

 Detailed Design Report

 For

Online National Election Voting

Group: iTeam4

 Emilbek Joldoshev 1592476

 Hassan Salahe Matar 1591114

 Mehmet Barış Özkan 1560747

 Hüseyin Lutin 1560408

 27/02/2011

 2

1. INTRODUCTION .. 5

1.1. Problem Definition .. 5

1.2. Purpose ... 5

1.3. Scope .. 6

1.4. Overview ... 6

1.5. Definitions and Abbreviations ... 6

1.6. References .. 7

2. SYSTEM OVERVIEW .. 8

3. DESIGN CONSIDERATIONS .. 12

3.1. Design Assumptions, Dependencies and Constraints .. 12

3.2. Design Goals and Guidelines ... 12

4. DATA DESIGN .. 14

4.1. ER Design .. 14

4.2. Data Schemas .. 15

4.2.1. City Table... 15

4.2.2. District Table ... 15

4.2.3. Town Table .. 16

4.2.4. Village Table .. 16

4.2.5. Voter Table .. 17

4.2.6. Election Table .. 17

4.2.7. ElectionType Table .. 18

4.2.8. BallotBox Table ... 18

4.2.9. User Table ... 19

4.2.10. UserType Table ... 19

4.2.11. PoliticalParty Table ... 19

4.2.12. Candidate Table .. 20

4.2.13. CandidateType Table .. 20

4.2.14. CollectedVote Table .. 20

4.2.15. Question Table .. 21

4.2.16. Answer Table .. 21

4.3. Data Dictionary ... 22

 3

4.3.1. Data Classes .. 22

4.3.2. User Controller Classes ... 25

4.3.3. Data Controller Classes ... 27

5. SYSTEM ARCHITECTURE ... 32

5.1. Architectural Design .. 32

5.2. Description of Components
[7]

 .. 34

5.2.1. Graphical User Interface ... 35

5.2.1.1. Processing Narrative for GUI .. 35

5.2.1.2. GUI Interface Description ... 35

5.2.1.3. GUI Processing Detail.. 35

5.2.1.4. Dynamic Behavior of GUI ... 36

5.2.2. Data Storage .. 36

5.2.2.1. Processing Narrative for Data Storage ... 36

5.2.2.2. Data Storage Interface Description .. 36

5.2.2.3. Data Storage Processing Detail .. 37

5.2.2.4. Dynamic Behavior of Data Storage .. 37

5.2.3. ServerAdministrator(ServerAdmin) .. 38

5.2.3.1. Processing Narrative for ServerAdministrator ... 38

5.2.3.2. ServerAdministrator Interface Description .. 38

5.2.3.3. ServerAdministrator Processing Detail .. 38

5.2.3.4. Dynamic Behavior of Server Admin ... 39

5.2.4. Authentication .. 39

5.2.4.1. Processing Narrative for Authentication ... 39

5.2.4.2. Authentication Interface Description .. 39

5.2.4.3. Authentication Processing Detail ... 40

5.2.4.4. Dynamic Behavior Authentication ... 40

5.2.5. Back End Applications ... 40

5.2.5.1. Processing Narrative for Back End Applications .. 40

5.2.5.2. Back End Applications Interface Description ... 41

5.2.5.3. Back End Applications Processing Detail .. 41

5.2.5.4. Dynamic Behavior of Back End Application ... 41

5.2.6. Data Retrieval .. 41

5.2.6.1. Processing Narrative for Data Retrieval ... 41

5.2.6.2. Data Retrieval Interface Description .. 42

5.2.6.3. Data Retrieval Processing Detail .. 42

5.2.6.4. Dynamic Behavior of Data Retrieval .. 42

5.3. Design Rationale ... 43

6. USER INTERFACE DESIGN ... 44

 4

6.1. Overview of User Interface ... 44

6.2. Screen Images ... 44

6.2.1. Login ... 44

6.2.2. User Registration ... 45

6.2.3. Login For Vote ... 46

6.2.4. Voting .. 46

6.3. Screen Objects and Actions ... 47

7. DETAILED DESIGN ... 48

7.1. Model Package .. 49

7.2. Controller Package .. 51

7.2.1. User Sub-Package .. 51

7.2.2. Database Sub-Package .. 52

8. LIBRARIES AND TOOLS .. 54

9. TIME PLANNING (GANTT CHART) ... 55

9.1. Term1 Gantt Chart.. 55

9.2. Term2 Gantt Chart .. 56

10. CONCLUSION ... 57

 5

1. Introduction

This document describes the initial design strategies and structural properties of the Online

National Election Voting System which will be developed by iTeam4. It explains the data and

interface designs of the project with system architecture in order to help the developers for

better design.

1.1. Problem Definition

We are living in a democratic country and voting is one of the fundamental duties of the

public. In our country, manual voting system has been deployed for many years. However,

manual voting process has caused some difficulties for voting process and also it has some

disadvantages for the public. We can list some of these problems as follows. [1]

 Especially there have been cases of threatening in Eastern part of Turkey at polling

stations and people are faced with problems during voting.

 Sometimes people may not be in village/county registration and because of that

reason they don’t fulfill their voting duties.

 Lots of time and problems are occurring on vote counting process since this activity is

done manually.

 Due to manual voting process there is lots of paper waste during election times.

 Voter usually doesn’t know too much detail about the candidates in their election

region.

With the growth and expansion in technology new ways were sought to handle the electoral

process such as electronic voting. Electronic voting is the process of use of computers or

other electronic devices to cast votes in an election.

So in order to overcome those problems there is a need for a contemporary electronic voting

system in addition to manual voting. By design of such a system people can use their votes in

any selection field condition to be registered to the system before. Also by using the system

voters can learn details about the candidates and they will be interacting with each other

before the Election Day. This system will also facilitate the vote counting processes and

produce more accurate results and within a short time thanks to the computer technology.

Because of these reasons such an electronic voting system contributes to the development of

the country’s democracy too much.

1.2. Purpose

The purpose of the document is to make the data design and system architecture of the

Online National Election Voting System easy to comprehend. It also serves the purpose of

making the functionality clear to system designers.

 6

1.3. Scope

This initial design document applies to the initial version (release 1.0) of the “Online National

Election Voting System” software package. It describes the database tables, entity relations

between objects and architectural structure of the system as noted in SRS document. The

main aim of the system is to provide a set of protocols that allow voters to cast ballots while a

group of authorities collect votes and output final results.

1.4. Overview

The remainder of this document identifies the system overview, design considerations, data

design with class and table structures, system architecture with components and user

interface designs. Apart from these main parts, it also states the planning strategies of the

project with Gantt diagrams and describes the tools that will be used during implementation.

1.5. Definitions and Abbreviations

The following table(Table 1) is a list of terms, acronyms and abbreviations used by the Online
National Election Voting System software package and related documentation.

ABREVETIONS DEFINITIONS

ONEV Online National Election Voting

EC Election Candidate

ECA Election Commission Authority

ESS Election Station Supervisor

VIN Voter Identity Number

DB Database

TCK TC Kimlik No

VIC Voter Identity Card

YSK Yüksek Seçim Kurulu

Table 1: A table of abbreviations, terms and acronyms.

For the simplicity of documentation throughout the paper we have used masculinity for all

genders.

 7

1.6. References

 [1] http://www.yazilimakademisi.org/2011/detailproject.php?id=25

[2] SRS report for ONEVS, iTeam4, 2010, www.ceng.metu.edu.tr/~e1591114/SRS

[3] http://www.w3schools.com/html/html_forms.asp

[4] http://experiencezen.com/wp-content/uploads/2007/04/adaptive-path-ajax-a-new-
approach-to-web-applications1.pdf

[5] http://www.redbooks.ibm.com/redbooks/pdfs/sg246316.pdf

[6]Aneesha Bakharia, (2001), Java Servlet Pages, Prima Tech.

