18

Software Design Description for AJCON

Page 3 of 53

 5.2.1.1. Processing Narrative for UI Component 18

 5.2.1.2. Interface Description of UI Component 19

 5.2.1.3. Processing Detail of UI Component 19

 5.2.1.3.1. ApplicationManager Class 19

 5.2.1.3.1.1. Attributes 20

 5.2.1.3.1.2. Methods 20

 5.2.1.3.2. MainWindow Class 20

 5.2.1.3.2.1. Attributes 21

 5.2.1.3.2.2. Methods 23

 5.2.1.3.3. ProjectWindow Class 24

 5.2.1.3.3.1. Attributes 24

 5.2.1.3.3.2. Methods 25

 5.2.1.3.4. LogWindow Class 26

 5.2.1.3.4.1. Attributes 26

 5.2.1.3.4.2. Methods 26

 5.2.1.3.5. MainAction Class 26

 5.2.1.3.5.1. Attributes 27

 5.2.1.3.5.2. Methods 27

 5.2.1.4. Dynamic Behavior of UI Component 28

 5.2.2. AppletExtractor Component 28

 5.2.2.1. Processing Narrative for AppletExtractor Component

 28

 5.2.2.2. Interface Description of AppletExtractor Component

 29

 5.2.2.3. Processing Detail of AppletExtractor Component 29

 5.2.2.3.1. ExtractionHandler Class 29

 5.2.2.3.1.1. Attributes 29

 5.2.2.3.1.2. Methods 30

 5.2.2.4. Dynamic Behavior of AppletExtractor Component 30

 5.2.3. JavaML Component 30

 5.2.3.1. Processing Narrative for JavaML Component 30

 5.2.3.2. Interface Description of JavaML Component 31

Software Design Description for AJCON

Page 4 of 53

 5.2.3.3. Processing Detail of JavaML Component 31

 5.2.3.3.1. JavaMLHandler Class 31

 5.2.3.3.1.1. Attributes 32

 5.2.3.3.1.2. Methods 32

 5.2.3.4. Dynamic Behavior of JavaML Component 32

 5.2.4. Translator Component 33

 5.2.4.1. Processing Narrative for Translator Component 33

 5.2.4.2. Interface Description of Translator Component 33

 5.2.4.3. Processing Detailf of Translator Component 33

 5.2.4.3.1. TranslationHandler Class 34

 5.2.4.3.1.1. Attributes 34

 5.2.4.3.1.2. Methods 34

 5.2.4.3.2. ClassInfo Class 35

 5.2.4.3.2.1. Attributes 35

 5.2.4.3.2.2. Methods 36

 5.2.4.4. Dynamic Behavior of Translator Component 36

 5.2.5. Log Component 37

 5.2.5.1. Processing Narrative for Log Component 37

 5.2.5.2. Interface Description of Log Component 37

 5.2.5.3. Processing Detail of Log Component 37

 5.2.5.3.1. LogGenerator Class 37

 5.2.5.3.1.1. Attributes 37

 5.2.5.3.1.2. Methods 37

 5.2.5.4. Dynamic Behavior of Log Component 38

6. User Interface Design 38

 6.1. Overview of User Interface 38

 6.2. Interface Screens 39

 6.3. Screen Objects and Actions 40

 6.3.1. Screen Objects 41

 6.3.2. Screen Actions and Relations 42

7. Detailed Design 44

8. Libraries and Tools 44

Software Design Description for AJCON

Page 5 of 53

 8.1. JavaML 44

 8.2. Log4J 48

 8.3. Jikes 49

 8.4. Apache Tomcat 49

 8.5. Richfaces 49

 8.6. Java Reflection API 50

9. Change Log 50

10. Time Planning 51

11. Conclusion 53

Software Design Description for AJCON

Page 6 of 53

1. Introduction

This report intends to present initial design and progress of the Applet to Java Server

Faces (JSF) Converter (AJCON) project, conducted by Team Teaplet. AJCON is supposed to

be a software development tool which helps a software developer to migrate from

Applet technology to JSF. This report explains initial descriptions of the proposed

software system design. In this design document, general design architecture of the

project will be enlightened and current project status will be indicated.

1.1. Problem Definition

Java Applets can provide web applications with interactive features that cannot be

provided by HTML. When Java enabled browser is used to view a page that contains an

applet, the applet’s byte codes are transferred to user’s system and executed by

browser’s Java Virtual Machine (JVM). Nowadays, applet technology has become out of

date. Meanwhile, with new Java 2 Enterprise Edition (J2EE) technologies, same

functional requirements can be met with less dependency.

JSF is one of these technologies, but switching from Applet to JSF requires both lots of

money and manpower. Also, it is really long-lasting to write a JSF based application

which does the same work with Applet from scratch. Even though there are some

converters that may help employees at intermediate levels, there is no existing service,

which does this conversion.

1.2. Purpose

The purpose of this document is to explain initial design details of AJCON project. As

IEEE standards document indicates, the Initial Design Report show how the proposed

software system will be structured in order to satisfy the requirements identified in the

Software Requirements Specifications document. In other words, it is aimed to translate

software requirements defined in SRS document into a representation of software

components, interfaces and data to be used later in implementation phase of the

project. However, since every software design is open to changes and modifications, it is

highly possible to make changes during implementation and update SRS and SDD

documents accordingly.

Software Design Description for AJCON

Page 7 of 53

1.3. Scope

This initial SDD will contain the general definition and features of the project, design

constraints, the overall system architecture and data architecture, a brief explanation

about our current progress and schedule of the project. With the help of UML diagrams,

design of the system and subsystems/modules will be explained visually in order to help

the programmer to understand all information stated in this document correctly and

easily.

