
1

DETAILED DESIGN REPORT

for

CONTEXT AWARE USER INTERFACE PROJECT

 MOMO SOFTWARE

 Burak Kerim Akkuş - 1559855

 Ender Bulut - 1559996

 Hüseyin Can Doğan - 1560077

2

1. INTRODUCTION………………………………………………………………………..6

1.1 Problem Definition…………………………………………………………. …..6
1.2 Purpose ………………………………………………………………………… 6
1.3 Scope …………………………………………………………………………... 6
1.4 Overview …………………………………………………………………..........7
1.5 Definitions, Acronyms and Abbreviations ……………………………………...7
1.6 References……………………………………………………………………….7

2. SYSTEM OVERVIEW…………………………………………………………………7

2.1. Functionality…………………………………………………………………...8
2.2. Idea of Project…………………………………………………………………8
2.3. Audience and Benefits…………………………………………………………9

3. DESIGN CONSIDERATIONS…………………………………………………………9
3.1. Design Assumptions, Dependencies and Constraints…………………………..9
3.1.1 Constraints……………………………………………………………………9
3.1.2 Assumptions………………………………………………………………….9
3.1.3 Sponsor requests……………………………………………………………..9
3.2. Design Goals and Guidelines………………………………………………….10
3.2.1 Design priorities…………………………………………………………….10
3.2.2 Final Objective……………………………………………………………...10

4. DATA DESIGN……………………………………………………………………...11

4.1 Data Description………………………………………………………………11
 4.1.1 User……………………………………………………………………12

4.1.2 Unit……………………………………………………………………12
4.1.3 Mission………………………………………………………………...13
4.1.4 Arrest………………………………………………………………….14
4.1.5 Attack…………………………………………………………………14
4.1.6 Fire…………………………………………………………………….14
4.1.7 Follow…………………………………………………………………15
4.1.8 Move…………………………………………………………………..15
4.1.9 Map……………………………………………………………………16
4.1.10 Message………………………………………………………………16

4.2 Data Dictionary………………………………………………………………..17

5. SYSTEM ARCHITECTURE………………………………………………………....28
5.1 Architectural Design……………………………………………………………..28
5.2. Description of Components……………………………………………………..29

5.2.1 MainServerCore………………………………………………………...29
5.2.1.1 Processing narrative for MainServerCore……………………29
5.2.1.2 MainServerCore interface description…………..……………29

3

5.2.1.3 MainServerCore processing detail…………………………..29
5.2.2 DatabaseManager……………………………………………………...30

 5.2.2.1 Processing narrative for DatabaseManager………………….30
 5.2.2.2 DatabaseManager interface description……………………..30
 5.2.2.3 DatabaseManager processing detail ………………………..30

 5.2.3 MissionManager………………………………………………………..30
 5.2.3.1 Processing narrative for MissionManager……………………30
 5.2.3.2 MissionManager interface description……………………….30
 5.2.3.3 MissionManager processing detail…………………………...31

5.2.4 MessageManager……………………………………………………….31
 5.2.4.1 Processing narrative for MessageManager…………………...31
 5.2.4.2 MessageManager interface description………………………31
 5.2.4.3 MessageManager processing detail…………………………..32
 5.2.5 MapManager……………………………………………………………32
 5.2.5.1 Processing narrative for MapManager………………………..32
 5.2.5.2 MapManager interface description…………………………...32
 5.2.5.3 MapManager processing detail………………………………32

5.2.6 AuthenticationManager………………………………………………...33
 5.2.6.1 Processing narrative for AuthenticationManager………….....33
 5.2.6.2 AuthenticationManager interface description………………..33
 5.2.6.3 AuthenticationManager processing detail……………………33

 5.2.7 TransmissionManager…………………………………………………..33
 5.2.7.1 Processing narrative for TransmissionManager………………33
 5.2.7.2 TransmissionManager interface description…………………33
 5.2.7.3 TransmissionManager processing detail……………………..34

 5.2.8 MobileApplicationCore………………………………………………....34
 5.2.8.1 Processing narrative for MobileApplicationCore…………….34
 5.2.8.2 MobileApplicationCore interface description………………..34
 5.2.8.3 MobileApplicationCore processing detail……………………34

5.2.9 InputController………………………………………………………….35
 5.2.9.1 Processing narrative for InputController……………………..35
 5.2.9.2 InputController interface description…………………………35
 5.2.9.3 InputController processing detail…………………………......35

5.2.10 MobileDeviceTransmissionUnit……………………………………….35
 5.2.10.1 Processing narrative for MobileDeviceTransmissionUnit…...35

4

 5.2.10.2 MobileDeviceTransmissionUnit interface description………36
 5.2.10.3 MobileDeviceTransmissionUnit processing detail…………..36

5.2.11 UserInterfaceController………………………………………………..36
 5.2.11.1 Processing narrative for UserInterfaceController……………36
 5.2.11.2 UserInterfaceController interface description……………….36
 5.2.11.3 UserInterfaceController processing detail……………….......37

5.2.12 UserInterfaceSettingsManager………………………………………...37
 5.2.12.1 Processing narrative for UserInterfaceSettingsManager…….37
 5.2.12.2 UserInterfaceSettingsManager interface description………..37
 5.2.12.3 UserInterfaceSettingsManager processing detail……………37
 5.2.13 SensorController……………………………………………………….37
 5.2.13.1 Processing narrative for SensorController…………………..37
 5.2.13.2 SensorController interface description………………………38
 5.2.13.3 SensorController processing detail………………………….38
 5.3. Design Rationale…………………………………………………………………38

6. USER INTERFACE DESIGN…………………………………………………………..38

6.1. Overview of the User Interface………………………………………………….38

6.1.1. Design Considerations………………………………………………….38

6.1.2. Functionality……………………………………………………………39

6.1.2.1. Giving Input…………………………………………………..39

6.1.2.2. Browsing the Map…………………………………………….39

6.1.2.3. Selecting Items on the Map…………………………………..39

6.1.2.4. Applying Preferences…………………………………………39

6.1.2.5. Changing Theme……………………………………………..39

6.2. Screen Images……………………………………………………………………40

6.2.1. Main Window Image…………………………………………………..40

6.2.1.1. While Standing……………………………………………….41

6.2.1.2. While Running……………………………………………….42

6.2.2. Displaying Notifications……………………………………………….43

6.2.3. Changing Layout……………………………………………………..44

6.3. Screen Objects and Actions……………………………………………………45

5

6.3.1. Notifications Bar……………………………………………………..45
6.3.2. Settings Button……………………………………………………….45
6.3.3. Layout Button………………………………………………………..45

6.3.4 Missions (Tasks) Button………………………………………………45
6.3.5. Messages Button……………………………………………………...45
6.3.6. Unit Icons…………………………………………………………….46
6.3.7. Place Icons…………………………………………………………....46
6.3.8. Compass Icon…………………………………………………………46
6.3.9. Time…………………………………………………………………..46
6.3.10. Map………………………………………………………………….47

7. DETAILED DESIGN…………………………………………………..………….………47

 7.1 MainServerCore……………………………………………………………..……47
 7.2 DatabaseManager……………………………………………………………..…..50
 7.3 MissionManager…………………………………………………………………..52
 7.4 MessageManager………………………………………………………………….54
 7.5 MapManager……………………………………………………………………...56
 7.6 MobileApplicationCore…………………………………………………………..57
 7.7 UserInterfaceController…………………………………………………………..59
 7.8 SettingsManager……………………………………………………………….....60
 7.9 SensorController……………………………………………………………….….62

8. LIBRARIES AND TOOLS…………………………………………………………..…....63

8.1 Eclipse…………………………………………………………………………...63
8.2 Android………………………………………………………………………….63

 8.2.1 android.hardware.SensorManager……………………………………..64
8.2.2 SQLite…………………………………………………………………64
8.2.3Android Emulator………………………………………………………64

 9. TIME PLANNING (GANNT CHART)
 9.1 Term 1 Gannt Chart……………………………………………………………….65
 9.2 Term 2 Gannt Chart……………………………………………………………….67

10. CONCLUSION………………………………………………………………………….68

6

1 INTRODUCTION

This detailed design report is prepared by Momo Software to show the progress we have
shown in this project. The report includes initial descriptions of the proposed software system
design. Additionally, it also includes current project status and schedule.

1.1 Problem Definition

The problem definition of the project had been described in Software Requirement
Specification Report. Mobile Device technology has an important role in our lives in many
areas such as in daily lives, in military services etc. As the usage of mobile devices increases
by day by, the expectations of users also increase. The most important one of these
expectations is easy and effortless usage for mobile device users in various areas. However,
users have difficulties during changing environment conditions. For example, you may not
use these small devices easily and without making effort for different contexts, different light
conditions, different colored environments or movement. CAUI will be a very efficient
answer for this problem by adapting itself in changing environment conditions.

1.2 Purpose

The purpose of this document is to describe the detailed design process about the project. The
requirements specified in the requirements specification report will be explained in detail as
the structural components which will be used in the implementation phase in this document.
We can determine the design issues such that system architecture, data design, user interface.

1.3 Scope

The scope of Context Aware User Interface had been stated substantially in requirement
specification report. In this section, we will state what it has been written in our previous
report in summary. Then, we will provide a future insight for the design scope of Context
Aware User Interface.

Our project provides different types of communication models as one to one and many to
many. That is, a mobile device in Sender mode can send data to a unique mobile device in
Receiver mode or many devices all in Receiver mode. Moreover, users can receive missions
from Center.

Our project will support data types for our communication model. One of them will be
continuous communication including map info, environment info and feedback and GPS info.
The other one will be single communication containing messages and tasks.

7

1.4 Overview

This document has six additional chapters. The second chapter (System Overview) is
designed to reflect a general description of the software system including its functionality and
matters related to the overall system and its design. The next section is Design Considerations
including special design issues that need to be addressed or resolved before attempting to
devise a complete design solution. The fourth chapter is about data description and data
dictionary. The fifth chapter (System Architecture) is prepared to show a description of the
program architecture. The User Interface Design chapter includes overview of user interface,
screen images, screen objects and actions. The next one about detailed design contains the
internal details of each design component. The next chapter is to represent which libraries
and tools will be used in the project. The last section is time planning to be able to plan the
team structure, estimation (basic schedule) and process model for first and second terms.

