Detailed Design Report
For

Online National Election Voting

Group: iTeam4

e Emilbek Joldoshev 1592476
e Hassan Salahe Matar 1591114
e Mehmet Baris Ozkan 1560747
e Hiseyin Lutin 1560408

27/02/2011

1.

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

3.1.

3.2

4.1.

4.2,

4.3.

INTRODUCTION . cictitsusessssessssassssassssassssassnsassassssnssssnsssssssssssssnnssssnssssnssnsassnsassnsassnsassnssssassssnssssnsssnsssnnsansnsss 5

Problem DefinitioNccuveeeeceeiieeeiiieenmceiseerireenmesssssestreennnsessseerrrannmssssssesssannnssssssesssannnnsssssessesnnnmssssssesssannnnsssssesssnnn 5
P U DOSE ceeeeeeeeeeeeeeeeeeeeseeeseessesssnsnns 5
SCOPIE turirenennireneinerssenetrssssisssssstsssssetsssssetsssssessasssessasssssssssssssassssssssessssnne 6
OVEIVIBW . terererrenercrranescesancsessanesersssesesassesesassesessssesesansssesansssesansssesansssesansssesansssesansssesansssssansssesansssssanessssanessssanesosse 6
Definitions and ADBreViatioNs......uueeeceeireerireenmceeiieertreenmmeeiseerrrennmsessseerrrennnnsssssessrsnnnmssssssesssannmssssseesssannnnnssssesssans 6
REFEIENCES .eeverereenerereenerereenesersenesersrsesersssesersssesersssesersnsssersnsssersssssesassssersnsssesansssessnsssesansesesansssesanssseransssssansssssansene 7
SYSTEM OVERVIEWccicictiiseissssassssmessssesasssssnssassss sassssasssssssnssessnssassssasssssssnssessnssssnnsasans s snnsasannssannsasans 8
DESIGN CONSIDERATIONSoiiicuiissnsssssimsessssasssssnssssessssasssssssssssssssasssssssisessssssssnssnsisnssssssssnnnnstsasssssansnnnnns 12
Design Assumptions, Dependencies and CONSIraintscccciiieemmniiineiiieeinnsiiiseiiiseemsssiiseeiissessssiseesisssssssssssessses 12
Design Goals aNd GUIAEIINESccvrreeemeenrieerrreenmeeerieertrennmeessseesrrennnsessssessrsnnnsssssssesssannssssssssssssnnsssssssesssnnnnssssssessennn 12
DATA DESIGN ittcetiessnetsassnstsassasssssssanssssssanssssssansssassasssssssasssssssanssssssanssssssansst sassnsss sassnsss sassnass sassnans sananans 14
ER DESIZN 1creenrecrennnncrennncrassscsasssrssssssssssssssssssssssssssssasssssssssssssssssssssssssssasssssssssssssssssssssssssssassssssssssssssssssssassssssnne 14
DAt SCREIMAS .. rieeererrenerertencsereenesersenesereasesersasesersasesersasesersssssersssssersasssersaseserssssserensessrsssessssnsesesansssersnsssersnseseranne 15
4.2.1. Lo Y - 1«1 =TT 15
4.2.2. [T 4 ot A - 1«1 (=S 15
4.2.3. LI 112 T =1« 1= 16
4.2.4. AV 1L T= 2 1= <] (PSP PTR 16
4.2.5. LY 1 =T g - 1«1 =S 17
4.2.6. 1= ot oY RN - 1 (=S 17
4.2.7. ElECHIONTYPE TADIE..... .o s s nansnnssnnnnnssnnnnnnnnnnne 18
4.2.8. BallOtBOX TADIEuuuuuueiiiiiiiiiiiiiiii bbb bbb s s s s s s s s s s s s s ssssssssssssssssssssssssssssssssnsssnnnnnnn 18
4.2.9. L0 LYY -1 <] S 19
4.2.10. U E=T g Y T - 1« LTSRN 19
4.2.11. POlItICAIPArTY TAbI@ueeeeiii s ansnnnnnnnnnnnnnnnnnne 19
4.2.12. (0 1o [e F Y (=T I] [20
4.2.13. CandidateTyPe TADIEt e e e e s s et e e e e e e s se e e abaeeaaesaesessaneeaaenesannsns 20
4.2.14. (0] | =T ot =T LYo 1 T 1= < 20
4.2.15. (01T T=T (oY T - |] (= 21
4.2.16. Y 4T 1=« 1 IS 21

[0 121 = T 0 1Tt 4 4 - T 22

4.3.1. DAt ClasSES .uuuuisiss 22
4.3.2. USEr CONErollEr ClasSes .iiiiiiiiiiisiiiiiiissisisisissnns 25
4.3.3. Data CoNtroller CIasSescciiiiiiiiiiisssnns 27
5. SYSTEM ARCHITECTURE....isctititinsensnnsssssisnsssssnsassasssmssssssssssssssssssasssssssssssssssssnssnsssssssssssssasnsnsanesn 3 2
5.1. ArChIiteCTUral DESIZN cuuuiiciiiiieeiniiiieiiiienmnniiiineiiieesnsiiiseeiisessssiiseeiissssssssisserisssssssssisesstssssssssissessssssssssssssssssssssssssses 32
5.2. Description of Componentsm .. 34
5.2.1. Graphical USEr INTEITACEuuiiiiiiiiiiie ettt e s s et e e e e s s e et e e e e e e s sessasbaeeeeessessnsrennaes 35
5.2.1.1. Processing Narrative fOr GUIuuuiiieiiiiieiiiiieiec e ceiireeeee s e secinreeeseessessssbasesesssesesnsssssasssesessssssneeesesesnnns 35
5.2.1.2. GUl Interface Description....
5.2.1.3. GUIProcessing DEtal...........cccouvereiiiiieiiiiiieee i ettt s secireeee e s s sessnraeeseessesssrarasesesesesssssesasssesessssssnasesesesnns
5.2.1.4. Dynamic Behavior Of GUIcccoi ittt secrtte e s s cree e e e e s s e s be e e e e e s se s asbaeeeeessessnssanenesssssensses
5.2.2. [DE | & B o] - -7 PO PUUP P TUUOTPTRRPPPNt
5.2.2.1. Processing Narrative for Data StOrageccccuuiiiiiiiiiciiiiiei ettt e s s e s bae e e e s s e s abaaeeeeeeesennes
5.2.2.2. Data Storage INterface DESCriPLIONc.cccviiieiiii ittt s e sste e s s aaee s s baee s s sveessensaeesssenessnns
5.2.2.3. Data Storage Processing Detailcooiiiiiiiiiiiiii e e s s e s e e e e s e s ane
5.2.2.4. Dynamic Behavior 0f Data STOTAZEccueviieieiiiiireieeiiciiireeeeeeesecinreeereeesessssraseeesesesesssssssasssesessssssnasesssesnnns
5.2.3. ServerAdministrator(ServerAdmin)...........coo i ciii et e ectee e e e e e reee e e st e e e e be e e e ree e e s bteeeanreeeeenneaeas
5.2.3.1. Processing Narrative for ServerAdministrator
5.2.3.2. ServerAdministrator Interface DeSCription..........ccccoiiciiiiiiiii e e s s ae e e e e e s aaes
5.2.3.3. ServerAdministrator Processing Detailccccvveriiiieiiiiiiiieeiiecireeere e sessrerere s e sessraeeeesesesenraseaseesesennnns
5.2.3.4. Dynamic Behavior of SErver AAMINoo it e s ccre e e e e s s e s bae e e e e s sesesasaeeeeeesesennes
5.2.4. AURENTICAION ..ottt e s ser e s e e s ar e s e e ssane s reesannesareessnnesaresssnnesareessnnesareensnnenas
5.2.4.1. Processing Narrative for AUTNENTICAtIONcccevvviiiiiiiiiiieie et re s seerraeeeeeese s nrseeeeeesesennnns
5.2.4.2. Authentication Interface DeSCriplioncocuiiiiiiiiiicii e e s s e ae e e e e e e e seanes
5.2.4.3. Authentication Processing Detailcccccceeereiieriieiiiiiiiiiiieieeeceriieeere e e sersrraeeeeeesessssssssesesesesssssssssesssesnnns
5.2.4.4. Dynamic Behavior AUthenticationooo i e e s s e e ae e e e e e s e s aaes
5.2.5. Back End Applications..........ccccccoevunrernnennn.