1.4. Overview

This document encompasses a design model with architectural, interface, component

level and deployment representations. Design model will be contained in this document,

which will be used as a medium for communicating software design information,

assessed for quality, improved before code is generated. Many graphical

representations and verbal explanations were added to this document to achieve the

goal of AJCON.

This document is divided into subsections to make it more understandable. Those are:

Section 2 contains general description about the system components.

Section 3 contains the assumptions made during the design process, dependencies

and other constraints.

Section 4 contains general data structures that AJCON used.

Section 5 contains the most important diagrams of the document. Class diagrams,

data flow diagrams and sequence diagrams of components are stated in this section.

Also a brief explanation about the classes is mentioned.

 Section 6 contains the user interface design and some screenshots.

Section 7 contains the detailed design issues and future works.

Section 8 contains the libraries and tools that we will use.

Section 9 contains the basic timeline of the project.

Software Design Description for AJCON

Page 8 of 53

Those sections and subsections of them are mentioned in the table of contents more

precisely.

1.5. Definitions, Acronyms and Abbreviations

SDD Software Design Document

AJCON Applet to JSF Converter

JVM Java Virtual Machine

JSF Java Server Faces

J2EE Java 2 Enterprise Edition

JavaML Java Markup Language

1.6. References

[1] IEEE Recommended Practice for Software Design Descriptions

[2] AJCON Software Requirements Specifications Document, v1.0

[3] JavaML – A Markup Language for Java Sources,

www.cs.washington.edu/research/constraints/web/badros-javaml-www9.ps.gz

[4] Apache Log4j, logging.apache.org/log4j/

[5] Jikes, jikes.sourceforge.net

[6] Apache Tomcat Wikipedia Page, Wikipedia.org/Apache_Tomcat

[7] Richfaces Community, jboss.org/richfaces

[8] Java Reflection API, http://download.oracle.com/javase/tutorial/reflect/index.html

Software Design Description for AJCON

Page 9 of 53

2. System Overview

Main concern of the AJCON project is to help developers to make their work easy. For an

applet project, converting it into a JSF project totally can be costly. With the use of

AJCON, cost, man power needs and time needs of converting process can be decreased.

It is not possible to convert all the projects with a rate of 100% of correctness but, after

the convert operation little changes can raise the output of AJCON up.

In this context, we designed AJCON in a manner stated in section 5.

General description of the system drawn on the activity diagram stated below. Reactions

defined on the user interface depends on the users actions, on the other hand, with the

start of the conversion operation it is automated. User decides the operation will be

done. Those operations can be adding/removing/selecting/deselecting/converting

operations. Once converting operation starts, other related things done by AJCON.

Finding applets, parsing sources, displaying log information and etc.

Software Design Description for AJCON

Page 10 of 53

3. Design Considerations

3.1. Design Assumptions, Dependencies and Constraints

3.1.1. Design Assumptions

AJCON is a huge project to design and implement. Since we have approximately six

months to finish, we are requested by Siemens EC to make some assumptions in order

to narrow down project to a certain level.

For initial design, our design assumptions can be stated as:

Software Design Description for AJCON

Page 11 of 53

 This project runs on a Microsoft Windows platform (Vista or later),

 JRE must be installed on running computer,

 Application will be deployed to Apache Tomcat 6.0 or higher server,

 Input Java project should be syntactically correct and runnable.

 Input Java project should include at least one Applet class.

 For final design, inputs will be an Applet embedded html file, but for

now, we assume an Applet Desktop Application as input. Later, we

will turn to web based ones.

 For start, we will consider converting 8 basic Applet components to

JSF. (See Section 4. Data Design)

 We will use JavaML tool [3] for parsing Java source files. Although,

this software product is stated to be working for every Java source

file, we have to assume that JavaML works properly. It should

generate a well-formed and correct XML file, which is a complete self-

describing representation of Java source code.

3.1.2. Design Dependencies

For initial design, our design dependencies can be stated as:

 JSF will depend on Java SE 5 (or higher).

 Software should run on a Microsoft Windows platform.

3.1.3. Design Constraints

3.1.3.1. Time

Under the scope of CEng 491-492 courses, we have approximately six months to finish

our projects. In order to meet deadlines, we have to obey our schedule strictly. As we

mentioned in our SRS document, we will be following agile software development

model. Since it is a step-by-step approach, it is a must to update requirements and

solutions. According to the feedback we will take, we will improve the general design

and process of our project. Thus, we are planning not to fall behind the schedule.

Software Design Description for AJCON

Page 12 of 53

3.1.3.2. Performance

For every software product, performance is an important criteria. Since AJCON project

will be run by local clients at Siemens EC and there is no multi-user operation, we expect

that conversion from Applet to JSF will end up at most in a few seconds.

3.2. Design Goals and Guidelines

3.2.1. Portability

There will be an installer for AJCON that runs only on Microsoft Windows platform

mentioned both in assumptions and dependencies. Although Java ML tool is written in

C++, there is only a Microsoft Windows executable publicly available. We are planning to

request a Unix platform executable from designer of Java ML tool. If we are able to

access that executable, we will make AJCON project portable for every operating system

since Java is a machine independent language and works on every platform.

3.2.2. Reliability

Software Reliability is the probability of failure-free software operation for a specified

period of time in a specified environment. Responses and the work done by the system

should be consistent.

3.2.3. Correctness

AJCON will work correctly if all the requirements and assumptions are met. It will give

the same result regardless of time, environment, etc.

