
PROJECT CONTORIUM

CEngBall Programming Game

Software Design Description

Alper Demir, Doga Uzuncukoglu, Emre Can Kucukoglu, Necati Cevik

1

Change History
Date Revision Comment

25.11.2013 1.0 Created.

28.12.2013 1.1 Preface updated.
Design Rationale added.
Information Viewpoint
updated.
State Dynamics Viewpoint
updated.
Planning Estimation section
added.

2

PREFACE

This document contains the system design information about CengBall project. This document is

prepared according to the “IEEE Standard for Information Technology – Systems Design – Software

Design Descriptions – IEEE Std 1016 – 2009”.

This Software Design Documentation provides a complete description of all the system design and views

of the project. The first section of this document includes Project Identification, Stakeholders

Identification and requirements, Composition of the developers’ team.

The following sections include document purpose and design viewpoints of the system.

3

Table of Contents

1. Overview ... 6

1.1 Problem Definition .. 6

1.2 Purpose .. 6

1.3 Scope ... 7

1.4 System Overview .. 7

1.5 References .. 8

2. Definitions, Acronyms and Abbreviations ... 9

3. Conceptual Model for Software Design Descriptions .. 10

3.1 Software Design in Context .. 10

3.2 Software Design Descriptions within Life Cycle ... 10

3.2.1 Influences on SDD Preparation ... 10

3.2.2 Influences on Software Life Cycle Products.. 10

3.2.3 Design Verification and Design Role in Validation ... 11

4. Design Description Information Content ... 12

4.1 Introduction .. 12

4.2 SDD Identification ... 12

4.3 Design Stakeholders and Their Concerns .. 12

4.4 Design Views ... 12

4.5 Design Viewpoints .. 12

4.6 Design Elements ... 13

4.7 Design Rationale .. 13

4.8 Design Languages .. 13

5. Design Viewpoints .. 14

5.1 Introduction .. 14

5.2 Context Viewpoint ... 14

5.2.1 User Use Cases .. 14

5.3 Logical Viewpoint .. 23

5.3.1 Simulator Class .. 23

5.3.2 Visualizer Class ... 24

5.3.3 Team Class .. 24

4

5.3.4 Player Class ... 25

5.3.4 Percept Class ... 26

5.3.5 SaveFile Class ... 27

5.3.6 Pitch Class .. 27

5.3.7 Ball Class .. 27

5.3.8 Position Class .. 28

5.3.9 Relationships between Classes .. 28

5.4 Interface Viewpoint ... 29

5.4.1 User Interface .. 29

5.4.2 AI Agent - Simulator Interface ... 35

5.4.3 Visualizer - Simulator Interface ... 36

5.5 Dependency Viewpoint .. 36

5.5.1 Simulator Subsystem .. 36

5.5.2 Visualizer Subsystem ... 37

5.5.3 AI Agent Subsystem ... 37

5.5.4 Subsystem Connections ... 38

5.6 Interaction Viewpoint .. 38

5.7 State Dynamics Viewpoint .. 46

5.8 Information Viewpoint .. 46

6. Planning .. 48

6.1 Estimation .. 48

7. Conclusion .. 48

5

Table of Figures

Figure 1 User Use Cases .. 15

Figure 2 Classes and their relations .. 23

Figure 3 User Interface Diagram ... 29

Figure 4 Main Screen .. 30

Figure 5 Options Screen ... 31

Figure 6 Single Player Screen ... 32

Figure 7 Multiplayer Screen .. 33

Figure 8 Match Screen .. 34

Figure 9 End Game Screen... 35

Figure 10 AI Agent - Simulator Interface Diagram ... 35

Figure 11 Visualizer Simulator Interface Diagram ... 36

Figure 12 Subsystem Connections .. 38

Figure 13 Sequence Diagram ... 45

Figure 14 State Diagram ... 46

Figure 15 Project Estimation Gantt Chart .. 48

6

1. Overview
This design report includes a complete description of the CEngBall project. This document includes

features, functionalities, specifications and explanations about the project which is a design project for

the Computer Engineering Design class of the Middle East Technical University.

1.1 Problem Definition

Artificial Intelligence is a huge field in computer science because of its innate glamour. Human brain is

one of the most interesting things in the world and programs simulating brainwork is a true fascination.

However to participate in this field, interesting as it may be, is quite difficult and also there are not many

ways a curious person can satisfy his\her interest in the AI field.

This interesting field could be more popular among the people who are interested in software if there

was an easy way a programmer could implement an AI agent for a certain task and then could also test

his/her agent against other agents which are programmed by other developers to see whose agent is

better. Also if the task at hand is an amusing subject, people will be even more interested in such effort.

There can be a system where people can both do programming and have fun and with this project we

aim to provide such platform using video games as a tool.