1.5 Definitions, Acronyms and Abbreviations

SDD: Software Design Document
PDA: Personal Digital Assistant
GUI: Graphical User Interface
3G: 3rd Generation
API: Application Programming Interface
CAUI: Context Aware User Interface
MDA: Mobile Device Application
MDSC: Mobile Device System Controller
MS: Main Server
WNC: Wireless Network Connection
I/O: Input/output

1.6 References

IEEE Recommended Practice for Software Design Descriptions (IEEE Std 1016-1998).

Çakıcı, Ruken “Software Design Document Template”
<https://cow.ceng.metu.edu.tr/Courses/?semester=20101&course=ceng491&cedit=0>.

2. SYSTEM OVERVIEW

2.1 Functionality

The basic functionality of our project is related with the idea, namely “Context Aware User

8

Interface”. It is called as context aware, because its structure will be changed according to the
environment and user conditions; for example lighting and acceleration of the user.
In order to give meaning to this interface, we will create a scenario which is another important
functionality of our system. Our scenario is basically represents a military environment which
are created by mobile device application, mobile device sensor controller and information
server application. These units enable us to create a war environment that includes mobile
device user and its interactions between information server application (sending messages to
other units, viewing and analyzing war environment etc.) By using this scenario we can apply
“context aware user interface” idea and create our project by combining these two main
functionalities.

Context aware concept requires a user interface whose content and structure can be changed
according to the environment conditions automatically. For example when a user in the
environment where the lighting density is very low, he/she still should be able to view the
mobile device screen and analyze the war environment. In other words user interface structure
should be changed in order to remove the negative effect of environment and help the user.
This functionality is same when we consider the user’s acceleration. Our interface should be
changed when the user moves by changing the font of the letters or zooming in the most
critical parts of UI.

2.2. Idea of Project

The idea that is behind our project is basically context related problems for UI’s. They are
influenced very easily by the environment conditions. The small changes of lighting density
or user condition directly affect the performance and usability of user interface. In order to
prevent this negative effect, we create a user interface that is aware of environment context.

2.3. Audience and Benefits

We define our audience as military forces, because this audience makes our project and idea
more meaningful. Actually this idea can be implemented for civilians and our product can be
used for daily-life. However we choose military forces in order to reach more critical and
beneficial results. In the war environment, time is an important issue and even small amount
of times can affect the progress and result of the war. Therefore, our product firstly gives
more time to the units by offering CAUI. Secondly they can analyze the information in a more
stable and understandable way.

9

3. DESIGN CONSIDERATIONS

3.1. Design Assumptions, Dependencies and Constraints

3.1.1 Constraints

For designing our system and defining design considerations, we consider a scenario that we
can apply CAUI logic. Basically, our scenario depends on a war environment that a user can
analyze and view it by using mobile device and our applications. In order to successfully
apply our design, we create a system which includes MDA, MDSC and MS. These main parts
are mentioned at this point because communication between MDA and MS requires an
important constraint that is WNC. We need to use WNC, because it helps to connect and
communicate MDA and MS.

Another important constraint is device availability. While creating our software and design
our product, we plan to proceed with emulator rather than a real mobile device. First of all our
sponsor states that they can not give us a mobile device which means either we should find a
mobile device or we should progress with emulator on computer. We choose to use Android
based emulator, since we can develop our system more easy and flexible way. Moreover,
Android platform is well-defined and can answer our sensor-related issues. As explained in
our SRS, environment’s light info or user’s movement info is very important metrics for
CAUI concept. In order to create and change UI, we have to collect this environment info and
Android platform answers all of these needs related to context awareness.

 3.1.2 Assumptions

 When we design our system, we need to make some assumptions that enable us to progress

and finish the system successfully. A device simulator and its importance are explained at the
previous parts shortly. At this point, we make some assumptions that are related to simulator.
First of all, we assume that it has capability that enables us to learn light info and acceleration
info by using its light sensor and accelerometer. Second assumption is that the emulator
should enable us to apply WNC logic correctly. In other words, we should use WNC for our
application on the emulator without facing any problems. GPS and compass support are other
assumptions that we make. In order to define the location of the user, we assume we can apply
GPS on the emulator and get location of the user. Moreover, we expect that we will use
compass support of android platform without facing any problem or difficulties.

3.1.3 Sponsor requests

As we mentioned, we need a scenario in order to implement CAUI concept. Since our sponsor
is ASELSAN, we think that it is suitable and acceptable that the scenario is related to military.

10

Therefore, we plan and develop such a scenario that we can apply a war environment for the
system and analyze how our applications work correctly for context awareness.

3.2. Design Goals and Guidelines

3.2.1 Design priorities

Under design considerations title, we have to talk about the priorities of goals that we want to
achieve for the future plans. First of all we have primary design priorities that are related to
GUI and context awareness with just file I/O. In other words our first goal is to implement
GUI and context awareness issue without using scenario and network. After achieving first
goal, the second design priority is to add a scenario and database to system and to associate
theses eparateconcepts.

3.2.2 Final Objective

After all of the implementations, our final objective is to create a complete product that can be
used by many users simultaneously without facing any memory, speed or other problems by
keeping our design as simple as possible. Keeping the design simple is important, since our
final product includes many concepts such that; GUI, context awareness WNC, database
implementation and networking.

11

4.1 Data Description

12

Database and database management system have a high importance for our project. We need
to store some data in database in order to process the system.

Firstly, we have a map image in the screen of user’s mobile device. The map information has
a very important role for our scenario due to requirements of users. All map information of an
area should be ready continuously for users. Therefore, all map information should be stored
in a storage area. CAUI will be able to use a database that is prepared according to database
design specifications that are determined in this section of the report.

It is stated that map information should be stored in database. In detail, map will be separated
into sectors and each sector has four borders for four main directions. It will be used to send
correct map information according to user’s coordinates. In addition to map information, user
information should be stored in database. That is, the system need to store what user
identification number is and user name is etc.

Another important data is unit information that has to be stored in database. Those
information includes identification info and what unit size is, what unit rank is, what unit
location is. These are necessary to build up a connection between units or to watch units from
center. Initially, it is described how the major data or system entities are stored, processed and
organized with tables below. After these initial stored data, it will be stated which information
can be written to the database to be able to be read from all users.

4.1.1 User

User table will be used to store information for each user that can be “log-in” state in the
system. This component is basically responsible for holding the info of the user. Some
applications of our system depends on the user attributes, for example; id number,rank or
coordinates of the user. For making these applications without any problems, we use User
class.

Data Name Data Type Size Range
userId Integer 4 Bytes

userName String 5-100 Characters

userRank Integer 4 Bytes

userPosition Coordinate 12 Bytes (Float altitude, Float latitude, Float longitude)

13

4.1.2 Unit

Unit table stores specific unit attributes storing basic unit information. These attributes are
unitId, unitName, unitSize, unitRank and Location. These information are very important
important to be known for military system. The unitId attribute and userId in User table have
a realationship, respectively. That is, a user may be part of more than one unit or a unit may
consist of many users.

Data Name Data Type Size Range
unitId Integer 4 Bytes

unitName String 2-50 Characters

unitSize Integer 4 Bytes

unitRank Integer 4 Bytes

unitLocation Coordinate 12 Bytes (Float altitude, Float latitude, Float longitude)

4.1.3 Mission

This table stores predefined missions that can be assigned to a unit, many units, a user and
many users that will act as how they are ordered with respect to missions specified by a
unique id number, name, deadline, rank and privacy. Another important attribute is mission
type. The missionId attribute has a relation with userId in User table.

Data Name Data
Type

Size Range

missionId Integer 4 Bytes

missionName String 2-500
Characters

missionDeadline Date 20 Bytes (Integer year, Integer month, Integer
 date, Integer hrs, Integer min)

missionRank Integer 4 Bytes

missionPrivacy Integer 4 Bytes

missionType Enum 4 Bytes ARREST, ATTACK, STOP, MOVE,
FIRE, FOLLOW

4.1.4 Arrest

Arrest mission table stores only arrest mission specific parts of missions. Its arrestMissionId
attribute is both primary key and foreign key which references missionId attribute of Mission
table.

14

Data Name Data Type Size Range
arrestMissionId Integer 4 Bytes

arrestMissionArrestedId Integer 4 Bytes

arrestMissionArrestedDate Date 20 Bytes (Integer year, Integer month, Integer date,
Integer hrs, Integer min)

4.1.5 Attack

Attack mission table stores only attack mission specific parts of missions. Its attackMissionId
attribute is both a primary key and a foreign key which references missionId attribute of
Mission table.

Data Name Data Type Size Range
attackMissionId Integer 4 Bytes

attackMissionAmount Integer 4 Bytes

4.1.6 Fire

Fire mission table stores only fire mission specific parts of missions. Its fireMissionId
attribute is both a primary key and a foreign key which references missionId attribute of
Mission table.

Data Name Data Type Size Range
fireMissionId Integer 4 Bytes

fireMissionTargetId Integer 4 Bytes

fireMissionTargetLocation Coordinate 12 Bytes (Float altitude, Float latitude, Float
longitude)

15

4.1.7 Follow

Follow mission table stores only fire mission specific parts of missions. Its followMissionId
attribute is both a primary key and a foreign key which references missionId attribute.

Data Name Data Type Size Range
followMissionId Integer 4 Bytes

followTargetLocation Coordinate 12 Bytes (Float altitude, Float latitude, Float
longitude)

followMissionTargetId Integer 4 Bytes

followMissionMinDistance Float 4 Bytes

4.1.8 Move

Move mission table stores only move mission specific parts of missions. Its moveMissionId
attribute is both a primary key and a foreign key which references missionId attribute of
Mission table.

Data Name Data Type Size Range
moveMissionId Integer 4 Bytes

moveStartPointLocation Coordinate 12 Bytes (Float altitude, Float latitude, Float
longitude)

moveEndPointLocation Coordinate 12 Bytes (Float altitude, Float latitude, Float
longitude)

4.1.9 Map

In Map table, map information will be stored. A map will be seperated into many sectors and
each sector has four borders for four main directions. That is, what unique sector number is,
what northern border, what southern border is, what eastern border is and what western border
is will be stored in database to be able to get suitable map information with respect to
coordinates of user. Differentiating attribute of the map table is sectorNo attribute, and so it is
the primary key of the table.