4. Data Design

4.1. Data Description

We will keep our data in simple XML files; therefore converting those XML files into data

structures in the memory is so simple. Several files are processed during the process of

conversion and running of the system. Those are:

Software Design Description for AJCON

Page 13 of 53

4.1.1. Data Objects

4.1.1.1. External Data Objects:

 User defined inputs

 Project input files

 Mapping.xml

 javaml-2.dtd & javaml-2.xsd

 ClassName.xml(Output of the JavaML)

 Output files

 Log files

All the above files except from output files are required to run the system properly.

ClassName.xml and output files are constructed during the conversion operation and

they are not temporary files. We will keep them to compare the results of the output

with the initial sources. Functionalities and structures of those files are described below.

User defined inputs:

User must define source project folder path and destination project folder path from

GUI. These data are used to get all project files included in source project folder path

and generate output JSF project files in destination project folder path.

Project input files:

Project input files will be specified in run time. User will specify the input files for each

project in run time via user interface.

Mapping.xml

<MappingElements>

 <MapElement>

 <Object>

 <Applet> JButton </Applet>

 <JSF> h:Button </JSF>

 </Object>

Software Design Description for AJCON

Page 14 of 53

 <Properties>

 <Property type= “message”>

 <Applet> addActionListener </Applet>

 <JSF> action </JSF>

 </Property>

 <Property type= “message”>

 <Applet> setText </Applet>

 <JSF> value </JSF>

 </Property>

 <Property type= “message”>

 <Applet> repaint </Applet>

 <JSF> rerender </

 </Property>

 </Properties>

 </MapElement>

 <MapElement>

 <Object>

 <Applet> JCheckBox </Applet>

 <JSF> h:selectBooleanCheckbox </JSF>

 </Object>

 <Properties>

 <Property type=“message”>

 <Applet> addActionListener </Applet>

 <JSF> value </JSF>

 </Property>

 </Properties>

 </MapElement>

</MappingElements>

This mapping file is an example-mapping file. At initial step, we will not only consider

these two components stated in the example mapping file. We will try to convert other

components also. All the components that we will try to convert are:

Software Design Description for AJCON

Page 15 of 53

 JButton

 JCheckBox

 JTextField

 JTextArea

 JComboBox

 JLabel

 JRadioButton

 JList

javaml-2.dtd & javaml-2.xsd

javaml-2.dtd and javaml-2.xsd files are reference documents to grammar and lexer rules

of JavaML. For further investigations on their hierarchical structures, please see

References section for corresponding website link.

ClassName.xml

ClassName.xml is the output file of JavaML. ClassName should be the class name that

extends the Applet class. This xml file is automatically generated after JavaML’s run on

Java source code files of the input Applet project. It conforms to javaml-2.dtd and

javaml-2.xsd file structures. This file will be parsed with the help of Mapping.xml by

Translator component.

Output Files

Output files are JSF files that have been converted from input Applet project.

4.1.1.2. Internal Data Objects

Internal Data Objects for each component are shown in diagrams in section 5.

Software Design Description for AJCON

Page 16 of 53

4.1.3. Data Models

AJCON project does not use database. Therefore, ER Diagram for database modeling is

not drawn. For data modeling of the system, data flow diagram is supplied in section

4.1.2.

4.1.4. Data Dictionary

AJCON project does not use database. Therefore, ER Diagram for database modeling is

not drawn. For data modeling of the system, data flow diagrams drawn for components

are supplied in section 5.2.

5. System Architecture

5.1. Architectural Design

Main concern of AJCON is to convert an Applet project to JSF project. For this purpose

AJCON project composed of several components: Log Component, UI Component,

Translator Component, JavaML component, Applet Extractor Component.

Software Design Description for AJCON

Page 17 of 53

Those components are interacting with each others. Some of them provide some

interfaces to other ones, and some of them use the provided interface. Generally the

interfaces provided by the other components are the methods of the classes in it.

Above relations shows that Log component provides an interface to other components

and all the other components uses it. By the same way, it is shown that UI Component

uses all the interfaces provided in the system. All the existing interfaces and the

relations between the components are on the diagram.

5.2. Description of Components

Below there is the package diagram of the overall system. Each package/component will

be described in subsections.

Software Design Description for AJCON

Page 18 of 53

5.2.1. UI Component

5.2.1.1. Processing Narrative for UI Component

This is the component which interacts with user. Since our project does not require lots

of user interactions, this component is not complex structured. It has a simple interface

and simple purpose. By this component, user can manage projects to be converted with

add/remove/select/startConversion options.

At the beginning, “ApplicationManager” class which has the main function initiates the

system and shows the user UI main window. Then, when user clicks the “New Project”

button, “Project Window” will pop up. By selecting destination and source folder, user

Software Design Description for AJCON

Page 19 of 53

adds project to list of project to be converted in main window. User can manage the

main window by adding or removing projects with this method and start the conversion

of any project that he/she selects. After starting a conversion, user can watch the live

continuation of conversion process from main window and see logs.

5.2.1.2. Interface Description of UI Component

5.2.1.3. Processing Detail of UI Component

UI component consists of 5 different classes.

5.2.1.3.1. ApplicationManager Class

This class has the main function of the project. It initiates run of the project and sets

MainWindow.

Software Design Description for AJCON

Page 20 of 53

5.2.1.3.1.1. Attributes

 public static MainWindow mainWin: This instance variable is set by

Application Manager in main function of the project.

5.2.1.3.1.2. Methods

 public static void main (String[] args): This is the main function of the project.

When the project runs, this function is called automatically. In this function,

main window will be created and system will be initiated.