1.2 Purpose

This document describes the design plan for our project and how the requirements stated in the

Software Requirement Specifications will be fulfilled. Requirements in the said document will be

translated into structural components of the project. Design concepts and architecture of the project will

be explained in detail.

Design issues discussed in this document will be the main guideline for the development team but said

guidelines can always change according to circumstances. The intended audience of this document is

the software developers who are interested in the design process of such project.

7

1.3 Scope

The scope of this SDD consists of design patterns of the said project, brief explanation about the goals

and objectives, constraints, assumptions, dependencies, system architecture with its components, user

interface and actions of objects, libraries and the tools that will be used.

The project itself is actually a platform where people will compete against each other in a football-like

video game via code writing. The system will allow the users to implement an AI agent and submit it.

Later submitted AIs will compete with each other in simulations of a game much like football. The

simulation process will be saved. Saved simulations can later be visualized for the competing parties to

enjoy.

1.4 System Overview

“CEngBall” is a video game where players play by implementing a Java™ interface. These

implementations are going to be the AI agents of the players. These AI agents are responsible for

deciding the next moves of the virtual football players of their respective virtual football teams. The

system is going to provide certain utilities to the users so that they can implement an agent in a way they

desire.

The “Simulator” component of the system will use two of these AI agents. It will ask for their input

periodically. Simulator will affect the playing field according to the input. After a certain amount of turns

the simulation will hold. Simulation will be saved on a file for visualization.

The “Visualizer” component of the system will visualize the saved simulation files. These files will

contain objects and their places. The visualizer component will read these files and draw a playing field

for people to understand what is going on during the simulation.

The game will have a simple user interface that makes main functions to operate. The user will be able

to choose the mode of the game in the main screen and also be able to view options and change them.

In single player screen, the user will be able to load his/her team and choose an opponent while in

multiplayer screen, the user will be able to load 2 teams. Also, the match screen will visualize the game.

8

1.5 References

● IEEE. IEEE STD 1016-2009 IEEE Standard for Information Technology – System Design –

Software Design Descriptions. IEEE Computer Society, 2009.

● StarUML 5.0 User Guide. (2005). Retrieved from http://staruml.sourceforge.net/docs/user-

guide(en)/toc.html

9

2. Definitions, Acronyms and Abbreviations

CEng Computer Engineering

SRS Software requirements specification

SDD Software Design Document

AI Artificial Intelligence

StarUML An open source UML tool, modified version of GNU GPL

UML Unified Modeling Language

IEEE Institute of Electrical and Electronics Engineers

GUI Graphical user interface

Dribble (Sports) Move while controlling the ball.

10

3. Conceptual Model for Software Design Descriptions

The project is about artificial intelligence and football so to understand this document better, a basic

knowledge of both would be nice.

3.1 Software Design in Context

This project is designed in an object-oriented fashion because the concept of football is suitable for this

approach. This makes the product more easy to use, because real life objects like football players and

balls will be represented by their class forms. This way the convoluted process of AI development will be

simpler for the end user.

The project is also modular, meaning the whole system is composed of independent parts. This way the

project can move forward in a nonlinear way as the developers work on different parts of the project

without affecting each other’s work.

3.2 Software Design Descriptions within Life Cycle

3.2.1 Influences on SDD Preparation

This design document is written with respect to the SRS document of the project. The design process

tries to satisfy all the requirements specified in a smooth and optimized way.

Since the project is not easily commercializable, there is no real customer involved. That makes the

biggest stakeholders, the development team. Therefore, another influencing factor is the development

team’s needs and as the project goes new design material can surface.

3.2.2 Influences on Software Life Cycle Products

Project consists of modular components which can be developed separately after the communications

between them are described in an unambiguous and clean form. That means after defining the

components, first thing to do is to define how they communicate. After that implementation can go

concurrently.

These components are the “Simulator”, “Visualizer” and “AI Agent”.

11

3.2.3 Design Verification and Design Role in Validation

Verification and validation will be tested after preparation of the test cases. Since we will use the spiral

model for CEngBall software project, test cases will be prepared with the development simultaneously.

All system parts will be tested against these cases. It will be checked for whether the requirements

fulfilled or not.

12

4. Design Description Information Content

4.1 Introduction

Software design description of CengBall identifies how this game will be designed and implemented.

Design of CengBall will have a modular and object-oriented structure. There will also be a neatly

designed visualization component and a graphical user interface.

4.2 SDD Identification

CEngBall software design development parts are designed at the 28th of November, 2013. CEngBall

project’s main purpose is to compare player developed AI’s on football simulation. After testing for the

verification and validation, CEngBall will be available for the public. The game can be used for improving

artificial intelligence development skills and gaining experience in the area of software and game

development. It will be a relatively simple case of artificial intelligence development for the players.