5.2.5.1. Processing Narrative for Back End Applications

5.2.5.2. Back End Applications Interface DeSCriptioNcoeeciiiiieiriiriciie e re st e s e e s ree e s reneeeans
5.2.5.3. Back End Applications Processing Detail............ccccoeiiiiiiiiii it e e e e
5.2.5.4. Dynamic Behavior of Back End Application

5.2.6. DAata RELIIEVAL........ciiieiiiiiereeeiieieceiier e seeeeesseeeesstereseseee s s et e esastesesesneaessasssasssssesesssnsesessssessssssenesssnsenessssnass
5.2.6.1. Processing Narrative for Data Retri@Val..........c.cccoociieieciiiiiciec et eee e st e e e s e e s rene e
5.2.6.2. Data Retrieval Interface DeSCriPtioN........ccooo ittt ee e s s e s bae e e e s se s baeeeaeeseseanns
5.2.6.3. Data Retrieval Processing Detailcccuviireieiiiiie ettt s e et e e s s e e e
5.2.6.4. Dynamic Behavior of Data Retri@Valc...uueiiiiiiiiiciiieee ettt e e s sar e e e s s e s ae e e e e e s e s anns

5.3. DeSiZN RAtIONAIE cuveriiiiisissnnnnniiiiisissssnnnnniiiesssssssnsnniiiessssssssssnsiiessssssssssnsssessssssssssnsssesssssssssnnsssessssssssannsssesssssnsannss 43

6.1. OVErVIEW Of USEr INTEITACE .ieeeerereenerereenerereenerereeneseressesersnsesersssesersssesessssesessssesessssesesassssesassssesansssesansssesansssesanssse 44

6.2. SCrEEN IMAZES teurireritrerirneiirerirnsiineiirneiiseisrseiissssisstissssessstsssstsssesssstssssrsssissssssssssssssssssssssrsssssssssassssnssiassssnsssssssranses 44
6.2.1. oY1 T PSP UPPT 44
6.2.2. USEI REGISTIAtION.....cociiiiniiiiei ettt ettt e e e e e st e s e s s se e rer et e e e sassnsareaasesesessnnnenasesssassnnsenases 45
6.2.3. LOZIN FOI VOTEuveiiiiiiiiicciieie et ettt e s st e e s s e s et e e e e e e s se s ba b e e e e e e s seasastaaeaeessessssbaeaaaessssensssneneessssenssstennses 46
6.2.4. LYo 11 1T S TSP UUPPRPPPN: 46

6.3. Screen ODBJEcts aNd ACHIONS ciiiviiiciiiiieiiieenniiiineiiieeminiiiseeiiseesmseiimetitssssssiiseeiisssssssisseeitssssssssssesstsssssssssssessssssanes 47

7. DETAILED DESIGN.ccoccrsturerseerssmssnsssnssnsssasssasssasesasssansne 48

7.1. 1Y LoTe [I o T (& T U OOT R PORTTON 49

7.2. CONLIOIIEr PACKAEZE eeeeeeeerrreerrreenneessseertreannnesssseesrrannnssssssessssnnnsssssssssssannnssssssessssnnnnsssssessssnnnnssssssssssnnnnnnssssssssnnnnnes 51
7.2.1. USEE SUD-PACKAGEcceiiiiiiiiieiet ettt et e e e e st e e e e e s se et e e e e e e s se s s baeeeeeesesesbateaaessesenssssenaaesssenssssennees 51
7.2.2. Database SUD-PACKAZEuuuieiiieriieeer ettt e sreee e e e e ses s bareeeeesesesbaseaaeesesesssssanasesssessnnsanasesssessnnsannnns 52

8. LIBRARIES AND TOOLS....coiictiiimtieinsniasesssesisssisssisssssssssssssssssssssssssssssssasssssssssssnsssnssssns snns nansnansssnssnns 54

9. TIME PLANNING (GANTT CHART) ucccusesursusersmsessmsassussssmssssassssnssnsassmsassmsassmsasssssssssssssssssssssnassssassnsassns 55

9.1. TErML GaANt Chart...ccccceceeeeeeeennmnnnnnnmmmmimmmmssmsmsssssssssssssssssssssssssssss s ss 55

9.2. Term2 Gantt Chartccoiiieeiiiiiciiiieeiiiieeriiecimnesssestteesmnssssseestsasmmssssssesssssnmnsssssesstssnmnssssssssssanmnnsssssessannnnnnsssnns 56

10. CONCLUSION .ioiiiisersmsssmsessssssmsessssssssassssssssassssssssasssssassassssssssasssssassassssssssasssssassas sessnssasssnansassessussassannans 57

This document describes the initial design strategies and structural properties of the Online
National Election Voting System which will be developed by iTeam4. It explains the data and
interface designs of the project with system architecture in order to help the developers for
better design.

We are living in a democratic country and voting is one of the fundamental duties of the
public. In our country, manual voting system has been deployed for many years. However,
manual voting process has caused some difficulties for voting process and also it has some
disadvantages for the public. We can list some of these problems as follows. [1]

e Especially there have been cases of threatening in Eastern part of Turkey at polling
stations and people are faced with problems during voting.
e Sometimes people may not be in village/county registration and because of that
reason they don’t fulfill their voting duties.
e Lots of time and problems are occurring on vote counting process since this activity is
done manually.
e Due to manual voting process there is lots of paper waste during election times.
e Voter usually doesn’t know too much detail about the candidates in their election
region.
With the growth and expansion in technology new ways were sought to handle the electoral
process such as electronic voting. Electronic voting is the process of use of computers or
other electronic devices to cast votes in an election.

So in order to overcome those problems there is a need for a contemporary electronic voting
system in addition to manual voting. By design of such a system people can use their votes in
any selection field condition to be registered to the system before. Also by using the system
voters can learn details about the candidates and they will be interacting with each other
before the Election Day. This system will also facilitate the vote counting processes and
produce more accurate results and within a short time thanks to the computer technology.
Because of these reasons such an electronic voting system contributes to the development of
the country’s democracy too much.

The purpose of the document is to make the data design and system architecture of the
Online National Election Voting System easy to comprehend. It also serves the purpose of
making the functionality clear to system designers.

1.3.Scope

This initial design document applies to the initial version (release 1.0) of the “Online National
Election Voting System” software package. It describes the database tables, entity relations
between objects and architectural structure of the system as noted in SRS document. The
main aim of the system is to provide a set of protocols that allow voters to cast ballots while a
group of authorities collect votes and output final results.

1.4. Overview

The remainder of this document identifies the system overview, design considerations, data
design with class and table structures, system architecture with components and user
interface designs. Apart from these main parts, it also states the planning strategies of the
project with Gantt diagrams and describes the tools that will be used during implementation.

1.5. Definitions and Abbreviations

The following table(Table 1) is a list of terms, acronyms and abbreviations used by the Online
National Election Voting System software package and related documentation.

ONEV Online National Election Voting
EC Election Candidate

ECA Election Commission Authority
ESS Election Station Supervisor
VIN Voter Identity Number

DB Database

TCK TC Kimlik No

VIC Voter Identity Card

YSK Yiiksek Secim Kurulu

Table 1: A table of abbreviations, terms and acronyms.

For the simplicity of documentation throughout the paper we have used masculinity for all
genders.

1.6. References

[1] http://www.yazilimakademisi.org/2011/detailproject.php?id=25

[2] SRS report for ONEVS, iTeam4, 2010, www.ceng.metu.edu.tr/~e1591114/SRS

[3] http://www.w3schools.com/html/htm| forms.asp

[4] http://experiencezen.com/wp-content/uploads/2007/04/adaptive-path-ajax-a-new-
approach-to-web-applicationsl.pdf

[5] http://www.redbooks.ibm.com/redbooks/pdfs/sg246316.pdf

[6]Aneesha Bakharia, (2001), Java Servlet Pages, Prima Tech.

[7]Simon Bernett, Steve McRobb, Ray Farmer, (1996), Object Oriented System Analysis and
Design Using UML

http://www.yazilimakademisi.org/2011/detailproject.php?id=25
http://www.ceng.metu.edu.tr/~e1591114/SRS
http://www.w3schools.com/html/html_forms.asp
http://experiencezen.com/wp-content/uploads/2007/04/adaptive-path-ajax-a-new-%20approach-to-web-applications1.pdf
http://experiencezen.com/wp-content/uploads/2007/04/adaptive-path-ajax-a-new-%20approach-to-web-applications1.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246316.pdf

There are different types of electronic voting systems such as Punch Card Voting System,
Telephone Voting and Online Voting which are being used globally at the current period. Due
to the impact of the internet the system will be based on online voting type.

Online voting is a form of voting in which the individuals are able to cast their votes through a
web interface. Through the use of online voting, the voter navigates to the designated
election site using a web browser on an ordinary PC. The voter is then permitted to select
their chosen candidate and then cast the votes which would then be sent to the election
server for processing. There three main types of online voting as stated above:

Kiosk Internet Voting: Voting from computers in kiosks set up by voting authority in locations
such as post offices and shopping malls.