16

Data Name Data Type Size Range
sectorNo Integer 4 Bytes

northernBorder Float 4 Bytes

easternBorder Float 4 Bytes

southernBorder Float 4 Bytes

westernBorder Float 4 Bytes

4.1.10 Message

In Message table, all messages that provide connection between both users and units in CAUI
system will be stored. This information will only include common types of system attributes
as designed in system hierarchy previously. This table stores specific attributes of message
information such as sender, receiver, data etc. Differentiating attribute of the table is
messageId attribute, and so it is the primary key of the table.

Data Name Data Type Size Range
messageID Integer 4 Bytes

writerId Integer 4 Bytes

readerId Integer 4 Bytes

messageDate Date 20 Bytes (Integer year, Integer month, Integer date,
Integer hrs, Integer min)

messageRank Integer 4 Bytes

messagePrivacy Integer 4 Bytes

messageText String 0 – 500
Characters

.
4.2 Data Dictionary

User
User = userId
 + userName
 + userRank
 + userPosition
userId = *id number of user*
userName = *name of the user*
userRank = *rank of the user*
userPosition = *coordinate values of the user*

17

User

userID : int
userName : string
userRank : int
userPosition : Coordinate

User (string xmlData)
User (string rawData)
getUserId () : int
getUserName () : string
getUserRank () :int
getUserPosition () : Coordinate
setUserId (int id) : void
setUserName (string name) : void
setUserRank (int rank) : void

Unit
Unit = unitId

+ unitName
 + unitSize
 + unitRank
 + unitInfo
unitId = *id number of unit*
unitName = *name of the unit*
unitSize = *size of the unit*
unitRank = *rank of the unit*
unitInfo = *info of the unit*

Unit

unitID : int
unitName : string
unitRank : int
unitSize : int
unitInfo : string

Unit (string xmlData)
Unit (string rawData)
getUnitId() : int
getUnitName() : string
getUnitSize() : int

18

getUnitRank() : int
getUnitInfo() :string
setUnitId(int id) : void
setUnitName(string name) : void
setUnitSize(int size) : void
setUnitRank(int rank) : void

Mission
Mission = mission_id

 + mission_name
 + deadline
 + mission_rank

missionId = *id number of specific mission*
missionName = *name of the mission*
missonDeadline = *deadline of the mission*
missionRank = *rank of the mission*
missionPrivacy = *privacy of the mission*

Mission

missionID : int
missionName : string
missionRank : int
missionPrivacy : int
missionDeadline : date

Mission (string xmlData)
Mission (string rawData)
getMission Id () : int
getMissionName () : string
getMissionRank () :int
getMissionPrivacy () : int
getMissionDeadline() : date
setMissionId (int id) : void
setMissionName (string name) : void
setMissionRank (int rank) : void
setMissionPrivacy (int class) : void
setmissionDeadline(date time) : void

19

Map
Map = sectorNo : int

+northernBorder : float
+ easternBorder : float
+ southernBorder : float
+ westernBorder : float
+ image : byte[]

sectorNo = *it shows sector number*
northernBorder : *northern boundary of the map*
easternBorder : *eastern boundary of the map*
southernBorder : *southern boundary of the map*
westernBorder : *western boundary of the map*
image : byte[] : *byte array that compose the image*

Map

sectorNo : int
northernBorder : float
easternBorder : float
southernBorder : float
westernBorder : float
image : byte[]

Da
a

aa

Message
Message = messageID

 + writeID
 + readerID
 + messageDate
 + messageRank
 + messagePrivacy
 + messageText

messageID = *id number of the message*
writerId = *user id of user who sends to the message*
readerId = * user id of user who reads to the message *
messageDate = *date when the message is sent*
messageRank = * importance of the message *

20

messagePrivacy = *shows privacy of message that defines who has reading right of message*
messageText = *stored message text*

Message

messageID : int
writeID : int
readerID : int
messageDate : date
messageRank : int
messagePrivacy : int
messageText : string

Message (string xmlData)
Message (strin rawData)
getMessageID() : int
getWriteID() : int
getReaderID() : int
getMessageDate() : date
getMessageRank() : int
getMessagePrivacy() : int
getMessageText() : string
setMessageID(int id) : void
setWriteID(int id): void
setReaderID(int id) : void
setMessageDate(date time): void
setMessageRank(int rank) : void
setMessagePrivacy(int privacy) : void
setMessageText(sting text) : void

Coordinate
Coordinate = altitude

 + latitude
 + longitude

altitude = *altitude value of coordinate*
latitude = *latitude value of coordinate*
longitude = *longtitude value of coordinate*

21

Coordinate

altitude : float
latitude : float
longitude : float

Coordinate (float alt, float long, float lat)
getAltitude() : float
getLatiitude() : float
getLongiute() : float

MainServerCore
MainServerCore = databaseManager

 + missionManager
 + messageManager
 + mapManager
 + authenticationManager
 + transmissionManager

databaseManager = *DatabaseManager object*
missionManager = *MissionManager object*
messageManager = *MessageManager object*
mapManager = *MapManager object*
authenticationManager = *AuthenticationManager object*
transmissionManager = *TransmissionManager object*

MainServerCore

databaseManager : DatabaseManager
missionManager : MissionManager
messageManager : MessageManager
mapManager : MapManager
authenticationManager : AuthenticationManager
transmissionManager : TransmissionManager

MissionManager
MissionManager = tmpMissionList

tmpMissionList = *Mission objects’ list that hold Missions temporarily*

22

MissionManager

tmpMissionList : Mission[]

recordMissiontoDB (Mission newMission) : void
getMissionsOfUser (int userID) : string

MessageManager
MessageManager = tmpMessageList : Message[]
tmpMessageList = *Message objects’ list that hold Messages temporarily*

MessageManager

tmpMessageList : Message[]

recordMessagetoDB (Message newMessage) : void
getMesaagestoUser (int UserID) : string
getMessagesfromUser (int UserID) : string
getMessagestoAll() : string
getUnreadMessagestoAll () : string
getUnreadMessagestoUser (int userID) : string

MapManager

MapManager

convertCoordinatestoSector(float altitude, float latitude) : int
getMap (int sectorNumber) : Map

AuthenticationManager
AuthenticationManager = count

count = *counts the number of wrong login requests*

23

AuthenticationManager

count : int

authenticationResult(int userID, string pass) : boolean
recordLoginHistory() : void

TransmissionManager
TransmissionManager = tmpData

 + dataTypeId

tmpData = *holds the required data temporarily*
dataTypeId = *shows the type of data that is stored*

TransmissionManager

tmpData : string
dataTypeId : int

receiveDataFromMobileDevice () : string
sendDatatoMobileDevice(int type, string text) : boolean

MobileApplicationCore
MainServerCore = inputController

 + userInterfaceController
 + sensorController
 + userInterfaceSettingsManager
 + mobileDeviceTransmissionUnit

inputController = *InputController object*
userInterfaceController = *UserInterfaceController object*
sensorController = *SensorController object*
userInterfaceSettingsManager = *UserInterfaceSettingManager object*
mobileDeviceTransmissionUnit = *MobileDeviceTransmissionUni object*

24

MobileApplicationCore

inputController :InputController
userInterfaceController :UserInterfaceController
sensorController: SensorController
userInterfaceSettingsManager: UserInterfaceSettingManager
mobileDeviceTransmissionUnit: MobileDeviceTransmissionUnit

InputController
MainServerCore = pixelValueHorizontal

 pixelValueVertical

pixelValueHorizontal = *horizontal pixel value of the point that was selected by the user*
pixelValueVertical = *vertical pixel value of the point that was selected by the user*

InputController

pixelValueHorizontal : int
pixelValueVertical : int

controlPixelValues(int horizontal, int vertical) : void
missionIconChosen : void
messageIconChosen : void
teamInfoIconChosen : void
mapInfoIconChosen : void

MobilDeviceTransmissionUnit
MainServerCore = tmpData

 dataTypeId

tmpData = *holds the required data temporarily*
dataTypeId = *shows the type of data that is stored*

MobileDeviceTransmissionUnit

tmpData : string
dataTypeId : int

receiveDataFromMainServer () : string
sendDatatoMainServer(int type, string text) : boolean

25

UserInterfaceController

 UserInterfaceController

+displayIcons():void
+displayMap():void
+displayMissionList():void
+displayCompletedMissions():void
+displayIncompletedMissions():void
+displaySentMessages():void
+displayReceivedMessages():void
+displayTeamInfo():void
+displayMapInfo():void

UserInterfaceSettingsManager
UserInterfaceSettingsManager = iconWidth
 + iconHeight

UserInterfaceSettingsManager

+iconWidth:int
+iconHeight:int

+resizeIcons(int width, int height) : void
+resizeMap(int width, int height) : void
+changeIconsOrder(): void

SensorController
MainServerCore = brightnessValue

 + accelerationValue
 + directionValue
 + longtitudeValue
 + lattitudeValue

brightnessValue = *brightness value of the environment*
accelerationValue = *acceleration value of the user*
directionValue = *direction info of the user*

26

longtitudeValue = *longtitude value of the user location*
lattitudeValue = *lattitude value of the user location*

 SensorController

+brightnessValue:double
+accelerationValue:double
+directionInfo:double
+longtitudeValue:double
+lattitudeValue:double

+setBrightnessValue(double br):void
+getBrightnessValue() : double
+setAccelerationValue(double br):void
+getAccelerationValue() : double
+setDirectionInfo(double br):void
+getDirectionInfo() : double
+setLongtitudeValue(double br):void
+getLongtitudeValue() : double
+setLattitudeValue(double br):void
+getLattitudeValue() : double

27

5. SYSTEM ARCHITECTURE

5.1 Architectural Design

28

5.2. Description of Components

In this part, we don’t mention the fourth part of each subsystem, because we think that they
are complex for initial design report and we decide that these parts are included in detailed
design report.

5.2.1 MainServerCore

5.2.1.1 Processing narrative for MainServerCore

Main Server Core is one of the major parts of our system. Actually it is responsible for
connecting MDA with the database part. When MDA needs some info that is stored on
database, MS Core analyzes this request and gets the data from database. Moreover, it has
some manager units in order to handle Mission, Message and Map related issues. For
example, when MDA needs info about a mission or message, MS Core analyzes the request,
get the necessary data from database and return this info to MDA.