[7]Simon Bernett, Steve McRobb, Ray Farmer, (1996), Object Oriented System Analysis and
Design Using UML

http://www.yazilimakademisi.org/2011/detailproject.php?id=25
http://www.ceng.metu.edu.tr/~e1591114/SRS
http://www.w3schools.com/html/html_forms.asp
http://experiencezen.com/wp-content/uploads/2007/04/adaptive-path-ajax-a-new-%20approach-to-web-applications1.pdf
http://experiencezen.com/wp-content/uploads/2007/04/adaptive-path-ajax-a-new-%20approach-to-web-applications1.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246316.pdf

 8

2. System Overview

There are different types of electronic voting systems such as Punch Card Voting System,

Telephone Voting and Online Voting which are being used globally at the current period. Due

to the impact of the internet the system will be based on online voting type.

Online voting is a form of voting in which the individuals are able to cast their votes through a
web interface. Through the use of online voting, the voter navigates to the designated
election site using a web browser on an ordinary PC. The voter is then permitted to select
their chosen candidate and then cast the votes which would then be sent to the election
server for processing. There three main types of online voting as stated above:

Kiosk Internet Voting: Voting from computers in kiosks set up by voting authority in locations
such as post offices and shopping malls.

Poll Site Internet Voting: Voting from designated polling sites to cast their votes by using web
interface.

Remote Internet Voting: Voting from any from any location through the use of a computer
connected to the internet. Remote voting is typically carried out at the voter’s home or work
place.

Due to political conditions of our country the ONEV system will be designed as two main parts
namely Normal Interactive Mode and Election Mode and the voting process will be executed
only at polling stations.

 9

Voter

(Election Mode)

EC

ECA

ESS

Voter

(Normal Mode)

Voter

Normal

Mode

Interface

Election

Candidate

Interface

Election

Commission

Authority

Interface

Election

Station

Supervisor

Interface

Voter

Election

Mode

Interface

Online National Election Voting System

Election

Mode
Database

Normal

Interctive

Mode

 Figure 1: Block diagram showing interaction between users and

the system

As shown in the figure 1 above, Normal Interactive mode will be used by Voters, ECs, and
ECAs for the pre-election and ordinary activities. For every stakeholder there will be a web
interface that he can use the system functionalities that are described in the SRS report.

In Normal Interactive Mode,

Voters will be able to register to system, see the details of the ECs, ask questions to ECs about
their election campaigns and view the past years’ election results, as shown in figure 2 below.

 Voter

VoterRegistration

ViewECInformation

AskToCandidate

ViewElectionResult

Figure 2: Use Case Diagram for Voter interactions with the

system functions

 10

 ECs will be able to update their accounts, edit their CVs, add promises about their election
campaigns and answer the questions from the voters. The summary of the their interaction
with the system can be shown in the figure 3 below.

 EC

AccountUpdate

CVEdit

Add/EditPromises

Read/AnswerQuestions

Figure 3: Use Case Diagram for EC interactions with the system

functions

ECA s will be able to approve the applications from the voters, update current voters and open

candidate account as summarized in the figure 4 below.

 ECA

ApproveApplicant

OpenCandidateAccount

Update Voters

Figure 4: Use Case Diagram for ECA interactions with the system

functions

 11

In Election Mode,

The main users of the system are ESSs and Voters. Voters will cast their votes at polling stations

with their user id’s and passwords. By using the Election Mode, the ESSs will be able to open the

system, enter the offline votes to the system and generate hash password-as shown in figure 5-

that will be used by voters during the voting process [2].

 ESS

OpenSystem

MarkGeneratePasssword

EnterOfflineVotes

Figure 5: Use Case Diagram for ESS interacting with the system

functions

Such a system will provide more contemporary election activities not only for voters but also

for election candidates. It will provide the voters to cast their vote from any polling station in

case he is not in his election region. Also it provides candidates to conduct their election

campaigns through web environment and describe themselves to the voters more clearly.

 12

3. Design Considerations

3.1. Design Assumptions, Dependencies and Constraints

In Turkey, people cast their votes nearly in 170,000 ballots from 81 different cities. Due to this

fact the system must work on those ballots at the same time. Since the system divided into

two parts, time constraints are different for these parts. In Normal Interactive Mode, the

system is expected to serve up to 50000 voters instantly and each voter may be active for a

long time. Similarly in Election Mode, the system is expected to serve a maximum of up to

50000 voters however each voter may be active for at 5 minutes for voting operation.

Since the ONEV is a safety critical system, security and safety constraints are the main issues

of the system. The system should provide means for protecting and securing recounts of

ballots cast in election. By using SSL technologies the data transaction between client and

server will be encrypted and all the passwords will be stored in database in an encrypted

form. A random word will be generated by the system to prevent attacks and the system will

ask the user to enter it correctly for multiple trying.

For performance constraints the system will response in a reasonable short time. The voter

should be able to login and should be able to get response in 2-3 seconds. In Election Mode,

the system will handle about 2000 transactions each second and it will be working at 100%

peak efficiency during voting process.

Apart from these constraints the system should satisfy the some assumptions and

dependencies such as a working internet connection, a web server Java installed on the

machine with Java’s cryptographic packages. Also the election server will run on a http server

that JSP is enabled.

3.2. Design Goals and Guidelines

Since our system is a safety critical system, in design of system architecture and database we

have to take security principles into account. Since the system will work on web services, it

must prevent all attacks from the outside and only authorized people must access the

database. It must prevent the manipulation of the votes from unauthorized people.

Also another major principle that the system must provide is reliability. People must rely on

the system and they must use the system in confidence. The system must not keep

information about which voter cast to which party during execution. The main function of the

system must be correct and fast calculation of the votes and results.

 13

For interface designs we have to follow KISS principle. Because for voting operation, every

voter has different technological and educational background so the interfaces must be clear

to every user. For voting task the voter will only use a radio button to selection operation and

a submit button to casting operation. The other interfaces will also designed clearly and

simple to all stakeholders.

 14

4. Data Design

4.1. ER Design

The poll server runs on http server that is enabled to handle server pages. It uses a relational

database to keep track of the polls, which it connects through standard database connectivity

interfaces (figure 6). In order to run the setup software, the environment needs to have a Java

Virtual Machine running on it.

Figure 6: ER Diagram

 15

4.2. Data Schemas

To keep information of some data’s location information we designed following tables.

Turkey is divided into Cities (İl), Cities are composed of Districts (İlçe), and Districts are

composed of both Towns (Belde) and Villages (Mahalle, Köy). Towns are the set of Villages.

One exception is: villages do not need to be bound to towns. Some villages are directly bound

to districts.

4.2.1. City Table

Field Type Null Foreign Key References

id(P.K.) Integer No No -

name Nvarchar(50) No No -

isMetropolian Boolean No No -

TurkeyRegion Integer No No -

Table 2: A database table representing attributes of the City.

City table (Table 2 above) holds basic attributes of item city. Its primary key is id.

4.2.2. District Table

Field Type Null Foreign Key References

id(P.K.) Integer No No -

name Nvarchar(50) No No -

cityID Integer No Yes City

Table 3: A database table representing attributes of the District.

This table (table 3 above) holds attribute ‘name’ to keep the name of the district. Its primary

key is id.