Poll Site Internet Voting: Voting from designated polling sites to cast their votes by using web
interface.

Remote Internet Voting: Voting from any from any location through the use of a computer
connected to the internet. Remote voting is typically carried out at the voter’s home or work
place.

Due to political conditions of our country the ONEV system will be designed as two main parts
namely Normal Interactive Mode and Election Mode and the voting process will be executed
only at polling stations.

(Normal-Mode)

Voter
Normal
Mode Election
Interface Station $9
Supervisor
Interface
i B Election
Election Interctive Database
Candidate Mode
Mode
Interface
ﬂ Voter
Election Election Mode)
Mode
Election Interface
Commission
Authority
Interface
Online National Election Voting System

Figure 1: Block diagram showing interaction between users and
the system

As shown in the figure 1 above, Normal Interactive mode will be used by Voters, ECs, and
ECAs for the pre-election and ordinary activities. For every stakeholder there will be a web
interface that he can use the system functionalities that are described in the SRS report.

In Normal Interactive Mode,

Voters will be able to register to system, see the details of the ECs, ask questions to ECs about
their election campaigns and view the past years’ election results, as shown in figure 2 below.

\VoterRegistration

ViewECInformation

|
/\ Ask ToCandidate
\/oter

ViewElectionResult

Figure 2: Use Case Diagram for Voter interactions with the
system functions

ECs will be able to update their accounts, edit their CVs, add promises about their election
campaigns and answer the questions from the voters. The summary of the their interaction

with the system can be shown in the figure 3 below.

Add/EditPromises
Read/AnswerQuestions

Figure 3: Use Case Diagram for EC interactions with the system
functions

ECA s will be able to approve the applications from the voters, update current voters and open
candidate account as summarized in the figure 4 below.

ApproveApplicant

OpenCandidate Account

Update Voters

Figure 4: Use Case Diagram for ECA interactions with the system
functions

In Election Mode,

The main users of the system are ESSs and Voters. Voters will cast their votes at polling stations
with their user id’s and passwords. By using the Election Mode, the ESSs will be able to open the
system, enter the offline votes to the system and generate hash password-as shown in figure 5-
that will be used by voters during the voting process [2].

OpenSystem

EnterOfflineVVotes

Mark GeneratePasssword

Figure 5: Use Case Diagram for ESS interacting with the system
functions

Such a system will provide more contemporary election activities not only for voters but also
for election candidates. It will provide the voters to cast their vote from any polling station in
case he is not in his election region. Also it provides candidates to conduct their election
campaigns through web environment and describe themselves to the voters more clearly.

In Turkey, people cast their votes nearly in 170,000 ballots from 81 different cities. Due to this
fact the system must work on those ballots at the same time. Since the system divided into
two parts, time constraints are different for these parts. In Normal Interactive Mode, the
system is expected to serve up to 50000 voters instantly and each voter may be active for a
long time. Similarly in Election Mode, the system is expected to serve a maximum of up to
50000 voters however each voter may be active for at 5 minutes for voting operation.

Since the ONEV is a safety critical system, security and safety constraints are the main issues
of the system. The system should provide means for protecting and securing recounts of
ballots cast in election. By using SSL technologies the data transaction between client and
server will be encrypted and all the passwords will be stored in database in an encrypted
form. A random word will be generated by the system to prevent attacks and the system will
ask the user to enter it correctly for multiple trying.

For performance constraints the system will response in a reasonable short time. The voter
should be able to login and should be able to get response in 2-3 seconds. In Election Mode,
the system will handle about 2000 transactions each second and it will be working at 100%
peak efficiency during voting process.

Apart from these constraints the system should satisfy the some assumptions and
dependencies such as a working internet connection, a web server Java installed on the
machine with Java’s cryptographic packages. Also the election server will run on a http server
that JSP is enabled.

Since our system is a safety critical system, in design of system architecture and database we
have to take security principles into account. Since the system will work on web services, it
must prevent all attacks from the outside and only authorized people must access the
database. It must prevent the manipulation of the votes from unauthorized people.

Also another major principle that the system must provide is reliability. People must rely on
the system and they must use the system in confidence. The system must not keep
information about which voter cast to which party during execution. The main function of the
system must be correct and fast calculation of the votes and results.

For interface designs we have to follow KISS principle. Because for voting operation, every
voter has different technological and educational background so the interfaces must be clear
to every user. For voting task the voter will only use a radio button to selection operation and
a submit button to casting operation. The other interfaces will also designed clearly and

simple to all stakeholders.

4. Data Design

4.1.ER Design

The poll server runs on http server that is enabled to handle server pages. It uses a relational
database to keep track of the polls, which it connects through standard database connectivity
interfaces (figure 6). In order to run the setup software, the environment needs to have a Java

Virtual Machine running on it.

Figure 6: ER Diagram

To keep information of some data’s location information we designed following tables.
Turkey is divided into Cities (il), Cities are composed of Districts (ilce), and Districts are
composed of both Towns (Belde) and Villages (Mahalle, Kéy). Towns are the set of Villages.
One exception is: villages do not need to be bound to towns. Some villages are directly bound
to districts.

Field Type Null Foreign Key References
id(P.K.) Integer No No -
name Nvarchar(50) No No -
isMetropolian Boolean No No -
TurkeyRegion Integer No No -

Table 2: A database table representing attributes of the City.
City table (Table 2 above) holds basic attributes of item city. Its primary key is id.

Field Type Null Foreign Key References
id(P.K.) Integer No No -
name Nvarchar(50) No No -
citylD Integer No Yes City

Table 3: A database table representing attributes of the District.

This table (table 3 above) holds attribute ‘name’ to keep the name of the district. Its primary
key is id.
And it also includes cityID as a foreign key, so we can understand to which city it is bound.

Field Type Null Foreign Key References
id(P.K.) Integer No No -
name Nvarchar(50) No No -
citylD Integer No Yes City
districtID Integer No Yes District

Table 4: A database table representing attributes of Town.

Town table holds information about towns.Its primary key is id. We could only give districtID
as a foreign key and avoid giving citylD as a foreign key. The main reason is, most often we
want to know information of towns or villages of some specific city. To, avoid additional query
execution we designed as shown above.

Field Type Null Foreign Key References
id(P.K.) Integer No No -
name Nvarchar(50) No No -
citylD Integer No Yes City
districtID Integer No Yes District
townlID Integer Yes Yes Town

Table 5: A database table representing attributes of Village.

Village table also holds informations such as its name, city, district and town.
Its primary key is id.

Field Type Null Foreign Key References
TCK(P.K.) Nchar(11) No No -
Name Nvarchar(50) No No -
Surname Nvarchar(50) No No -
motherName Nvarchar(50) Yes No -
fatherName Nvarchar(50) Yes No -
Sex Integer No No -
Birthday Date No No -
citylD Integer No Yes City
districtID Integer No Yes District
townlID Integer Yes Yes Town
villagelD Integer No Yes Village
birthCertificateCityID Integer No Yes City
birthCertificateDistrict|D Integer No Yes District
boxID Integer No Yes BallotBox
hasVoted Boolean No No -
hasOfflineVoted Boolean Yes No -

Table 6: A database table representing information attributes of a Voter.

Voter table holds information about official voters such as their registered address, where

they born, name, surname, sex, birthday, sex, etc. Its primary key is TCK (TC Kimlik No).

It also includes boxID as a foreign key to BallotBox to keep information in which station he

uses his vote. ‘hasVoted’ attribute is used to know whether voter has voted or not.

‘hasOfflineVoted’ keeps information if voter has voted ‘Offline’ — with paper.

If ‘hasOfflineVoted’ is false, it means that the voter used ONEV system and voted ‘Online’.

Below, the tables related to Election are described.

Field Type Null Foreign Key References
id(P.K. Integer No No -

electionType Integer No Yes ElectionType
date Date No No -
isActive Boolean No No -

Table 7: A database table representing attributes of Election Table.

Since our system should hold past elections’ results, we must have election table to hold
results for every election. Users can see filtered results of any past election.

We keep electionType, date and isActive to determine type of the election, date it occurred
and if it is active or not.

Field Type Null Foreign Key References
id(P.K.) Integer No No -
Name Integer No No -

Table 8: A database table representing attributes of Election classifications.

Our system can handle every kind of election. Now, there are four types of election in Turkey.
These are: Genel Secim, Yerel Se¢cim, Cumhurbaskanlhigl Secimi and Referandum. The voting
behavior is different for every type of election.

Field Type Null Foreign Key References
id(P.K.) Integer No No -
boxNo Integer No No -

electionlID Integer No Yes Election
citylD Integer No Yes City
districtID Integer No Yes District
townlID Integer Yes Yes Town
villagelD Integer No Yes Village
Address Text No No -

Table 9: A database table representing attributes of Ballot Box.

