Software Requirements Specification

Prepared by CODEFELLAS
for the project LINUX PASSWORD VAULT

METU - Department of Computer Engineering
CENG 491 Senior Design Project 1
Fall 2015-2016

Ali Can Ogul - 1746304
Gokhan Gurbetoglu - 1828383
Mehmet Sait Glilmez - 1678986

Muhammet Kara - 1823509

Table of Contents

Table of Contents
1. Introduction
1.1 Problem Definition
1.2 System Overview
1.3 Definitions, acronyms, and abbreviations
1.4 Assumptions and dependencies
2. Overall description
2.1 Product functions
2.1.1 Use-case model survey
.1.1 “User registration” Use Case
.1.2 “User authorization” Use Case
.1.3 “Update user credentials” Use Case
.1.4 “Deauthorize user” Use Case
.1.5 "Remove user” Use Case
.1.6 “Store password” Use Case
.1.7 “Update stored password” Use Case
.1.8 “Get stored password” Use Case
.1.9 “Activity logging” Use Case
2.1.2 Actor survey
2.2 Interfaces
2.2.1 User Interfaces
2.2.2 Hardware Interfaces
2.2.3 Software Interfaces
2.2.4 Communications Interfaces
2.3 Constraints
3. Specific requirements
3.1 Functional Requirements
3.1.1 Encryption / Password Storage
3.1.2 Authorizing A User for a Password / Group of Passwords
3.1.3 Decryption / Password Retrieval
3.2 Non functional Requirements
2.1 Usability
2 Reliability
3 Performance
2.4 Supportability
4 Data Model and Description
4.1 User
4.2 Login
4.3 Admin
4.4. Registration
4.5 System
4.6 Database
About this template
5 References

SESTSTNTSISYSINTN
o el el el el e ol Ll L

3.
3.2.
3.2.
3.

1. Introduction

This Software Requirements Specification provides a complete description of all
the functions and specifications of the Linux Password Vault to its readers.

1.1

Problem Definition

This project aims to create a corporate password repository where all corporate
passwords can be stored securely, accessed by the authorized personnel only on
a need-to-know basis, and reset when needed.

1.2 System Overview

The project consists of two main components: Server and Client.

The server will be a service daemon running in the background on a
unix/linux system.

The server may also connect to external services for authentication
purposes, and may use a DBMS to store corporate passwords as well as
user credentials.

The client will be a console based application which connects to the server
and serves as a command line interface.

The client will connect to the server via a secure communication channel,
and facilitate 2-factor authentication while connecting the server.

All activities will be logged on the server side.

1.3 Definitions, acronyms, and abbreviations

LPV Linux Password Vault

SSL Secure Sockets Layer

TLS Transport Layer Security

PGP Pretty Good Privacy

TOTP Time Based One Time Password
GPG GNU Privacy Guard

SRS Software Requirement Specification
OoTP One Time Password

AES Advanced Encryption Standard

RSA Rivest-Shamir-Adleman Encryption

DBMS Database Management System

ER Diagram Entity Relationship Diagram

1.4 Assumptions and dependencies

This document assumes that the operation environment for this project uses a
variant of a Linux operating system distribution.

Also the system is dependent to the users of the LPV to have a network
connection.

2. Overall description

This section of the report will try to give a general understanding about
the project by explaining the factors that affect the product and its
requirements.

2.1 Product functions

This section will serve as a higher level specification of the main functionalities
that the system will provide. Specific requirement section will give the detailed
version of the material covered in this section. The product functions are as
follows:

1. User registration

User authorization
Update user credentials
Deauthorize user
Remove user

Store password

Update stored password
Get stored password

9. Activity logging

®NOUAWN

2.1.1 Use-case model survey
2.1.1.1 "User registration” Use Case

Name User registration
Description New users are added to the system by administrators. User
names are unique. User passwords are randomly generated.

Public-private key pair of the users will be automatically
generated at first login of the user.

Actors

Admin

2.1.1.2 “"User authorization” Use Case

Name User authorization

Description Admin authorizes users that need access to a stored
password or password group.

