

Programming
Games

Market Research

Project Contorium

Emre Can Kucukoglu

In this informally written document, I try to introduce my research about programming games.

Please concern that Information in this document are not well designed and ordered.

My first investigation about concept is related with the game Omega (1989).

(http://www.mobygames.com/game/omega_)

In this game, player has given basically a budget and wanted to design a tank. Player actually writes

the codes of tank by himself. Moreover he can use various artificial intelligence scripts.

Later, I found another game RobotWar (1970s). (http://corewar.co.uk/robotwar/)

Main task is approximately same with Omega: “to program a robot, that no other robot can destroy.”

The main activity of the game was to write a computer program that would operate a robot. The

robots did not have direct knowledge of the location or velocity of any of the other robots; they

could only use radar pulses to deduce distance, and perhaps use clever programming techniques to

deduce velocity. Robot’s programming language is similar to BASIC. There were 34 registers that

could be used as variables or for robots I/O functions. An example program is like that:

SCAN

 AIM + 5 TO AIM ; MOVE GUN

 AIM TO RADAR ; SEND RADAR PULSE

LOOP

 IF RADAR < 0 GOSUB FIRE ; TEST RADAR

 GOTO SCAN

FIRE

 0 - RADAR TO SHOT ; FIRE THE GUN

 ENDSUB

Also, there are another games, namely RoboWar (1992), Color Robot Battle (1981) which aim also

programming robots to fight with each other.

http://en.wikipedia.org/wiki/RoboWar

http://en.wikipedia.org/wiki/Color_Robot_Battle

Another game Robocode (2001), has written in Java, and this game helps people learn to program in

Java. Because a simple robot can be written in just a few minutes. However perfecting a bot can take

months. There exist several leagues for RoboCode. This shows me that this concept programming

games can draw attention.

There is another interesting programming game Colobot.

http://www.ceebot.com/colobot/index-e.php

Colobot (Colonize with Bots) is an educational real-time strategy video game featuring 3D graphics.

The main feature of the game which makes it educational is the ability of the player to program his

robots using a programming language similar to C++ or Java. The game has been recommended by

the Polish Ministry of National Education as a teaching aid in learning of basic algorithms and object-

oriented programming.

http://www.mobygames.com/game/omega_
http://corewar.co.uk/robotwar/
http://en.wikipedia.org/wiki/RoboWar
http://en.wikipedia.org/wiki/Color_Robot_Battle
http://www.ceebot.com/colobot/index-e.php

The programming language used in Colobot is C-BOT, syntactically similar to Java.

extern void object::FetchTitanium()

{

 object item; // declare variable

 item = radar(TitaniumOre); // find a piece of titanium ore

 goto(item.position); // go to the ore

 grab(); // pick up whatever is in front of the robot (presumably

the ore)

 item = radar(Converter); // find the ore converter

 goto(item.position); // relocate to the converter

 drop(); // drop the piece of ore

 move(-2.5); // back up 2.5 meters to allow the converter to start

processing the ore

}

There are different tournaments and leagues for the programming games. Usually a script is

optimized for a special strategy. For instance, in Mouse Run, a Java class is written by a programmer,

which will provide the logic for a mouse to navigate through a maze and compete with other mice to

find and consume a cheese first. Programming games may be derived from almost any other type of

game. For example, the World Computer Chess Championship consists of matches between

programs written for the abstract strategy game of chess. Also, some non-computer games borrow

elements of programming games; in the board game RoboRally, players arrange cards to "program"

their pieces with a sequence of moves, causing moves to be made without the knowledge of one's

opponents' preceding moves.

When I was looking for a good player developed AI game, between the multitude of robot games, I

catched a sport-compatition based game. I want to remind that our game is sport based game, too. I

have found a very complicated game, it is actually a car racing. TORCS.

Firstly, I tried to learn concept of the game from its webpage.

http://torcs.sourceforge.net/

Unfortunately, I couldn’t catch anything, so I decided to download it and look at it. After

downloading the game, a little but 3d animated simulation window opened:

http://torcs.sourceforge.net/

I tried to play the game, assuming it is an usual game. I could select a car, select a name, select race

and start a race.

