
kodisnowhere

Shelfbutler
Software Design Description

v1.1

18.01.2013

Changelog!

*A: Added, M: Modified, D: Deleted

Version
number Date Section A,M,D* Title or Brief Description

Version 1.0 02/12/12 Original.

Version 1.1 18/01/13 Section 2.0 M Second paragraph is modified
for clear specification.

Section 3.1 M Component diagram is updated.

Section 3.2.1 A A brief explanation is added to
the diagram.

Section 3.2.2 A A brief explanation is added to
the diagram.

Section 3.2.3 A A brief explanation is added to
the diagram.

Section 3.2.4 A A brief explanation is added to
the diagram.

Section 3.2.4 M Diagram is updated to fix a
mistake.

Section 3.2.5 A A brief explanation is added to
the diagram.

Section 3.2.6 A A brief explanation is added to
the diagram.

Section 3.2.7 A A brief explanation is added to
the diagram.

Section 3.2.8 A A brief explanation is added to
the diagram.

Section 3.2.9 A A brief explanation is added to
the diagram.

Section 3.2.10 A A brief explanation is added to
the diagram.

Section 3.2.11 A A brief explanation is added to
the diagram.

Section 3.2.12 A A brief explanation is added to
the diagram.

Section 3.2.13 A A brief explanation is added to
the diagram.

Section 3.2.14 A A brief explanation is added to
the diagram.

Section 3.2.15 A A brief explanation is added to
the diagram.

2

Version
number Date Section A,M,D* Title or Brief Description

Section 3.4 A External interfaces section
added.

Section 3.4 A External interface diagram is
added.

Section 4.1 M Cardinality description is added
to diagram.

Section 4.1.1 M Diagram explanation is aded.

Section 5.16 A Webservices are explained in
detail.

Section 7 M Webservices are added to
related use cases.

3

1 Introduction 8
1.1 Purpose 8

1.2 Document Scope 8

1.3 Overview 8

1.4 Reference Material 9

2 System Overview 10

3 System Architecture 11
3.1 Architectural Design 11

3.2 Decomposition Description 11

3.2.1 Repository Service 12

3.2.2 BookInformation Service 13

3.2.3 Synchronization Service 13

3.2.4 CollectionViewController 14

3.2.5 BookViewController 14

3.2.6 AddBookViewController 15

3.2.7 ListViewController 16

3.2.8 BarcodeScanViewController 17

3.2.9 TrackViewController 17

3.2.10 ShareViewController 18

3.2.11 SearchViewController 18

3.2.12 RegisterViewController 19

3.2.13 LoginViewController 19

3.2.14 SettingsViewController 20

3.2.15 AddReviewViewController 20

3.3 Design Rationale 21

3.4 External Interfaces 21

4

4 Data Design 22
4.1 Data Description 22

4.1.1 Mobile Application Data Description 23

4.1.1.1 Book Entity 23

4.1.1.2 User Entity 25

4.1.1.3 Collection Entity 26

4.1.1.4 Track Entity 27

4.1.1.5 Review Entity 28

4.1.2 Cloud Data Description 28

4.2 Data Dictionary 29

5 Component Design 30
5.1 Repository Service 30

5.1.1 Repository Attributes 30

5.1.2 Repository Methods 30

5.2 BookInformation Service 34

5.2.1 BookInformation Attributes 34

5.2.2 BookInformation Methods 34

5.3 Synchronization Service 35

5.3.1 Synchronization Attributes 35

5.3.2 Synchronization Methods 35

5.4 CollectionViewController 36

5.4.1 Collection Model 36

5.4.2 Collection View 36

5.4.3 Collection Controller 36

5.5 BookViewController 37

5.5.1 Book Model 37

5.5.2 Book View 37
5

5.5.3 Book Controller 37

5.6 AddBookViewController 38

5.6.1 AddBook Model 38

5.6.2 AddBook View 38

5.6.3 AddBook Controller 38

5.7 ListViewController 39

5.7.1 List Model 39

5.7.2 List View 39

5.7.3 List Controller 39

5.8 BarcodeScanViewController 40

5.8.1 BarcodeScan Model 40

5.8.2 BarcodeScan View 40

5.8.3 BarcodeScan Controller 40

5.9 TrackViewController 41

5.9.1 Track Model 41

5.9.2 Track View 41

5.9.3 Track Controller 41

5.10 ShareViewController 42

5.10.1 Share Model 42

5.10.2 Share View 42

5.10.3 Share Controller 42

5.11 SearchViewController 43

5.11.1 Search Model 43

5.11.2 Search View 44

5.11.3 Search Controller 44

5.12 RegisterViewController 44

5.12.1 Register Model 45

6

5.12.2 Register View 45

5.12.3 Register Controller 45

5.13 LoginViewController 46

5.13.1 Login Model 46

5.13.2 Login View 46

5.13.3 Login Controller 46

5.14 SettingsViewController 47

5.14.1 Settings Model 47

5.14.2 Settings View 47

5.14.3 Settings Controller 47

5.15 AddReviewViewController 48

5.15.1 Review Model 48

5.15.2 Review View 48

5.15.3 Review Controller 48

5.16 WebServices 49

6 Human Interface Design 53
6.1 Overview of User Interface 53

6.2 Screen Images 53

6.3 Screen Objects and Actions 56

7 Requirements Matrix 57

7

1 Introduction
1.1 Purpose
 This software design document describes the architecture and system design of
ShelfButler project. It gives a general development description for the code writing process. The
intended audience of this document is developers and testers. The document is prepared
according to the Software Requirement Specification document of the ShelfButler project. [1]