This table is to hold information about Election Centers (Sandik).

‘boxNo’ is numbering of boxes. But this numbering is particular to every city. Because of this,
we haven’t marked it as a primary key. The box’s place information is can be found by its city,
district, town and village.

Field Type Null Foreign Key References
voterldentityNumber(P.K.) Nchar(15) No No -
Password Nvarchar(50) No No -
isActive Boolean No No -
TCK Nchar(11) No Yes Voter
UserType Integer No Yes UserType

Table 10: A database table representing attributes of User Information.

User table holds information about the registered user of ONEV. It holds basic attributes of
the user entity such as voterldentityNumber, password, and userType. TCK is a foreign key to

Voter table, so detailed information of the user is kept in Voter table.

Primary key of the user table is voterldentityNumber.

Field Type Null Foreign Key References
id(P.K.) Integer No No -
Type Nvarchar(50) No No -

Table 11: A database table representing attributes of User Types.

In our system, there is more than one type of users. These are Voter, Candidate and ECA.

This table is to hold types of users.

Field Type Null Foreign Key References
id(P.K.) Integer No No -

Name Nvarchar(50) No No -

Rank Integer No No -
emblem Image No No -

Table 12: A database table representing information regarding Political Parties.

This table holds the list of Political Parties.
The ‘rank’ attribute is used to keep the rank of the specific Party among Parties to be showed
in ‘Voting Card’ or in our system while voting.

Field Type Null Foreign Key References
candidatelD(P.K.) Integer No No -
TCK Nchar(11) No Yes Voter
candidateType Integer No No -
partylD Integer Yes Yes Party
partyRank Integer Yes No -
electionlID Integer No Yes Election
citylD Integer Yes Yes City
districtID Integer Yes Yes District
townlID Integer Yes Yes Town
villagelD Integer Yes Yes Village

Table 13: A database table representing attributes of Candidates.

This table holds basic information about Candidate.

It has foreign key TCK to Voter, so detailed information can be got from Voter table.

For candidates that are member of a party, its partyID is stored and is a foreign key to Party
table.

partyRank is used to show the Candidate’s rank among same party’s candidates in his region.
candidateType is foreign key that is used to show the type of the candidate.

Field Type Null Foreign Key References
id(P.K.) Integer No No -
name Integer No No -

Table 14: A database table representing attributes of Candidate Types.
CandidateType table is used to hold types of candidates.

Field Type Null Foreign Key References
votelD(P.K.) Integer No No -
boxID Integer No Yes BallotBox
partylD Integer Yes Yes PoliticalParty
candidatelD Integer Yes Yes Candidate
voteCount Integer No No -

Table 15: A database table representing attributes of VVotes already collected.

This table (Table 15) is used to hold information of collected votes of a party or an individual
candidate.

boxID is a foreign key to BallotBox, to show from which box the result is.

partylD is to show which party’s result this is.

candidatelD is to show which candidate’s result this is.

Field Type Null Foreign Key References
id(P.K.) Integer No No -
userlD Integer No Yes User

candidatelD Integer No Yes Candidate
questionText Text No No -
isActive Text No No -

Table 16: A database table representing attributes of Questions addressed to candidates.

In our system, users can ask questions to candidate. This table is used for that aim.

Field Type Null Foreign Key References
id(P.K.) Integer No No -
questionID Integer No Yes Question
candidatelD Integer No Yes Candidate
reply Text No No -
isActive Boolean No No -

Table 17: A database table representing attributes of Answers to questions addressed to
candidates.

This table holds answers to question. There can be more than one answer for a question. So,
id is a primary key, not questionID.

4.3. Data Dictionary

In this section the class diagrams that will be used during implementation are described with
their attributes and methods.

4.3.1. Data Classes

In this class only attributes are encapsulated. These attributes will be controlled by controller classes.

User Class

User

+voterldentityNumber : String
+password : String

+isActive : boolean

+TCK : String

voterldentityNumber: This will be used to keep the value of VIN that will be given to the voters before
the election.

password: This attribute will keep the password information of the users in string format.
isActive: A Boolean variable to state whether the user is active or not.

TCK: The TCK number of the user in string format.

Voter Class

\Voter

TCK: String

name : String
surname : String
motherName : String
fatherName : String
sex:int

birthDate : Date
cityID :int
districtID : int
townlID : int?
villagelD : int

boxID : int
voteStatus : boolean

TCK: The TCK value of the voter in string format.

Name: To keep the name of the voter.

Surname: To keep the surname of the voter.

MotherName: To keep the mother name of the voter.

FatherName: To keep the father name of the voter.

Sex: It will be used for identifying the sex of the voter as integer variable.
birthDate: To keep the birth date of the voter in data variable format.
citylD: To keep the city of the voter that he will cast the vote.

districtID: To keep the district of the voter that he will cast the vote.
townlD: To keep the town of the voter that he will cast the vote.
villagelD: To keep the village of the voter that he will cast the vote.
boxID: To keep the box of the voter that he will cast the vote.
voteStautus: A Boolean variable that state whether the casting has done or not.

Political Party Class

PoliticalParty

id :int
name : String
rowNo : int

emblem: Image

Id: To distinguish the political party with an integer variable.
Name: To keep the name of the political party in string format.
rowNo: to state the political party position on election day.
Emblem: An image to keep the political party emblem.
Candidate Class

Candidate

id :int

TCK : String

candidateType : String
partyID : int
partyCandidateRowNo : int?
electionID : int

citylD : int?

districtID : int?

townlID : int?

mahalleID : int?

Id: To keep the candidate id value in integer format.
TCK: To keep the TCK value of the candidate as string.

candidateType: To keep the candidate type in string format.

partylD: States the political party of the candidate.

PartyCandidateRow: To state the position of the candidate in the election list of his political party.
electionlD: To keep the which election the candidate joins.

citylD: States the city of the candidate that he joins the election.

districtID: States the city of the candidate that he joins the election.

townlID: States the town of the candidate that he joins the election.

mahallelD: States the “mahalle” of the candidate that he joins the election.

Election Class

Election
id :int
electionType : int
date : Date

status : boolean

Id: To distinguish the elections based on their id numbers.

ElectionType: States the type of the election in integer format.

Date: To keep the date of the election in Date variable.

Status: To state whether the election has been done or not in Boolean variable.

Ballot Box Class

BallotBox

id :int

boxNo : int
electionID: int
citylD : int
districtID : int
townID : int?
villageID : int
address : String

Id: To keep the id number of the ballot.

Boxno: States the ballot number in integer variable.

electionlID: To keep the election id number for correct election.
cityld: To keep the city of the ballot that it presents in integer format.

districtID: To keep the district of the ballot that it presents in integer format.
townlD: To keep the town of the ballot that it presents in integer format.
villagelD: To keep the village of the ballot that it presents in integer format.
address: To keep the address of the ballot that it presents in string variable.

Collected Vote Class

CollectedVotes

votedID : int
boxID :int
partylD : int?
candidatelD : int?

votedID: To keep the voted id number in integer format.

boxID: States the ballot id that votes collected.

partld: States the party to keep the party’s votes according to their id values.

candidatelD: States the candidate id to keep the candidate’s votes according to their id values.

These classes have no attributes and they have methods that control the user actions.

VoterUserManager Class

VoterUserManager

addVoterUser(VoterUser) : bool
updateVoterUser(VoterUser) : bool
deleteVoterUser(VoterUser) : bool
getVoterUserByID(string) : VoterUser
setPassword(String) : bool

addVoterUser(VoterUser): Takes a voter user and add to the system. It returns a Boolean variable
whether the addition has done successfully or not.

updateVoterUser(Voteruser): Takes a voter user and update the information about this object. It
returns a Boolean variable whether the configuration has done successfully or not.
deleteVoterUser(Voteruser): Takes a voter user and delete it from the voter list. It returns a Boolean
variable whether the deletion has done successfully or not.

getVoterUserByID(string): Takes a id value and returns the correct voter based on his id.
setPassword(string): To set the password of the voter. It takes password as string value and returns a
Boolean variable whether the setting has done correctly or not.

CandidateUserManager Class

CandidateUserManager

addCandidateUser(CandidateUser) : bool
updateCandidateUser(CandidateUser) : bool
deleteCandidateUser(CandidateUser) : bool
getCandidateUserByID(string) : CandidateUser
setPassword(String) : bool

addCandidateUser(CandidateUser): Takes a candidate user and add to the system. It returns a
Boolean variable whether the addition has done successfully or not.
updateCandidateUser(Candidateuser): Takes a candidate user and update the information about this
object. It returns a Boolean variable whether the configuration has done successfully or not.
deleteCandidateUser(Candidateuser): Takes a candidate user and delete it from the voter list. It
returns a Boolean variable whether the deletion has done successfully or not.
getCandiateUserByID(string): Takes a id value and returns the correct candidate based on his id.
setPassword(string): To set the password of the candidate. It takes password as string value and
returns a Boolean variable whether the setting has done correctly or not.

