

 1

Table of Contents
1. Introduction ... 2
2. Goals & Objectives ... 2
3. Architectural & Component Level Design.. 2

3.1 Graphical User Interface ... 3
3.2 Game Engine... 5
3.3 Input Module... 6
3.4 Loader Module.. 6
3.5 Artificial Intelligence Engine.. 7
3.7 Multimedia Module... 10
3.8 Physics Module ... 12

4. Scene Management.. 12
5. Levels & Puzzles ... 15
6. CLASS DEFINITIONS... 19

6.1 Character ... 19
6.2 Hero... 20
6.3 Enemy ... 20
6.4 Citizen ... 21
6.5 Node.. 21
6.6 Object .. 22
6.7 Weapon ... 23
6.8. Sword ... 23
6.9. Pistol .. 23
6.10 Box.. 24
6.11. Key ... 24
6.12. Door ... 25
6.13 Magazine... 25
6.16. Level... 25
6.17. MultiMedia Class ... 26
6.18. PhysicsEngine Class .. 26
6.19. GameEngine Class ... 26
6.20. ScriptingEngine Class .. 27
6.21. Input Class.. 28
6.23. AIEngine Class .. 29
6.24. GUI... 30
6.25. GraphicsEngine class ... 31
6.26. Puzzle class .. 31

7. TESTING ISSUES .. 31
7.1. Test Design .. 31
7.2. Test Cases .. 31

7.2.1. Unit Testing .. 31
7.2.2. Integration Testing.. 32
7.2.3 Validation Testing ... 32
7.2.4 Performance Testing .. 32

8. DIAGRAMS.. 33
9. CLASS DIAGRAM .. 35
10. USE CASE DIAGRAM .. 37
11. STATE TRANSITION DIAGRAM.. 41
12. ACTIVITY DIAGRAM .. 43
13. SEQUENCE DIAGRAM .. 44
14. COLLABORATION DIAGRAM ... 46
15. Gantt Chart .. 47
16. Appendix ... 49

 2

1. Introduction
PC gaming has been changed a lot since the golden age of multimedia in the early

90’s. Since those days of text based adventure games, lots of the elements of adventures

moved to other genres. However there is always the desire for treasure hunt &

accomplishing missions, we hope to satisfy the needs of the end users by presenting a 3D

Adventure Game that is based on the story of the movie “Kill Bill”. Bearing the 3D

Graphics into heart, the team hopes to present “The Bride”, a game under

action/adventure genre and support the game by different puzzles for each level, thus

increasing the number of amusing factors.

2. Goals & Objectives
In this paper, our aim is to present the design made by the team in order to

materialize the project. The Bride is going to be a game that works with a modern game

engine that supports 3D Graphics Rendering, Multimedia (sound & video), Game AI and

Collision Detection between game objects. In order to increase possibilities in the

development phase, during prototyping, the team decided to use a high level scripting

language which will be the basis for a scripting engine.

On the other hand, we agreed that speed is another important design goal. Thus in

order to increase performance we use BSP trees for the culling system and mipmaps in

order to render the environments faster, using textures with increasing level of detail.

Within this document we present the modules that are needed to implement the

features described. We first present the use case diagrams accompanying graphical user

interface designs to achieve user satisfaction. Then we present state diagrams for showing

dynamic aspects of software, flow charts and class hierarchies to understand the problem

better and to test the ideas in the creation phase.

3. Architectural & Component Level Design
Overall Architecture

 3

Detailed Design of the Modules

3.1 Graphical User Interface
The Graphical User Interface is the entry point either to start a new game or to

load an old one. GUI also enables the user exiting the program and configuring settings

of the game environment via options menu.

The team is going to code GUI as a distinct module, which is at the top level that

triggers the game engine and so starts or ends a game. The main window for the graphical

user interface has five buttons that are identified as:

1 -) New Game: This button enables the user to start a new game with the beginning of

the first level. When the user starts a new game he/she is able to watch a movie that

describes, how the story begins. The user is able to skip this movie pressing the 'Esc' key.