5.2.1.2 MainServerCore interface description

Input interfaces of this software component are explained in two parts. First part includes
query results that are sent by database part. The second part includes user identification,
message info and some data that should be written to database (For example; Mission or Unit
object). These units are sent by MDA and processed by MS Core. The output interfaces are
also considered as two main titles. First of all, MS Core sends the authentication report and
filtered data to MDA. Secondly, it sends processed message or info and information query to
database.

5.2.1.3 MainServerCore processing detail

In order to explain algorithmic description of this software unit, we should mention about the
relation between MS Core, MDA and database. The processing detail can be explained as the
following:

- MDA sends data to MS Core via the Mobile Transmission Unit for reading or writing it to
database.
- MS Core analyzes this data and uses one of its manager parts in order to answer the request.
- Database processes the query that comes from MS Core and gives the necessary information
to it.
- MS Core sends the filtered information back to the MDA by using again Mobile
Transmission Unit.

29

5.2.2 DatabaseManager

5.2.2.1 Processing narrative for DatabaseManager

DatabaseManager is actually a part of MainServerCore unit. This unit handles database
related jobs of MS Core part. At any time of our application, MDA may need some object
data that is stored in database. At this point DatabaseManager part calls its necessary method
in order to get filtered data from database. After that, this data is sent to MDA by MS Core.

5.2.2.2 DatabaseManager interface description

As explained the previous part, DatabaseManager gets data and queries this data in order to
get the expected results. One of the input interfaces of this unit is id number of user. For
example if the system needs the missions of the user, it gets id number and calls its
getMission method. Then database returns Mission object that is the second input interface of
DatabaseManager. Output interfaces are similar with input interfaces. First output interface is
the id number of the user that is sent to database. Second one is the result of the database (for
example; Mission object) that should be sent to MDA via MS Core.

5.2.2.3 DatabaseManager processing detail

The processing detail of DatabaseManager unit can be explained as the following:

- This unit gets id number of user that was sent by MDA.
- Then, it sends the data to database part by calling one of its methods.
- After querying the data, the results are sent to DatabaseManager.
- Finally, DatabaseManager returns back the filtered data to MDA part.

5.2.3 MissionManager

5.2.3.1 Processing narrative for MissionManager

MissionManager is actually a part of MainServerCore unit. This unit handles Mission related
jobs of MS Core part. At any time of our application, MDA may need a Mission object of a
user that is stored in database. At this point MissionManager part calls its necessary method in
order to get filtered data from database. After that, this data is sent to MDA by MS Core.

5.2.3.2 MissionManager interface description

As explained the previous part, MissionManager gets data and queries this data in order to get
the expected results. Moreover it also records a new Mission in database. One of the input
interfaces of this unit is id number of user. For example if the system needs the missions of
the user, it gets id number and calls its getMissionsOfUser method. Then database returns

30

Mission object that is the second input interface of DatabaseManager. The last input interface
is the Mission object that comes from MobileApplicationCore. Output interfaces are similar
with input interfaces. First output interface is the id number of the user that is sent to database.
Second output interface is Mission object that is recorded to database. Finally, the last one is
the result of the database (for example; Mission objects) that should be sent to MDA via MS
Core.

5.2.3.3 MissionManager processing detail

The processing detail of DatabaseManager unit can be explained as the following:

- This unit gets id number of user that was sent by MDA.
- This unit gets a new Mission object that is recorded to database.
- It sends the id number to database part by calling one of its methods.
- It sends new Mission object to database by calling one of its methods.
- For user id case, after querying the data, the results are sent to MissionManager.
- For new Mission case, Mission object is recorded to database.
- Finally, DatabaseManager returns back the filtered data that is Mission objects that belong to
the user id to MDA part.

5.2.4 MessageManager

5.2.4.1 Processing narrative for MessageManager

MessageManager is also a part of MainServerCore unit. This unit handles Message related
jobs for MobileApplicationCore. At any time of our application, MDA may need messages of
a particular user or all users. The system may need the unread messages of some users.
Moreover we want to save messages to database in order keep track of them. For all of these
issues, MessageManager part calls its necessary methods in order to get filtered data from
database. After that, this data is sent to MDA by MS Core.

5.2.4.2 MessageManager interface description

Input interfaces of MessageManager can be categorized under three parts. First of all, the user
id that comes from MobileApplicationCore. Second input interface is the Message objects that
are returned from database. The final input interface is also Message object, but this object
comes from MobileApplicationCore in order to save it to database. The output interfaces are
categorized under two parts. One of them is user id that will be sent to database in order to
query the data. Second output interface is Message objects that was given from database and
that will be sent to MobileApplicationCore.

31

5.2.4.3 MessageManager processing detail

- Get user id for querying.
- Get Message object in order to save them into database.
- Either sends user id to database and get the expected results or sends Message object to the
database in order to save it.
- If user id is sent, receive the required Message objects from database and then send these
results to MobileApplicationCore.

5.2.5 MapManager

5.2.5.1 Processing narrative for MapManager

MapManager unit is responsible for displaying map on the screen. Since the maps are already
stored our database and its size is much bigger than screen size, we decide to apply a logic
that requires a sector implementation on map. In other words, we convert our map into many
sectors and display it on the screen for specific sector number. This software unit has some
methods in order to perform these desired actions.

5.2.5.2 MapManager interface description

One of the input interfaces of this software unit is coordinate of the user. The other input
interface is Map object that comes from database according to a sector number. The output
interfaces are analyzed in the same way but a little bit different. First output interface is sector
number that is calculated according to the coordinate of the user. This number is sent to
database in order to get required Map object. Second output interface is Map object that will
be sent to MobileApplicationCore from MapManager.

5.2.5.3 MapManager processing detail

The processing detail of this unit is as the following:

- MapManager unit gets the location of the user from MobileApplicationCore.
(MobileApplicationCore actually gets this info from SensorController)

- MapManager analyzes the coordinates of the user and defines the sector number that should
be displayed on the screen.

- Since we know the specific sector number, MapManager returns Map object to

32

MobileApplicationCore according to this number.

5.2.6 AuthenticationManager

5.2.6.1 Processing narrative for AuthenticationManager

AuthenticationManager is actually a part of MS Core and responsible for user logins. It
basically processes the user id and password and checks that if the password of the specific
user is correct or not. Another job of this software unit is to record login history.

5.2.6.2 AuthenticationManager interface description

Input interfaces of this unit are user id and password of the user. Output interface is the
boolean value that represents the user id and password are consistent and correct. These
boolean value is sent to MobileApplicationCore.

5.2.6.3 AuthenticationManager processing detail

- Get user id and password from MobileApplicationCore.
- Check the correctness of these data by looking the values in the database.
- After checking database values, decide on the login operation.
- If the arguments are consistent return true and if the arguments are not consistent return false
to the MobileApplicationCore.

5.2.7 TransmissionManager

5.2.7.1 Processing narrative for TransmissionManager

TransmissionManager unit is responsible to create communication between MS Core part and
MobileApplicationCore part. When MS Core needs to send data to or receive data from
MobileApplicationCore, this unit is activated and data transfer between these two units are
handled.

5.2.7.2 TransmissionManager interface description

Input and output interfaces for this software unit are simpler than other units. When we think
about input interfaces of this unit, we should think two separate parts. One of them is the data
that we want to send to the MobileApplicationCore. For this aim, TransmissionManager gets
the data from MS Core. The other input interface is data that comes from
MobileApplicationCore in order to send data to MS Core. Output interfaces are just the

33

opposite way of input interfaces and have the same logic. Output interfaces are the data that is
sent from TransmissionManager to MS Core and MobileApplicationCore.

5.2.7.3 TransmissionManager processing detail

Here is the processing detail of this unit:

- Get the data from MS Core.
- Hold this data in the unit for MobileApplicationCore.
- Sends the data to MobileApplicationCore.
- After MobileApplicationCore’s operations, get the data from there in order to forward data
to MS Core.
- Sends the required data to MS Core.

5.2.8 MobileApplicationCore

5.2.8.1 Processing narrative for MobileApplicationCore

Mobile application core is the unit that is in a relationship with User, MS Core and Sensor
Controller. It interacts with user and enables him/her to use system applications. Moreover
this unit is connected to Sensor Controller is order to answer the needs according to the
CAUI. Finally, MobileApplicationCore communicates with MS Core and this enables to
reach info of database and use it to handle some system functions.

5.2.8.2 MobileApplicationCore interface description

First of all, we talk about input interfaces of MobileApplicationCore. The first input interface
is user touch screen inputs that are created by user. Second input interface is context reports
that are sent from SensorController to this software unit. Finally the last input interface is the
filtered data which is sent from MS Core unit. The output interfaces can be considered as the
opposite ways of input interfaces and they are categorized in two parts. First output interface
are objects that is sent to the User (actually device screen) in order to display the required
data. Second and last output interface is data that is sent to MS Core in order to query it and
get back the correct results.

5.2.8.3 MobileApplicationCore processing detail

Algorithmic description of this software unit can be analyzed as the following:

- It gets user inputs from touch screen.

34

- It analyzes the data and the request of the user.
- According to the request, it sends the necessary data to MS Core part
- After MS Core finishes its job, MobileApplicationCore gets the filtered data from it.
- It uses this filtered data and change user interface according to the request.

By the way, this unit gets the context report from SensorController and performs the
necessary actions (changing user interface) according to this report continuously.

5.2.9 InputController

5.2.9.1 Processing narrative for InputController

InputController is actually a part of MobileApplicationCore and handles the input related
issues. First of all it gets and understands the user inputs and analyzes them in order to find
the requested actions. Moreover, this unit is in a relationship with UserInterfaceControler unit
in order to adjust the interface settings.

5.2.9.2 InputController interface description

Input interface of this unit is user inputs that can be created by touch screen. InputController
gets this input and analyzes them. After that the output interface of this unit plays an
important role. Actually the output interface is the process info that is requested by the user.
In other words InputContoller sends the user request to UserInterfaceController by analyzing
the inputs.

5.2.9.3 InputController processing detail

Algorithmic description of this unit is as the following:

- Get the user inputs that is given by touch screen.
- Analyze the input and decide the process that is requested.
-After deciding this process, give this info to UserInterfaceController in order to display the
requested actions on the screen.