ECAUserManager Class

ECAUserManager

addECAUser(ECAUser) : bool
updateECAUserECAUSser) : bool
deleteECAeUser(ECAUser) : bool
getECAUserByID(string) : ECAUser
setPassword(String) : bool

addECAUser(CandidateUser): Takes a ECA user and add to the system. It returns a Boolean variable
whether the addition has done successfully or not.

updateECAUser(Candidateuser): Takes a ECA user and update the information about this object. It
returns a Boolean variable whether the configuration has done successfully or not.
deleteECAUser(Candidateuser): Takes a ECA user and delete it from the voter list. It returns a Boolean
variable whether the deletion has done successfully or not.

getECAUserByID(string): Takes a id value and returns the correct ECA based on his id.
setPassword(string): To set the password of the ECA. It takes password as string value and returns a
Boolean variable whether the setting has done correctly or not.

AuthenticationManager Class

AuthenticationManager

login() : bool
authenticate(User) : bool
logout(User) : bool
isLoggedOut(User) : bool
getCurrentUser() : User
createSession() : bool

Login(User): This function returns a Boolean variable whether the login operation has done correctly
or not.

Authenticate(User): This method takes an user variable and makes the authentication of the user.
Logout(User): This function returns a Boolean variable whether the logout operation has done
correctly or not.

isLoggedOut(User): To state whether the user is logged out or not in Boolean variable.
getCurrentUser(): Returns the current user of the system as user object.

createSession(): To create the session for the current user. It returns a Boolean variable for the
successful creation.

4.3.3. Data Controller Classes
These classes have no attributes and they have methods that control the data relations.

Candidate Manager Class

CandidateManager

getCandidateByID(int) : Candidate
getCandidateBy TCK(String) : Candidate
addCandidate(Candidate) : boolean
updateCandidate(Candidate) : boolean
deleteCandidate(Candidate) : boolean
setPartyID(int) : bool

getParty() : PoliticalParty
setPartyRank(int) : boolean
getQuestions(Candidate) : Question[]
getCollectedVVotes(Candidate) : CollectedVotes
getAnswers(Candidate) : Answer []

getCandidateByID(int): Takes id number as parameter and returns the candidate object based on the
his id number.
getCandidateByTCK(string): Takes TCK as parameter and returns the candidate object based on the
his TCK value.

addCandidate(Candidate): Takes a candidate object and adds to the system. Returns a Boolean
variable for correct addition operation.

updateCandidate(Candidate): Takes a candidate object and configure the information about the
candidate. Returns a Boolean variable for correct update operation.

deleteCandidate(Candidate): Takes a candidate object and deletes the candidate from the system.
Returns a Boolean variable for correct deletion operation.

setPartyID(int): Sets the party of the candidate.

getParty(): Returns the political party of the candidate that he is member of.

setPartyRank(int): Sets the position of the candidate in the party list.

getQuestions(Candidate): Returns the questions that asked to the candidate in array format.
getCollectedVotes(Candidate): Takes a candidate as a parameter and returns the collected votes.
getAnswers(Candidate): Returns the answers of the candidates to the questions in array format.

PoliticalPartyManager Class

PoliticalPartyManager

getPoliticalParty By 1D(int) : PoliticalParty
getPoliticalPartyByName(String) : PoliticalParty
addPoliticalParty (PoliticalParty) : boolean
updatePoliticalParty (PoliticalParty) : boolean
deletePoliticalParty (PoliticalParty) : boolean
setRank(int) : boolean

setEmblem(lmage) : boolean

getPoliticalPartyByID(int): This method takes the political party id and returns the correct political
part having this id number.

getPoliticalPartyByName(string): This method takes the political party name and returns the correct
political part having this name.

addPoliticalParty(PoliticalParty): This method takes a political party object and add the political party
list.

updatePoliticalParty(PoliticalParty): This method takes a political party object and update this party
on political party list.

deletePoliticalParty(int): This method takes a political party object and delete this party from political
party list.

setRank(int): To state the rank of the party in the election.

setEmblem(Image): Takes and image object and sets it as political party emblem.

ElectionManager Class

ElectionManager

getElectionByID(int) : Election
getActiveElection() : Election
getElectionsByType(ElectionType) : Election []
addElection(Election) : boolean
updateElection(Election) : boolean
deleteElection(Election) : boolean
setDate(Date) : boolean

setElectionType(int) : boolean

getElectionByID(int): This method takes an integer value as election id number and returns the
election.

getActiveElection(): This method takes no argument and returns the active election object.
getElectionsByType(ElectionType): This method returns the election lists based on the election type.
addElection(Election): Takes and election object and adds the election objects list.
updateElection(Election): Takes and election object and configures the object on the election object
list.

deleteElection(Election): Takes the election object list and deletes from the list.

setDate(Date): To set the election date takes a date variable.

setElectionType(int): Takes and integer variable and sets the election type based on this integer value.

BallotBox Manager

BallotBoxManager

getBallotBoxByID(int) : BallotBox
getBBofCity(City) : BallotBox[]
getBBofDistrict(District) : BallotBox[]
getBBofTown(Town) : BallotBox[]
getBBofVillage(Village) : BallotBox|[]
getBBofElection(Election): BallotBox[]
addBallotBox(BallotBox) : boolean
updateBallotBox(BallotBox) : boolean
deleteBallotBox(BallotBoX) : boolean

getBallotBoxByID(int): Returns the ballot box object based on the its id number.

getBofCity(City): Takes the city as parameter and returns the ballots as array format on this city.
getBofDistrict(District): Takes the district as parameter and returns the ballots as array format on this
district.

getBofTown(Town): Takes the town as parameter and returns the ballots as array format on this
town.

getBofVillage(Village): Takes the village as parameter and returns the ballots as array format on this
village.

addBallotBox(BallotBox): Takes a ballot box object and adds ballots list.

updateBox(BallotBox): Configures the ballot box given as parameter on the ballot box list.
deleteBox(BallotBox): Takes a ballot box object and deletes it from the ballot box list.

QuestionManager Class

QuestionManager

getQuestionByID(int) : Question
getQuestionsFromUser(User) : Question []
getQuestionsToCandate(Candidate) : Question []
getUnAnsweredQuestionsOfCandate(Candidate) : Question []
addQuestion(Question) : boolean

updateQuestion(Question) : boolean
deleteQuestion(Question) : boolean

getQuestionByID(int): Takes an id number and returns the question object based on this id number.
getQuestionsFromUser(User): Takes an user parameter and returns the lists of the questions asked by
this user as question array format.

getQuestionsToCandidate(Candidate): Takes a candidate parameter and returns the lists of the
guestions asked to this candidate as question array format.
getUnAnsweredQuestionsOfCandidate(Candidate): Takes an candidate parameter and returns the
lists of the questions that is not answered by this candidate.

addQuestion(Question): Takes a question object and adds to the question list.
updateQuestion(Question): Takes a question object and updates this object in the question list.
deleteQuestion(Question): Takes a question object and deletes it from the question object list.

AnswerManager Class

AnswerManager

getAnswerByID(int) : Answer
getAnswersToUser(User) : Answer []
getAnswersOfQuestion(Question) : Answer []
getAnswersOfCandidate(Candidate) : Answer []
getQuestion(Answer) : Question
addQuestion(Question) : boolean
updateQuestion(Question) : boolean
deleteQuestion(Question) : boolean

getAnswerByID(int): Takes an id number and returns the answer object based on this id number.
getAnswersToUser(User): Takes an user parameter and returns the lists of the answers related with
this user as answer array format.

getAnswersOfQuestion(Question): Takes a question parameter and returns the lists of the answers to
this question as answer array format.

getAnswersofCandidate(Candidate): Takes an candidate parameter and returns the lists of the
answers that this candidate response.

getQuestion(Answer): Takes an answer object and returns the corresponding question object.
addQuestion(Question): Takes a question object and adds to the question list.
updateQuestion(Question): Takes a question object and updates this object in the question list.
deleteQuestion(Question): Takes a question object and deletes it from the question object list.

Clients WebSphere Application Servers Database Servers

XML/XSL
Processor
&
Parser

!