4.3 Design Stakeholders and Their Concerns

CEngBall’s stakeholders are the development team. Stakeholders’ possible concerns are user friendly

development, simplification of AI development process and neat visualization of the simulation. The

users will be able to perform simple tasks like simulating the game via a simple user interface.

Simplification of AI development is important for providing a relatively simple development experience.

4.4 Design Views

The project will be implemented in a modular fashion. The stakeholders can add new features or remove

the unwanted ones in project. Object oriented paradigm is chosen so that new features can be

integrated without much effort. Users will see a basic interface to upload their code when the program is

run. After uploading their code, users will be able to simulate the game and watch the visual

representation of the simulation. Visualization and simulation will be two different components of the

software. They will interact with each other to exchange their data. Each simulation will produce a file to

log the details of simulation. This log files will be used to visualize the entire game. This will also enable

us to easily save and replay each game without much effort.

Product context is specified and restricted limitations given in the SRS document. A logical view of the

product is explained and also it is supported by diagrams. Relationships between classes are easily

perceived.

4.5 Design Viewpoints

13

This SDD document conforms to the view and viewpoint concepts stated in the standard document. The

fifth section is divided into subsections under the names of design viewpoints specifying each design

concern that the stakeholders had separately. Design views associated with a design viewpoint

corresponds to particular diagrams in this document.

Context viewpoint shows what is expected from the user actor in the system. The roles of the user are

clearly specified. Design entities will be AI controlled teams created by users and the information will

flow between this user and the system. Input-output relations will be explained in context viewpoint-

design elements.

4.6 Design Elements

Design choices are made in a way such that we can easily upgrade the project according to the needs

of the stakeholders and users. Each component of the implementation like functions, variables and

classes will be commented such that, for a further modification on software it will be very easy to

understand the code and improve it.

4.7 Design Rationale

The division of the project into three main components (namely Simulator, Visualizer and AI Agents)

allowed developers to maintain a modular approach. It also made the design process easier since the

team can concentrate on different parts of the project without having to consider the possible harm they

could inflict on other parts. Moreover, our decisions make the system portable, since project can be

applied to online multiplayer system in the future.

4.8 Design Languages

Unified modeling language (UML) is adopted as the design language. Rather than following a specific

version of UML, and all its definitions strictly, our diagrams are characterized by highest conformance to

the UML 1.6 standard where necessary additions/deviations are applied henever considered

appropriate by the developer team. StarUML v5.0 was used as the modeling tool.

14

5. Design Viewpoints

5.1 Introduction

In this part of the document, different design viewpoints are going to be explained. Here is a list of the

existing viewpoints

● Context Viewpoint

● Logical Viewpoint

● Interface Viewpoint

● Dependency Viewpoint

● Interaction Viewpoint

● State Dynamics Viewpoint

● Information Viewpoint

5.2 Context Viewpoint

This viewpoint describes the functionalities the software provides by the elements that interact with it like

users.

This project is actually a video game and video games usually have very definitive use cases with a lot

of action involved. But it is not played like a regular game, therefore it has a very unique set of user use

cases.

5.2.1 User Use Cases

User interacts with the system via submitting his/her code (AI agent) and the user use cases are related

to that topic. These use cases can be seen in Figure 1 below.

15

Figure 1 User Use Cases

16

5.2.1.1 Get Guideline Use Case

Use Case ID use_case_1

Use Case

Name

Get Guideline

Trigger The user selects to get the guideline

Precondition -

Basic Path 1. The user selects to download the guideline to a

directory in the computer

2. The user selects the directory to download in

browse screen.

3. The user confirms the directory.

4. The game downloads the guideline to the directory.

Alternative

Paths

 -

Postcondition The guideline is downloaded to the selected directory.

Exception

Paths

The user may cancel downloading.

Other The guideline includes the API information. It has

definition of functions, variables and classes. Also, it

has the information about how the game works and

how a submitted code should be.

5.2.1.2 Get Template Use Case

Use Case ID use_case_2

Use Case

Name

Get Template

Trigger The user selects to get the template

Precondition -

Basic Path 1. The user selects to download the template to a

17

directory in the computer

2. The user selects the directory to download in

browse screen.

3. The user confirms the directory.

4. The game downloads the template to the directory.

Alternative

Paths

 -

Postcondition The template is downloaded to the selected directory.

Exception

Paths

The user may cancel downloading.

Other The template is an example code for a player AI. It

includes the must functions for the game to be played.

Also, it has information about the functions in

comments.

5.2.1.3 Submit the Code Use Case

Use Case ID use_case_3

Use Case

Name

Submit the code

Trigger The user selects to submit the code written

Precondition -

Basic Path 1. The user selects to submit the code to the game.

2. The user selects the directory of the code.

3. The user confirms the directory.

4. The game gets the code.

Alternative

Paths

 -

Postcondition The code is submitted to the game.

Exception

Paths

The user may cancel submitting.