5.2.10 MobileDeviceTransmissionUnit

5.2.10.1 Processing narrative for MobileDeviceTransmissionUnit

MobileDeviceTransmissionUnit is a unit that enables the connection between

35

MobileApplicationCore and MS Core. When mobile application needs to send data to MS or
receive data from MS, this unit is activated and used to communicate these two separate parts.

5.2.10.2 MobileDeviceTransmissionUnit interface description

Input and output interfaces for this software unit are simpler than other units. When we think
about input interfaces of this unit, we should think two separate things. One of them is the
data that we want to send to the MS Core. For this aim, MobileDeviceTransmissionUnit gets
the data from MobileApplicationCore. The other input interface is data that comes from MS
Core in order to send data to MobileApplicationCore. Output interfaces are just the opposite
way of input interfaces and have the same logic. Output interfaces are the data that is sent
from MobileDeviceTransmissionUnit to MS Core and MobileApplicationCore.

5.2.10.3 MobileDeviceTransmissionUnit processing detail

Here is the processing detail of this unit:

- Get the data from MobileApplicationCore
- Hold this data in the unit for MS Core.
- Send the data to MS Core.
- After MS Core’s operations, get the data from there in order to forward data to
MobileApplicationCore.
- Send the required data to MobileApplicationCore.

5.2.11 UserInterfaceController

5.2.11.1 Processing narrative for UserInterfaceController

This unit controls the main operations of the UI and displays the required objects and texts to
the screen. Many basic operations of the UI are handled by this unit, for example; displaying
map, missions, messages etc. Moreover the icons on the screen are also created and displayed
by this unit.

5.2.11.2 UserInterfaceController interface description

UserInterfaceController works as a bridge between User, UserInterfaceSettingsManager,
InputController and Mobile Core Application. By looking this info, firstly we can analyze the
input interfaces of this unit. First input interface is the data that comes from Mobile Core
Application and InputController in order to display it on the screen. Second input interface is

36

the settings info that comes from UserInterfaceSettingsManager in order to resize the icons or
manage the UI. However, Output interface of this unit is only related with the User. It creates
and designs UI for the user and displays the necessary info on the screen.

5.2.11.3 UserInterfaceController processing detail

- It gets the user inputs from InputController and Mobile Core Application.
- It gets UI settings’ info that comes from UserInterfaceSettingsManager.
- Analyze these data and display the necessary and required parts on the screen.

5.2.12 UserInterfaceSettingsManager

5.2.12.1 Processing narrative for UserInterfaceSettingsManager

The main responsibility of this unit is to adjust the size and view of the icons and map. For
many reasons, the user may want to resize the map and icons or change the order of the icons.
This unit has necessary methods to perform such tasks.

5.2.12.2 UserInterfaceSettingsManager interface description

The input interface of this unit can be considered as user inputs. According to these values, UI
is reorganized. The output interface is again interacts with user. It is explained as new and
changed UI that will be displayed according to the user needs.

5.2.12.3 UserInterfaceSettingsManager processing detail

Here is the processing detail of this unit:

- Get the required parameters from the user in order to reorganize UI.
- After getting these values create new forms of screen objects.
- After forming these new objects, display them on the screen and by this way, offer a new
and desired UI to the user.

5.2.13 SensorController

5.2.13.1 Processing narrative for SensorController

SensorController unit is mainly responsible for collecting the environment variables and

37

reporting them to the MobileApplicationCore. It gets light, acceleration or direction info from
some sensor and accelerometer and forwards these values to MobileApplicationCore. It is an
important software unit in order to perform CAUI logic to our system.

5.2.13.2 SensorController interface description

Input interfaces of this unit come from environment, accelerometer and satellite. These
interfaces can be explained as light, acceleration, direction and position info. The output
interface of this unit is related with the Mobile Core Application. In other words, it sends the
context report to MobileApplicationCore as this is the output interface of this unit.

5.2.13.3 SensorController processing detail

- Gets light information from light sensor.
- Gets acceleration and direction info from accelerometer
- Gets position info from satellite.
- After collecting the needed data sends them to MobileApplicationCore in order to perform
the necessary actions.

5.3. Design Rationale

When we think our design properties and create the general architecture of our system, we
consider some critical points that can affect our system for future developments. By looking
architectural design of our project, it can be said that there are three main parts that compose
our architectural design. These parts are namely, Mobile Application Core, Main Server Core
and Database Manager. Actually, before we develop our design, we think to create a direct
communication between mobile devices. However, we decide that integrating a main server to
the system enables us to control it by managing main part and connecting all the mobile
devices to one main server. Moreover we think that the total cost decreases, because
connecting each mobile device can be long price. After that, we create a strong relation
between Database Manager and Main Server Core parts. Since between these two parts, there
will be big data flow during our implementations. Finally, in order to connect Mobile
Application Core to the Main Server Core, we define a transmission system that connects
these two parts. Following these steps, we are able to create the big picture and our
architectural design.

38

6. User Interface Design

6.1. Overview of the User Interface

6.1.1. Design Considerations

While designing the user interface, we prioritize simplicity, flexibility and ease of use which
is main aim of the project. The user interface is designed with flexible item that are capable of
being located at different places, can be used in different sizes and colors. Whole purpose of
the project is to maximize the information to be gathered from the screen in unit time. In other
words providing a productive, effective and user friendly interface to find what you are
looking for immediately. Therefore, we keep main theme (in this case the map) in the middle
of the screen and place other objects around it. Moreover, we will enable user to do it any way
he likes.

6.1.2. Functionality

The user interface is capable of giving commands to the program and receiving feedback with
different functionalities.

6.1.2.1. Giving Input

User can interact with the interface with classic touch screen input methods such as tapping,
dragging to use the buttons and icons and with the native keyboard of the device to enter
characters to write messages or reports.

6.1.2.2. Browsing the Map

User can tap to zoom in and out and drag the map to navigate where he is looking for.

6.1.2.3. Selecting Items on the Map

Tapping on a unit or a place item will open the information box next to the icon.

6.1.2.4. Applying Preferences

By tapping onto the Settings button user can access to the settings window where he can
change or set preferences about the user interface and the main program.

6.1.2.5. Changing Theme

The application is built to demonstrate the adaptive capabilities of the user interface according
to changes. Therefore it is capable of changing colors, icons, buttons, fonts, object and font
sizes whenever and wherever necessary.

39

6.2. Screen Images

6.2.1. Main Window Image

40

6.2.1.1. While Standing

41

6.2.1.2. While Running

42

6.2.2. Displaying Notifications

43

6.2.3. Changing Layout

44

6.3. Screen Objects and Actions

 6.3.1. Notifications Bar

Notifications bar will be displayed on top of the screen. Whenever a new task appointed, a
new message arrives to user or an update concerning the user received an icon indicating the
type and priority and the title of the received message will be displayed on the Notifications
bar and will stay there until the user reads them. User can read the messages by tapping the
area or dragging the bar to the bottom of the screen. This will open a new window with more
details on messages and shortcuts to related parts of the application such as messages or
missions.

6.3.2. Settings Button

Settings button opens a new window where user can alter the preferences or set new ones
about the main application or the user interface. He can set what kind of
messages he wants to see on the notifications area, how detailed he wants to
see information, which theme he wants to use, what font size he prefers etc. by
using classic check box and slider options

6.3.3. Layout Button

This button enables user to change the positions of the buttons. When user presses
Layout button, all available buttons on the screen will display frames around them
implying “you can move me”. User will tap and drag the button where he wants
to and release. Then re-tapping Layout button will save the layout.

6.3.4 Missions (Tasks) Button

Tapping on Tasks button will open Missions Window where user will be able to
see assigned missions to him. In this window user will have the options of
reading missions, marking them complete or the opposite, sending reports about
missions, sorting them according to priority or deadline etc.

6.3.5. Messages Button

Tapping on Messages button will open the Messages Window. There, he
can use basic messaging features such as reading or writing messages,
tagging, forwarding, etc. Moreover, he can use archives of sent or received
messages. While writing messages user will use the native keyboard of the
device.

45

6.3.6. Unit Icons

The units will be shown with dots of different colors implying their alliances.
We choose green for allies, yellow for neutrals and red for enemies. We will
also display an alert mark for unknown threats or possible dangers meaning
there may be an enemy unit at that location. Next to unit icons, some basic
information will be displayed if available since intelligence reports on non-
allies will be assumed limited. Tapping on the unit icon will display detailed
knowledge and information about selected unit such as leader, members,

technical abilities, military power and more.

6.3.7. Place Icons

The map displays information about important locations on the map by default.
The places are displayed by blue dots. In normal state, basic information about
locations displayed next to this dot such as name of the place, population if it is

a city or the length, altitude etc. if it is a passage. However, user can tap on the info area or the
place icon (the dot) to display extra information about the place. This will include details such
as hospitals, schools or military power of the city or intelligence reports about the passage,
bridge etc.

6.3.8. Compass Icon

This icon shows the directions on the map. Therefore it helps user to understand
which direction he is looking at or going to. In addition, this icon also works as a
rotation button. The user may want to rotate the map or the displayed image on

the screen. If so, he rotates the compass to rotate the map and compass still shows the right
directions on the map.

6.3.9. Time

Time and date will also be displayed on the screen where user wants.
According to the state of the user format of the date will vary from full

“DD.MM.YY HH:MM” to “HH:MM:SS” or even a chronometer or a countdown clock.
Tapping time object will open an agenda where user can see upcoming deadlines and tasks
appointed to him.

46

6.3.10. Map

Map is the main object of the user interface where everything placed and designed according
to. The idea is to extract data easily from the map therefore all the design considerations about
user interface firstly based on an assumption that there is a map being displayed at
background. It will cover the whole background. Font colors and sizes will be adapted also
according to map and its main color histogram. User can be able to move the buttons to the
empty parts of the map.

7. Detailed Design

7.1 MainServerCore

Classification
First of all, MainServerCore is a class. It includes the necessary manager objects that enable
the communication between Database and MDA.

Definition
Main Server Core is one of the major parts of our system. Actually it is responsible for
connecting MDA with the database part. When MDA needs data from database or sends data
to database, this component handles this issue and supplies the required communication by
using the manager objects. (MessageManager, MissionManager etc.)