5.2.1.3.2. MainWindow Class

This is the window that the user can directly manage all conversion operations. This

class extends javax.swing.JFrame class and uses javax.swing components for GUI.

Software Design Description for AJCON

Page 21 of 53

5.2.1.3.2.1. Attributes

 private int[] selectedProjects: This keeps id numbers of the projects that user

selected.

 private static ArrayList<MainAction> mainActionList: List of main actions for

each project thread.

 private static ArrayList<LogWindow> logWindowList: Keeps list of log

windows that user wants to see.

Software Design Description for AJCON

Page 22 of 53

 private javax.swing.JSeperator: Seperator between top-level labels and

values.

 private javax.swing.JPanel panel: Contains javax.swing GUI components.

 private const javax.swing.JLabel labelProjectName: Constant header label, set

as “Project Name” at first.

 private const javax.swing.JLabel labelSourceFolder: Constant header label,

set as “Source Folder” at first.

 private const javax.swing.JLabel labelCreateDate: Constant header label, set

as “Create Date” at first.

 private const javax.swing.JLabel labelProgressBar: Constant header label, set

as “Progress” at first.

 private const javax.swing.JLabel labelSelected: Constant header label, set as

“Selected” at first.

 private javax.swing.JButton buttonNewProject: User can create a new project

by pressing this button.

 private javax.swing.JButton buttonRemoveProject: User can remove selected

project(s) from the list by pressing this button.

 private javax.swing.JButton buttonStartConversion: User can start

conversions of the selected project(s) by pressing this button.

 private javax.swing.JButton buttonViewLog: User can see log(s) of the

selected project(s) by pressing this button.

 private static ArrayList<javax.swing.JLabel> listProjectNames: This instance

variable keeps names of the projects in the main window.

 private static ArrayList<javax.swing.JLabel> listSourceFolders: This instance

variable keeps source folder paths of the projects in the main window.

 private static ArrayList<javax.swing.JLabel> listCreateDates This instance

variable keeps creation dates of the projects in the main window.:

 private static ArrayList<javax.swing.JProgressBar> listProgressBars: This

instance variable keeps progress bar info of the projects in the main window.

 private static ArrayList<javax.swing.JCheckBox> listCheckBoxes: This instance

variable keeps checbox’s status for each project in the main window.

Software Design Description for AJCON

Page 23 of 53

 private org.apache.log4j.Logger logger: This variable is used to log any kind of

information inside this class.

5.2.1.3.2.2. Methods

 public MainWindow(): Constructor of the MainWindow class.

 public void initComponents(): Initializes interface components.

 public ArrayList<javax.swing.JLabel> getProjectNames(): Returns list of

project names.

 public ArrayList<javax.swing.JLabel> getSourceFolders(): Returns list of

source folder paths of the projects.

 public ArrayList<javax.swing.JLabel> getCreateDates(): Returns list of creation

dates of the projects.

 public ArrayList<javax.swing.JProgressBar> getProgressBars(): Returns list of

progress bar info of the projects.

 public ArrayList<javax.swing.JCheckBox> getCheckBoxes(): Returns list of

check box’s statuses of the projects.

 public ArrayList<LogWindow> getLogWindows(): Returns list of log windows

that user wants to see.

 private void buttonNewProjectClickedAction (java.awt.event.ActionEvent evt,

MainWindow mw): When user clicks “New Project”, information related to

project taken from project window is used as parameter and this function is

called.

 private void buttonRemoveProjectClickedAction (java.awt.event.ActionEvent

evt): When user clicks “Remove Project”, this function is called.

 private void buttonStartConversionClickedAction (java.awt.event.ActionEvent

evt): When user clicks “Start Conversion”, this function is called.

 private void buttonViewLogClickedAction (java.awt.event.ActionEvent evt):

When user clicks, log window(s) open and shows log info to user.

Software Design Description for AJCON

Page 24 of 53

5.2.1.3.3. ProjectWindow Class

This is the class that lets user add a new project with a new window. This class extends

javax.swing.JFrame class and uses javax.swing components for GUI.

5.2.1.3.3.1. Attributes

 private javax.swing.JPanel panel: The panel that keeps objects in project

window together.

 private javax.swing.JButton buttonChooseSource: Button that is used for

choosing source folder.

 private javax.swing.JButton buttonChooseDestination: Button that is used for

choosing destination folder.

 private javax.swing.JButton buttonConfirmProject: Button that is used for

confirming project conversion.

 private javax.swing.JTextField textFieldProjectName: Text field object that is

used for entering project name .

Software Design Description for AJCON

Page 25 of 53

 private javax.swing.JTextField textFieldSourceDirectory: Text field object that

is used for entering source directory.

 private javax.swing.JTextFiled textFiledDestinationDirectory: Text field object

that is used for entering destination directory.

 private javax.swing.JLabel labelProjectName: Label of project name, that is

“Project Name”.

 private javax.swing.JLabel labelSourceDirectory: Label of source directory,

that is “Source Directory”.

 private javax.swing.JLabel destinationDirectory: Label of destination

directory, “Destination Directory”.

 private MainWindow superWindow: Reference for main window object

instance.

5.2.1.3.3.2. Methods

 public ProjectWindow (MainWindow mw): Constructor of ProjectWindow

class. Sets mw:MainWindow as its super class object.

 private void initComponents (): Initiates object’s project window

components.

 private void buttonChooseSourceClickedAction (java.awt.event.ActionEvent

evt): Event handler for clicking “Choose Source” button.

 private void buttonChooseDestinationClickedAction

(java.awt.event.ActionEvent evt): Event handler for clicking “Choose

Destination” button.

 private void buttonConfirmProjectClickedAction (java.awt.event.ActionEvent

evt): Event handler for clicking “Confirm Project” button.

 private void textFieldSourceDirectoryStateChangedAction

(java.awt.event.ActionEvent evt): Event handler for text field source

directory.