1.2 Document Scope
 This document gives the design description for ShelfButler project. Detailed design
descriptions and basic structure of the project are explained in order to be a guide for
implementation.

1.3 Overview
 First general description of the ShelfButler system including its functionality and matters
related to the overall system and its design will be provided in System Overview section. This will
provide the basis for the brief description of ShelfButler project.

 After that, in the third chapter architectural design and decomposition description, and
design rationale are explained. This section includes diagram of major subsystems are their
interactions. UML sequence diagrams of the components are provided.

 The fourth chapter includes Data Design section which gives information about data
structures and data types used in ShelfButler project. This section includes ER diagram of the
database, description of data storage, system entities with their attributes and relationships and
diagram of the major classes.

 In the fifth section, Component Design includes detailed descriptions. This section is the
most important section of this document, because description of components and relationship
between components are scrutinized in detail. Since general system will be constructed by
connecting and mixing some components; details of components like attributes, methods, views
will be explained in this section.

 Sixth section, Human Interface Design includes overview of the user interface and screen
images. It contains information about the functionality of the system from user perspective will
take place.

8

 Seventh section contains requirements matrix which maps software requirements in the
Software Requirement Specification (SRS) [1] document with the matching components
described. In the end, there is the conclusion section which will give a short brief and a general
explanation.

1.4 Reference Material
[1] ShelfButler Software Specification Document, October 2012

9

2 System Overview
 ShelfButler is a project that includes a mobile application and a web interface for the book
collector users. The main goal of the project is to provide an environment for book collectors to
manage their collections. It makes it easy to organize the items by keeping location of all books in
the library, adding or removing books, searching books locally or on the internet, finding reviews/
ratings, sharing opinions, getting recommendations about the books or recommending to
someone else, reviewing and rating them and keeping track of the items that are lent to others. It
also supports online shopping option for the books by redirecting the user to Amazon.com or
Idefix.com. Furthermore, users will be able to save their favorites (as a favorites list), the books
they want to read (as a readlist) and the books they wish to have (as a wishlist).

 It is an easy to access and user-friendly application having a web interface in addition to
mobile application, which makes it reachable from anywhere with an internet connection. Web
interface will also provide all the functionalities that the mobile application has and moreover there
will be a synchronize option for the synchronization between mobile application and the web
interface.

 The system will be an application with a graphical user interface and a database. After
each operation as input, the changes shall reflect to the database in a way that will add, remove
or edit the related fields, the system shall deal with the database issues i.e. searching or retrieving
data from database, itself. It will be an independent project, only using some APIs with LGPL.

10

3 System Architecture
 A general description of the software system architecture of ShelfButler is presented in the
following sections.

3.1 Architectural Design

 The architecture of Shelfbutler adopts model-view-controller pattern. The details and the
reason why this pattern was chosen is explained in Section 3.3.
 Diagram below shows the components of the system and their interconnections with each
other. Description of each component is explained in Section 5 in detail.

3.2 Decomposition Description
 Components and their subsystems with sequence diagrams are presented below:

11

3.2.1 Repository Service

 Repository service has the functions, which can be seen from the diagram, that
communicate directly with database.

12

3.2.2 BookInformation Service

 BookInformation Service has the function createBook and getReview which communicate
with AddBookViewController.

3.2.3 Synchronization Service

 SynchronizationService has functions synchDeleted and synchDirty, which are useful for
checking if the system is synchronized or not, that communicate with repository.

13

3.2.4 CollectionViewController

 The relating functions between the Model View and Controller parts and the function
communicating with repository are given in the diagram.

3.2.5 BookViewController

14

 The relating functions in between, functions related to the repository and Controllers that
are communicated or used are given in the diagram.

3.2.6 AddBookViewController

15

 The relating functions between the Model View and Controller parts and the function
communicating with repository are given in the diagram.

3.2.7 ListViewController

 The relating functions in between, functions related to the repository and Controllers that
are communicated or used are given in the diagram.

16

3.2.8 BarcodeScanViewController

 The relating functions between the Model View and Controller parts, related API and
communication with it are given in the diagram.

3.2.9 TrackViewController

 The relating functions in between, functions related to the repository and Controllers that
are communicated or used are given in the diagram.