And it also includes cityID as a foreign key, so we can understand to which city it is bound.

 16

4.2.3. Town Table

Field Type Null Foreign Key References

id(P.K.) Integer No No -

name Nvarchar(50) No No -

cityID Integer No Yes City

districtID Integer No Yes District

Table 4: A database table representing attributes of Town.

Town table holds information about towns.Its primary key is id. We could only give districtID

as a foreign key and avoid giving cityID as a foreign key. The main reason is, most often we

want to know information of towns or villages of some specific city. To, avoid additional query

execution we designed as shown above.

4.2.4. Village Table

Field Type Null Foreign Key References

id(P.K.) Integer No No -

name Nvarchar(50) No No -

cityID Integer No Yes City

districtID Integer No Yes District

townID Integer Yes Yes Town

Table 5: A database table representing attributes of Village.

Village table also holds informations such as its name, city, district and town.

Its primary key is id.

 17

4.2.5. Voter Table

Field Type Null Foreign Key References

TCK(P.K.) Nchar(11) No No -

Name Nvarchar(50) No No -

Surname Nvarchar(50) No No -

motherName Nvarchar(50) Yes No -

fatherName Nvarchar(50) Yes No -

Sex Integer No No -

Birthday Date No No -

cityID Integer No Yes City

districtID Integer No Yes District

townID Integer Yes Yes Town

villageID Integer No Yes Village

birthCertificateCityID Integer No Yes City

birthCertificateDistrictID Integer No Yes District

boxID Integer No Yes BallotBox

hasVoted Boolean No No -

hasOfflineVoted Boolean Yes No -

Table 6: A database table representing information attributes of a Voter.

Voter table holds information about official voters such as their registered address, where

they born, name, surname, sex, birthday, sex, etc. Its primary key is TCK (TC Kimlik No).

It also includes boxID as a foreign key to BallotBox to keep information in which station he

uses his vote. ‘hasVoted’ attribute is used to know whether voter has voted or not.

‘hasOfflineVoted’ keeps information if voter has voted ‘Offline’ – with paper.

If ‘hasOfflineVoted’ is false, it means that the voter used ONEV system and voted ‘Online’.

Below, the tables related to Election are described.

4.2.6. Election Table

Field Type Null Foreign Key References

id(P.K.) Integer No No -

electionType Integer No Yes ElectionType

date Date No No -

isActive Boolean No No -

Table 7: A database table representing attributes of Election Table.

 18

Since our system should hold past elections’ results, we must have election table to hold

results for every election. Users can see filtered results of any past election.

We keep electionType, date and isActive to determine type of the election, date it occurred

and if it is active or not.

4.2.7. ElectionType Table

Field Type Null Foreign Key References

id(P.K.) Integer No No -

Name Integer No No -

Table 8: A database table representing attributes of Election classifications.

Our system can handle every kind of election. Now, there are four types of election in Turkey.

These are: Genel Seçim, Yerel Seçim, Cumhurbaşkanlığı Seçimi and Referandum. The voting

behavior is different for every type of election.

4.2.8. BallotBox Table

Field Type Null Foreign Key References

id(P.K.) Integer No No -

boxNo Integer No No -

electionID Integer No Yes Election

cityID Integer No Yes City

districtID Integer No Yes District

townID Integer Yes Yes Town

villageID Integer No Yes Village

Address Text No No -

Table 9: A database table representing attributes of Ballot Box.

This table is to hold information about Election Centers (Sandık).

‘boxNo’ is numbering of boxes. But this numbering is particular to every city. Because of this,

we haven’t marked it as a primary key. The box’s place information is can be found by its city,

district, town and village.

 19

4.2.9. User Table

Field Type Null Foreign Key References

voterIdentityNumber(P.K.) Nchar(15) No No -

Password Nvarchar(50) No No -

isActive Boolean No No -

TCK Nchar(11) No Yes Voter

UserType Integer No Yes UserType

Table 10: A database table representing attributes of User Information.

User table holds information about the registered user of ONEV. It holds basic attributes of

the user entity such as voterIdentityNumber, password, and userType. TCK is a foreign key to

Voter table, so detailed information of the user is kept in Voter table.

Primary key of the user table is voterIdentityNumber.

4.2.10. UserType Table

Field Type Null Foreign Key References

id(P.K.) Integer No No -

Type Nvarchar(50) No No -

Table 11: A database table representing attributes of User Types.

In our system, there is more than one type of users. These are Voter, Candidate and ECA.

This table is to hold types of users.

4.2.11. PoliticalParty Table

Field Type Null Foreign Key References

id(P.K.) Integer No No -

Name Nvarchar(50) No No -

Rank Integer No No -

emblem Image No No -

Table 12: A database table representing information regarding Political Parties.

This table holds the list of Political Parties.

The ‘rank’ attribute is used to keep the rank of the specific Party among Parties to be showed

in ‘Voting Card’ or in our system while voting.

 20

4.2.12. Candidate Table

Field Type Null Foreign Key References

candidateID(P.K.) Integer No No -

TCK Nchar(11) No Yes Voter

candidateType Integer No No -

partyID Integer Yes Yes Party

partyRank Integer Yes No -

electionID Integer No Yes Election

cityID Integer Yes Yes City

districtID Integer Yes Yes District

townID Integer Yes Yes Town

villageID Integer Yes Yes Village

Table 13: A database table representing attributes of Candidates.

This table holds basic information about Candidate.

It has foreign key TCK to Voter, so detailed information can be got from Voter table.

For candidates that are member of a party, its partyID is stored and is a foreign key to Party

table.

partyRank is used to show the Candidate’s rank among same party’s candidates in his region.

candidateType is foreign key that is used to show the type of the candidate.

4.2.13. CandidateType Table

Field Type Null Foreign Key References

id(P.K.) Integer No No -

name Integer No No -

Table 14: A database table representing attributes of Candidate Types.

CandidateType table is used to hold types of candidates.

4.2.14. CollectedVote Table

Field Type Null Foreign Key References

voteID(P.K.) Integer No No -

boxID Integer No Yes BallotBox

partyID Integer Yes Yes PoliticalParty

candidateID Integer Yes Yes Candidate

voteCount Integer No No -

Table 15: A database table representing attributes of Votes already collected.

 21

This table (Table 15) is used to hold information of collected votes of a party or an individual

candidate.

boxID is a foreign key to BallotBox, to show from which box the result is.

partyID is to show which party’s result this is.

candidateID is to show which candidate’s result this is.

4.2.15. Question Table

Field Type Null Foreign Key References

id(P.K.) Integer No No -

userID Integer No Yes User

candidateID Integer No Yes Candidate

questionText Text No No -

isActive Text No No -

Table 16: A database table representing attributes of Questions addressed to candidates.

In our system, users can ask questions to candidate. This table is used for that aim.

4.2.16. Answer Table

Field Type Null Foreign Key References

id(P.K.) Integer No No -

questionID Integer No Yes Question

candidateID Integer No Yes Candidate

reply Text No No -

isActive Boolean No No -

Table 17: A database table representing attributes of Answers to questions addressed to

candidates.

This table holds answers to question. There can be more than one answer for a question. So,

id is a primary key, not questionID.

 22

4.3. Data Dictionary

In this section the class diagrams that will be used during implementation are described with

their attributes and methods.

4.3.1. Data Classes

 In this class only attributes are encapsulated. These attributes will be controlled by controller classes.

 User Class

User

+voterIdentityNumber : String

+password : String

+isActive : boolean

+TCK : String

voterIdentityNumber: This will be used to keep the value of VIN that will be given to the voters before

the election.

password: This attribute will keep the password information of the users in string format.

isActive: A Boolean variable to state whether the user is active or not.