Software Design Description for AJCON

Page 26 of 53

5.2.1.3.4. LogWindow Class

This class shows log information that it takes from Logger object and shows it to user.

This class extends javax.swing.JFrame class and uses javax.swing components for GUI.

5.2.1.3.4.1. Attributes

 private javax.swing.JPanel panel: The panel that keeps objects in log window

together.

 private javax.swing.JTextArea logInformation: Text area field for log

information.

 private MainAction action: Reference for main action object instance.

 private String projectName: Shows name of the project that are being logged.

5.2.1.3.4.2. Methods

 public LogWindow (String pn, MainAction act): Constructor of LogWindow.

 private void initComponents(): Initiates log window components.

5.2.1.3.5. MainAction Class

When user clicks “Start Conversion”, one instance of this class is instantiated for every

project and it starts to run. This class also extends Thread and implements Serializable

because it uses a multi-threaded approach for every single project run. It lets user to

convert several projects at a time.

Software Design Description for AJCON

Page 27 of 53

5.2.1.3.5.1. Attributes

 private String sourcePath: Keeps project source path.

 private StringBuffer logBuffer: The StringBuffer object for logging

continuously.

 private int progress: Keeps percentage of the project. Between 0-100.

 private boolean logWindowOpened=false: Boolean value for log window. If

open, it is updated in real-time.

 private LogWindow logWindow=null: Reference for LogWindow object

instance.

 private MainWindow mainWindow: Reference for MainWindow object

instance.

 private org.apache.log4j.Logger logger: Singleton object reference for only

one Logger object instance.

5.2.1.3.5.2. Methods

 public MainAction (MainWindow mw, String sourcePath): Constructor of

MainAction class.

Software Design Description for AJCON

Page 28 of 53

 private void setLogAppender(): Initiates format of the logger and type of

buffer for project.

 public void checkUpdates(): Refreshes the screens.

 public void run(): Function that is needed to be called for thread’s start.

5.2.1.4. Dynamic Behavior of UI Component

5.2.2. AppletExtractor Component

5.2.2.1. Processing Narrative for AppletExtractor Component

AppletExtractor Component is responsible from finding java sources that extends

JApplet class. When the MainAction class is invoked from the user interface, MainAction

class constructs an ExtractionHandler in Applet Extractor Component. This component

searches the project folder into the deep, and looks all the files in the folders.

Component notes down the source files that extend JApplet.

Software Design Description for AJCON

Page 29 of 53

5.2.2.2. Interface Description of AppletExtractor Component

5.2.2.3. Processing Detail of AppletExtractor Component

AppletExtractor component has only one class: ExtractionHandler.

5.2.2.3.1. ExtractionHandler Class

5.2.2.3.1.1. Attributes

 private MainAction action: Reference to an instance of MainAction class.

Software Design Description for AJCON

Page 30 of 53

 private ArrayList<String> appletSourcePaths: When the class finds a source

pushes the file path to list.

 private org.apache.log4j.Logger logger: Singleton object reference for only

one Logger object instance.

5.2.2.3.1.2. Methods

 public ExtractionHandler (MainAction ma): Constructor of ExtractionHandler.

 public ArrayList<String> getAppletSourcePaths(): Getter method for field

appletSourcePaths.

 public void parseAndExtractApplet():Looks into to deeps of project folder to

find source files, which extends JApplet.

5.2.2.4. Dynamic Behavior of AppletExtractor Component

5.2.3. JavaML Component

5.2.3.1. Processing Narrative for JavaML Component

JavaML Component is responsible from lexical analysis and tokenizing the source files.

After the process of Applet Extractor Component finishes, MainAction class inititates a

JavaMLHandler object. JavaMLHandler object gathers the paths of the source files,

Software Design Description for AJCON

Page 31 of 53

which extends JApplet, from the ExtractionHandler object. After gathering those paths

runs Jikes over them.

5.2.3.2. Interface Description of JavaML Component

5.2.3.3. Processing Detail of JavaML Component

JavaML component consists of only one class: JavaMLHandler.

5.2.3.3.1. JavaMLHandler Class

Software Design Description for AJCON

Page 32 of 53

5.2.3.3.1.1. Attributes

 private ArrayList<String> appletSourcePaths: Gathered path information from

the ExtractionHandler object.

 private MainAction action: Reference to MainAction instance.

 private org.apache.log4j.Logger logger: Singleton object reference for only

one Logger object instance.

5.2.3.3.1.2. Methods

 public JavaMLHandler (ArrayList<String> appletSourcePaths, MainAction act):

Constructor for JavaMLHandler class.

 public String getEnvironmentVariables (): Gets the environment variables

defined on the system to look for JDK path.

 public void startParse(): Runs JavaML/Jikes over the files.

5.2.3.4. Dynamic Behavior of JavaML Component

Software Design Description for AJCON

Page 33 of 53

5.2.4. Translator Component

5.2.4.1. Processing Narrative for Translator Component

Translator component uses output of JavaML component – that is ClassName.xml,

related ClassInfo object instances and Mapping.xml file in order to generate output files.

In this design, we may use Java Reflection API instead ClassInfo objects in detailed

design. More information can be found at Section 8 6. Java Reflection API.

This component is going to be instantiated at MainAction class and be triggered from

there.