17

3.2.10 ShareViewController

 The relating functions in between; functions related to the external applications that are
communicated or used are given in the diagram.

3.2.11 SearchViewController

 The relating functions in between, functions related to the repository and Controllers that
are communicated or used are given in the diagram.

18

3.2.12 RegisterViewController

 The relating functions between the Model View and Controller parts and the function
communicating with repository are given in the diagram.

3.2.13 LoginViewController

 The relating functions between the Model View and Controller parts and the function
communicating with repository are given in the diagram.

19

3.2.14 SettingsViewController

 The relating functions between the Model View and Controller parts and the function
communicating with repository are given in the diagram.

3.2.15 AddReviewViewController

20

 The relating functions between the Model View and Controller parts and the function
communicating with repository are given in the diagram.

3.3 Design Rationale
 In ShelfButler project, Model View Controller architecture is used. MVC pattern separates
the representation of information from the user's interaction with it. Models represent knowledge.
A model could be a single object or could be complex structure of objects. Views are the
representations of models. Controllers are the links between a user and the system. The controller
receives input from the user, translates it into appropriate messages and pass these messages on
to views.

 Since this application is targeted for iOS devices, Cocoa framework in iOS SDK shall be
used. This framework is mainly based on the MVC architecture. Thus, this architecture is to be
used while implementing this project.

3.4 External Interfaces

 ShelfButler has communication with different external interfaces including; Facebook,
Twitter, Goodreads, Mail Application and the device’s camera for barcode scanning option.

21

4 Data Design
4.1 Data Description
 All of the information is kept in the databases which can only be accessed by Repository
services.

 Attributes are drawn as ovals and are connected with a line to exactly one entity or
relationship set.
 A thick line indicates each entity in the entity set is involved in exactly one relationship.
 An arrow from entity set to relationship set indicates a key constraint: each entity of the
entity set can participate in at most one relationship in the relationship set.

22

4.1.1 Mobile Application Data Description

 The diagram represents both entity relationships and classes of the application, since they
are auto-generated from ER-Diagram.
 This section provides information of entities and components in the mobile application of
this project. The database of the mobile application will be implemented using Xcode and
xcdatamodel as it is used for creating databases for programs written in objective C.

4.1.1.1 Book Entity

 Book is the major entity of the whole database. Since it is a book collection management
project, almost all entities and components of the project uses this entity. The attributes and
relations associated with book are as follows:

Name Type Data Type Description
name attribute String Name of the book.

author attribute String Name of the author of
the book.

cover attribute String File path to the cover
picture.

23

Name Type Data Type Description
dateAdded attribute Date The date that the

book was added to
the collection.

isFavourite attribute Boolean Whether the book is
in favorite list or not.

genre attribute String Genre of the book.

isbn attribute String ISBN of the book,
which uniquely
identifies the book.

language attribute String Language of the
book.

locCol attribute Integer The column that the
book resides in the
collection.

locRow attribute Integer The row that the book
resides in the
collection.

publishDate attribute Date The date that the
book is published.

publisher attribute String Name of the publisher
of the book.

toBeRead attribute Boolean Whether the book is
in readlist or not.

inCollection relationship - The relationship that
indicates whether the
book is associated
with a collection or
not. It is a many to
one relationship.

inTrack relationship - The relationship that
indicates whether the
book is lent to
someone. It is a one
to many relationship.

24

Name Type Data Type Description
inWishlist relationship - The relationship that

indicates whether the
book is in wishlist of a
sure. It is a one to one
relationship.

reviews relationship - The relationship that
indicates the reviews
of the book. It is one
to many relationship.

isDirty attribute Boolean Whether the entry is
synch with cloud or
not.

isRemoved attribute Boolean Whether the entry is
deleted or not.

4.1.1.2 User Entity

 Users are the ones they own the collections. The attributes and relations associated with
user are as follows:

Name Type Data Type Description
name attribute String Name of the user.

surname attribute String Surname of the user.

email attribute String E-mail of the user.

password attribute String Password of the user.

collection relationship - The relationship that
determines the
collection that
belongs to the user. It
is a one to one
relationship.

25

Name Type Data Type Description
trackList relationship - The relationship that

determines the
tracklist of the user.
That is which book
the user owns is lent
to others. It is a one to
many relationship.

wishlist relationship - The relationship that
relates a wishlist to
the user. It is a one to
many relationship.

isDirty attribute Boolean Whether the entry is
synch with cloud or
not.

isRemoved attribute Boolean Whether the entry is
deleted or not.

4.1.1.3 Collection Entity

 Collections represent the libraries that belong to users. The attributes and relations
associated with collection are as follows:

Name Type Data Type Description
colNumber attribute Integer The number of

columns in the library.
That is introduced by
the user.

rowNumber attribute Integer The number of rows
in the library. That is
introduced by the
user.

books relationship - The relationship that
indicates which
books belong to a
specific library. It is a
one to many
relationship.