Responsibilities
Firstly, this component is responsible to manage the manager objects. When the application
runs, many functionalities of the application are used. In order to handle them, the manager
objects takes and analyzes the data that comes from both MDA and database. At this point,
MainServerCore is responsible for managing these objects and creating the continuous flow
of data between MDA and database part.

Constraints
First of all, we talk about timing constraint of MainServerCore. As we explained before, it
enables the communication between MDA and database part. However, when the user asks
some data from database, he should get the required results in short time. Time of these
operations should not take much time, because in this case the UI will not be useful and
desirable. For example; when the user wants to see the messages that was received,
MainServerCore should be fast enough and the results should be displayed on the screen at
most a few seconds. This timing constraint is also valid for other operations such as; receiving
the missions from database, sending the message info to database etc.

47

Composition
As we explained before, MainServerCore includes the manager components and controls
them. Therefore, we can say that each of these manager components is subcomponent of
MainServerCore. For example; MessageManager manages the messages by forwarding the
necessary message data to either MDA or database part or MissionManager is responsible for
getting the required mission info from database and sending to MDA part. These manager
parts that will be explained below part and they work under the control of MainServerCore.
- DatabaseManager
- MissionManager
- MessageManager
- MapManager
- AuthenticationManager
- TransmissionManager

Uses/Interactions
MainServerCore uses the classes listed below and has an instance of each of them:

1. MapManager
2. MessageManager
3. MissionManager
4. DatabaseManager
5. AuthenticationManager
6. TransmissionManager

MainServerCore maintains interactions with the classes listed above.

Resources
When we think about resources that are managed and affected by this entity, the main
resource that should be considered is database. In the previous parts, we said that
MainServerCore includes DatabaseManager and it directly affects the states and situation of
database. The operations that are processed by MainServerCore may add new data to
database, may change the content of it or even may get data from it. The structure of database
is continuously changed by this component.

Processing
Since the responsibilities of this component is significant, there are important duties necessary
to fulfill its responsibilities. First of all, in order to make any operation that is made by the
user meaningful, MainServerCore should complete some tasks by its manager components.
Let’s analyze the relationship between these objects and MainServerCore and explain each of
them in terms of its functions and characteristics.
In our application, for many operations we need to get data from database or send data to it. In
such cases, MainServerCore uses DatabaseManager and the related methods of
DatabaseManager are used. For example; when we need data from database, MainServerCore
makes DatabaseManager active and starts to use its methods. Moreover, the related manager

48

parts are also become active for this operation. (If we make operation on messages,
MessageManager is used and etc.) The possible scenarios are explained in the following part.
(In the scenarios, only the parts that are related to MainServerCore are explained.)

Scenario 1: User wants to see the messages that were sent to him.
- Get the request from TransmissionManager.
- Analyze the request and call the necessary method in MessageManager. (For example;
getReceivedMessages(int userId))
- DatabaseManager becomes active and makes the required queries.
- MessageManager obtains the results from database.
- TransmissionManager gets the results from MessageManager. (part of MainServerCore)

Scenario 2: Showing map on the screen
- TransmissionManager sends the request to the MainServerCore.
- Analyze the request and call the necessary method in MapManager. (For example;
getMap(int sectorNumber))
- DatabaseManager gets the required map that is stored in database.
- MapManager gets the map from database.
- MainServerCore makes TransmissionManager active and it gets the results from
MapManager.
* In this scenario, if the sectorNumber that is used by MapManager is not suitable, the
exception is thrown that shows that the sector number is not correct.

Scenario 3: User wants to see the missions that were assigned to him.
- Get the request from TransmissionManager.
- Analyze the request and call the necessary method in MissionManager. (For example;
getAssignedMissions(int userId))
- DatabaseManager becomes active and makes the required queries.
- MissionManager obtains the results from database.
- TransmissionManager gets the results from MissionManager. (part of MainServerCore)

Interface/Exports:
Database
This component interacts with database during the application.

Map
MainServerCore is connected to MapManager in our design and it provides Map objects for
application.

Mission
MissionManager interacts with MainServerCore in our application in order to handle mission
related objects. Therefore, this component provides Mission objects.

49

Message
MainServerCore and MessageManager are interacts and communicates with each other in
order to manage the issues that are related with messages. In other words, MainServerCore
provides Message objects.

7.2 DatabaseManager

Classification
DatabaseManager is a class.

Definition
DatabaseManager is a class that is responsible for handling database related issues. Getting
necessary data from database, sending and storing new data to it or changing the content of it
are some actions that are made under the control of DatabaseManager. In the application,
there are a lot of operations that are related to database and that affect it. Therefore, we think
that designing a manager that is responsible for database operations is important and
necessary.

Responsibilities
Although there are many responsibilities of this component, we may categorize them under
the following titles.
Getting Data from Database
Getting data from database is one of the major and important part of our application. Since
many data are stored in database and they are needed during the application, we need to
access the data in it at any time. At this point, the importance of DatabaseManager can be
understood more easily. The methods and implementations that can accomplish this task lies
in the structure of this component. It can query the database according to the request that
comes from MDA and get the results from database. This query may be related with map,
messages or missions.

Writing Data to Database
The logic of writing data to database is similar with the previous part that is getting data from
database. This time data are written to database in order to satisfy user requests or application
needs. For example; a mission that is assigned to a user may change and for this operation,
DatabaseManager should be responsible for querying and writing the data to database. This
writing operation is also valid for other operations like map or message operations.

Constraints
Timing is a critical constraint for DatabaseManager. Since the results that are obtained from
database are directly used for restructuring UI and showed to the user, DatabaseManager
should work fast and accurate. The slow operations of DatabaseManager means that the user
gets the results and analyze them after long time. In other words, if the results of user requests

50

are displayed in UI after more than 1-2 seconds, it is not meaningful and suitable. Therefore
this component should work under strict time constraints for the fluency of our application.

Composition

There is no subcomponent of DatabaseManager.

Uses/Interactions

This class has an instance used by MainServerCore in order to get values from database and
write values to database.

Resources

As this component’s name implies, the resource that is related with this component is
database. It has direct access of it and can change the structure of it. In the previous sections,
we explain that DatabaseManager can read from database or write to it. The structure of
database is continuously changed by this component.

Processing

First of all DatabaseManager is mainly responsible for creating the connection with database.
When the application stars, the connection with database should be created in order to
complete the main tasks in application. Let’s view and analyze the processing of this
component.
- When the application starts, this component is responsible for creating connection with
database.

During the application:

- The read or write request that is given from MDA comes to this component.
- DatabaseManager analyzes the request and it either queries to database and get the expected
results or writes the obtained data to database.
- After the operation, this component forwards the result of database operation to MDA by
using TransmissionManager of MainServerCore.

Interface/Exports

Database
This component interacts with database during the application

Connection

51

This component provides a Connection object in order to make connection with database.

DriverManager
DatabaseManager component provides this class in order to get connection.

SQLException
We use this exception class in order to handle DatabaseManager operations in correct and
safety way.

Statement
This component uses this class’ object in order to create statement on Connection object and
make queries to database.

ResultSet
This class is used for this component in order to get query results from database.

7.3 MissionManager

Classification
MissionManager is one of the important classes for our system. In this class, data objects for
information about missions can be sent or received between MDA with MS Core.

Definition
MissionManager is actually a part of MainServerCore that handles Mission related jobs of MS
Core part. During processing of our application, MDA may need a Mission object of a user
stored in database. At this point MissionManager part calls its necessary method in order to
get filtered data from database. After that, this data is sent to MDA by MS Core.

Responsibilities
The main duty of this component is to manage Mission objects transfer between MDA with
MS Core. MissionManager is responsible for getting data, querying this data and recording a
new Mission in database. This class can provide the missions of any user if the system needs.
Then, it can get Mission object that comes from MobileApplicationCore.

Constraints
Although we have not specific constraint for this component yet, we have some assumptions.
For this component, we assume that when the user sends the request, our
TransmissionManager and UserInterfaceManager works correctly and sends the request to
this component.

52

Composition
Mission is base class. There are five different types defined missions called Arrest, Attack,
Fire, Follow and Move classes as default. They are not formally categorized but they can be
thought that like that:
Arrest mission can be thought a mission that a specific enemy should be arrested and the
arrested time should be kept.
Fire and Attack missions are the missions that users need to destroy the enemy units. Fire
mission can be thought that user perform it specified location with respect to coordinates of
enemy.
Move mission can be thought that a mission is just for changing position from one coordinate
to another.

Uses/Interactions
This class has an instance used by MainServerCore which used for handling the issues related
to missions.

Resources:
The most important resource of the system is database. MissionManager class needs to use
database as a resource. Missions sent to the users should be database. All missions of each
user are recorded in database. Moreover, each mission has some attributes such as type of
mission, rank of mission, privacy of mission and deadline of the mission. All these
information is very important for the system and they should be in database and they should
be accessible dynamically.

Processing

The other important part is how to MissionManager components go about performing the
duties necessary to fulfill its responsibilities. Our scenario will be processed with some steps
lie that:

- This class gets id number of user that was sent by MDA and gets a new Mission object that
is recorded to database for the user with this id number.

- MissionManager sends the id number to database part by calling one of its methods and
sends new Mission object to database by calling one of its methods.

- After querying the data, the result of the control is sent to the MissionManager.

- That new Mission is recorded to the database for specified user. The attributes of Mission
object is processed. Name, rank, privacy and deadline are the attributes which is processed in
Mission object for MissionManager.

53

- After all these steps, DatabaseManager sends back the filtered data which is Mission object
that belongs to the user id to MDA part.

Interface/Exports

Mission
This component provides Mission class’ objects for our application. These objects’ methods
that are used for handling mission related issues are explained as the following:
- recordMissiontoDB (Mission newMission) : void
- getMissionsOfUser (int userID) : string

Types
By looking the methods that are explained in the previous title, we can say that this
component provides the following data types:
- Mission -> newMission //for defining new Mission object.
- int -> userID //for userID.
- String -> returnValue //for mission explanations.

Exceptions
Some methods of this component find and returns the missions that are belong to the user.
These methods take this user’s id as an argument and checks that whether the user id is valid
or not. If there is no user that has this user id, this component throws an exception. For
example;
-throw new MyException(“illegal user id”);
(after defining our Exception class, namely, “MyException”).