5.2.4.2. Interface Description of Translator Component

5.2.4.3. Processing Detail of Translator Component

Translator component consists of only one class: TranslationHandler.

Software Design Description for AJCON

Page 34 of 53

5.2.4.3.1. TranslationHandler Class

5.2.4.3.1.1. Attributes

 private ArrayList<ClassInfo> listClassInfo: Keeps ClassInfo object instances.

 private MainAction action: Reference for MainAction object instance.

 private ArrayList<String> appletSourcePaths: Keeps paths of java class files

which extends JApplet class.

 private org.apache.log4j.Logger logger: Singleton object reference for only

one Logger object instance.

5.2.4.3.1.2. Methods

 public TranslationHandler (ArrayList<String> appletSourcePaths, MainAction

act): Constructor for TranslationHandler class.

 public void composeMemoryStructure (): Generates ClassInfo objects in

memory.

 private void findEquivalentJSF (String filename): Uses Mapping.xml to

compare and generate output JSF tags.

 private void write2JSF (String filename): Output stream writer for output JSF

files.

 public void findEquivalences(): Interface for MainAction class. Calls

findEquivalentJSF and write2JSF.

Software Design Description for AJCON

Page 35 of 53

5.2.4.3.2. ClassInfo Class

5.2.4.3.2.1. Attributes

 private String sourcePath: Path of the source file which extends JApplet.

 private List<Object> methods: Method list of the source file which extends

JApplet.

 private List<Object> fields: Field list of the source file which extends JApplet.

 private List<Object> constructors: Defined constructors on the source file

which extends JApplet.

 private List<Object> interfaces: List of the interfaces that class implements.

 private String superClass: Name of the super class.

 private String type: Type of the class: Abstract…

Software Design Description for AJCON

Page 36 of 53

 private String visibility: Accessibility of the class: public, private

 private String packageName: Package of the class.

5.2.4.3.2.2. Methods

 public ClassInfo (String sourcePath): Constructor for the class ClassInfo. It

may be constructed with Java Reflection API in future.

 public void parseXML(): Parses the output of the JavaML.

 public String getSourcePath(): Getter method for the field “sourcePath”.

 public Object getMethods(): Getter method for the field “methods”.

 public Object getFields(): Getter method for the field “fields”.

 public Object getConstructors(): Getter method for the field “constructor”.

 public Object getInterfaces(): Getter method for the field “interfaces”.

 public String getSuperClass(): Getter method for the field “superClass”.

 public String getType(): Getter method for the field “type”.

 public String getVisibility(): Getter method for the field “visibility”.

 public String getPackageName(): Getter method for the field “packageName”.

5.2.4.4. Dynamic Behavior of Translator Component

Software Design Description for AJCON

Page 37 of 53

5.2.5. Log Component

5.2.5.1. Processing Narrative for Log Component

Log component is responsible from only logging. There will be only one logger while the

system is running. Logger Component will be accessible from all the other components

to log appropriate information. Logger will be configured to log different places for each

project. It will log into a file named projectName.log and also, it will produce logs on the

screen.

Apache log4j library will be used while logging.

5.2.5.2. Interface Description of Log Component

Log component is not a complex component and there is no complex data flow over the

component. Data flow of the Log component described in other components data flow

diagrams.

5.2.5.3. Processing Detail of Log Component

Log component consists of only one class: LogGenerator.

5.2.5.3.1. LogGenerator Class

5.2.5.3.1.1. Attributes

 private static org.apache.log4j.Logger logger: Singleton logger object.

5.2.5.3.1.2. Methods

 public org.apache.log4j.Logger getSingletonLogger(): Getter method for the

“logger” field.

Software Design Description for AJCON

Page 38 of 53

5.2.5.4. Dynamic Behavior of Log Component

All the other components send log information after all the operations by done the

component. So there is no need to show the sequence of the flow in this section. Any

component can log any time.

6. User Interface Design

6.1. Overview of User Interface

In this project, there will be no complex user interfaces. This tool will be a single

developer tool; in fact there will be no user interface requirements. Running it on

command line will be enough.

Our designed user interfaces provide some facilities to users. When the user starts to

use the system, main window stated in part 6.2 welcomes the user.

Capabilities of the main window are to:

 Operate over the existing projects

o Remove an existing project

o Select an existing project

o Deselect an existing project

o Start conversion of selected projects

o View log information of selected projects

 Add new project

All those operations mentioned above are the directly user related operations. Actions

of the user will be converted to system functions related to that action.

This project does not contain a main window only. According to user actions, some

other pre-defined user interfaces will appear on the window. When the main window is

opened and the user wants to add a new project, another user interface will appear

which is stated in 6.2.

Software Design Description for AJCON

Page 39 of 53

Capabilities of the “Project” window are to:

 Select a project folder

 Select a destination folder

 Confirm project details

Another window that can be seen via main window is log information window.

Capabilities of the “Log” window are;

 Display real time information about the project being converted.

All the information stated above is directly from the users perspective. In addition to

those, there are some other internal operations that invoke the user interface.

According to the conversion process user interface shows the percentage of the

conversion.

6.2. Interface Screens

Main Window

Software Design Description for AJCON

Page 40 of 53

Project Window

Log Window

6.3. Screen Objects and Actions

This part includes objects on the screen interfaces and the actions linked to that objects.

Software Design Description for AJCON

Page 41 of 53

6.3.1 Screen Objects

For the main window:

 Panel: Panel is to group other objects in the window. There will be only one

panel to group objects.