 TCK: The TCK number of the user in string format.

 Voter Class

Voter

TCK : String

name : String

surname : String

motherName : String

fatherName : String

sex : int

birthDate : Date

cityID : int

districtID : int

townID : int?

villageID : int

boxID : int

voteStatus : boolean

 23

TCK: The TCK value of the voter in string format.

Name: To keep the name of the voter.

Surname: To keep the surname of the voter.

MotherName: To keep the mother name of the voter.

FatherName: To keep the father name of the voter.

Sex: It will be used for identifying the sex of the voter as integer variable.

birthDate: To keep the birth date of the voter in data variable format.

cityID: To keep the city of the voter that he will cast the vote.

districtID: To keep the district of the voter that he will cast the vote.

townID: To keep the town of the voter that he will cast the vote.

villageID: To keep the village of the voter that he will cast the vote.

boxID: To keep the box of the voter that he will cast the vote.

voteStautus: A Boolean variable that state whether the casting has done or not.

 Political Party Class

PoliticalParty

id : int

name : String

rowNo : int

emblem : Image

Id: To distinguish the political party with an integer variable.

Name: To keep the name of the political party in string format.

rowNo: to state the political party position on election day.

Emblem: An image to keep the political party emblem.

 Candidate Class

Candidate

id : int

TCK : String

candidateType : String

partyID : int

partyCandidateRowNo : int?

electionID : int

cityID : int?

districtID : int?

townID : int?

mahalleID : int?

Id: To keep the candidate id value in integer format.

TCK: To keep the TCK value of the candidate as string.

 24

candidateType: To keep the candidate type in string format.

partyID: States the political party of the candidate.

PartyCandidateRow: To state the position of the candidate in the election list of his political party.

electıonID: To keep the which election the candidate joins.

cityID: States the city of the candidate that he joins the election.

districtID: States the city of the candidate that he joins the election.

townID: States the town of the candidate that he joins the election.

mahalleID: States the “mahalle” of the candidate that he joins the election.

 Election Class

Election

id : int

electionType : int

date : Date

status : boolean

Id: To distinguish the elections based on their id numbers.

ElectionType: States the type of the election in integer format.

Date: To keep the date of the election in Date variable.

Status: To state whether the election has been done or not in Boolean variable.

 Ballot Box Class

BallotBox

id : int

boxNo : int

electionID: int

cityID : int

districtID : int

townID : int?

villageID : int

address : String

Id: To keep the id number of the ballot.

Boxno: States the ballot number in integer variable.

electionID: To keep the election id number for correct election.

cityId: To keep the city of the ballot that it presents in integer format.

 25

districtID: To keep the district of the ballot that it presents in integer format.

townID: To keep the town of the ballot that it presents in integer format.

villageID: To keep the village of the ballot that it presents in integer format.

address: To keep the address of the ballot that it presents in string variable.

 Collected Vote Class

CollectedVotes

votedID : int

boxID : int

partyID : int?

candidateID : int?

votedID: To keep the voted id number in integer format.

boxID: States the ballot id that votes collected.

partId: States the party to keep the party’s votes according to their id values.

candidateID: States the candidate id to keep the candidate’s votes according to their id values.

4.3.2. User Controller Classes

These classes have no attributes and they have methods that control the user actions.

 VoterUserManager Class

addVoterUser(VoterUser): Takes a voter user and add to the system. It returns a Boolean variable

whether the addition has done successfully or not.

updateVoterUser(Voteruser): Takes a voter user and update the information about this object. It

returns a Boolean variable whether the configuration has done successfully or not.

deleteVoterUser(Voteruser): Takes a voter user and delete it from the voter list. It returns a Boolean

variable whether the deletion has done successfully or not.

getVoterUserByID(string): Takes a id value and returns the correct voter based on his id.

setPassword(string): To set the password of the voter. It takes password as string value and returns a

Boolean variable whether the setting has done correctly or not.

VoterUserManager

addVoterUser(VoterUser) : bool

updateVoterUser(VoterUser) : bool

deleteVoterUser(VoterUser) : bool

getVoterUserByID(string) : VoterUser

setPassword(String) : bool

 26

 CandidateUserManager Class

CandidateUserManager

addCandidateUser(CandidateUser) : bool

updateCandidateUser(CandidateUser) : bool

deleteCandidateUser(CandidateUser) : bool

getCandidateUserByID(string) : CandidateUser

setPassword(String) : bool

addCandidateUser(CandidateUser): Takes a candidate user and add to the system. It returns a

Boolean variable whether the addition has done successfully or not.

updateCandidateUser(Candidateuser): Takes a candidate user and update the information about this

object. It returns a Boolean variable whether the configuration has done successfully or not.

deleteCandidateUser(Candidateuser): Takes a candidate user and delete it from the voter list. It

returns a Boolean variable whether the deletion has done successfully or not.

getCandiateUserByID(string): Takes a id value and returns the correct candidate based on his id.

setPassword(string): To set the password of the candidate. It takes password as string value and

returns a Boolean variable whether the setting has done correctly or not.

 ECAUserManager Class

ECAUserManager

addECAUser(ECAUser) : bool

updateECAUserECAUser) : bool

deleteECAeUser(ECAUser) : bool

getECAUserByID(string) : ECAUser

setPassword(String) : bool

addECAUser(CandidateUser): Takes a ECA user and add to the system. It returns a Boolean variable

whether the addition has done successfully or not.

updateECAUser(Candidateuser): Takes a ECA user and update the information about this object. It

returns a Boolean variable whether the configuration has done successfully or not.

deleteECAUser(Candidateuser): Takes a ECA user and delete it from the voter list. It returns a Boolean

variable whether the deletion has done successfully or not.

getECAUserByID(string): Takes a id value and returns the correct ECA based on his id.

setPassword(string): To set the password of the ECA. It takes password as string value and returns a

Boolean variable whether the setting has done correctly or not.

 27

 AuthenticationManager Class

AuthenticationManager

login() : bool

authenticate(User) : bool

logout(User) : bool

isLoggedOut(User) : bool

getCurrentUser() : User

createSession() : bool

Login(User): This function returns a Boolean variable whether the login operation has done correctly

or not.

Authenticate(User): This method takes an user variable and makes the authentication of the user.

Logout(User): This function returns a Boolean variable whether the logout operation has done

correctly or not.

isLoggedOut(User): To state whether the user is logged out or not in Boolean variable.

getCurrentUser(): Returns the current user of the system as user object.

createSession(): To create the session for the current user. It returns a Boolean variable for the

successful creation.

4.3.3. Data Controller Classes

These classes have no attributes and they have methods that control the data relations.

 Candidate Manager Class

CandidateManager

getCandidateByID(int) : Candidate

getCandidateByTCK(String) : Candidate

addCandidate(Candidate) : boolean

updateCandidate(Candidate) : boolean

deleteCandidate(Candidate) : boolean

setPartyID(int) : bool

getParty() : PoliticalParty

setPartyRank(int) : boolean

getQuestions(Candidate) : Question[]

getCollectedVotes(Candidate) : CollectedVotes

getAnswers(Candidate) : Answer []

getCandidateByID(int): Takes id number as parameter and returns the candidate object based on the

his id number.

getCandidateByTCK(string): Takes TCK as parameter and returns the candidate object based on the

his TCK value.