Other -

18

5.2.1.4 Get the Code Use Case

Use Case ID use_case_4

Use Case

Name

Get The Code

Trigger The user selects to get the code of his/her

Precondition The code must be submitted to the game.

Basic Path 1. The user selects to download the code to a directory

in the computer

2. The user selects the directory to download in

browse screen.

3. The user confirms the directory.

4. The game downloads the code to the directory.

Alternative

Paths

 -

Postcondition The code is downloaded to the selected directory.

Exception

Paths

The user may cancel downloading.

Other -

5.2.1.5 Compile the Code Use Case

Use Case ID use_case_5

Use Case

Name

Compile the code

Trigger The user selects to compile the code submitted

Precondition The code must be submitted to the game.

Basic Path 1. The user selects to compile the code.

2. The game compiles the code, checks whether it

obeys the rules of the game and returns back the

result of compile operation.

19

Alternative

Paths

 -

Postcondition The code is compiled, checked and the result of the

compile operation is returned.

Exception

Paths

-

Other -

5.2.1.6 Start the Game Use Case

Use Case ID use_case_6

Use Case

Name

Start the game

Trigger The user selects to start the match.

Precondition In single player mode, the code of the user must be

submitted to the game.

In two player mode, the codes of the both users must

be submitted to the game.

Basic Path 1. The user selects to start the match.

2. The game opens a new screen and starts to

simulate and visualize the match.

Alternative

Paths

 -

Post condition The match is started and getting visualized.

Exception

Paths

-

Other

5.2.1.7 Pause the Game Use Case

Use Case ID use_case_7

Use Case

Name

Pause the game

20

Trigger The user selects to pause the game.

Precondition The match must be started and being played.

Basic Path 1. The user selects to pause the match.

2. The game freezes and pauses the match. Also, a

pause screen will be shown.

Alternative

Paths

 -

Postcondition The match is paused.

Exception

Paths

-

Other The pause panel will have resume, replay and exit

option.

5.2.1.8 Resume the Game Use Case

Use Case ID use_case_8

Use Case

Name

Resume the game

Trigger The user selects to resume the game.

Precondition The match must be paused.

Basic Path 1. The user selects to resume the match.

2. The game continues to simulate and visualize the

match.

Alternative

Paths

 -

Postcondition The match is resumed.

Exception

Paths

-

Other -

5.2.1.9 Replay Use Case

21

Use Case ID use_case_9

Use Case

Name

Replay

Trigger The user selects to replay.

Precondition The match must be paused.

Basic Path 1. The user selects to replay a scene.

2. The replay screen opens.

3. The user selects to play the scene.

4. The game plays the scene.

Alternative

Paths

 -

Post condition The scene is played.

Exception

Paths

The user may exit the replay screen.

Other -

5.2.1.10 Exit the Game Use Case

Use Case ID use_case_10

Use Case

Name

Exit the match

Trigger The user selects to exit the match.

Precondition The match must be paused.

Basic Path 1. The user selects to exit the match.

2. The game shows a popup screen to confirm exit

operation.

3. The user confirms the operation.

4. The game finishes the simulation, closes the match

screen and returns to the main screen.

Alternative

Paths

 In step 3, the user cancels the exit operation and the

game returns back to the pause screen.

22

Post condition The match is exited.

Exception

Paths

-

Other -

23

5.3 Logical Viewpoint

The classes and the relations amongst them will be explained here. All classes involved in the project

and their relations can be seen in Figure 2. There will be tables explaining the fields and methods of

classes in detail.

The classes are Simulator, Visualizer, Team, Player, Percept, SaveFile, Pitch, Ball, and Position.

Figure 2 Classes and their relations

5.3.1 Simulator Class

This class will simulate the game according to the input it takes from AI agents and creates a save file

for visualization.

Name Type Visibility Definition

team1 Team Private The first AI agent. The simulator will ask for input

periodically from this field.

team2 Team Private The second AI agent. The simulator will ask for

input periodically from this field

pitch Pitch Private The field that the game is going to played on.

Places of the goals and lines are going to be

decided according to this field.

24

saveFile Save

File

Private The field representing the save file of the

simulation. Simulation will fill this field every turn

and at the end of the simulation it will hard save it

as a file.

simulate() void Public This method will periodically ask for input from the

Team fields, update the SaveFile field accordingly

and before it returns it saves the saveFile entity as

a real file.

5.3.2 Visualizer Class

This class will read from a saved simulation file and visualize the simulation in a way that the audience

can enjoy. Since this is a football game, it is expected to be fun to watch.

Name Type Visibility Definition

draw() void Public Reads the file and draws the objects on a field

5.3.3 Team Class

This class will be the AI agent of the user. The users will implement a Team interface. The simulator will

call methods of this class to move the simulation forward.