 Buttons

o buttonNewProject: This button is to add a new project to convert.

o buttonRemoveProject: This button is to remove an existing project.

o buttonStartConversion: This button is to start conversion operation

of selected projects.

o buttonViewLog: This button is to view log information.

There are actions linked to those buttons. All the actions are stated below in section

6.3.2.

 Labels

o labelProjectName: Label for the project name.

o labelSourceFolder: Label for the source project folder.

o labelCreateDate: Label for the creation date of the project.

o labelProgressBar: Header label for the progress bars.

o labelSelected: Header labels for the checkboxes defined below.

Those labels are the headers. According to the existing projects, there will be some

other labels related with each project under above header labels.

 Progress Bars: Progress bars are to show the status of the conversion

operation.

 Check Boxes: Checkboxes are to select or deselect a project to operate on it.

 Separator: Separates the headers from the project information.

Progress bars and Check boxes can be more than one according to existing projects. Also

there are some actions linked to those checkboxes.

For the project window:

Software Design Description for AJCON

Page 42 of 53

 Panel: Panel is to group other operations on the window.

 Buttons

o buttonChooseSource: This button is to opens a standard dialog

window to select the source folder.

o buttonChooseDestination: This button is to opens a standard dialog

window to select the destination folder.

o buttonConfirmProject: This button is to confirm project details stated.

 Text Fields

o textFieldProjectName: This text field is for to specify project name. It

is a disabled field and automatically generated with the selected

source directory.

o textFieldSourceDirectory: This text field is to specify source directory.

It is an enabled component and also automatically generated with the

selection of source directory.

o textFieldDestinationDirectory: This text field is to specify destination

directory. It is an enabled component and also automatically

generated with the selection of destination directory.

There are actions defined on the objects. Those actions are described in section 6.3.2.

 Labels

o labelProjectName: Label for the textFieldProjectName .

o labelSourceDirectory: Label for the textFieldSourceDirectory.

o labelDestinationDirectory: Label for the textFieldDestinationDirectory.

For the log :

 Panel: Panel is to group another objects together.

 TextArea: TextArea component is to show log information about the process.

6.3.2 Screen Actions and Relations

Defined actions for the interfaces stated below.

For the “Main” window:

Software Design Description for AJCON

Page 43 of 53

 Actions of Buttons

o buttonNewProjectClickedAction: Action performed when the

buttonNewProject button clicked on the main window. Opens

“Project” window stated in section 6.2.

o buttonRemoveProjectClickedAction: Action performed when the

buttonRemoveProject button clicked on the main window. Removes

the selected project from the list of existing projects.

o buttonStartConversionClickedAction: Action performed when the

buttonStartConversion button clicked on the main window. Starts the

main operation conversion of the selected projects.

o buttonViewLogClickedAction: Action performed when the

buttonViewLog button clicked. Opens “log” window, which is stated

in section 6.2.

o checkboxStateChangedAction: Selects or deselects a project from the

existing projects.

For the “Project” Window:

 Actions of Buttons

o buttonChooseSourceClickedAction: Action performed when the

buttonChooseSource button clicked in the “Project” window. Action

opens a dialog window that contains the system directories to choose

source folder.

o buttonChooseDestinationClickedAction: Action performed when the

buttonChooseDestination button clicked in the “Project” widow.

Action opens a dialog window which contains the system directories

to choose destination folder.

o buttonConfirmProjectClickedAction: Action performed when the

buttonConfirmProject button clicked in the “Project” window. Action

closes the current “Project Window” and adds the new project to list

of existing projects in the main window.

Software Design Description for AJCON

Page 44 of 53

o textFieldSourceDirectoryStateChangedAction: Action performed

when the state of the textFieldSourceDirectory changed. State of the

textFieldSourceDirectory object changes with if any user enters a text.

With the change of the state of textFieldSourceDirectory

textFieldProjectName field will be automatically generated.

7. Detailed Design

Necessary details of each design entity/component (classifications, definitions,

responsibilities, constraints, user-interactions, interfaces, data flows, interconnections

etc.) for Initial Design Report level were given in above sections. More detailed

explanations will be made in Detailed Design Report. These detailed information

contains exceptions, constants, more detailed data-design, lower-level components,

detailed-algorithms etc.

It should be noted that ClassInfo class ,which will be used for holding class general

structure, is written roughly. In Detailed Design Report, data types for Object’s will be

determined, maybe by using Java Reflection API (see section 8.6).

8. Libraries and Tools

8.1. JavaML [3]

The Java Markup Language (JavaML) [4] builds a bridge between Java and XML. It

generates a self-describing representation of Java source code. Its nested representation

in XML-based syntax directly reflects the structure of software artifact. It has many

advantages because since XML is a text-based representation, it still keeps the classical

source representation. XML files are also very easy to parse with external Java parsers (

Apache Xerxes DOM, SAX etc.)

JavaML is defined by document type definition (DTD) in [4]. In JavaML, concepts such as

methods, superclasses, message sends and literal numbers are all directly represented in

the elements and attributes of the document contents. The representation reflects the

structure of the programming language in the nesting of the elements.

Software Design Description for AJCON

Page 45 of 53

In our project, we will use JavaML in order to parse Java source code and generate

corresponding XML file. It will enable us to see hierarchical structure of Java classes and

create mapping file.