 28

addCandidate(Candidate): Takes a candidate object and adds to the system. Returns a Boolean

variable for correct addition operation.

updateCandidate(Candidate): Takes a candidate object and configure the information about the

candidate. Returns a Boolean variable for correct update operation.

deleteCandidate(Candidate): Takes a candidate object and deletes the candidate from the system.

Returns a Boolean variable for correct deletion operation.

setPartyID(int): Sets the party of the candidate.

getParty(): Returns the political party of the candidate that he is member of.

setPartyRank(int): Sets the position of the candidate in the party list.

getQuestions(Candidate): Returns the questions that asked to the candidate in array format.

getCollectedVotes(Candidate): Takes a candidate as a parameter and returns the collected votes.

getAnswers(Candidate): Returns the answers of the candidates to the questions in array format.

 PoliticalPartyManager Class

PoliticalPartyManager

getPoliticalPartyByID(int) : PoliticalParty

getPoliticalPartyByName(String) : PoliticalParty

addPoliticalParty(PoliticalParty) : boolean

updatePoliticalParty(PoliticalParty) : boolean

deletePoliticalParty(PoliticalParty) : boolean

setRank(int) : boolean

setEmblem(Image) : boolean

getPoliticalPartyByID(int): This method takes the political party id and returns the correct political

part having this id number.

getPoliticalPartyByName(string): This method takes the political party name and returns the correct

political part having this name.

addPoliticalParty(PoliticalParty): This method takes a political party object and add the political party

list.

updatePoliticalParty(PoliticalParty): This method takes a political party object and update this party

on political party list.

deletePoliticalParty(int): This method takes a political party object and delete this party from political

party list.

setRank(int): To state the rank of the party in the election.

setEmblem(Image): Takes and image object and sets it as political party emblem.

 29

 ElectionManager Class

ElectionManager

getElectionByID(int) : Election

getActiveElection() : Election

getElectionsByType(ElectionType) : Election []

addElection(Election) : boolean

updateElection(Election) : boolean

deleteElection(Election) : boolean

setDate(Date) : boolean

setElectionType(int) : boolean

getElectionByID(int): This method takes an integer value as election id number and returns the

election.

getActiveElection(): This method takes no argument and returns the active election object.

getElectionsByType(ElectionType): This method returns the election lists based on the election type.

addElection(Election): Takes and election object and adds the election objects list.

updateElection(Election): Takes and election object and configures the object on the election object

list.

deleteElection(Election): Takes the election object list and deletes from the list.

setDate(Date): To set the election date takes a date variable.

setElectionType(int): Takes and integer variable and sets the election type based on this integer value.

 BallotBox Manager

BallotBoxManager

getBallotBoxByID(int) : BallotBox

getBBofCity(City) : BallotBox []

getBBofDistrict(District) : BallotBox []

getBBofTown(Town) : BallotBox []

getBBofVillage(Village) : BallotBox []

getBBofElection(Election): BallotBox []

addBallotBox(BallotBox) : boolean

updateBallotBox(BallotBox) : boolean

deleteBallotBox(BallotBox) : boolean

getBallotBoxByID(int): Returns the ballot box object based on the its id number.

getBofCity(City): Takes the city as parameter and returns the ballots as array format on this city.

getBofDistrict(District): Takes the district as parameter and returns the ballots as array format on this

district.

 30

getBofTown(Town): Takes the town as parameter and returns the ballots as array format on this

town.

getBofVillage(Village): Takes the village as parameter and returns the ballots as array format on this

village.

addBallotBox(BallotBox): Takes a ballot box object and adds ballots list.

updateBox(BallotBox): Configures the ballot box given as parameter on the ballot box list.

deleteBox(BallotBox): Takes a ballot box object and deletes it from the ballot box list.

 QuestionManager Class

QuestionManager

getQuestionByID(int) : Question

getQuestionsFromUser(User) : Question []

getQuestionsToCandate(Candidate) : Question []

getUnAnsweredQuestionsOfCandate(Candidate) : Question []

addQuestion(Question) : boolean

updateQuestion(Question) : boolean

deleteQuestion(Question) : boolean

getQuestionByID(int): Takes an id number and returns the question object based on this id number.

getQuestionsFromUser(User): Takes an user parameter and returns the lists of the questions asked by

this user as question array format.

getQuestionsToCandidate(Candidate): Takes a candidate parameter and returns the lists of the

questions asked to this candidate as question array format.

getUnAnsweredQuestionsOfCandidate(Candidate): Takes an candidate parameter and returns the

lists of the questions that is not answered by this candidate.

addQuestion(Question): Takes a question object and adds to the question list.

updateQuestion(Question): Takes a question object and updates this object in the question list.

deleteQuestion(Question): Takes a question object and deletes it from the question object list.

 31

 AnswerManager Class

AnswerManager

getAnswerByID(int) : Answer

getAnswersToUser(User) : Answer []

getAnswersOfQuestion(Question) : Answer []

getAnswersOfCandidate(Candidate) : Answer []

getQuestion(Answer) : Question

addQuestion(Question) : boolean

updateQuestion(Question) : boolean

deleteQuestion(Question) : boolean

getAnswerByID(int): Takes an id number and returns the answer object based on this id number.

getAnswersToUser(User): Takes an user parameter and returns the lists of the answers related with

this user as answer array format.

getAnswersOfQuestion(Question): Takes a question parameter and returns the lists of the answers to

this question as answer array format.

getAnswersofCandidate(Candidate): Takes an candidate parameter and returns the lists of the

answers that this candidate response.

getQuestion(Answer): Takes an answer object and returns the corresponding question object.

addQuestion(Question): Takes a question object and adds to the question list.

updateQuestion(Question): Takes a question object and updates this object in the question list.

deleteQuestion(Question): Takes a question object and deletes it from the question object list.

 32

5. System Architecture

5.1. Architectural Design

JVM

Servlet

Engine

&

JSP

Compiler

XML/XSL

Processor

&

Parser

Admin

Server

JDBC DB2

Express-C

JVM

Servlet

Engine

&

JSP

Compiler

XML/XSL

Processor

&

Parser

Admin

Server

JDBC

 DB2

Express-C

WebSphere Application Servers Database ServersClients

Main Server

Backup Server

A

B

Figure 7: General View Of ONEV System

 33

Basically, Our system is a 3-tier Client/Server architecture, as shown in figure 7, comprising of

two databases, two Application servers and PC stations. The additional application server

presented in dotted lines in the diagram above acts as a backup to the working main server.

Therefore, during critical operations, in case of failure the reserve server comes into

operation. The two databases work together during critical operations of polling votes.

However, the backup server is responsible for storing critical information like votes and

results of election. In the front phase of the system architecture lies the clients. The clients

represent the PC centers formed throughout the country during election periods. It also

represents any PC that can connect to our server during normal working days for regular

applications like viewing election results, editing profiles and so on. The middle phase of the

architecture comprises of Application servers we have discussed above. It should be noted

that the servers consist of back-end applications to handle different tasks delegated by the

administration server. The far end phase is comprised of storage subsystems, mainly the

databases. These phases communicate in a formal protocol. That is, application server

communicates directly with the clients and the storage devices. However, clients-databases

communication is not directly. The application server – through a database connector-

handles all database requests from the clients side to the database, as well as the responses

are controlled by the server.

HIGH ABSTRACT MODULAR SYSTEM STRUCTURE

UML Component Diagram

Database

Server

Application

Server

Client PC

Stations

Application

Server

Client PC

Stations

Figure 7: High Abstract Modular System Structure

 34

The major components in the system can be represented in form of modules. Therefore, we

have three unique major modules Clients, Application server, and Database server modules

(figure 7). The diagram below shows the application sequence of the modules. The normal

flow of actions in the system follows this order. A client issues a communication or data

request with the server. The server (in many functions of the systems) checks the validity and

eligibility of the client to the system by contacting the data storage server. Upon the response

from the database server; the application server responds to the client request with positive

or negative acknowledgement. Again, it should be noted that there is no direct

communication between the clients and the database server.