26

Name Type Data Type Description
user relationship - The relationship that

determines the
collection belongs to
which user. It is one to
one relationship.

isDirty attribute Boolean Whether the entry is
synch with cloud or
not.

isRemoved attribute Boolean Whether the entry is
deleted or not.

4.1.1.4 Track Entity

 The information about lent books are kept in the track entity. The attributes and relations
associated with collection are as follows:

Name Type Data Type Description
comment attribute String Comments of the user

about the lending.

lendDate attribute Date The date which the
book is lent.

returnDate attribute Date The date which the
book is returned.

toWhom attribute String The person who lent
the book.

book relationship - The relationship that
indicates which book
is related to track. It is
a one to one
relationship.

user relationship - The relationship that
associates the lent
books with user. It is a
one to one
relationship.

27

Name Type Data Type Description
isDirty attribute Boolean Whether the entry is

synch with cloud or
not.

isRemoved attribute Boolean Whether the entry is
deleted or not.

4.1.1.5 Review Entity

 The information about reviews are kept in the review entity. The attributes and relations
associated with collection are as follows:

Name Type Data Type Description
content attribute String Content of the review.

date attribute Date The date which
review is written.

rating attribute Integer The rating of the
book.

book relationship - The relationship that
indicates which book
is related to review. It
is a one to one
relationship.

isDirty attribute Boolean Whether the entry is
synch with cloud or
not.

isRemoved attribute Boolean Whether the entry is
deleted or not.

4.1.2 Cloud Data Description

 Database for web interface of the application is stored in the cloud. Entities and
relationships are same as mentioned above in the mobile part. Mobile and cloud databases are
kept synchronized via Synchronization service.

 The only difference from mobile part is that cloud database will be implemented using
SQL.

28

4.2 Data Dictionary

Name Type Referred Section
Book Entity 4.1.1.1

Collection Entity 4.1.1.3

Review Entity 4.1.1.5

Track Entity 4.1.1.4

User Entity 4.1.1.2

29

5 Component Design
5.1 Repository Service
 This component is an abstraction over actual database. It provides all methods (namely
insert, update, delete, fetch) for database operations. Any other component wants to access
database, shell use the methods implement by Repository Service.

 This component is basically is a singleton class, so that the same instance can be
accessed anywhere in the application.

5.1.1 Repository Attributes

 Repository class has one attribute that is a database connection.

Field Name Data Type Description
database Database connection Created at the initialization of

Repository object. Keeps a
connection to the database.
Connection closed when the
last reference to Repository
object is destructed.

5.1.2 Repository Methods

 Repository class provides methods for any database operation.

Method Name Return Type Description
addBook Book Takes a Book object as an

argument. Inserts it to
database. Returns the object
inserted. NULL, if insertion
fails.

updateBook Void Takes old and new entries as
arguments. Replaces the old
with new one in the database.

30

Method Name Return Type Description
deleteBook Void Takes the Book object to be

deleted as an argument.
Removes corresponding entry
from database.

getBookByISBN Book Takes ISBN number as
argument. Fetches and
returns the requested entry as
a Book object. NULL, if not
found.

addUser User Takes required information to
register as arguments. Inserts
a new user to database.
Returns the object inserted.
NULL, if insertion fails.

updateUser Void Takes old and new entries as
arguments. Replaces the old
with new one in the database.

addTrackRecord Track Takes tracking information
and a Book as arguments.
Insert new track record for the
given item. Returns the Track
object.

updateTrackRecord Void Takes old and new entries as
arguments. Replaces the old
with new one in the database.

deleteTrackRecord Void Takes the Track object to be
deleted as an argument.
Removes corresponding entry
from database.

getTrackRecordsOfBook Track array Takes a Book object as an
argument. Fetches and
returns the Track list of this
book.

getTrackRecordsOfUser Track array Takes a User object as an
argument. Fetches an returns
the Track list of all books
owned by this user.

31

Method Name Return Type Description
addCollection Collection Takes row and column

numbers as arguments.
Creates and insert a new
collection to database.

updateCollection Void Takes old and new entries as
arguments. Replaces the old
with new one in the database.

deleteCollection Void Takes the Collection object to
be deleted as an argument.
Removes corresponding entry
from database.

getCollectionOfUser Collection Takes a User object as an
argument. Fetches an return
the Collection owned by this
user.

addBookToCollection Void Takes a Book and a Collection
object as arguments. Adds
book to collection in the
database.

getWishlistOfUser Book array Takes a User object as an
argument. Fetches and
returns all the books in the
wishlist of this user.

getReadlistOfUser Book array Takes a User object as an
argument. Fetches and
returns all the books in the
readlist of this user.

getFavoritelistOfUser Book array Takes a User object as an
argument. Fetches and
returns all the books in the
readlist of this user.

addReview Review Takes a Review object as an
argument. Inserts it to
database. Returns the object
inserted. NULL, if insertion
fails.