In order to understand the concept, lets look at the sample Java code.

import java.applet.*; import java.awt.*;

public class FirstApplet extends Applet

{

 public void paint(Graphics g)

 {

 g.drawString(“HelloWorld!”,25,50);

 }

}

</block> </method>

</class> </java-source-program>

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE java-source-program SYSTEM "java-ml.dtd">

<java-source-program name="FirstApplet.java">

 <import module="java.applet.*"/>

 <import module="java.awt.*"/>

 <class name="FirstApplet" visibility="public">

 <superclass class="Applet"/>

 <method name="paint" visibility="public" id="meth-15">

 <type name="void" primitive="true"/>

 <formal-arguments>

 <formal-argument name="g" id="frmarg-13">

 <type name="Graphics"/>

 </formal-argument>

 </formal-arguments>

 <block>

 <send message="drawString">

 <target>

 <var-ref name="g" idref="frmarg-13"/>

 </target>

 <arguments>

Software Design Description for AJCON

Page 46 of 53

 <literal-string value="HelloWorld!"/>

 <literal-number kind="integer" value="25"/>

 <literal-number kind="integer" value="50"/>

 </arguments>

 </send>

 </block>

 </method>

 </class>

</java-source-program>

Hierarchical structure of the corresponding XML file can be seen in the figures below:

Software Design Description for AJCON

Page 47 of 53

Software Design Description for AJCON

Page 48 of 53

8.2. Log4J[4]

In order to decrease the size of the code in the project, we have decided to use Apache

Log4J[4] for Logger component. With log4j it is possible to enable logging at runtime

without modifying the application binary. The log4j package is designed so that these

statements can remain in shipped code without incurring a heavy performance cost.

Logging behavior can be controlled by editing a configuration file, without touching the

application binary.

Logging equips the developer with detailed context for application failures. One of the

distinctive features of log4j is the notion of inheritance in loggers. Using a logger

Software Design Description for AJCON

Page 49 of 53

hierarchy it is possible to control which log statements are output at arbitrarily fine

granularity but also great ease. This helps to reduce the volume of logged output and

the cost of logging.

The target of the log output can be a file, an OutputStream, a java.io.Writer, a remote

log4j server, a remote Unix Syslog daemon, or many other output targets.

8.3. Jikes[5]

Jikes is a compiler that translates Java source files into the byte coded instruction set

and binary format. We know that java is also a Java compiler that Sun provides free with

its SDK. However, Jikes has some advantages that make it a valuable contribution to the

Java community. It is open source and strictly Java compatible. Its performance is high

and also its dependency analysis concept provides two very useful features: incremental

builds and makefile generation. In order to use JavaML, it is a must to use Jikes compiler

because JavaML library is integrated to Jikes compiler and comes with it.

8.4. Apache Tomcat[6]

Apache Tomcat is an open source servlet container developed by the Apache Software

Foundation. Tomcat implements the Java Servlet and the JavaServer Pages (JSP)

specifications from Sun Microsystems, and provides a pure java HTTP web server

environment for Java code to run. We will use Apache Tomcat in order to test the

output of our conversion operation. It is needed for testing JSF outputs to ensure their

correctness.

8.5. Richfaces[7]

RichFaces is an open source Ajax enabled component library for JavaServer Faces (JSF),

hosted by JBoss.org. It allows easy integration of Ajax capabilities into enterprise

application development. We will use Richfaces components for mapping Applet

components to JSF ones.

http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Ajax_%28programming%29

Software Design Description for AJCON

Page 50 of 53

8. 6 Java Reflection API[8]

Reflection is commonly used by programs which require the ability to examine or modify

the runtime behavior of applications running in the Java virtual machine. This is a

relatively advanced feature and should be used only by developers who have a strong

grasp of the fundamentals of the language. With that caveat in mind, reflection is a

powerful technique and can enable applications to perform operations which would

otherwise be impossible.

 Extensibility Features: An application may make use of external, user-defined

classes by creating instances of extensibility objects using their fully-qualified

names.

 Class Browsers and Visual Development Environments: A class browser

needs to be able to enumerate the members of classes. Visual development

environments can benefit from making use of type information available in

reflection to aid the developer in writing correct code.

 Debuggers and Test Tools: Debuggers need to be able to examine private

members on classes. Test harnesses can make use of reflection to

systematically call a discoverable set APIs defined on a class, to insure a high

level of code coverage in a test suite.

Drawbacks of Reflection

 Performance Overhead:

 Security Restrictions:

 Exposure of Internals

9. Change LOG

There are some changes so far with respect to Software Requirement Specifications.

SDD version 1.0 (this document) SRS version 1.0

Software Design Description for AJCON

Page 51 of 53

User can understand that conversion is
completed by looking at the progress bar’s
%100 value

Reference sections are 2.2 “Product
Functions” and 3.2.1.6 for
conversionCompleted() product function

Our system will run only on Microsoft
Windows platform (Vista or later)

Reference sections are 2.3 “Constraints,
Assumptions and Dependencies” and
3.3.4.2.1 “Adaptability” for working platforms
(OS)

Parser and Lexer component are combined
into JavaML component

Reference sections are 2.1 “Product
Perspective”, 2.2. “Product Functions”, 3.2.3.
“Lexer Component Functions”, 3.2.4. “Parser
Component Functions” related to Lexer and
Parser component

10. Time Planning (Gantt Chart)

Software Design Description for AJCON

Page 52 of 53

Software Design Description for AJCON

Page 53 of 53

11. Conclusion

In this document, design considerations for project AJCON were dealt with. How our
system work, how our system was decomposed, how these components work, their
design architecture and connections, data design and flows were stated both by UML
diagrams and by explanations. Moreover, user interactions were determined through
user interfaces design. Libraries and tools which will be used during system
development and operation were presented.

This document is an initial document and will be reference for Detailed Design
Document. All detailed information hasn’t been taken, but the general design of the
system has been outlined. More details, algorithms and improvements will be given in
Detailed Design Document.