Actors Admin

2.1.1.3 "Update user credentials” Use Case

Name Update user credentials

Description The user credentials can be updated by the user themselves
or by an admin. A user can only update their own credentials
whereas an admin can update any user’s credentials.

Actors Admin, User

2.1.1.4 "Deauthorize user” Use Case

Name Deauthorize user

Description Admin deauthorizes users who should not be allowed to
access a stored password or password group.

Actors Admin

2.1.1.5 "Remove user” Use Case

Name

Remove user

Description

Admin removes a user from the system. This may be needed
but not limited to when user leaves company or changes
division.

Actors

Admin

2.1.1.6 "Store password” Use Case

Name Store password

Description A new password for a specific domain is securely stored on
the server. Password may be specified by the admin or
randomly generated by the system.

Actors Admin

2.1.1.7 “"Update stored password” Use Case

Name Update stored password

Description The stored password on the system is updated if it is
required to. New password can be specified or randomly
generated by the system.

Actors Admin

2.1.1.8 "Get stored password” Use Case

Name Get stored password

Description Authorized users shall be able to get stored password from
the system.

Actors User

2.1.1.9 "Activity logging” Use Case

Name Activity logging

Description All user and administrative activities will be logged by the
system. These include all of the use cases mentioned above
but are not limited to them.

Actors System

Jser Registration

User Authorization

Jpdate User Credentials

Deauthorize User

Remove User

Store Password

Jpdate Stored Password

Use Case Diagram for Admin Actor

User

Jpdate user credentials

Get stored password

Use Case Diagram for User Actor

System

Activity Logging

Use Case Diagram for System Actor

2.1.2 Actor survey

Actor’'s name

Description of the actor

User All company employees that are registered on the system.

Admin All company employees that have administrative rights on
the system.

System The Linux Password Vault itself, with both server and client

components.

2.2 Interfaces

The Linux Password Vault is desighed to provide a useful tool for storing and
retrieving company passwords in a secure way. The product will be network
connected application system which will run on Linux based consoles. The system
will be platform dependent and can be accessed by Linux based systems.

2.2.1 User Interfaces

The project has only one interface which is Linux based console or any equivalent
console emulators.

2.2.2 Hardware Interfaces

There is no hardware interface of the system.

2.2.3 Software Interfaces

The software interfaces that the system is going to use are:

MySQL: Is used to create and manage the database requirements of the project.
Ruby Programming Language: It is going to be used, since it includes lots of
libraries and meets our needs during implementation part of the project.

2.2.4 Communications Interfaces

e Server and database will use TCP/IP protocol to communicate.

2.3 Constraints

e Ruby and MySQL is used in development of the software.

e The software product is aimed to run on only in Linux based operating
systems.

e Security of user login authentication should be provided by main server.
Also, sent and received data should be protected from any kind of third
party user or software.

e Username and password is used to identify users.

e Server and database capacity is also a constraint. Under heavy network
load the system may function abruptly and this should be avoided.

3. Specific requirements

Requirements can be analyzed in two parts as functional requirements and
non-functional requirements.

3.1 Functional Requirements
3.1.1 Encryption / Password Storage

All new passwords will be encrypted with a newly generated shared key on
the client-side

The shared key will also be encrypted with the public key of the authorized
manager/administrator

Then the cypher-text will be stored in the database along with the
encrypted shared key

3.1.2 Authorizing A User for a Password / Group of Passwords

Admin of the password/password group (let's call Owner) will retrieve the
encrypted shared key of the password along with the public key of the new
user to be authorized

Decrypt the shared key by using his/her own private key, and re-encrypt
with the new user's public key

Send the encrypted shared key for the new user back to the server

3.1.3 Decryption / Password Retrieval

There will be a shared key to decipher the ciphered-text (which contains the
password to be retrieved), and the shared key itself will be stored as
encrypted copies (encrypted with the public keys of authorized personnel)
in the database.

When an authorized personnel asks for a password, server will send the
ciphered-text along with the encrypted shared-key to the client. Client will
decrypt the encrypted key by using the personnels private key to get the
shared key, then use this shared key to decipher the ciphered-text, which
gives the desired password as plain text on the client-side.

This way, all data will be secure in case of a compromised server.

3.2 Non functional Requirements
3.2.1 Usability

The system will be in English language.