32

Method Name Return Type Description
updateReview Void Takes old and new entries as

arguments. Replaces the old
with new one in the database.

deleteReview Void Takes the Review object to be
deleted as an argument.
Removes corresponding entry
from database.

getReviewForBook Review array Takes a Book object as an
argument. Fetches and
returns all the reviews for this
item.

getDirtyBooks Book array Fetches and returns all dirty
book entries.

getDirtyCollections Collection array Fetches and returns all dirty
collection entries.

getDirtyUsers User array Fetches and returns all dirty
user entries.

getDirtyTracks Track array Fetches and returns all dirty
track entries.

getDirtyReviews Review array Fetches and returns all dirty
review entries.

getDeletedBooks Book array Fetches and returns all books
marked as deleted.

getDeletedCollections Collection array Fetches and returns all
collections marked as
deleted.

getDeletedUsers User array Fetches and returns all users
marked as deleted.

getDeletedTracks Track array Fetches and returns all tracks
marked as deleted.

getDeletedReviews Review array Fetches and returns all
reviews marked as deleted.

33

Method Name Return Type Description
executeFetchRequest Array Takes a fetch query as an

argument. Executes and
returns the results. (For more
general usage.)

5.2 BookInformation Service
 This component is responsible for providing book metadata from the given ISBN. Since
ShelfButler application will not have an huge ISBN database, this service will connect to remote
services, that is Goodreads API.

 It is designed to be a class with no attributes. Since no data stored in the object, all
methods are to be implemented as class methods, not instance methods.

 Because of the fact that the system uses online services, it requires a network connection
for this service to work.

5.2.1 BookInformation Attributes

 Currently, BookInformation class does not have any attribute to store data since it is
planned to user 3rd party APIs. It may have an ISBN database in the future.

5.2.2 BookInformation Methods

 BookInformation class provides methods to get any type of metadata for a given ISBN. All
methods are class methods, so that they can be used without creating an instance of this class.

Method Name Return Type Description
createBook Book Takes the ISBN as an

argument. Passes the ISBN to
Goodreads API. Processes
the result and fills a Book
object to be returned.

getReview String array Takes the ISBN as an
argument. Returns the
reviews via Goodreads API.

34

Method Name Return Type Description
getRecommendations Book array Takes the ISBN as an

argument. Get
recommendations for the
given book and returns a list
of books.

5.3 Synchronization Service
 This component is responsible for the synchronization between cloud and local
databases. This service only triggered by Repository Service when an operation happens on the
local database.

5.3.1 Synchronization Attributes

 Synchronization class has one attribute.

Field Name Data Type Description
isSynch Boolean Attribute to check whether

cloud and local databases
are synch. Initialized at the
application launch.

5.3.2 Synchronization Methods

 Synchronization class provides one method.

Method Name Return Type Description
synchDirty Boolean Gets all dirty entries from

Repository Service and
synchronizes local and cloud
databases. Returns True if
successful.

synchDeleted Boolean Gets all deleted entries from
Repository Service and
synchronizes local and cloud
databases. Returns True if
successful.

35

5.4 CollectionViewController
 This component is the one that shows the users their collection and enables them to
manage collection settings.

5.4.1 Collection Model

 This is the structure where collection data resides after being fetched from the database.

Field Name Data Type Description
collection Collection object Keeps the collection data of

the user.

5.4.2 Collection View

 Collection view is what shows the users their collection. They see and manage their
collection through this view.

5.4.3 Collection Controller

 All functionalities of this component are handled by the controller. Methods are listed
below:

Method Name Return Type Description
viewCollection Collection At the time this component

initialized, it fetches the
Collection object from
Repository service and
passes it to the view.

changeColNumber Void It sends a request to
Repository service to change
the column number of
collection.

changeRowNumber Void It sends a request to
Repository service to change
the row number of collection.

36

5.5 BookViewController
 This component is responsible for viewing a book item with all required information. It uses
the interfaces provided by Track and Repository services.

5.5.1 Book Model

 Model of this component is Book object.

Field Name Data Type Description
book Book Attribute to keep the current

item viewed. It is filled by the
parent view that sends a
request to this component.

5.5.2 Book View

 The view shows all information included in a Book object. Besides, it provides user
interface elements to add new tracking record, shop online and remove item from the collection.

5.5.3 Book Controller

 All functionalities of this component are handled by the controller. Methods are listed
below:

Method Name Return Type Description
viewBook Book Passes the model item to its

view.

editTrackRecord Void Triggers TrackViewController
and passes the model to it.

removeItem Void Sends a request to Repository
Service to remove current
item from user’s collection.

favoriteBook Void Marks current book as
favorited using Repository
Service.

readBook Void Marks current book as read
using Repository Service.

37

Method Name Return Type Description
addToWishlist Void Adds current book to user’s

wishlist using Repository
Service.

addReview Void Triggers
AddReviewViewController and
passes the model to it.

editLocation Void Updates the physical location
of current book with new
values. Passes new object to
Repository Service to update
the entry in database.

shareBook Void Triggers ShareViewController
and passes the model to it.