Name Type Visibility Definition

playerList List<Player> Private A list of the player objects. User will have

access to virtual football players via this list.

teamName String Private Name of the team. It will be used for visual

purposes.

teamColor String Private Color of the team. It will be used for visual

purposes.

25

distribute() void Public This method will distribute the limited amount

of skill points available for the user among the

virtual players.

do() Percept Public The simulator instance will call this method

periodically. Users will use this method to

manipulate their virtual football players.

5.3.4 Player Class

This class’s instances will be the virtual football players the user controls via the agent he/she

implemented (an instance of a Team class). Player class will loosely resemble a real life football player

in an abstract way.

Name Type Visibility Definition

speed int Private The stat that will determine how fast this player

instance can move.

shoot int Private The stat that will determine how well this player

instance can shoot the ball.

pass int Private The stat that will determine how well this player

instance can pass the ball.

tackle int Private The stat that will determine how well this player

instance can tackle the opponent player in order

to take control of the ball.

dribbling int Private The stat that will determine how well this player

instance can control and dribble the ball.

speedVector Vector Private A 2d vector which is the current speed vector of

the player instance. With help of this field, the

simulator will determine the next position of the

players.

26

shoot() void Public The method users will use to shoot the ball. It will

change the speed vector of the ball according to

player’s stats and the parameters AI agent

provides.

move() void Public The method users will use to move the players. It

will change the speed vector of the player. A

move operation will only change the speed vector

of the player and the player will start moving in

the designated direction as turns pass.

tackle() void Public The method users will use to challenge the player

instance controlling the ball for the control of the

ball.

pass() void Public The method users will use to pass the ball to

another player object. This method will change

the speed vector of the current ball instance.

5.3.4 Percept Class

This class will be a record of the positions of the objects in the simulation. This class will be used to save

and visualize the simulation.

Name Type Visibility Definition

playerList List Private A list containing all the player instances in the

active simulation.

positionsList List Private A list containing all the positions of the objects

in the active simulation.

27

5.3.5 SaveFile Class

This class will be the representation of the real save files of our simulations. After each turn simulator

will add more percepts into the active instance of this class. After the simulation terminates it will create

a real file using this class.

Name Type Visibility Definition

pList List Private A percept list. It will contain the

complete set of percepts of a

simulation.

getPerceptSequence() List Public Returns a specific set of percepts.

Users will be able to use this method

to inspect past turns.

5.3.6 Pitch Class

This class will determine the dimensions of the playing field including goal and line positions.

Name Type Visibility Definition

height int Private Height of the playing field.

width int Private Width of the playing field.

5.3.7 Ball Class

This class will represent a football ball.

Name Type Visibility Definition

speed Vector Private Speed vector of the ball. This field will

determine where the ball will move in coming

turns.

28

5.3.8 Position Class

This class will be used to store position information.

Name Type Visibility Definition

x_coor int Private X coordinate information

y_coor int Private Y coordinate information

5.3.9 Relationships between Classes

All of the relations can be observed from Figure 2.

● Simulator class has elements from Team, Pitch and SaveFile classes.

● SaveFile class has elements from Percept class.

● Team class has elements from Player class.

29

5.4 Interface Viewpoint

5.4.1 User Interface

Figure 3 User Interface Diagram

 The user interface will be held by screens. The user will be able to use the functionalities

of the game through these screens. Any response from the game will be shown to the user.

 There will be 5 screens for user to view. These screens are Main Screen, Single Player

Screen, Multiplayer Screen, Options Screen and Match Screen.

5.4.1.1 User Interface Elements

5.4.1.1.1 Main Screen

The main screen is the initial screen of the game. When the user starts the game, this screen

appears first.

It has the links for Single Player, Multiplayer, Options screens and it is possible to exit

the game in this screen. When one of the button is pressed relative screen will be shown to the

user.

30

Figure 4 Main Screen

5.4.1.1.2 Options Screen

This screen is related the options that the user can change. This options are about visualization

and simulation.

 The screen includes options for match length, commentary and player kits. The match

length setting will have options 5 minutes to 15 minutes. This setting will affect both simulation

and visualization time. The commentary setting will have ON and OFF options. If it is set to ON,

then there will be a commentary on the match, otherwise the game will be shown without a

commentary. Moreover, the player kits setting will also have ON and OFF options. When it is

set to ON, the player kits will be shown in the match.

 When the options are set, the user will be able to apply them with a button. Also, the

user will be able to return back to the main screen.

31

Figure 5 Options Screen

5.4.1.1.3 Single Player Screen

This screen is for the single player mode. When the user wants to challenge the built-in agents

with his/her own agent, he/she will use this screen to proceed.

 In the screen, it will be possible to load the user code, compile and check it and choose

the opponent difficulty. After both load and compile operations, the result will be shown to the

user. Also, the user will be able to return back to the main screen or start the game. The “Start

the Game” button will be enable after the user loads the code, compiles it and chooses a

difficulty for the opponent, otherwise, it is disabled.