5.2. Description of Components[7]

GUI

dataRetrieval

Authentication

ServerAdmin

BackEndApplications

DataStorage

Figure 8: Components of the System

Our system can be subcategorized into six components according to major activities

performed by the system (figure 8). The components are namely; Graphical User

 35

Interface(GUI), Server Administrator(ServerAdmin), Authentication, Back End

Applications(BackEndApplications), Data Retrieval(dataRetrieval) and data

Storage(DataStorage).

5.2.1. Graphical User Interface

5.2.1.1. Processing Narrative for GUI

This component comprises all the objects that render the graphical User Interfaces with the

appropriate contents. When a client issues an http request to the application server, a

corresponding instance of class is issued by the Java Servlet[6] to respond to and process the

request. In addition to that, the component is responsible for creation of dynamic HTML

webpage using JSP technology before sending them to the client side.

5.2.1.2. GUI Interface Description

The inputs to this component are the viewable webpage requests from the client side. On the

other hand the outputs are the dynamically/statically created webpages to be displayed on

the client side.

5.2.1.3. GUI Processing Detail

The complete step-by-step procedural activities related to this component are as follows;

1. User/client requests a page from the system through internet

2. Server Admin captures the request.

3. After processing administration tasks according to the type of request, Server Admin

delegates the presentation of solution page(s) to the GUI component to create

appropriate internet page.

4. The GUI presents the created page to the Server Admin to send it to the requester.

 36

5.2.1.4. Dynamic Behavior of GUI

GUIControlManager GUICreator

AdminServer

requestPage():data

createGUI()

getGUI()

<< http file>>

Figure 9: Sequence Diagram of GUI

5.2.2. Data Storage

5.2.2.1. Processing Narrative for Data Storage

This component is responsible for creating and storing data objects. Therefore it makes

frequently requested data available instead of querying into the database frequently. It uses

the JDBC connector to get data from the database and create corresponding objects with

attributes and methods to access the data easily.

5.2.2.2. Data Storage Interface Description

It receives data requests from the dataRetrieval component as an input. Then it translates

these into SQL commands and processes them using JDBC connector. The obtained result is

put into an object. The object becomes available for future use.

 37

5.2.2.3. Data Storage Processing Detail

It works as follows

1. It receives a request of data from dataRetrieval component

2. It0 issues the command through JDBC connector

3. The received response from the run queries and creates a corresponding object.

5.2.2.4. Dynamic Behavior of Data Storage

DataManager JDBCconnector

 << data >>
getConnection()

<<acknowledge>>

sendData()

<<acknowledge>>

storage()

Figure 10: Sequence Diagram for Data Storage

 38

5.2.3. ServerAdministrator(ServerAdmin)

5.2.3.1. Processing Narrative for ServerAdministrator

ServerAdmin is “a junction” between requests and responses. It receives HTTP requests from

the client side and delegate the requests to respect servlets to process the requests. In

addition to that, it collects the ready responses and sends them to the appropriate clients. It

works closely with authentication component to authenticate the income requests before

delegating them to the corresponding back end applications to process them.

5.2.3.2. ServerAdministrator Interface Description

It receives data packets online in form of HTTP protocols as an input. Using back end

programs the packets are processed, the required information is extracted and the necessary

steps taken into actions. It outputs HTTP responses and sends them to the clients via the

internet.

5.2.3.3. ServerAdministrator Processing Detail

It works as follows

1. It receives a request from clients through HTTP.

2. It checks the validity of the request.

3. According to the type the request it assigns the request to a corresponding back end

program.

4. When the request is processed it sends to the corresponding client

 39

5.2.3.4. Dynamic Behavior of Server Admin

ServerAdmin Authentication ServicesManager ServiceAgent

Client

checkValidity()

sendRequest()

delegate()

response()

sendJob()

getResponse()

<<acknowledge>>

<< http request >>

Figure 11: Sequence Diagram for Server Admin

5.2.4. Authentication

5.2.4.1. Processing Narrative for Authentication

This component is responsible for checking the critical requests with the permission of the

clients. For example if a client tries to log on into the system Authentication checks if he is a

registered user of the system according to the user identification and password. This is also

the same when user wants to access some data. An election commission officer may be

granted to view the voter profile while a voter cannot be granted the access the profile of

other voters.

5.2.4.2. Authentication Interface Description

It receives commands as well as data from the ServerAdmin to help authenticate the process

in question. The output is either request granted or denied. The output is directed to the

ServerAdmin. It interacts with DataRetrieval in order to get data from the data storage

component.

 40

5.2.4.3. Authentication Processing Detail

It works as follows

1. It receives authentication request from ServerAdmin along with data.

2. It using the given data and that in the database it processes authentication.

3. It returns a grant or a denial response.

5.2.4.4. Dynamic Behavior Authentication

Authentication DataRetrieval

 <<authentication request >>

requestData()

fetch()

getData()

get()

 <<acknowledge >>

Figure 12: Sequence Diagram for Authentication

5.2.5. Back End Applications

5.2.5.1. Processing Narrative for Back End Applications

This includes technologies to handle different tasks and instantiate and serve different tasks

delegated by ServerAdmin. The technologies involved include XML-parsers, JSP, Servlets,

and the JVM.

 41

5.2.5.2. Back End Applications Interface Description

In general the server task can be considered as an input to the back- end server. The output is

the result of the back end server according to the requirements of the ServerAdmin.

5.2.5.3. Back End Applications Processing Detail

It works as follows

1. ServerAdmin triggers a job to the appropriate back- end application.

2. ServerAdmin provides appropriate input to the application.

3. The application processes the job

4. The application returns response to the ServerAdmin.

5.2.5.4. Dynamic Behavior of Back End Application

ServerAdmin ServicesManager ServiceAgent

sendRequest()

delegate()

response()

sendJob()

getResponse()

Figure 13: Sequence Diagram for Back End Applications

5.2.6. Data Retrieval

5.2.6.1. Processing Narrative for Data Retrieval

This component is responsible for accessing data from and storing data to the database. It

acts as a bridge between the applications and the database objects.

It uses the JDBC connector to process the data queries in form of SQL commands.

 42

5.2.6.2. Data Retrieval Interface Description

It receives data requests from the Server admin, authentication and the back end

applications. Then it translates these into SQL commands and processes them using JDBC

connector. The obtained result is returned as an object. The returned object is extracted to

get the required data and reported to the component requested it.

5.2.6.3. Data Retrieval Processing Detail

It works as follows

1. It receives a request of data from Application server components

2. It translates the request into SQL command

3. It issues the command through JDBC connector

4. The received response from the run query is extracted to get the required data

5. The data is sent to the component asked for it.

5.2.6.4. Dynamic Behavior of Data Retrieval

SQLgeneratorManager JDBCconnector

 <<data request >>

requestConnection()

fetch()

getResponse()

get()

 <<data >>

 <<acknowledge >>

sendQuery()

 <<acknowledge >>

Figure 14: Sequence Diagram for Data Retrieval

 43

5.3. Design Rationale

We separated the system into three major modules in order to keep the system simple,

minimize cost and increase security level. As it can be seen from the system representation

diagram there is much of computational activities rather than just presentation of windows as

graphical user interfaces. The presence of one application server minimizes cost in terms of

money and the cost of system distribution. All the necessary computations are carried out at

the particular center. The presence of backup application server makes sure that the system

is available most of the time even in the case the main application server encounters a

problem that hinders its functioning.