 The “New Game” button is the entry point to the game and GUI enters to the

loading phase. In this phase a new instance of the game engine is created with the

modified or default configuration data. The game engine first calls for importer functions

and loads the model, level data and loads scripting engine modules and scripts to the

corresponding data structures. When all the information required for the initialization of

the game for the first level is imported to the data structures the game engine creates

Game Engine

State Information & Game Progression

Input Module Importer

Physics
Engine

Graphics Engine
Draw

AI Engine
Decision

Scene Management

S
C
R
E
E
N

Scripting
Engine

Multi

Media
Module

External Data

 4

instances for other modules and ready to realize user commands.

2 -) Load Game: This button enables the user to load a game that is saved before. When

this button is clicked the user meets a new window, namely 'Load Menu', displaying the

names of all the games that are saved previously.

 Load Menu is a list containing the names of the games that are saved before. When

the user chooses a name and clicks on the 'OK' button that is defined within the same

menu, all the information that is saved for the game chosen is loaded as the current

environment data and the user is able to continue to the game under the environment

conditions saved. When a name is chosen GUI creates an instance of the game engine and

the game engine starts the game using the level and model information stored within the

saved file.

3 -) Exit Game: This button is defined as the exiting point from the program. When it is

clicked the program will terminate. Exiting the game without saving will cause all the

information hold to be released and thus free the memory for the game engine and the

modules except GUI.

4 -) Options: This button enables the user to configure the settings of the game. When

the user clicks on this button a new windows shall appear that displays the current sound,

video control configuration including the difficulty level of the game.

 The user is able to modify the settings identified within this window using the buttons

defined for each option those of which will be used during the game engine initialization.

5 -) Credits: This button is designed to display Company & Game information. When it

is clicked a new window displays the context defined for 'Credits Window'.

6 -) Save Game: During a game when the user attempts to quit the game a new menu

that is identified as 'Save Menu' appears that asks for confirmation to save the current

game data. When the user confirms this question by clicking on the ‘Yes’ button a menu

appears that contains the names of the currently saved games and asks the user to specify

a name for the game to be saved as.

If the user selects a name that is already on the list, its contents will be

overwritten without asking for more confirmation. If the user specifies a new name all the

data needed to begin the saved game from this entry point will be saved under the name

specified. This data includes the model data (place, position), hero’s attributes

(experience, strength, health) which are going to be saved as python script file, inventory

data and current level data including puzzles.

 5

5 -) Play Game: Play mode which is going to be implemented as the game engine shall

display all the game information during the game. The game engine shall update the

entire scene in the current window and the values in the fields that correspond to the

health, strength, experience & attack damage. Game window also includes buttons that

displays the information about inventory of the hero, the map of the current level and a

label as 'Exit Game' that able the user to jump to the 'Save Menu'. During the game the

‘Esc’ like keystrokes will also be detected by the GUI and will be accepted as defined.

3.2 Game Engine
The team is going to implement the game engine as a module in its own, that

handles the progression of the game independent of other modules, graphics, physics,

sound and scripting engines. By this way, it will be easier to handle items in a modular

way that makes our game engine extensible, maintainable and portable. The general flow

of a program shall be through these states;

1 -) Pre-Game Setup: When the user interface triggers an entry point for a game, an

instance of the game engine is created with the selected options from the user are passed

directly to the game engine, through the constructor defined for the engine. So this step is

to format some a piece of data that is passed to the game engine in construction.

2 -) Game Initialization: In this step, the level information will be parsed from the files

that contain the game data with the help of loading modules which will be explained

deeply in the levels and puzzles section. In order to load the game data to the

corresponding data structures game engine calls the initialization methods defined for

each module.

3 -) Game State Rendering/Display: This step is where the game engine begins

rendering the state to the screen so the user can see the game in progress. In order to

render the current state to the screen the game engine uses the graphics engine and scene

management module, these are detailed in the scene management section.

Game engine calls an update method that calls update methods of all the objects

where it is necessary to redraw the object on the screen.