The system should be available in working hours of the users.

The system should be accessible from any computer who has network
connection in the company.

10

3.2.2 Reliability

System should be available at least in all the work hours.

The database informations shall be kept by the system all the time.

The system shall not fail on the application end. The failures on the
database shall be kept at minimal. There shall be recovery mechanisms if
any database failure occurs so that the information is not lost.

When the system’s components do not work correctly system should be
able to show informative messages.

3.2.3 Performance

LPV is designed for corporate use and will maintain many users. While there
are numerous user entities, the number is not extremely high and can be
assumed to be maximum at 5000.

A user who does not have any experience with the system shall be able to
learn the functionalities of the system in less than an hour.

The system’s use cases, such as user creation, credentials update and etc.,
shall be responsive and should not take more than a few seconds.

Access to the system via networking depends on the performance of the
connection speed and it still should not exceed 30 seconds for extended
security purposes.

The system shall be able to sustain the load and does not stall when at
least % of the users are all connected to it simultaneously.

If the system is degraded and unable to offer any service to the users, it
shall still be accessible by the admins and it shall still carry on any
password verification operation.

The system shall not be very demanding on the hardware and shall require
maximum 1 GB of disk space and minimum 256 MB of RAM on any number
of cored x86 or x64 CPU with more than 1 GHz operation speed.

Any speed of network connection shall be sufficient but at least a 128 Kbit
connection shall be preferred.

3.2.4 Supportability

To ease the maintainability of the project’s code-base, The Ruby Style Guide will
be followed as reference of coding standards. The project’s code-base will also be
periodically analyzed by using an automated software for fitness to the
aforementioned coding style guide.

Using external class libraries other than the ones within the scope of the Ruby
Standard Library will be avoided when possible.

11

4 Data Model and Description

There will be six main objects in the software, namely User, Login, Admin,
Registration, System, and Database classes.

4.1 User

The User object will carry the info about the users of the system, and holds the
methods that allow performing operation on the user specific tasks.

4.2 Login

This object will be used by the software for logging the users and admins into the
system. It will also handle session related operations.

4.3 Admin

This object hosts the data related to the Admin of the system. It will also carry
the methods which will allow admins to perform management tasks on the users
and the whole system

4.4. Registration

This object will carry registration info of users. It will also handle the tasks related
to the user registration process.

4.5 System

This object is the main system object which handles system-wide operations, and
puts all others together. This object will also handle daemonization, and logging
of activities.

4.6 Database

This object will store the required information such as user credentials,
passwords, roles, keys, and etc., throughout the system.

12

Admin
User in -userName : Strin
Logl g
-useriD tInt
-userame : String -userName : String -password : String
-useriD tint H -password : Strin
-password : String % |Og|l'| i : +registerUser()
+login() +authorizeUser()
+setUserName() +updateUserCredential()
+setPassword() ; +deauthorizeUser()
+getStoredPassword() +removelser()
+updateUserCredential(String,String) +storePassword()
d +updateStoredPassword ()

, System —
Registration ‘ og “String =

| Name :Sting L

I Surname : String typ el rcipherText : String

FuserlD :int Sl -cipherKey : String

LuserName: String +aciivityLog() i

Hpassword : String +decryptCipherkey()
+decryptCipherText()

+register()

Class Diagram

About this template

This template was adapted by Emre Akbas from two sources: the IEEE 830 [1]
and the “Modern SRS package” [2].

5 References

[1] IEEE Guide for Software Requirements Specifications," in IEEE Std 830-1984 ,
vol., no., pp.1-26, Feb. 10 1984, doi: 10.1109/IEEESTD.1984.119205,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=278253&isnum
ber=6883

[2] Appendix C of Don Widrig, Dean Leffingwell, "Managing Software
Requirements: A Unified Approach,” Addison-Wesley Professional, Release Date:
October 1999, ISBN: 0201615932.

[3] The Ruby Style Guide, URL: https://github.com/bbatsov/ruby-style-guide

[4] Ruby 2.3.0 Standard Library Documentation, URL:
http://ruby-doc.org/stdlib-2.3.0/

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=278253&isnumber=6883
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=278253&isnumber=6883