5.6 AddBookViewController
 This component is the one to be used for adding books to the collection.

5.6.1 AddBook Model

 This is the structure where the data of the book to be added is kept.

Field Name Data Type Description
book Book Keeps the Book object that is

to be added to the collection.

5.6.2 AddBook View

 Collection view is what shows the users the book that is about to be added to the
collection.

5.6.3 AddBook Controller

 All functionalities of this component are handled by the controller. Methods are listed
below:

38

Method Name Return Type Description
addBook Void It sends a request to the

repository service to add the
book to the collection. The
dateAdded, isFavourite,
toBeRead and inTrack
attributes of the Book object is
initialized before the request.

5.7 ListViewController
 This component is base component for all list views namely; favorite list, read list and wish
list. It provides basic functionalities to manage and display lists.

5.7.1 List Model

 Model is a structure as a list contains Book objects.

Field Name Data Type Description
bookList Book array Keeps the books in a list.

5.7.2 List View

 It is a table view that shows the items in the corresponding list to the user. User interacts
with the system through this view.

5.7.3 List Controller

 All functionalities of this component are handled by the controller. Methods are listed
below:

Method Name Return Type Description
viewList Book array At the time this component

initialized, it fetches list from
Repository service and
passes it to the view.

39

Method Name Return Type Description
deleteItem Void It sends a request to

Repository service to delete
the selected item.

viewItem Book It sends a request to the
BookViewController to display
the selected item.

shareList Void Sends the list to Share
component with desired
social network.

5.8 BarcodeScanViewController
 This component provides an interface to user to scan the barcode, processes scanned
image and returns ISBN.

5.8.1 BarcodeScan Model

 Model of this component is a string to keep ISBN data.

Field Name Data Type Description
isbn String Attribute to keep the value of

ISBN.

5.8.2 BarcodeScan View

 BarcodeScan opens the camera interface of the mobile device and provides user
interface elements in order to help user to scan a barcode properly.

5.8.3 BarcodeScan Controller

 Controller is responsible to send a request to Camera application and pass it to current
view. BarcodeScan controller has an barcode scanning library integrated and provides methods
to use it. Methods are listed below:

40

Method Name Return Type Description
scanBarcode String Takes the image data as an

arguments. Passes it to
barcode scanning library.
Returns the ISBN number by
processing the data coming
from internal library.

5.9 TrackViewController
 This component provides an interface to the user which includes lending a book or
receiving a book back.

5.9.1 Track Model

 Model of this component includes a Track object.

Field Name Data Type Description
lendRecord Track Keeps the Track object

including the information of
the lent book.

5.9.2 Track View

 The view shows all information included in that Track object. Other than that, it includes
user interface elements such as lending and receiving book.

5.9.3 Track Controller

 All functionalities of this component are handled by the controller. Methods are listed
below:

Method Name Return Type Description
viewTrack Track It passes the model to its

view.

41

Method Name Return Type Description
editTrack Track It creates a new Track object

and sends both of the old and
new Track objects to the
RepositoryService for
updating.

addTrack Track It creates a new Track object
for the information of the lent
book.

5.10 ShareViewController
 This component provides an interface to share the book or the list of books (wishlist,
readlist, favorites).

5.10.1 Share Model

 Model of this component includes a book and a list which are desired to be shared.

Field Name Data Type Description
sharedBook Book Keeps the Book object that is

desired to be shared.

sharedList Book array Keeps the list of the books
that is desired to be shared.

5.10.2 Share View

 The view shows three panels for sharing options, Facebook, Twitter, and Mail.

5.10.3 Share Controller

 All functionalities of this component are handled by the controller. Methods are listed
below:

42

Method Name Return Type Description
shareFacebook Void It opens the Facebook

application and redirects the
user to share the book or list
on his wall.

shareTwitter Void It opens the Twitter
application and redirects the
user to share the book or list
on his page.

shareMail Void It opens the Mail application
and redirects the user to send
the book or list as a text to
another person.

5.11 SearchViewController
 This component provides a search interface to the user to search a book locally (in his
own collection) or online. The interface provides searching via barcode scanning or by ISBN of
the requested book.

5.11.1 Search Model

 Model of this component includes two structures as lists containing Book objects and a
boolean to determine if the search will be on local or online.

Field Name Data Type Description
localBookList Book array Keeps the list returned by

searching the book locally.

onlineBookList Book array Keeps the list returned by
searching the book online.

isLocal Boolean Keeps the information for
making the search either local
or online. If the variable is
‘true’ the search will be made
locally. If the variable is ‘false’
the search will be made
online.

43

5.11.2 Search View

 There are four views. In the main view user is asked to select either barcode search or
ISBN search. After that the user is asked to select either local or online.