4 -) Game Play/Inputs: This step is the process where the user plays the game by

making moves or interacting with the game through the inputs from keyboard, mouse,

command-line or scripts that are piped into the game from pre-saved input files. The

game engine handles all the input data through an input module. Owing to this module,

 6

input that is not an actual part of the game engine will be separated from the game engine

module. Input module maps all input to actual method calls or formats into action objects

that are passed to the game engine for processing.

5 -) Game Progression: This is the place where the user input/actions modify the

current game state. The engine handles this item entirely, which means game progression

is done via the methods defined for game engine that uses current state & level data plus

interpretation of user inputs. In order to progress within the game the engine uses the

state information conveyed by the story that are saved as scripts. When the game state

points out an end point for the level, the game engine jumps to one level higher and loads

the data needed for the corresponding level. If the state points out the end for the last

level the engine exits to the game menu.

When an instance of the game engine is created the engine loads the data

corresponding to the level and creates instances of other modules in order to progress in

the game. In order make a real time application our system will work with a constant

frame rate that is more than 25 fps. In order to support this rate we will manage the

rendering and calculating the information of the data rendered effectively.

3.3 Input Module
In order to separate the input from the game engine totally, an input module is

going to be implemented that will handle all the input data through the use of mouse,

keyboard and console. The module uses buffers effectively, in order to handle input data

in an efficient way.

We will integrate DirectX 8.0’s DirectInput library to out application which can

query the system for all available input devices, determine whether they are connected,

and return information about them using the process called enumeration. We will create a

single Microsoft DirectInput object and not release it until the game is terminated by the

GUI due to a ‘Quit’ or ‘Save’ action is approved.

3.4 Loader Module
This module handles the interpretation of the animating model & environment

data that stays within the specific files and parses these formatted data to the identified

data structures. In order to parse the model data that is in md3 format we are going to use

a parser and we will convert the data structure of the parser to our data structure. Our

structure for an animated object includes the vertices, normals and the triangles made up

 7

of these vertices as the faces and the texture coordinates for each face. On the other side,

the structure for the animated model includes the animated objects, textures and colors.

This information also include the data of all frames of the animation.

3.5 Artificial Intelligence Engine
The main duty of the AI engine is an inference mechanism which applies

knowledge from the knowledge base to the current situation to decide on internal and

external actions, that the game engine is going to be fed.

Current situation of the agents are represented by data structures representing the

results of simulated sensors implemented in the interface and contextual information

stored in the AI engine's internal memory. The inference mechanism selects and executes

the knowledge relevant to the current situation. This knowledge specifies external

actions, the agent’s moves in the game, and internal actions, changes to the AI engine's

internal memory, for the inference mechanism to perform. So the engine which acts like

an inference machine constantly cycles through a perceive, think, act loop, that is called

the decision cycle.

 In the bride, the hero struggles with other human characters. These enemies

mimic the behavior of individuals in the real world. They try to survive in the sense of

running away when wounded seriously. They also follow hero if he tries to escape when

they are healthy enough. Basically there are predefined states which identify the behavior

of these characters. The actions of the hero and changes in the environment caused by

these actions are all plays role in the state transitions. That is the sound that a box hero

opens may cause an enemy to get in fetch and then attack state if the hero is in the range.

 AI module is responsible from imitating these behaviors of agents. It contains

necessary routines for an enemy to make decision given some inputs from the game

world. Implementing such a decision mechanism for the bots in the game can be achieved

by using various searching and planning methods. Finite state machines, decision trees,

neural networks are the most common one of these methods. In our case the power of a

simple finite machine is enough. Thus the behavior of the characters in the game will be

modeled with finite state machines. A finite state machine basically consists of a start

state, one or many final states and transitions between these states that occur with respect

to given inputs. Finite-state machines are a good way of create a quick, simple, and

sufficient AI models for the games.