32

Figure 6 Single Player Screen

5.4.1.1.4 Multiplayer Screen

This screen is for the multiplayer mode. When the user wants to challenge two user codes,

he/she will chooses this mode.

 In the screen, it will be possible to load the codes and compile them. The result of both

the load and compile operations will be shown to the user. Moreover, the user will be able to

start the game or return back to the main screen. Starting the game operation will be enabled

when the both load and compile operations are completed.

33

Figure 7 Multiplayer Screen

5.4.1.1.5 Match Screen

 This screen is for the visualization of the match. In both modes, this screen will show the

match to the user.

 In the screen, there will be a pitch to play the game and a commentary panel if it is

enabled in options screen. The user will be able to watch the game or skip the game. If skipping

operation is selected, the result of the match will be shown to the user. At the end of the match,

the user will be able to finish the game and return back to the previous screen. Also, the user

will be able to exit the match any time.

34

Figure 8 Match Screen

35

Figure 9 End Game Screen

5.4.2 AI Agent - Simulator Interface

Figure 10 AI Agent - Simulator Interface Diagram

Via Do() function these two subsystems interact. The simulator asks for a percept instants and

the AI Agent provides it via Do() function.

In each turn, the simulator will get the last percept that is played by a user agent and update the

simulation. After updating, it will wait the other user agent to make a move. This Do() function is

the interface for the user agent to make the move. There will be a timeout for the new move.

36

After the time runs out, the simulator will take the latest changes in the objects and uses them

as the move of the agent.

This communication will continue turn by turn. The simulator will provide the current percept to

one agent and asks for a new move in one turn while it does these for the other agent in the

following turn.

5.4.3 Visualizer - Simulator Interface

Figure 11 Visualizer Simulator Interface Diagram

Via SaveFile() function these two subsystems interact. The visualizer asks for a log file and the

simulator provides it via SaveFile() function.

The save file is necessary for visualizer to display the game. It will have the percepts in each

turn as logs. The visualizer will display the game according to these logs. When the user wants

to watch the game, the visualizer will ask for the save file of the match and the simulator will

return an instance of save file with a percept list. Then, the visualizer will play the game on the

screen.

This communication is a one way communication which will happen only once. When the

visualizer gets the percept list, it will just play the game.

5.5 Dependency Viewpoint

This viewpoint will list the subsystems and explain the interconnections amongst them in detail.

Whole system consists of three subsystems namely, the simulator and the visualizer and the AI agents.

5.5.1 Simulator Subsystem

This subsystem is responsible for running the simulation according to the input from the AI agents. It

contains two AI Agents and a virtual playing field. The way this subsystem operates can be explained

as:

37

● The simulator will load two agents and a field, then it will start the simulation.

● The subsystem will ask AI Agents periodically for input.

● Agents will move their players and the ball.

● The simulator will record this movements as percepts. It will add this percepts to a saveFile

object.

● After the simulation terminates, it will dump that saveFile instance into a file on the hard disk.

5.5.2 Visualizer Subsystem

This subsystem is responsible for visualizing a saved simulation. It contains a saveFile object.

Simulations are saved as a list of percepts. Each percept is a turn passed. Since percepts does not

contain any data related with time, visualizer will decide the length of the visualization. The way this

subsystem operates can be explained as:

● The visualizer will load a saveFile and it will create percepts according to it.

● It will recognize the objects (Players and Ball) and will draw these objects according to the

position information provided by the percepts.

5.5.3 AI Agent Subsystem

This subsystem is responsible for providing input to the simulator subsystem. It contains the user

implemented AI so the user interacts with the whole system via this subsystem. The way this subsystem

operates can be explained as:

● User will implement an AI Agent and load it into the system using the user interface.

● User will start the simulation and then this subsystem will be asked for input by the simulator

subsystem.

● Agent will decide what each of the player instances will do using Player Class’s methods. (Shoot,

move etc.)

● Agent will return a new percept instance to the simulator and will wait for the next turn.

38

5.5.4 Subsystem Connections

There are several connections in the system. The simulator and AI Agents are connected via software,

while the simulator and the visualizer communicate via a save file.

Figure 12 Subsystem Connections

5.6 Interaction Viewpoint

 In this viewpoint, the interaction and the connection between user interface elements will be

explained screen by screen in detail. Also, main variable will be explained.