Data storage is separate because we wanted to separate it completely from direct

communication with the clients. Query issuing over the internet can be a threat and

sometimes degrades performance. The communication between the application server and

the database can be improved by storing the already queried data into the server machine,

which we cannot do in the client machine to avoid insecurity.

Before concluding this architecture we had discussed architectures like Single Tier and Two

Tier architectures. In Single tier architecture we decided to design an application that runs on

a client machine (like a desktop application). However, due to criticality of the system, this

cannot be possible because the system can be easily attacked by viruses in the client

machine. The 2-tier architecture was totally inappropriate for our system because it requires

storage of information in a formatted order for easier access. This is due to the fact that data

storage and retrieval is more than 50% of all activities carried out by the system to meet the

clients’ needs.

 44

6. User Interface Design

6.1. Overview of User Interface

Since the system consists of two parts user interfaces will be different in those two modes. In

normal interactive mode there will be common home page interface for all system users and

they will use this page for login operation.

In this mode voters interface will contain the links to view the candidates profiles and past

years’ election results. EC’s interface will include his own profile and he will conduct the

election tasks by using this interface. ECA interface will cover the functionalities related with

registration of the voters and candidates.

In election mode there will be a major interface that the voting operation is executed. This

interface will be used by the voters. And there will be another interface fort the ESS. By using

this interface the ESS’s will generate a password for the voters used in casting operation and

also he can enter the offline votes to the system.

6.2. Screen Images

In this part some of the screen images and their functionalities are described.

6.2.1. Login

Figure 15: User Interface of Login Page

This interface will be used by all of the system users and by entering the userid and password

they will be able to use the system. For an incorrect password or userid the system will

promote an error message to the users (figure 15).

 45

6.2.2. User Registration

Figure 16: User Interface of Registration Page

The form in figure 16 will be used for the registration of the citizens to this system. We only

require TCK of the citizen as personal information. We can get other required personal

information such as birthday, sex, father’s name, etc from governmental web service by

providing only TCK. It will be easier for the user to register. Additionally, citizens must provide

their address information. Then the official goes to that address and checks if the citizen is at

that address or not. If the citizen is at that address and right to vote, then he will be approved.

 46

6.2.3. Login For Vote

Figure 17: User Interface of Voting Stage Login Page

The interface in figure 17 will be used by the voters during the election mode in voting

process. Before casting the vote, the voter must provide his Voter Identity Number, password

and security password generated by the ESS. After entering the correct values the voter can

reach the voting interface.

6.2.4. Voting

Figure 18: User Interface of Voting Page

 47

After the voter logged in successfully, the interface in figure 19 is used for casting vote. In our

system, the user interfaces will be simple and clear since stakeholders of the system have

different educational, technological background. The Voter castes for only one candidate type

and go to next page for the next type of candidate casting.

6.3. Screen Objects and Actions

Since the users interact with our system through web browser, our objects will be html

elements. Some of the main objects and their functionalities are described below:

 Label

The <label> tag defines a label for an input element (Password Field, Text Field).

In our application, we use labels for every important input element. If the user clicks

on the text within the label element, it toggles the input element.

 Text Field, Password Field

When the user fills these fields and sends the form, the server gets filled values and do

some transactions and returns results according to given values. We use these objects

in order to get required information.

 Check Box

When we want to get only ‘Yes – No’ or ‘True – False’ information for the specific

question we use check boxes.

 Radio Button

When the user is forced to choose only one option from the list, the radio button is

used. The main usage of this object is at voting process. To illustrate, voter chooses

only one political party or individual candidate from the list.

 Submit Button

A submit button is used to send form data to a server. The data is sent to the page

specified in the form's action attribute.[3]

 Hyperlink

A hyperlink (or link) is a word, group of words, or image that you can click on to jump

to a new document or a new section within the current document. Hyperlink’s

difference from Submit Button is, it does not send any field’s values, it’s aim is only to

redirect to some other page.

 48

7. Detailed Design

The ONEV is divided into two main packages namely Model Package and Controller Package

as seen in figure 19 below. In model package contains the data description classes and

manager package contains the functionalities that control the data objects. Also Controller

Package has two sub-packages that control the user and data objects separately.

User
VoterUser
CandidateUser
ECAUser
Voter
Question
Answer
Candidate
PoliticalParty
Election
ElectionType
BallotBox
CollectedVotes

VoterUserManager
CandidateUserManager
ECAUserManager
AuthenticationManager

CandidateManager
QuestionManager
AnswerManager
CollectedVotesManager
PoliticalPartyManager
BallotBoxManager
ElectionManager

Database Sub-Pacckage

Model Pacckage User Sub-Pacckage

Manager Pacckage

Figure 19: General Overview of Packages

 49

7.1. Model Package

Classification: package

Definition: This package contains classes(as shown in figure 20) that correspond to the

database tables for every table in the database there is a corresponding class to represent its

attributes once data is queried.

Responsibilities: To provide object oriented presentation of data from the database.

Constraints: It provides no functionalities other than easier data presentation.

Composition: There is no any sub-package of this package.

User/Interactions: It interacts with Manager Package. Manager package uses this package for

holding data from database.

Resourcing: There are no any resources that are needed by this package.

Processing: Data storage and presentation.

 50

User

+voterIdentityNumber : String

+password : String

+isActive : boolean

+TCK : String

VoterUser CandidateUser
ECAUser

PoliticalParty

id : int

name : String

rowNo : int

emblem : Image

Election

id : int

electionType : int

date : Date

status : boolean

ElectionType

id : int

name : String

CollectedVotes

votedID : int

boxID : int

partyID : int?

candidateID : int?

BallotBox

id : int

boxNo : int

electionID: int

cityID : int

districtID : int

townID : int?

villageID : int

address : String

Voter

TCK : String

name : String

surname : String

motherName : String

fatherName : String

sex : int

birthDate : Date

cityID : int

districtID : int

townID : int?

villageID : int

boxID : int

voteStatus : boolean

Question

id : int

userID : int

candidateID: int

questionText : String

isActive : boolean

Answer

id : int

questionID : int

candidateID: int

reply : String

isActive : boolean

Candidate

id : int

TCK : String

candidateType : String

partyID : int

partyCandidateRowNo : int?

electionID : int

cityID : int?

districtID : int?

townID : int?

mahalleID : int?

<<use>>

<<us
e>

>

<
<

u
se

>
>

<
<

u
se

>
>

<
<

u
se

>
>

<<use>>

<<us
e>

>

<<use>>

<
<

u
se

>
>

<
<

u
se

>
>

<
<

u
se

>
>

<<use>>

<<use>>

<<use>>

Figure 20: Class Diagram of Model Package

 51

7.2. Controller Package

Classes defined in this package will be used for communicating with the database, i.e.

retrieving/updating/deleting/inserting data. The functionality beneath the user interface will

be realized by means of this group of classes. This package consists of two sub packages.

7.2.1. User Sub-Package

Classification: Sub-package

Definition: This package contains classes that manage (delete, update, add) their

corresponding classes in Model package and entities in database. Every class in Model

package has its corresponding controller class. This package contains manager classes for user

related data.

Responsibilities: To retrieve data from database and create corresponding Model class and to

update/delete data from database.

Constraints: This sub-package provides no more methods other than retrieving, updating and

deleting data from database and creating corresponding Model class.

Composition: There is no any sub component.