7.4 MessageManager

Classification

MessageManager is a class that works under the control of MainServerCore.

Definition

MessageManager is one of the manager classes that works under the control of
MainServerCore. As its name applies, this component handles message related operations for
our application. First of all, a user can be send to messages to or receive messages from
someone else. He should view the received and sent messages in our application by using UI.
For these operations, the main component of our system is MessageManager.

54

Responsibilities

The responsibilities of this component can be analyzed as the following. First of all it works
as a bridge that forwards messages between MDA and database part. All of the messages will
be stored in database. Moreover when the user wants to see the received messages,
DatabaseManager understands the request(with the assistance of TransmissionManager) and
queries to the database in order to get the received messages. This logic is also valid for
displaying sent messages. The mechanism is same with the previous one. Furthermore, for
deleting messages of a user, DatabaseManager again becomes active and deletes the messages
in the databases.

Constraints

Although we have not specific constraint for this component yet, we have some assumptions.
We assume that when the user sends the request, our UserInterfaceManager and
TransmissionManager works correctly and forward the request to this component.

Composition

There is no subcomponent of MessageManager.

Uses/Interactions

This class has an instance used by MainServerCore in order to accomplish the message
related jobs of application.

Resources

The main resource that is affected by this component is database, because it affects the
structure of database by adding or deleting the messages in it.

Processing

Now, we analyze the processing of this component:

- First of all, this component needs to understand the request that comes from user.
- After the user touches to the screen, UserInterfaceManager and TransmissionManager send
the request to the MessageManger.
- MessageManager analyzes it and behaves according to the request.

55

- It contacts with DatabaseManager and make query according to the user needs.
- It makes the necessary operations on database and if any results are returned from database,
it gets them.
- If any results need to be displayed to the user, it again contacts with TransmissionManager
and forwards the result for the UI.

Interface/Exports
Message
This component provides Message class’ objects for our application. These objects’ methods
that are used for handling message related issues that are explained as the following:
- recordMessagetoDB (Message newMessage) : void
- getMesaagestoUser (int UserID) : string
- getMessagesfromUser (int UserID) : string
- getMessagestoAll() : string
- getUnreadMessagestoAll () : string
- getUnreadMessagestoUser (int userID) : string

Types
By looking the methods that are explained in the previous title, we can say that this
component provides the following data types:
- int -> UserID //for defining user id.
- Message -> newMessage //for defining the message object.
- String -> returnValue //for defining return values of methods.

Exceptions
Some methods of this component find and return the messages that are belong to the specific
user. These methods take this user’s id as an argument and checks that whether the user id is
valid or not. If there is no user that has this user id, this component throws an exception. For
example;
-throw new MyException(“illegal user id”);
(after defining our Exception class, namely, “MyException”).

7.5 MapManager

Classification

MapManager is a class that is one of the manager classes that works under MainServerCore.

Definition

MapManager is one of the manager classes that works under the control of MainServerCore.
It handles map related operations for our application. First of all, the maps that will be
displayed on UI are stored in database. When, we need to show some part of the map on the

56

screen, we should somehow bring that part from database and display it to the user. For this
purpose, MapManager is used for our application. It creates connection between MDA and
database for map-related issues.

Responsibilities

There are some responsibilities of this component. First of all, it is responsible for converting
map coordinates into the sectors. We should make this operation in order to bring the related
part of the map on the screen. The other responsibility is getting the required part of the map
according to the sector number that was received as an argument from MDA. These two main
responsibilities supplies us the power in order to control the map operations in our
application.

Constraints

We have an assumption for MapManager. We explained in the previous parts that we store
the maps in database and MapManager helps us to display them on the screen. Therefore we
assume that maps are in the database and we can reach them at any time during the
application.

Composition

There is no subcomponent of MapManager.

Uses/Interactions

This class has an instance used by MainServerCore in order to display map on the screen.

Resources

The main resource that is used by this component is database. Although this component is not
directly affects the structure of database, it uses the data and map information in order to
display map on UI.

Processing

Now, we analyze the processing of this component:
- When the user starts our application, firstly MDA makes a request that it needs a map in
order to display it on the screen. Then, this request comes to MapManger with the assistance
of TransmissionManager.
- MapManager converts the coordinates into sectors for the main map that is stored in our

57

database.
- It gets the sub-part of the map from database and gives it to the TransmissionManager. (In
order to display map on the UI)
- If the user wants to see the other parts of the map, the inputs of the screen is analyzed by
InputController and comes to MapManager
-According to this new request MapManager repeats its actions that is needed to query the
map into the database and to give it to the MDA part.

Interface/Exports

Map
This component provides Map class’ objects for our application. They have methods which
are used for handling map related issues that are explained as the following:
- convertCoordinatestoSector(float altitude, float latitude) : int
- getMap (int sectorNumber) : Map

Types
By looking the methods that are explained in the previous title, we can say that this
component provides the following data types:
- float -> altitude, latitude //for representing coordinate values.
- int -> sectorNumber //for holding sector number
- Map ->returnValue //for returning Map object

Exceptions
This component provides and uses exceptions. If a map request that comes from MDA is not
valid, MissionManager object throws an exception that shows that the request is not valid. For
example after defining our Exception class, namely, “MyException”:
-throw new MyException(“illegal map request”);

7.6 MobileApplicationCore

Classification

MobileDeviceCore is a class that is the center the mobile device application.

Definition

This class is responsible for managing mobile device application with controlling instances of
appropriate classes.

Responsibilities

The first responsibility is related with managing the user inputs with the assistance of

58

UserInterfaceManager. This component should understand and analyze the user inputs in
order answer his requests. Second responsibility is getting the environment context from
SensorManager and forwards it to the UserInterfaceManager. The other responsibility of this
component is to create UI. For this purpose MobileApplicationCore and
UserInterfaceManager work with together. As the last responsibility, this component should
send the any data to TransmissionManager in order to interact with MainServerCore and
database part.

Constraints

Firstly, we should talk about timing constraint of MobileApplicationCore. This component
enables the communication between MDA and the user. However, it should response the user
requests in a very short time. For example; when the user wants to see the messages that was
received, the communication between MDA and UserInterfaceManager should be fast enough
and the new UI should displayed on the screen at most a few seconds. This timing constraint
is also valid for other operations such as; receiving the missions from database, changing the
structure of UI according to the context info etc.

Composition

The followings are the classes that have instances as a member of the MobileDeviceCore
class.

1. MobileApplicationCore
2. InputController
3. MobileDeviceTransmissionManager
4. UserInterfaceController
5. SettingsManager
6. SensorController
7. Mission
8. Message

MobileDeviceCore uses the methods of these classes to maintain communications between
them and to manage the main application.

Uses/Interactions

MobileDeviceCore uses the classes listed below and has an instance of each of them:

1. InputController
2. MobileDeviceTransmissionManager
3. UserInterfaceController
4. SettingsManager
5. SensorController

59

6. Mission
7. Message

MobileDeviceCore maintains interactions with the classes listed above.

Resources

There are some resources that are needed by this component. First of all it needs the sensors
that collects the context info and forwards them to MobileApplicationCore. This component
needs this info, because the UI can be restructured by using them. Morover, the user input can
be analyzed as another resource that are managed by this component. User inputs are very
important metric for our application, because it behaves and runs according to the user
requests.

Processing

Below are the possible interactions of the members of the MobileDeviceCore:
* SensorController - UserInterfaceController
* SettingsManager - UserInterfaceController
*UserInterfaceController - MobileDeviceTransmissionManager
Each has explained in specific sections of the corresponding classes.

Interface/Exports

This class has no interface of its own. It is only a container that connects the parts of the
mobile application; therefore it uses interfaces of each subclass to connect one to another.

7.7 UserInterfaceController

Classification

UserInterfaceController is a class works under MobileApplicationCore.

Definition

MobileApplicationCore has an instance of this class as its member. This class specifies what
to be displayed on screen and where and how they are displayed. Moreover this class handles
user inputs and directs them to related classes. This is where the application interacts with the
user.

60

Responsibilities

UserInterfaceController is responsible for generating the layout of the user interface and
handling the user actions on screen. UserInterfaceController reads the context information
data and user preferences from SensorController and SettingsManager respectively through
the MobileApplicationcore. Then it combines this information to generate the user interface to
be displayed on screen. Secondly, this class is responsible for delivering user input to its
corresponding class. For example, when user writes a message through the message screen it
is UserInterfaceController’s job to set the corresponding fields of the Message class or to call
the related methods.

Constraints

This class has no constraints.

Composition

This class has no subcomponents. It interacts with other classes via MobileDeviceCore.

Uses/Interactions

This class is used by MobileDeviceCore to generate and display the user interface. It gets data
from SensorController and SettingsManager instances and sends data to Mission and Message
instances of the MobileDeviceCore.

Resources

They are no memory or data resources directly affected by this class. It only changes the
existing variables and sets different values. It uses central processor and graphical processing
units inside the mobile device.

Processing

We can divide this into two subsections: firstly, generating the user interface; secondly,
delivering user input. The primary object of the project is to provide a user-friendly graphical
interface. Therefore, user choices and sensor outputs are taken into consideration is building
the interface. UserInterfaceController gathers data from both sources then combines them to
generate the desired interface with desired fonts, buttons, sizes, colors and layout. Secondly,
user interacts with the application via graphical interface. Therefore, when he wants to enter a
text or write a message, UserInterfaceController calls the corresponding method. For
example, when he writes a message, UserInterfaceControoler calls setMessageSubject(text),
setReceivers(user names), setMessageBody(message) etc.

61

7.8 SettingsManager

Classification

SettingsManager is a class that has an instance constructed by MobileDeviceCore.

Definition

This class manages changes desired by user about both the core application and the graphical
user interface.

Responsibilities

This class is responsible for managing the settings and storing preferences. They may be
either about the user interface or about the application behind the interface. This class
provides access to its components via getters for each of them.

Constraints

User can reach SettingsManager when he is not in an emergency situation in which the
application will block the settings menu.

Composition

There is no subcomponent of SettingsManager.

Uses/Interactions

SettingsManager has an instance under the MobileApplicationCore. This instance kepps the
preferences set by user and provides them as asked by MobileApplicaitonCore or the
UserInterfaceController by getter methods defined in itself.