Variable Identification Type Explanation Domain

GAME_MODE ENUM The mode of the game { SINGLE, MULTI }

MATCH_LENGTH INTEGER The length of the game

in minutes

[5-15]

COMMENTARY_SELE

CTION

ENUM The selection about

whether there will be a

commentary on the

match or not

{ ON, OFF }

PLAYERKIT_SELECTI

ON

ENUM The selection about

whether the player kit

{ ON, OFF }

39

numbers will be shown

on the match or not

SPEED_VALUE INTEGER The speed skill value for

a player

[0-20]

PASS_VALUE INTEGER The pass skill value for

a player

[0-20]

SHOOT_VALUE INTEGER The shoot skill value for

a player

[0-20]

TACKLE_VALUE INTEGER The tackle skill value for

a player

[0-20]

DRIBBLING_VALUE INTEGER The dribbling skill value

for a player

[0-20]

SKILL_POINTS INTEGER The number of skill

points that a team will

get

100

MAX_PERCEPT_NUM

BER

INTEGER The maximum number

for percept

that a team can get

5

OPPONENT_DIFFICU

LTY

ENUM The difficulty of the built-

in AI.

{ EASY, MEDIUM,

HARD }

CURRENT_SCREEN ENUM The current screen of

the game

{ MAIN,

SINGLEPLAYER,

MULTIPLAYER,

OPTIONS,

MATCH }

40

MATCH_STATE ENUM The state of the match { PLAYING,

STOPPED, READY,

FINISHED }

Entity

Identification

Type Use

Case

Scree

n

Function

Single Player Button - MAIN When pressed;

1. GAME_MODE must be set to

SINGLE

2. CURRENT_SCREEN must be set

to SINGLEPLAYER

Multi Player Button - MAIN When pressed;

1. GAME_MODE must be set to

MULTI

2. CURRENT_SCREEN must be set

to MULTIPLAYER

Options Button - MAIN When pressed;

1. CURRENT_SCREEN must be set

to OPTIONS

Exit Button - MAIN When pressed;

1. The game must terminate

41

Entity

Identification

Type Use Case Screen Function

Match Length Spinner - OPTIONS When pressed;

1. The domain of the MATCH_LENGTH

variable must be shown to the user

When a value is selected in the domain

MATCH_LENGTH;

1. MATCH_LENGTH must be set to the selected

value

Commentary Toggle

Button

- OPTIONS When pressed;

If COMMENTARY_SELECTION is set to ON;

1. COMMENTARY_SELECTION must be set

to OFF

If COMMENTARY_SELECTION is set to OFF;

1. COMMENTARY_SELECTION must be

set to ON

Player Kits Toggle

Button

- OPTIONS When pressed;

If PLAYERKIT_SELECTION is set to ON;

1. PLAYERKIT_SELECTION must be set to OFF

If PLAYERKIT_SELECTION is set to OFF;

1. PLAYERKIT_SELECTION must be set to ON

Get Guideline Button use_case_

1

OPTIONS When pressed;

1. A browse screen must appear to select the

directory to save the guideline

Get Template Button use_case_

2

OPTIONS When pressed;

1. A browse screen must appear to select the

directory to save the template

Back to main

menu

Button - OPTIONS When pressed;

1. CURRENT_SCREEN must be set to MAIN

Apply Button - OPTIONS When pressed;

42

1. The values of the MATCH_LENGTH,

COMMENTARY_SELECTION,

PLAYERKIT_SELECTION must be saved.

Entity

Identification

Type Use Case Screen Function

Browse Button use_case_

3

SINGLEPLAYER When pressed;

1. A browse screen must appear to

select the directory to load the

user code

2. The system must show the

result of load operation

Compile Button use_case_

5

SINGLEPLAYER When pressed;

1. The system must compile and

check the user code

2. The system must show the

result of the compile operation

Easy Difficulty Radio

Button

- SINGLEPLAYER When pressed;

1. OPPONENT_DIFFICULTY

must be set to EASY

Medium

Difficulty

Radio

Button

- SINGLEPLAYER When pressed;

1. OPPONENT_DIFFICULTY

must be set to MEDIUM

Hard Difficulty Radio

Button

- SINGLEPLAYER When pressed;

1. OPPONENT_DIFFICULTY

must be set to HARD

Back to main

menu

Button - SINGLEPLAYER When pressed;

1. CURRENT_SCREEN

must be set to MAIN

43

Start the

game

Button - SINGLEPLAYER When pressed;

1. CURRENT_SCREEN

must be set to MATCH

2. MATCH_STATE

must be set to READY

Entity

Identific

ation

Type Use

Case

Screen Function

Browse

1

Button use_cas

e_3

MULTIPLAYER When pressed;

1. A browse screen must appear to select the

directory to load the code of the team 1

2. The system must show the result of the load

operation of team 1

Browse

2

Button use_cas

e_3

MULTIPLAYER When pressed;

1. A browse screen must appear to select the

directory to load the code of the team 2

2. The system must show the result of the load

operation of team 2

Compile

1

Button use_cas

e_5

MULTIPLAYER When pressed;