Serviet
Engine
&
JSP
Compiler

DB2
Express-C

JDBC

't

- XML/XSL :
Processor

&
Parser
______________ N DB2
) Express-C
N\ Serviet ;

' Engine ! :
P&
JSP

Figure 7: General View Of ONEV System

Basically, Our system is a 3-tier Client/Server architecture, as shown in figure 7, comprising of
two databases, two Application servers and PC stations. The additional application server
presented in dotted lines in the diagram above acts as a backup to the working main server.
Therefore, during critical operations, in case of failure the reserve server comes into
operation. The two databases work together during critical operations of polling votes.
However, the backup server is responsible for storing critical information like votes and
results of election. In the front phase of the system architecture lies the clients. The clients
represent the PC centers formed throughout the country during election periods. It also
represents any PC that can connect to our server during normal working days for regular
applications like viewing election results, editing profiles and so on. The middle phase of the
architecture comprises of Application servers we have discussed above. It should be noted
that the servers consist of back-end applications to handle different tasks delegated by the
administration server. The far end phase is comprised of storage subsystems, mainly the
databases. These phases communicate in a formal protocol. That is, application server
communicates directly with the clients and the storage devices. However, clients-databases
communication is not directly. The application server — through a database connector-
handles all database requests from the clients side to the database, as well as the responses
are controlled by the server.

HIGH ABSTRACT MODULAR SYSTEM STRUCTURE

Client PC
Stations

Database
Server

(__Client PC
() Stations

Figure 7: High Abstract Modular System Structure

The major components in the system can be represented in form of modules. Therefore, we
have three unique major modules Clients, Application server, and Database server modules
(figure 7). The diagram below shows the application sequence of the modules. The normal
flow of actions in the system follows this order. A client issues a communication or data
request with the server. The server (in many functions of the systems) checks the validity and
eligibility of the client to the system by contacting the data storage server. Upon the response
from the database server; the application server responds to the client request with positive
or negative acknowledgement. Again, it should be noted that there is no direct
communication between the clients and the database server.

5.2. Description of Componentsm

GUI
’ ° M = -
. o’ -~ *
’
’
’ - -
K uthentication
erverAdmin € = = = = = = = = = - - > S
e S = 4 ‘
4 S - ’
1 T K
1
' dataRetrieval
1
1 1
1
ckEndApplications v
ataStorage

Figure 8: Components of the System

Our system can be subcategorized into six components according to major activities
performed by the system (figure 8). The components are namely; Graphical User

Interface(GUI), Server Administrator(ServerAdmin), Authentication, Back End
Applications(BackEndApplications), Data Retrieval(dataRetrieval) and data
Storage(DataStorage).

This component comprises all the objects that render the graphical User Interfaces with the
appropriate contents. When a client issues an http request to the application server, a
corresponding instance of class is issued by the Java Servlet'® to respond to and process the
request. In addition to that, the component is responsible for creation of dynamic HTML
webpage using JSP technology before sending them to the client side.

The inputs to this component are the viewable webpage requests from the client side. On the
other hand the outputs are the dynamically/statically created webpages to be displayed on
the client side.

The complete step-by-step procedural activities related to this component are as follows;

1. User/client requests a page from the system through internet

2. Server Admin captures the request.

3. After processing administration tasks according to the type of request, Server Admin
delegates the presentation of solution page(s) to the GUI component to create
appropriate internet page.

4. The GUI presents the created page to the Server Admin to send it to the requester.

|

AdminServer |
| |

| |
|

|

|

requestPage():data

createGUI()

getGUI()

A

Figure 9: Sequence Diagram of GUI

This component is responsible for creating and storing data objects. Therefore it makes
frequently requested data available instead of querying into the database frequently. It uses
the JDBC connector to get data from the database and create corresponding objects with
attributes and methods to access the data easily.

It receives data requests from the dataRetrieval component as an input. Then it translates
these into SQL commands and processes them using JDBC connector. The obtained result is
put into an object. The object becomes available for future use.

It works as follows

1. It receives a request of data from dataRetrieval component
2. It0issues the command through JDBC connector
3. The received response from the run queries and creates a corresponding object.

DataManager DBCconnector

<< data>>
getConnection()
>
<<acknowledge>>
4
sendData()
> storage()
<<acknowledge>>
4

Figure 10: Sequence Diagram for Data Storage

ServerAdmin is “a junction” between requests and responses. It receives HTTP requests from
the client side and delegate the requests to respect servlets to process the requests. In
addition to that, it collects the ready responses and sends them to the appropriate clients. It
works closely with authentication component to authenticate the income requests before
delegating them to the corresponding back end applications to process them.

It receives data packets online in form of HTTP protocols as an input. Using back end
programs the packets are processed, the required information is extracted and the necessary
steps taken into actions. It outputs HTTP responses and sends them to the clients via the
internet.

It works as follows

It receives a request from clients through HTTP.

It checks the validity of the request.

According to the type the request it assigns the request to a corresponding back end
program.

4. When the request is processed it sends to the corresponding client

X ServerAdmin Authentication ServicesManager ServiceAgent

Client
|

\
\
[
|<< http request >> ‘

\ > checkValidit

\
sendRequest()
| delegate()

\/

sendJob()

\
\
\
\
| response()

getResponse()
\

A

|
|
|
|
|
|
Figure 11: Sequence Diagram for Server Admin

This component is responsible for checking the critical requests with the permission of the
clients. For example if a client tries to log on into the system Authentication checks if he is a
registered user of the system according to the user identification and password. This is also
the same when user wants to access some data. An election commission officer may be
granted to view the voter profile while a voter cannot be granted the access the profile of
other voters.

It receives commands as well as data from the ServerAdmin to help authenticate the process
in question. The output is either request granted or denied. The output is directed to the
ServerAdmin. It interacts with DataRetrieval in order to get data from the data storage
component.

It works as follows

1. It receives authentication request from ServerAdmin along with data.
2. It using the given data and that in the database it processes authentication.
3. It returns a grant or a denial response.

Authentication DataRetrieval

.S<authentication request >> | A
requestData()

fetch()

[

get

getData()

A

<<acknowledge >> I

\
\
\
Figure 12: Sequence Diagram for Authentication
This includes technologies to handle different tasks and instantiate and serve different tasks

delegated by ServerAdmin. The technologies involved include XML-parsers, JSP, Servlets,
and the JVM.

In general the server task can be considered as an input to the back- end server. The output is
the result of the back end server according to the requirements of the ServerAdmin.

It works as follows

1. ServerAdmin triggers a job to the appropriate back- end application.
2. ServerAdmin provides appropriate input to the application.
3. The application processes the job
4. The application returns response to the ServerAdmin.
ServerAdmin rvi Man r rvi n

sendRequest() -
delegate ()
sendJob()
response()
getResponse()

Figure 13: Sequence Diagram for Back End Applications

This component is responsible for accessing data from and storing data to the database. It
acts as a bridge between the applications and the database objects.

It uses the JDBC connector to process the data queries in form of SQL commands.

It receives data requests from the Server admin, authentication and the back end
applications. Then it translates these into SQL commands and processes them using JDBC
connector. The obtained result is returned as an object. The returned object is extracted to
get the required data and reported to the component requested it.

It works as follows

It receives a request of data from Application server components

It translates the request into SQL command

It issues the command through JDBC connector

The received response from the run query is extracted to get the required data

e wnN e

The data is sent to the component asked for it.

SQL generatorManager JDBCconnector
| |
| |
|
S<<datarequest>> >
requestConnection()
>
<« -------<<acknowledge.>>...........| fetch
sendQuery()
> get()
<« ------S<acknowledge.>>. ...
B getResponse()

hn [
<<data>> |
4 """"""""""""""""" ‘
|
|
-1 |
|
|
|

Figure 14: Sequence Diagram for Data Retrieval

We separated the system into three major modules in order to keep the system simple,
minimize cost and increase security level. As it can be seen from the system representation
diagram there is much of computational activities rather than just presentation of windows as
graphical user interfaces. The presence of one application server minimizes cost in terms of
money and the cost of system distribution. All the necessary computations are carried out at
the particular center. The presence of backup application server makes sure that the system
is available most of the time even in the case the main application server encounters a
problem that hinders its functioning.

Data storage is separate because we wanted to separate it completely from direct
communication with the clients. Query issuing over the internet can be a threat and
sometimes degrades performance. The communication between the application server and
the database can be improved by storing the already queried data into the server machine,
which we cannot do in the client machine to avoid insecurity.

Before concluding this architecture we had discussed architectures like Single Tier and Two
Tier architectures. In Single tier architecture we decided to design an application that runs on
a client machine (like a desktop application). However, due to criticality of the system, this
cannot be possible because the system can be easily attacked by viruses in the client
machine. The 2-tier architecture was totally inappropriate for our system because it requires
storage of information in a formatted order for easier access. This is due to the fact that data
storage and retrieval is more than 50% of all activities carried out by the system to meet the
clients’ needs.