User/Interactions: It interacts with model classes and database. The interaction between

Application Server and Database is done through Controller package.

Resourcing: The Model classes and database tables are the resources of this sub-package.

Processing: Manipulation of database data and instantiation of new class object.

 52

CandidateUserManager

addCandidateUser(CandidateUser) : bool

updateCandidateUser(CandidateUser) : bool

deleteCandidateUser(CandidateUser) : bool

getCandidateUserByID(string) : CandidateUser

setPassword(String) : bool

VoterUserManager

addVoterUser(VoterUser) : bool

updateVoterUser(VoterUser) : bool

deleteVoterUser(VoterUser) : bool

getVoterUserByID(string) : VoterUser

setPassword(String) : bool

ECAUserManager

addECAUser(ECAUser) : bool

updateECAUserECAUser) : bool

deleteECAeUser(ECAUser) : bool

getECAUserByID(string) : ECAUser

setPassword(String) : bool

AuthenticationManager

login() : bool

authenticate(User) : bool

logout(User) : bool

isLoggedOut(User) : bool

getCurrentUser() : User

createSession() : bool

0...*

0
...*

0
...*

0
...*

0
...*

0
...*

 Figure 21: Class Diagram of UserManager Sub-Package

7.2.2. Database Sub-Package

Classification: Sub-package

Definition: This package contains classes that manage (delete, update, add) their

corresponding classes in Model package and entities in database. Every class in Model

package has its corresponding controller class. This package contains all manager classes that

are not related to user.

Responsibilities: To retrieve data from database and create corresponding Model class and to

update/delete data from database.

Constraints: This sub-package provides no more methods other than retrieving, updating and

deleting data from database and creating corresponding Model class.

Composition: There is no any sub-package of this package.

User/Interactions: It interacts with model classes and database. The interaction between

Application Server and Database is done through Controller package.

Resourcing: The Model classes and database tables are the resources of this sub-package.

Processing: Manipulation of database data and instantiation of new class object.

 53

CandidateManager

getCandidateByID(int) : Candidate

getCandidateByTCK(String) : Candidate

addCandidate(Candidate) : boolean

updateCandidate(Candidate) : boolean

deleteCandidate(Candidate) : boolean

setPartyID(int) : bool

getParty() : PoliticalParty

setPartyRank(int) : boolean

getQuestions(Candidate) : Question[]

getCollectedVotes(Candidate) : CollectedVotes

getAnswers(Candidate) : Answer []

QuestionManager

getQuestionByID(int) : Question

getQuestionsFromUser(User) : Question []

getQuestionsToCandate(Candidate) : Question []

getUnAnsweredQuestionsOfCandate(Candidate) : Question []

addQuestion(Question) : boolean

updateQuestion(Question) : boolean

deleteQuestion(Question) : boolean

AnswerManager

getAnswerByID(int) : Answer

getAnswersToUser(User) : Answer []

getAnswersOfQuestion(Question) : Answer []

getAnswersOfCandidate(Candidate) : Answer []

getQuestion(Answer) : Question

addQuestion(Question) : boolean

updateQuestion(Question) : boolean

deleteQuestion(Question) : boolean

ElectionManager

getElectionByID(int) : Election

getActiveElection() : Election

getElectionsByType(ElectionType) : Election []

addElection(Election) : boolean

updateElection(Election) : boolean

deleteElection(Election) : boolean

setDate(Date) : boolean

setElectionType(int) : boolean

BallotBoxManager

getBallotBoxByID(int) : BallotBox

getBBofCity(City) : BallotBox []

getBBofDistrict(District) : BallotBox []

getBBofTown(Town) : BallotBox []

getBBofVillage(Village) : BallotBox []

getBBofElection(Election): BallotBox []

addBallotBox(BallotBox) : boolean

updateBallotBox(BallotBox) : boolean

deleteBallotBox(BallotBox) : boolean

CollectedVoteManager

getCVByID(int) : CollectedVote

getCVofCity(City) : CollectedVote[]

getCVofDistrict(District) : CollectedVote []

getCVofTown(Town) : CollectedVote []

getCVofVillage(Village) : CollectedVote []

getCVofBallotBox(BallotBox) : CollectedVote []

getCVofParty(PoliticalParty) : CollectedVote []

addCollectedVote(CollectedVote) : boolean

PoliticalPartyManager

getPoliticalPartyByID(int) : PoliticalParty

getPoliticalPartyByName(String) : PoliticalParty

addPoliticalParty(PoliticalParty) : boolean

updatePoliticalParty(PoliticalParty) : boolean

deletePoliticalParty(PoliticalParty) : boolean

setRank(int) : boolean

setEmblem(Image) : boolean

0
...*

0...*

0
...*

0...*

0...*

0...*

0...*

0...*

0...*
0...*

0...*

0...*

0
...*

0
...*

Figure 22: Class Diagram of Database Manager Sub-Package

 54

8. Libraries and Tools

For system design the following tools will be used during the implementation process.

 UML: The Unified Modeling Language (UML) is a standard language for specifying,

visualizing, constructing, and documenting the artifacts of software systems, as

well as for business modeling and other non-software systems. The UML

represents a collection of best engineering practices that have proven successful in

the modeling of large and complex systems

 J2EE: J2EE (Java 2 Platform, Enterprise Edition) is a Java platform designed for the

mainframe-scale computing typical of large enterprises. Sun Microsystems

(together with industry partners such as IBM) designed J2EE to simplify application

development in a thin client tiered environment.

 Ajax: Ajax (sometimes called Asynchronous JavaScript and XML) is a way of

programming for the Web that gets rid of the hourglass. Data, content, and design

are merged together into a seamless whole.[4]

 DB2: DB2 is a family of relational database management system (RDBMS) products

from IBM that serve a number of different operating system platforms. According

to IBM, DB2 leads in terms of database market share and performance.

 Eclipse: Eclipse is a multi-language software development environment comprising

an integrated development environment (IDE) and an extensible plug-in system. It

is written mostly in Java and can be used to develop applications in Java and, by

means of various plug-INS, other programming languages.

 WebSphere: WebSphere is a set of Java-based tools from IBM that allows

customers to create and manage sophisticated business Web sites. The central

WebSphere tool is the WebSphere Application Server (WAS), an application server

that a customer can use to connect Web site users with Java applications or

servlets.[5]

http://searchservervirtualization.techtarget.com/sDefinition/0,,sid94_gci212797,00.html
http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci212516,00.html
http://searchwinit.techtarget.com/sDefinition/0,,sid1_gci212065,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213135,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci213144,00.html
http://en.wikipedia.org/wiki/Software_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Plug-in_%28computing%29
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Programming_language
http://searchsqlserver.techtarget.com/sDefinition/0,,sid87_gci211584,00.html
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci212415,00.html
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci212966,00.html

 55

9. Time Planning (Gantt Chart)

9.1. Term1 Gantt Chart

 Figure 23: Gantt Chart of Term1

The Gantt Chart in figure 23 above outlines the activities of the project to be accomplished in the fall

term of 2010-2011.

 56

9.2. Term2 Gantt Chart

Figure 24: Gantt Chart of Term2

The Gantt Chart in figure 24 above outlines the activities of the project to be accomplished in the

spring term of 2010-2011.

 57

10. Conclusion

This document describes the design levels of the ONEV project conducted by iTeam4. The

system architecture of the ONEV and data representations is stated through the document.

Furthermore, class diagrams with data flow diagrams and design of the user interfaces are

showed in the document in detail. Consequently, this document is prepared to conduct

better design approaches to ONEV project at implementation.