Resources

There are no resources directly affected by this class since it only sets values of variable
already in the memory.

Processing

SettingsManager becomes active when user opens settings menu by tapping the settings icon
on the screen. The menu pops up with two tabs oneis for user interface and the other is for
genereal settings. User can either change the menu by selecting a different tab or sets a

62

preference value by selecting preference item. Later these settings will be read by
UserInterfaceController to display the interface as desired or by the MobileApplicationCore to
set the actions of application as desired.

Interface/Exports

This class contains two sets of preferences. Each will be displayed as a different tab in the
GUI. These items have their fields as members of the class. Below is the list of these items:
User interface preferences:

 -fontType
 -fontSize

-fontColor
-buttonSize
-backgroundColor
-informationBoxColor
-informationBoxOpacity
-displayAllies
-displayNeutrals
-displayEnemies
-displayPlaces

Application preferences:
-time
-chronometer
-privacy
-notificationRank
-messageRank

7.9 SensorController

Classification

SensorManager is a class responsible for gathering sensor data to read the context and
delivering them to the MobileDeviceCore.

Definition

SensorController class is the part of the project that generates the “context awarenes”. In other
words, this is the part where device interacts with the environment and determine the situation
and changes around itself.

63

Responsibilities

SensorController is responsible for interacting with four sensors and MobileDeviceCore.
Main responsibilities of this class are to read sensor outputs, determine the context then
delivering that information to MobileDeviceCore. In other words its job is to maintain
communications between these parts.

Constraints

The only constraint of this class is to evaluate sensor outputs efficiently and deliver them to
MobileDeviceCore in a short time to provide a fluent and friendly user interface.

Composition

There is no subcomponent of SensorController.

Uses/Interactions

This class has an instance used by MobileDeviceCore to get the context information read
from the sensors.

Resources

The input data to this class are sensor output maintained by hardware. Since there is an
abstraction, we do not need to deal with the details of sensors. Android platform provides
necessary methods to interact with sensors.

Processing

This class is constructed by MobileDeviceCore. MobileDeviceCore calls the
“getContextInfo()” method based on a timer (such as in each fifteen second give me your
report). Then SensorController calls the sensor reader methods to get the data from the
sensors and evaluate them. Evaluation will be based on result of the test applications for
matching data with several conditions. We need the acceleration values that correspond to
different movement styles or lightness values for different illumination conditions. Finally it
returns the context information to the MobileDeviceCore.
This class has no need for a user interface. It works as a background process. The interface
with SensorController and MobileDeviceCore is consists of just “getContextInfo()” method
which is also the only path between them. The interface between this class and sensors is
maintained by Android’s native libraries.

64

Interface/Exports
Types:
 -float -> illuminaitonValue
 -float -> accelerationValue
 -float -> coordinates

-float -> direction
-Context -> contextInfo

This class consists of reader methods for four sensors namely:
“readLightness()”,
“readAcceleration()”,
“readCoordinates()”,
“readDirection()”.

These methods set the corresponding fields of the class which are lightnessValue,
accelerationValue, coordinates and direction respectively.
Moreover, it has a “contextEvaluation()” method that uses the four fields mentioned above to
conclude a context information in which the device is working.
Finally, it also has a “getContextInfo()” method that is to be called by MobileDeviceCore to
get the context information data.

8. LIBRARIES AND TOOLS

Making a choice for suitable tools and libraries to be able to develop our project efficiently is
a very difficult process. For this reason, a wide research was made on the Internet to find
suitable tools and libraries that can be used in the project.

8.1 Eclipse

Eclipse is a multi-language software development environment comprising an integrated
development environment (IDE) and an extensible plug-in system. Moreover, it is written mostly
in Java and can be used to develop applications in Java and, by means of various plug-ins.
For Java developers, Eclipse consists of the Java Development Tools (JDT) and users can
extend its abilities by installing plug-ins written for the Eclipse software framework, such as
development toolkits for other programming languages, and can write and contribute their
own plug-in modules. The aspects of Eclipse have an important role about why we choose it
to for development environment. We plan to use Android platform due to its usability for
mobile devices with Eclipse.

http://en.wikipedia.org/wiki/Software_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Plug-in_(computing)
http://en.wikipedia.org/wiki/Java_(programming_language)

65

8.2 Android

Android is the most suitable platform that can respond most of the necessities of the project.
Therefore, we chose Android because it is a software stack for mobile devices that includes an
operating system, middleware and key applications. The Android SDK provides the tools and
APIs necessary to begin developing applications on the Android platform using the Java
programming language.

8.2.1 android.hardware.SensorManager

It will be necessary to use sensors such as light sensor, accelerometer sensor etc. for this
project. Android provides developers this library to implement these sensors in applications.

8.2.2 SQLite

In this project, database need to be used to store necessary data. Android also can provide a
powerful and lightweight relational database engine available to all applications called
SQLite.

8.2.3 Android Emulator

The emulator available in the Android SDK is not just a tool that allows you to easily test
applications without having to install it to a real device, or even having one. With the proper
configuration it is possible to test situations which are hardly reproduced on a physical one.
Android emulator is almost the best tool existing to develop our mobile device project.

9. TIME PLANNING (GANNT CHART)

9.1 Term 1 Gannt Chart

http://developer.android.com/sdk/index.html

66

Components/Task
Dependent
Components Status Date Start

Data
Complete Owner Difficulty Notes

Context Aware User Interface Term 1
Pre - Proposal
Report

Proposal
Report done

12-Eki-
2010 18/10/2010 Burak Small

Use the status to
toggle between
different states
with color coding.

Market Research
Proposal
Report done 19/10/2010 3.11.2010 Hüseyin Medium

marketing
research for our
project topic and
similar products
to our product

Literature Survey
Proposal
Report done 20/10/2010 4.11.2010 Ender Medium

researching
example papers
and articles for
context
awareness

Proposal Report
Requirement
Analysis done 21/10/2010 5.11.2010

All of
team Medium

proposal report of
our project

Requirement
Analysis SRS done 6.11.2010 4.12.2010

All of
team Large

Requirement
analysis before
preparing
software
requirement
specification

Software Requirement Specification 5-Dec-2010

Initial Research
and installation of
Android

Detailed
Design done 6-Ara-2010 10.12.2010 Burak Small

Installation of
Android and its
plug-ins.
Research of our
project and how
to implement our
project

Initial Network
Design

Detailed
Design done 6-Ara-2010 12.12.2010 Hüseyin Small

how to be our
design model in
the project

Research for
Server - Client
Connection

Detailed
Design done 6-Ara-2010 12.12.2010 Ender Medium

Server-client
connection
architecture for
data connection

Initial User
Interface

Detailed
Design done 10.12.2010 16/12/2010

Hüseyin,
Ender Medium

First user
interface
reflecting our
interface opinion

Initial Database
Infrastructure

Detailed
Design done 10.12.2010 16/12/2010 Burak Medium

how to design
and implement
our database

Initial Design
Report DDR done 6-Ara-2010 16/12/2010

All of
team Medium

First report for
our detailed
design report

Testing Software
Design DDR done 6-Ara-2010 16/12/2010

All of
team Medium

we will test our
design

Team Presentation
Prototype
Demo open 21/12/2010 3.1.2011

All of
team Medium

Team
presentation will
be hold in a
specific date

Detailed Design DDR open 17/12/2010 4.1.2011
All ot
team Large

Before preparing
our detailed
design report, we
will implement
final detailed
design

Detailed Design Report 4-Jan-2011

First Prototype
Prototype
Demo future 5-Oca-2011 17/1/2011

All of
team Medium

we will develop
our first prototype
by using our
detailed design
report

Prototype Demo
Final
Presentation future 1/1/2011 23/1/2011

All of
team Large

Final
presentation of
our demo will be
hold in a specific
date

Final Presentation 20-Jan-2011

Prototype Demo
Final
Presentation future 10/1/2011 23/1/2011

All of
team Large

Final
presentation of
our demo will be
hold.

67

9.2 Term 2 Gannt Chart

Components/Task
Dependent
Components Status Date Start

Data
Complete Owner Difficulty Notes

Context Aware User Interface Term 2

Web Page Design
for Our Project
Page

Blog
Management open 25/12/2010 31-5-2011 Ender Medium

Blog Management open
1-Şub-
2011 31-5-2011 All Medium

Development and
Tool Analysis open 15-12-2009 16-2-2011 All Medium
Development and Tool Integration 20-2-2010
Sensor
Implementation to
system future 25-12/2010 30-2-2011 Burak Small

Semantic Zooming future 20-1-2011 15-3-2011 All Large

Database
architecture

Database
Design
Implementation future 15-2-2011 15-3-2011

Hüseyin,
Ender Large

Complete Menu future 15-2-2011 15-3-2011 Burak Medium
GUI future 25-2-2011 20-3-2011 All Large

Network Design future
1-Mar-
2011 10.4.2011 All Large

Scenario future 15-3-2011 15-4-2011 Arjun Small
Database Implementation 15-4-2010

Integration
Complete
Product future 15-4-2011 30-4-2011 All Medium

Testing
Complete
Product future 15-4-2011 25-4-2011

Hüseyin,
Burak Medium

Optimization
Complete
Product future 25-4-2011 30-4-2011 Ender Medium

Test and
Debugging

Complete
Product future

1-May-
2011 10.5.2011

Hüseyin,
Burak Medium

Complete Product future
1-May-
2011 30-5-2011 All Large

Final Demo future
1-Haz-
2011 15-6-2011 All Large

Finalization 20-6-2010

68

10. CONCLUSION

This document expresses the design approach taken by Momo Software for CAUI project. In
this document a fair amount of improvement has been done on both project scenario and
design related issues. As we develop our design document the goals and boundaries of our
final product has become more clear and well-defined. Moreover, this document is the first
point that we develop and analyze our design. We discussed the general architecture of the
system and gave further information on technical design. Finally we explained tools, libraries
and future plans of the project. Therefore this document will be definitely used for developing
and creating our product in future.

Although this document has a lot of important data that is required for our development
phase, we have to analyze the existing concepts and think our implementation techniques in
more detail in order to start the implementation of the product. Still, this document will help
us in order to gain an understanding of what we code and what we might face during the
implementation phase. In summary, it can be considered as a step that helps us to reach our
goals and final product.