Since the system consists of two parts user interfaces will be different in those two modes. In
normal interactive mode there will be common home page interface for all system users and
they will use this page for login operation.

In this mode voters interface will contain the links to view the candidates profiles and past
years’ election results. EC’s interface will include his own profile and he will conduct the
election tasks by using this interface. ECA interface will cover the functionalities related with
registration of the voters and candidates.

In election mode there will be a major interface that the voting operation is executed. This
interface will be used by the voters. And there will be another interface fort the ESS. By using
this interface the ESS’s will generate a password for the voters used in casting operation and
also he can enter the offline votes to the system.

In this part some of the screen images and their functionalities are described.

kullanici adi admin

$Ifre EXXXXXX
giris

Figure 15: User Interface of Login Page

This interface will be used by all of the system users and by entering the userid and password
they will be able to use the system. For an incorrect password or userid the system will
promote an error message to the users (figure 15).

Cevrimici Aday Kayit Formu
Kisisel Bilgiler:
TC Kimlik Mo: 12345678901
Adres Bilgisi:
I: Ankara
flce:
Belde:

Mahalle:

Adres:

Bilgilerimi Génder

Figure 16: User Interface of Registration Page

The form in figure 16 will be used for the registration of the citizens to this system. We only
require TCK of the citizen as personal information. We can get other required personal
information such as birthday, sex, father’s name, etc from governmental web service by
providing only TCK. It will be easier for the user to register. Additionally, citizens must provide
their address information. Then the official goes to that address and checks if the citizen is at
that address or not. If the citizen is at that address and right to vote, then he will be approved.

secmen kimlik no: 1246543

5I.FI.E: xR ETE

giivenlik sifresi:

giris yap

Figure 17: User Interface of Voting Stage Login Page

The interface in figure 17 will be used by the voters during the election mode in voting
process. Before casting the vote, the voter must provide his Voter Identity Number, password

and security password generated by the ESS. After entering the correct values the voter can
reach the voting interface.

Il Genel Meclis Uyesi [By

[] 1l Genel Medis Uyesi [] Muhtarlk

Biiyiksehir Belediye Baskanfdgma Oy Kullamyorsunuz

Partiler Listesi Bagimsiz Adaylar Listesi

") Parti 1 Parti 1 Amblem
") Aday 1
~) Parti 2 Parti 2 Amblem aday 2
=) Parti 3 Parti 3 Amblem aday 3
I Oyumu Kaydet ve Sorraki Asamaya Geg I I Oy Kullanmadan Sonrak Asamaya Geg I

Figure 18: User Interface of Voting Page

After the voter logged in successfully, the interface in figure 19 is used for casting vote. In our
system, the user interfaces will be simple and clear since stakeholders of the system have
different educational, technological background. The Voter castes for only one candidate type
and go to next page for the next type of candidate casting.

Since the users interact with our system through web browser, our objects will be html
elements. Some of the main objects and their functionalities are described below:

e Label
The <label> tag defines a label for an input element (Password Field, Text Field).
In our application, we use labels for every important input element. If the user clicks
on the text within the label element, it toggles the input element.

e Text Field, Password Field
When the user fills these fields and sends the form, the server gets filled values and do
some transactions and returns results according to given values. We use these objects
in order to get required information.

e Check Box
When we want to get only ‘Yes — No’ or ‘True — False’ information for the specific
guestion we use check boxes.

e Radio Button
When the user is forced to choose only one option from the list, the radio button is
used. The main usage of this object is at voting process. To illustrate, voter chooses
only one political party or individual candidate from the list.

e Submit Button
A submit button is used to send form data to a server. The data is sent to the page
specified in the form's action attribute.[3]

e Hyperlink
A hyperlink (or link) is a word, group of words, or image that you can click on to jump
to a new document or a new section within the current document. Hyperlink’s
difference from Submit Button is, it does not send any field’s values, it’s aim is only to
redirect to some other page.

The ONEV is divided into two main packages namely Model Package and Controller Package
as seen in figure 19 below. In model package contains the data description classes and
manager package contains the functionalities that control the data objects. Also Controller
Package has two sub-packages that control the user and data objects separately.

Manager Pacckage

Model Pacckage User Sub-Pacckage

User VoterUserManager

VoterUser
CandidateUser
ECAUser

Voter
Question
Answer
Candidate
PoliticalParty
Election
ElectionType
BallotBox
CollectedVotes

CandidateUserManager
[— —| — — ~—|ECAUserManager
AuthenticationManager

Database Sub-Pacckage

CandidateManager
| QuestionManager
= =— =—| — =— =—|AnswerManager

CollectedVotesManager
PoliticalPartyManager
BallotBoxManager
ElectionManager

Figure 19: General Overview of Packages

Classification: package

Definition: This package contains classes(as shown in figure 20) that correspond to the
database tables for every table in the database there is a corresponding class to represent its
attributes once data is queried.

Responsibilities: To provide object oriented presentation of data from the database.
Constraints: It provides no functionalities other than easier data presentation.
Composition: There is no any sub-package of this package.

User/Interactions: It interacts with Manager Package. Manager package uses this package for
holding data from database.

Resourcing: There are no any resources that are needed by this package.

Processing: Data storage and presentation.

\Voter
User TCK : String
. . name : Strin
+voterldentityNumber : String Zsumame : St%ing
+password : String Phd motherName : String
+[|§é‘|2t_“’se :boolean ~ fatherName : String
UGS 7 sex: int
- birthDate : Date
S
7 A cityID : int
< “ districtlD : int
4 b 7 / townID :int?
Q77 / villagelD : int
7 L boxID : int
/ voteStatus : boolean
~
-~
~ /
7 / N
- / B\
-~ [
3,
. N
CandidateUser
VoterUser ECAUser
N A
Py F'A
| & | &
@D @D
v v
I/ v \/ v
- - PoliticalPart
Question Candidate Y
— — wse”?” . — id :int
id zint id :int < - Stri
. — : St
userlD :int TCK: String - ?:vmo . i;l{\g
candidatelD: int — ST candidateType : String | '-|
questionText : String ~%ex, partyID : int SLIEDETEe
isActive : boolean =~ ~ | partyCandidateRowNo : int? /
electionID : int /
cityID :int? 5 /
A districtID : int? &/
A | townID : int? L
3 mahallelD : int? Y.
v 1 / Election
/ .
Answer -7 T 4 SSusesy g int y
— / , - _ electionType :int
id - int _ ;77 / — date : Date
questionID : int TR Vi / status : boolean
candidatelD: int £ / /
reply : String A /
isActive : boolean & /
>/ /
v, N
, 12
/ &
/ / v
; Y
CollectedVotes ElectionType
votedID :int BallotBox id :int
boxID :int S id : int name : String
partyID : int? N %, |boxNo :int
candidatelD : int? h \“ electionlD: int
cityID : int
districtID : int
townID : int?
villagelD : int
address : String

Figure 20: Class Diagram of Model Package

Classes defined in this package will be used for communicating with the database, i.e.
retrieving/updating/deleting/inserting data. The functionality beneath the user interface will
be realized by means of this group of classes. This package consists of two sub packages.

Classification: Sub-package

Definition: This package contains classes that manage (delete, update, add) their
corresponding classes in Model package and entities in database. Every class in Model
package has its corresponding controller class. This package contains manager classes for user
related data.

Responsibilities: To retrieve data from database and create corresponding Model class and to
update/delete data from database.

Constraints: This sub-package provides no more methods other than retrieving, updating and
deleting data from database and creating corresponding Model class.

Composition: There is no any sub component.

User/Interactions: It interacts with model classes and database. The interaction between
Application Server and Database is done through Controller package.

Resourcing: The Model classes and database tables are the resources of this sub-package.

Processing: Manipulation of database data and instantiation of new class object.

VoterUserManager CandidateUserManager ECAUserManager

addVoterUser(VoterUser) : bool addCandidateUser(CandidateUser) : bool addECAUser(ECAUser) : bool
updateVoterUser(VoterUser) : bool updateCandidateUser(CandidateUser) : bool updateECAUserECAUser) : bool
deleteVoterUser(VoterUser) : bool deleteCandidateUser(CandidateUser) : bool deleteECAeUser(ECAUser) : bool
getVoterUserByID(string) : VoterUser getCandidateUserByID(string) : CandidateUser getECAUserByID(string) : ECAUser
setPassword(String) : bool setPassword(String) : bool setPassword(String) : bool
© <
K K
©
RITIT %
AuthenticationManager
0.* login() : bool

authenticate(User) : bool
logout(User) : bool
isLoggedOut(User) : bool
getCurrentUser() : User
createSession() : bool

Figure 21: Class Diagram of UserManager Sub-Package

Classification: Sub-package

Definition: This package contains classes that manage (delete, update, add) their
corresponding classes in Model package and entities in database. Every class in Model
package has its corresponding controller class. This package contains all manager classes that
are not related to user.

