
MECAC WEEKLY REPORT (May 5 – May 11)

This week we have worked on integrating occlusion culling on area of interest computation.

The area of interest calculation was performed in EventMatrix class of server network

component. Mert has worked on integration of the occlusion computer that Umit and Cinar

has implemented.

Script 1: Current area of interest computation

Currently, the urgency of each message is computed according to distance between sender

and receiver. This approach is definetely flawed considering the occlusions in between. For

example sender and receiver may be close but seperated by a large mountaion. In this case

the urgency algorithm we have implemented above will determine that the update

messages from sender to receiver is really urgent and should be transmitted even in low

bandwidth conditions. It is obvious that this message is not that important and even has no

effect in graphics calculations of the receiver since the player is occluded and not seen. Such

position updates also creates liabilities to cheating as some players can trace the network

comunication and see players that are invisible otherwise. This situation is illustrated in the

above case where our current area of interest computation fails to find an effective solution.

Figure 1. The case where current area of interest computation is not effective.

To solve this problem Umit has worked on precomputation of occlusions for each position in

the virtual world of MMOG. We have taken two step approach to compute the area of

interest. First we pass over a predetermined circle to find possible occluding objects. To

determine which points are occluding in the map we have integrated the heightmap data

that is serialzed from client to the server. We have used binary serializer in c# to write the

height map data of the field to a file named “MyFile.bin”

Script 2: Serialization of the height data in the client component.

Above code script is taken from client source code where we serialize “field” data to a file.

We have then used this file to deserialze the float array and use it in occlusion computation

in the server component. Figure 1 is drawn from the field data in the server network

component. In figure 1, white locations are the highest points on the map, and black

locations are the lowest points of height.

We have used this heightmap data to determine the occlusions that stem from mountains in

Virtual Turkey. In the first pass we have computed the height difference between each

positions in the map. We have marked the positions that have greater height difference than

a threshold as “occluding positions”. The threshold is the height of the player that wanders

around the virtual map.

In the second pass we determined the visibility of map positions according to following

algorithm:

1. For each position P in the map

For each position Q in the map such that distance(P,Q) < circle_threshold

Let S be the set of “occluding posisionts” for P

For each point X in set S

1. İf euclid_distance(line(P,Q),point X)) < threshold

Return “ occluded “

2. Else

Return “ visible ”

Cinar has worked on storage mechanism for the computation results from Umit. We have

designed simple MySQL table to store visible area points for each position. Determination of

a positions visibility relative to another position takes a single query to this table. Table

schema is as follows:

VisiblePoints {

 Point source

 Point destination

}

To check the visibility of a point A relative to B, we look if that row exists in the database by

following query :

 SELECT * FROM VisiblePoints WHERE source=’A’ AND destination=’B’

This query should take less than milisecond to finish and easy to use in our area of interest

computation. We have then integrated this result to sort the messages according to the

urgency. The ‘scoreUrgency’ function given in script 1 has been changed to also consider if

the locations are visible to each other.

Currently we have not integrated eye angle to the determination of the visiblity. But the

approach we have used could be improved to include that information as well. This is better

done dynamically since we just need to implement a component that determines if a point

falls into eye range.

Figure 2. Integration of the view angle to the urgency computation

Score urgency function would simply check if a point falls into the view angle illustrated as

above. This small modification would significantly reduce the area of interest each client and

therefore the network communication. This remains as a future work for MECAC.