5.11.3 Search Controller

 All functionalities of this component are handled by the controller. Methods are listed
below:

Method Name Return Type Description
searchByISBN Book array It makes a search of the book

by ISBN and sends a request
to ListViewController to
display the list of the book(s)
found.

getISBNfromBarcode String It sends a request to Barcode
scan and returns the ISBN of
the desired book. Then calls
searchByISBN method.

searchByTitle Book array It makes a search of the book
by title and sends a request to
ListViewController to display
the list of the book(s) found.

searchByAuthor Book array It makes a search of the book
by author’s name and sends a
request to ListViewController
to display the list of the
book(s) found.

searchByCategory Book array It makes a search of the book
by category and sends a
request to ListViewController
to display the list of the
book(s) found.

5.12 RegisterViewController

44

 This component is responsible for registering a new user to the system. It basically asks
required information to the user for registration; name, surname, unique e-mail address and a
password.

5.12.1 Register Model

 Fields of the model are as follows;

Field Name Data Type Description
id Integer This is a private field. Each

user has a unique id
automatically assigned by
database.

name String Keeps the name of the user.

surname String Keeps the surname of the
user.

mail String Keeps the e-mail address of
the user.

5.12.2 Register View

 The view is a GUI to take Register Model data from the user. For each field mentioned
above except id, the register method of Register Controller takes input through this view.

5.12.3 Register Controller

 The methods of the controller are as follows:

Method Name Return Type Description
register Void Takes the data of fields from

Register View and sets the
fields.

isValid Boolean Checks the fields. Returns
true if they are valid. Returns
false and sends information
about the missing fields to the
Register View they are not
valid.

45

Method Name Return Type Description
createUser Void It sends the Register Model

fields to Repository service to
create a user.

5.13 LoginViewController
 This component is responsible for logging a new user to the system. It asks required
information to the user for logging; mail address and password.

5.13.1 Login Model

 Fields of the model are as follows;

Field Name Data Type Description
mail String Keeps the e-mail address of

the user.

password String Keeps the password of the
user.

5.13.2 Login View

 The view is a GUI to take Login Model data from the user. For each field mentioned above,
the login method of Login Controller takes input through this view.

5.13.3 Login Controller

 The methods of the controller are as follows:

Method Name Return Type Description
login Void Takes the data of fields from

Login View and sets the
fields.

isValid Boolean Sends a request to the
Repository service to check
the input password.

46

Method Name Return Type Description
forgotPassword Void Sends a randomly generated

password to user’s e-mail
address.

5.14 SettingsViewController
 This component is the one that the users see their account settings and manage them.

5.14.1 Settings Model

 This is a structure where the attributes of the user object resides after fetching from the
database.

Field Name Data Type Description
user User Keeps the account

information of the user.

5.14.2 Settings View

 It is a view that shows the account data. Users interact with the system and manage their
settings through this view.

5.14.3 Settings Controller

 All functionalities of this component are handled by the controller. Methods are listed
below:

Method Name Return Type Description
viewSettings User At the time this component

initialized, it fetches the User
object from Repository
service and passes it to the
view.

changePassword Void It sends a request to
Repository service to change
the password of the user.

47

Method Name Return Type Description
changeName Void It sends a request to the

Repository service to change
the name of the user.

changeSurname Void It sends a request to the
Repository service to change
the surname of the user.

logout Void Ends current session of the
user. Triggers
LoginViewController.

5.15 AddReviewViewController
 This component is responsible for managing reviews of a book.

5.15.1 Review Model

 Model of this component is Review object.

Field Name Data Type Description
review Review Keeps the Review object

including the information of
the review.

5.15.2 Review View

 It is a view that shows the user interface elements to get inputs such as rating, review text
and date.

5.15.3 Review Controller

 All functionalities of this component are handled by the controller. Methods are listed
below:

Method Name Return Type Description
viewReview Review It passes the model to its

view.

48

Method Name Return Type Description
addReview Review Sends created Review object

to Repository Service to be
inserted to database.

deleteReview Void It sends a request to
Repository Service to delete
corresponding entry.

5.16 WebServices
 In this section all web services used for synchronization purposes are explained in detail
with their parameters and return values.

Method Name Return Type Description
addBook Boolean Takes the serialized JSON

string of Book object as an
argument. Deserialize the
input to the Book and inserts
it to database. Returns true if
the operation is successful,
false otherwise.

updateBook Boolean Takes the serialized JSON
string of Book object as an
argument. Deserialize the
input to the Book and updates
the corresponding one in
database. Returns true if the
operation is successful, false
otherwise.

deleteBook Boolean Takes the serialized JSON
string of Book object as an
argument. Deserialize the
input to the Book and
removes corresponding
entry from database. Returns
true if the operation is
successful, false otherwise.