Responsibilities: To retrieve data from database and create corresponding Model class and to
update/delete data from database.

Constraints: This sub-package provides no more methods other than retrieving, updating and
deleting data from database and creating corresponding Model class.

Composition: There is no any sub-package of this package.

User/Interactions: It interacts with model classes and database. The interaction between
Application Server and Database is done through Controller package.

Resourcing: The Model classes and database tables are the resources of this sub-package.

Processing: Manipulation of database data and instantiation of new class object.

CandidateManager

QuestionManager

getCandidateByID(int) : Candidate
getCandidateBy TCK(String) : Candidate
addCandidate(Candidate) : boolean
updateCandidate(Candidate) : boolean
deleteCandidate(Candidate) : boolean
setPartyID(int) : bool

getParty() : PoliticalParty
setPartyRank(int) : boolean
getQuestions(Candidate) : Question[]
getCollectedVVotes(Candidate) : CollectedVVotes
getAnswers(Candidate) : Answer []

o

CollectedVote ManageF

getCVBYID(int) : CollectedVote
getCVofCity(City) : CollectedVote[]
getCVofDistrict(District) : CollectedVote []
getCVofTown(Town) : CollectedVote []
getCVofVillage(Village) : CollectedVote []
getCVofBallotBox(BallotBoX) : CollectedVote []
getCVofParty(PoliticalParty) : CollectedVote []
addCollectedVote(CollectedVote) : boolean

Bl lotBoxManager

getBallotBoxBy ID(int) : BallotBox
getBBofCity(City) : BallotBox[]
getBBofDistrict(District) : BallotBox[]
getBBofTown(Town) : BallotBox[]
getBBofVillage(Village) : BallotBox|[]
getBBofElection(Election): BallotBox|[]
addBallotBox(BallotBox) : boolean
updateBallotBox(BallotBox) : boolean
deleteBallotBox(BallotBox) : boolean

*

getQuestionByID(int) : Question
getQuestionsFromUser(User) : Question []
getQuestionsToCandate(Candidate) : Question []
getUnAnsweredQuestionsOfCandate(Candidate) : Question []
addQuestion(Question) : boolean

updateQuestion(Question) : boolean
deleteQuestion(Question) : boolean

AnswerManager

getAnswerByID(int) : Answer

_AgetAnswersToUser(User) : Answer []

getAnswersOfQuestion(Question) : Answer []
getAnswersOfCandidate(Candidate) : Answer []
getQuestion(Answer) : Question
addQuestion(Question) : boolean
updateQuestion(Question) : boolean
deleteQuestion(Question) : boolean

PoliticalPartyManager

getPoliticalPartyByID(int) : PoliticalParty
getPoliticalPartyByName(String) : PoliticalParty
addPoliticalParty(PoliticalParty) : boolean

'—\—0* updatePoliticalParty (PoliticalParty) : boolean

deletePoliticalParty (PoliticalParty) : boolean
setRank(int) : boolean
setEmblem(Image) : boolean

ElectionManager

getElectionByID(int) : Election
getActiveElection() : Election

getElectionsBy Type(ElectionType) : Election []
addElection(Election) : boolean

* updateElection(Election) : boolean

deleteElection(Election) : boolean
setDate(Date) : boolean
setElectionType(int) : boolean

Figure 22: Class Diagram of Database Manager Sub-Package

For system design the following tools will be used during the implementation process.

e UML: The Unified Modeling Language (UML) is a standard language for specifying,
visualizing, constructing, and documenting the artifacts of software systems, as
well as for business modeling and other non-software systems. The UML
represents a collection of best engineering practices that have proven successful in
the modeling of large and complex systems

e J2EE: J2EE (Java 2 Platform, Enterprise Edition) is a Java platform designed for the
mainframe-scale computing typical of large enterprises. Sun Microsystems
(together with industry partners such as IBM) designed J2EE to simplify application
development in a thin client tiered environment.

e Ajax: Ajax (sometimes called Asynchronous JavaScript and XML) is a way of
programming for the Web that gets rid of the hourglass. Data, content, and design
are merged together into a seamless whole.[4]

e DB2: DB2 is a family of relational database management system (RDBMS) products
from IBM that serve a number of different operating system platforms. According
to IBM, DB2 leads in terms of database market share and performance.

e Eclipse: Eclipse is a multi-language software development environment comprising
an integrated development environment (IDE) and an extensible plug-in system. It
is written mostly in Java and can be used to develop applications in Java and, by
means of various plug-INS, other programming languages.

e WebSphere: WebSphere is a set of Java-based tools from IBM that allows
customers to create and manage sophisticated business Web sites. The central
WebSphere tool is the WebSphere Application Server (WAS), an application server
that a customer can use to connect Web site users with Java applications or
servlets.[5]

http://searchservervirtualization.techtarget.com/sDefinition/0,,sid94_gci212797,00.html
http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci212516,00.html
http://searchwinit.techtarget.com/sDefinition/0,,sid1_gci212065,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213135,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci213144,00.html
http://en.wikipedia.org/wiki/Software_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Plug-in_%28computing%29
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Programming_language
http://searchsqlserver.techtarget.com/sDefinition/0,,sid87_gci211584,00.html
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci212415,00.html
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci212966,00.html

9. Time Planning (Gantt Chart)
9.1. Term1 Gantt Chart

1 ANALYSIS 10/1/2010 11/20/2010 51]

2 .Tcpic Selection 10/1/2010 ‘ 10/14/2010 14 ‘

3 Field Research 10/15/2010 10/24/2010 10

4 Technologies 10/25/2010 11/7/2010 14

5 .Marketing Research 11/8/2010 ‘ 11/20/2010 13

6 INITIAL DESIGN 11/20/2010 12/18/2010 29

7 .Meeting With YSK 11/20/2010 ' 11/22/2010 3

8 Components 11/23/2010 12/1/2010 g

9 .Inten‘aces 12/2/2010 ‘ 12/10/2010 9

10 Data Specification 12/11/2010 12/18/2010 B

11 .I'JETAILEI'.'J DESIGN 12/19/2010 1/8/2011 21 |]

12 User Interface Drafts 12/19/2010 12/24/2010 [

13 Database Design 12/25/2010 12/29/2010 5 B

14 Class Hierarchy 12/30/2010 1/8/2011 10 [|

15 IMPLELENTATION 1/9/2011 1/22/2011 14 | |
16 Server Design 1/9/2011 1/14/2011 6 [|

17 Database Design 1/15/2011 1/19/2011 5 [|
18 Interface Design 1/20/2011 1/22/2011 3 [|
19 PROTOTYPE DEMOS 1/23/2011 1/24/2011 2 1

Figure 23: Gantt Chart of Terml

The Gantt Chart in figure 23 above outlines the activities of the project to be accomplished in the fall

term of 2010-2011.

9.2. Term2 Gantt Chart

1 |PROTOTYPE-1 10/2001 | 3152011 65 _

Z \vater Interface Design 1/10/2011 171742011 g []

3 £S5 Interface Design 1/18/2011 1/25/2011 8 B

4 [EC Interface Design 1/26/2011 2/3)2011 9 [|

5 ECA Interface Design 2/3/2011 21072011 8 []

b Wab Page Dasign 2/10/2011 2/15/2011 6 [|

7 Server Design 2/15/2011 312011 15 l -

8 |Database Design 312011 3/15/2011 15 -

9 |PROTOTYPE-2 3157201 5/1/2011 44 ‘ _

10 |Unit Testing 3f15/2011 32272011] ||

1L [Integration Testing 3f2z/zo1l 4/10/2011 20 [|

12 |Debug 4/10/2011 4/15/2011 6 [|

13 |Extra Features 4/15/2011 5/1/2011 17 []

15 |PROTOTYPE-3 5/1/2011 6/1/2011 32 []
16 |Improvement on Server 5/1/2011 5/10/2011 10 |]

17 [Impravement on Database 51172011 5/18/2011 9 ‘ . ‘ [|

18 |Improvement on Interfaces 5/20/2011 5/30/2011 11 [|
19 |Presentatlon 5/31/2011 5/31/2011 1]
20 FINAL RELEASE 6/1/2011 6/1/2011 1 ?

Figure 24: Gantt Chart of Term2

The Gantt Chart in figure 24 above outlines the activities of the project to be accomplished in the
spring term of 2010-2011.

This document describes the design levels of the ONEV project conducted by iTeam4. The
system architecture of the ONEV and data representations is stated through the document.
Furthermore, class diagrams with data flow diagrams and design of the user interfaces are
showed in the document in detail. Consequently, this document is prepared to conduct
better design approaches to ONEV project at implementation.