1. The system must compile and the check the

code of team 1

2. The system must show the result of the compile

operation of team 1

Compile

2

Button use_cas

e_5

MULTIPLAYER When pressed;

1. The system must compile and the check the

code of team 2

2. The system must show the result of the compile

operation of team 2

44

Back to

main

menu

Button - MULTIPLAYER When pressed;

1. CURRENT_SCREEN must be set to MAIN

Start the

game

Button - MULTIPLAYER When pressed;

1. CURRENT_SCREEN must be set to MATCH

2. MATCH_STATE must be set to READY

Entity

Identifi

cation

Type Use Case Screen Function

Skip

the

match

Button - MATCH When pressed;

1. The system must show the final match result

2. End match button must be visible

Exit the

match

Button use_case

_10

MATCH When pressed;

1. The system must stop the visualization of the

game

2. CURRENT_SCREEN must be set to MAIN

End

Match

Button - MATCH When pressed;

If MATCH_STATE is FINISHED

1. CURRENT_SCREEN must be set to MAIN

Start

Match

Button use_case

_6

MATCH When pressed;

If MATCH_STATE is READY;

1. MATCH_STATE must be set to PLAYING

2. The system must start to visualize the game

up to MATCH_LENGTH. If

MATCH_LENGTH value is reached,

MATCH_STATE must be set to FINISHED

3. Start Match button must become the Pause

45

Match Button

Pause

Match

Button use_case

_7

MATCH When pressed;

If MATCH_STATE is PLAYING;

1. MATCH_STATE must be set to STOPPED

2. The system must stop to visualize the game

3. Pause Match button must become the

Resume Match button

Resum

e Match

Button use_case

_8

MATCH When pressed;

If MATCH_STATE is STOPPED;

1. MATCH_STATE must be set to PLAYING

2. The system must continue to visualize the

game

3. Resume Match button must become the

Pause Match button

Figure 13 Sequence Diagram

46

5.7 State Dynamics Viewpoint

In this section, an illustration of our simulation steps is shown. At the beginning of program execution,

user can select former imported AI agents to play game, or directly can go to upload state. Moreover

user has an opportunity to view saved log file with visualizer. If user uploads his/her AI, system will

check validity of this file and then system goes to “ready state”. After that user should select game

preferences and according to these settings, simulation will start. Later user can save log file and

visualize it.

Figure 14 State Diagram

5.8 Information Viewpoint

 In the project, there will be only one type of persistent data storage. This data file will be

saveFile. The save file will store the percepts in each turn. It will also have a metadata section

which will contain general information. For each turn, not to store whole player entities,

metadata will store team id – player ids relation table. The simulator will write to these files.

They will be used by the visualizer to display the game after the simulation.

Structure of the saveFile:

● It will be in the format of JSON.

47

● Each JSON object will have the information about a percept with the positions of the

players and the ball, the score and the turn number.

● The number of JSON objects will be equal to the number of turns.

Operations on the file:

 The file will be stored in a directory that both the simulator and the visualizer can access

to it. The simulator will be responsible for the creation of the file. The save file of each match

will have a different name formatted as timestamp.

 The simulator will have the right to write to the file. In each turn, it will add a new JSON

object at the end of the file.

 The visualizer can only read from the file. It cannot change its content. It will read the file,

parse it and then visualize the percepts.

Example of saveFile

{ "metadata": {
 "team1": {"id": 0,"name": "Carlos", "colorR": 0, "colorG": 0,"colorB": 0, "players": [
 {"id": 0,"name": "I aint got no name!","kitNumber": -1},
 {"id": 0,"name": "I aint got no name!","kitNumber": -1},
 {"id": 0,"name": "I aint got no name!","kitNumber": -1}]},
 "team2": {"id": 0,"name": "Roberto","colorR": 0,"colorG": 0,"colorB": 0,"players": [
 {"id": 0,"name": "I aint got no name!","kitNumber": -1},
 {"id": 0,"name": "I aint got no name!","kitNumber": -1},
 {"id": 0,"name": "I aint got no name!","kitNumber": -1}]},
 "pitchWidth": 0,"pitchHeight": 0},
 "perceptList": [{"ball": {"position": {"x": 64.0,"y": 48.0},"speedX": 0.0,"speedY": 0.0},
 "playerInfoList": [{"id": "0","position": {"x": 12.0,"y": 61.0}},
 "team1Score": 0,"team2Score": 0}]}

48

6. Planning

6.1 Estimation

This is our Gantt chart representation of weekly planning schedule.

Figure 15 Project Estimation Gantt Chart

7. Conclusion

This SDD is prepared to give detailed information for all design patterns of CEngBall Project. First,

general overview and definitions of project were given. Then, relative information about design’s

concerns is mentioned. After that, system architecture is provided with all of its components. In the

following sections, user interfaces and actions of objects are stated in design viewpoints section.