In addition, I have to add that graphics are very satisfying.

However I was not the captain of my car. I just watched the race and I realized that cars are initially

uniform and has nothing special. The race was just a city tour. Then, I went back to website again to

learn the game.

Documentation of the webpage, 3 main links exist: Practice Mode, Quick Start Guide and Robot

Tutorial (C++). First two of them are just explain the GUI of game, but I have already experienced

them. The golden key of game is actually explained in Robot Tutorial.

http://www.berniw.org/tutorials/robot/tutorial.html

Game installation and system hardware and software requirements are explained in installation link.

Second link, robot tutorial firstly explains how to prepare your robot skeleton, mean files of our ai.

After just 5-6 command from prompt, our basic robot (car) is ready as template files. Then, coding

part has begun. For example, our car need a good drive function. Of course thanks to default

constructor functions we are already driving. But for example when our car can’t go forward

anymore, what does it do in this case? We have to implement it.

Because we use the files which we already created from command line, basic relationships of game

files and ai files are already done. After opening the files with a proper C++ IDE, we can easily see the

objects like ‘car’ and its entities. And with our programming skills we can write our own steer.

static void
drive(int index, tCarElt* car, tSituation *s)
{
 float angle;
 const float SC = 1.0;

http://www.berniw.org/tutorials/robot/tutorial.html

 memset(&car->ctrl, 0, sizeof(tCarCtrl));

 if (isStuck(car)) {
 angle = -RtTrackSideTgAngleL(&(car->_trkPos)) + car->_yaw;
 NORM_PI_PI(angle); // put the angle back in the range from -PI to PI
 car->ctrl.steer = angle / car->_steerLock;
 car->ctrl.gear = -1; // reverse gear
 car->ctrl.accelCmd = 0.3; // 30% accelerator pedal
 car->ctrl.brakeCmd = 0.0; // no brakes
 } else {
 angle = RtTrackSideTgAngleL(&(car->_trkPos)) - car->_yaw;
 NORM_PI_PI(angle); // put the angle back in the range from -PI to PI
 angle -= SC*car->_trkPos.toMiddle/car->_trkPos.seg->width;
 car->ctrl.steer = angle / car->_steerLock;
 car->ctrl.gear = 1; // first gear
 car->ctrl.accelCmd = 0.3; // 30% accelerator pedal
 car->ctrl.brakeCmd = 0.0; // no brakes
 }
}

For example, with this code, we say our car that if it is stuck and can’t go forward then reverse the

gear, don’t use brakes and try to change your direction. But there is a problem: How can we

understand that our car is stuck? Then we need isStuck function. By the way, I took these codes from

website and try to implement basic robot with this tutorial, that’s reason why codes are well-

prepared, commented. Nevermind, let’s look isStuck function:

/* check if the car is stuck */
bool isStuck(tCarElt* car)
{
 float angle = RtTrackSideTgAngleL(&(car->_trkPos)) - car->_yaw;
 NORM_PI_PI(angle);
 // angle smaller than 30 degrees?
 if (fabs(angle) < 30.0/180.0*PI) {
 stuck = 0;
 return false;
 }
 if (stuck < 100) {
 stuck++;
 return false;
 } else {
 return true;
 }
}

This code means that:

1. Init a counter to 0.

2. If the absolute value of the angle between the track and the car is smaller than a certain

value, reset counter to 0 and return "not stuck".

3. If the counter is smaller than a certain limit, increase the counter and return "not stuck", else

return "stuck".

Gameplaying part of TORCS is like that. We can implement pitstop class to improve our pit strategy,

or we can write our own very very manual braking. Tutorial pages are very detailed. For example;

even scientific part of calculations are explained when implementing steering strategy.

I try to research programming game concept and explain my experience and knowledge. These

games are not very popular games, and they are really hard to play games. Most of them are open

source licensed and none of them are sold by price. These games can be used as an educational

purposes.

Also, there are webpages worth a look:

There is a wiki page: Programming Games Wiki. http://www.programminggames.org

There is also a page, which contains almost every programming games. Spesific information exist for

every game in this page: http://www.aiforge.net/game-links.htm

http://www.programminggames.org/
http://www.aiforge.net/game-links.htm