49

Method Name Return Type Description
addUser Boolean Takes the serialized JSON

string of User object as an
argument. Deserialize the
input to the Book and inserts
it to database. Returns true if
the operation is successful,
false otherwise.

updateUser Boolean Takes the serialized JSON
string of User object as an
argument. Deserialize the
input to the Book and updates
the corresponding one in
database. Returns true if the
operation is successful, false
otherwise.

addCollection Boolean Takes the serialized JSON
string of Collection object as
an
argument. Deserialize the
input to the Book and inserts
it to database. Returns true if
the operation is successful,
false otherwise.

updateCollection Boolean Takes the serialized JSON
string of Collection object as
an
argument. Deserialize the
input to the Book and updates
the corresponding one in
database. Returns true if the
operation is successful, false
otherwise.

50

Method Name Return Type Description
deleteCollection Boolean Takes the serialized JSON

string of Collection object as
an
argument. Deserialize the
input to the Book and
removes corresponding
entry from database. Returns
true if the operation is
successful, false otherwise.

addReview Boolean Takes the serialized JSON
string of Review object as an
argument. Deserialize the
input to the Book and inserts
it to database. Returns true if
the operation is successful,
false otherwise.

updateReview Boolean Takes the serialized JSON
string of Review object as an
argument. Deserialize the
input to the Book and updates
the corresponding one in
database. Returns true if the
operation is successful, false
otherwise.

deleteReview Boolean Takes the serialized JSON
string of Review object as an
argument. Deserialize the
input to the Book and
removes corresponding
entry from database. Returns
true if the operation is
successful, false otherwise.

addTrackRecord Boolean Takes the serialized JSON
string of Track object as an
argument. Deserialize the
input to the Track and inserts
it to database. Returns true if
the operation is successful,
false otherwise.

51

Method Name Return Type Description
updateTrackRecord Boolean Takes the serialized JSON

string of Track object as an
argument. Deserialize the
input to the Track and
updates the corresponding
one in database. Returns true
if the operation is successful,
false otherwise.

deleteTrackRecord Boolean Takes the serialized JSON
string of Track object as an
argument. Deserialize the
input to the Track and
removes corresponding
entry from database. Returns
true if the operation is
successful, false otherwise.

52

6 Human Interface Design
6.1 Overview of User Interface
 Primary concern for user interface to be easy to use. Application welcomes users with a
screen to login or register. After a successful login, users can access their collection, lists or
setting with a tabbed menu.

 Login Screen: A simple login screen for users to enter e-mail and password.

 Register Screen: A simple screen with a form requesting e-mail, name and password only.
Registration form will not ask too much information not to disturb users.

6.2 Screen Images

Collection View

53

Book View

Search View

54

List View

Barcode Scan View

55

6.3 Screen Objects and Actions
 All screen objects will be compatible to default iOS type user interface elements so that
users can feel more comfortable while using the application.

56

7 Requirements Matrix
Use Case Matching Component
4.1.1. Add Book By ISBN 5.6. AddBookViewController

5.16 Webservices

4.1.2. Add Book By Barcode 5.6. AddBookViewController
5.16 Webservices

4.1.3. Remove Book 5.5. BookViewController
5.16 Webservices

4.2.1. Add to Wishlist 5.5. BookViewController
5.16 Webservices

4.2.2. Remove from Wishlist 5.7. ListViewController
5.16 Webservices

4.2.3. Display Wishlist 5.7. ListViewController

4.2.4. Share Wishlist 5.10. ShareViewController

4.3.1. Add to Favorites 5.5. BookViewController
5.16 Webservices

4.3.2. Remove from Favorites 5.7. ListViewController
5.16 Webservices

4.3.3. Display Favorites 5.7. ListViewController

4.3.4. Share Favorites 5.10. ShareViewController

4.4.1. Add to Readlist 5.5. BookViewController
5.16 Webservices

4.4.2. Remove from Readlist 5.7. ListViewController
5.16 Webservices

4.4.3. Display Read Readlist 5.7. ListViewController

4.4.4. Display ToBeRead Readlist 5.7. ListViewController

4.4.5. Share Readlist 5.10. ShareViewController

4.5.1. Register 5.12. RegisterViewController
5.16 Webservices

4.5.2. Login 5.13. LoginViewController

4.5.3. Forgot Password 5.13. LoginViewController
5.16 Webservices

57

Use Case Matching Component
4.5.4. Logout 5.14. SettingsViewController

4.5.5. Change Password 5.14. SettingsViewController
5.16 Webservices

4.5.6. Synchronize 5.3. SynchronizationService
5.16 Webservices

4.6.1. Lend 5.9. TrackViewController
5.16 Webservices

4.6.2. Receive 5.9. TrackViewController
5.16 Webservices

4.7.1. Search with a Keyword 5.11. SearchViewContoller

4.7.2. Search with Barcode Scan 5.11. SearchViewController

4.8.1. Rate 5.5. BookViewController
5.16 Webservices

4.8.2. Review 5.5. BookViewController
5.16 Webservices

4.9.1. Get Recommendation 5.2. BookInformationService

4.9.2. Recommend Book 5.2. BookInformationService

4.10.1. Shop Online 5.5. BookViewController

58