 8

 The inputs of the finite state machine may be the actions of the hero and the

effects of them in the environment as mentioned before. Final state corresponds to death

of the character himself or death of the hero, whereas start state is the initial state of the

character which may be patrolling or sleeping (standing with no action). In addition to

these states there are intermediate states where enemy tries to fetch hero or escapes from

hero or makes melee attack or make ranged attack to hero. Consequently there are a total

of 6 states that enemies can be assigned where each state has its own behavior, and its

own trigger.

 The sates can be implemented as constants and functions taking certain

parameters such as health of the hero, enemy itself, distance between hero and enemy,

current state to produce the next state. The implementation can make use of some

artificial intelligence techniques such as A* search with a predefined heuristic function

and cost function to generate more complex decisions such as instead of escaping from

hero fighting with him if the enemy has obstacles on his escape path or while escaping

finding the rooms that have more enemies inside with respect to others. The code of these

functions would be similar to the one below.

void check_enemy_state(enemy)

{

 switch(enemy.getState())

 {

 case FETCH:

 if(Hero.health > enemy.health &&

 distance(Hero, enemy) < MIN_SECURE_DIST)

 enemy.setState(ESCAPE);

 case SLEEP:

 if(distance(Hero, enemy) < MIN_SECURE_DIST &&

 distance(Hero, enemy)<=RANGED_ATTACK_DIST)

 enemy.setState(RANGED_ATTACK);

 ...

 }

 ...

}

 9

SLEEP / PATROL

MELEE_ATAC

RANGED_ATTACK

ESCAPE

DEAT

FETCH

Possible transitions between the states of the enemies in the project are basically

demonstrated as follows:

 d>di
 d>di

 d<dm
 dm<d<dr
 v<vt && h>h

d<dm
 v==0 || h==0 dm<d<dr
 d>di
 d<dm dm<d<dr
 v==0 || h==0 d>di
 v==0 || h==0 v==0 || h==0

At each transition the next state is decided according to the distance between hero

(d) and enemy and, vitality ratio (v) of the enemy and the health (h) of the hero. The

exact conditions that defines state transitions is shown on the figure where dr is the min

ranged attack distance, dm is the max melee attack distance, di enemies sight range, vt is

the threshold vitality ratio, ht is threshold health value for the hero. These conditions may

be improved considering other elements in the environment (obstacles, sound made by an

object or hero, etc...).

 AI engine is in a continuous interaction with the game engine. Game engine sends

necessary inputs to AI engine and AI engine sends back the decision it has made. This is

how agents respond quickly when events occur in the environment.

3.6 Scripting Engine

 10

In order to handle the code written for the project in a more effective way a

scripting engine is going to be implemented that will allow the developers to write the

functionalities through scripts thus increasing the modifiability of the code during

development phase.

By the use of scripts, it will be easier to add, modify, test & debug code for new

game play features and functionalities that are specified to be implemented in the design.

 We will use python as the scripting language. We are going to have a library and

also use the APIs of the python to embed it into C++. We will implement this by using

“.py” script files written in python and using these as modules for any behavior. After

loading all of the modules by using python APIs and “pyembed” library on the loading

phase of the game, we are going to call the related modules and their methods on the

specific conditions that need decisions and behaviors in the AI engine module.

3.7 Multimedia Module
A computer game constructs its own world and takes users at the center of it.

Therefore the success of the game highly depends on the realism of the atmosphere and

the flow of story. Sound effects are one of the major components that affect the realism

of the atmosphere. Besides, playing music during the game increases the entertaining

factor and therefore emphasizes attraction of the product. Handling these tasks requires

the software being able to play audio files. Similarly, playing videos during the game not

only utilizes realism but also helps switching between the parts of the story. Handling

these tasks requires the software being able to play video files.

Multimedia module includes objects to handle playing audio and video files.

Instances of this module are widely used during the program. The background music

played during game, sound of the characters, environment objects and weapons, videos

related with the story in between levels are all constructed by this module. Game engine

triggers the multimedia module according to the state of the game user is playing.

Multimedia module provides routines to load audio or video files, to invoke audio

(sound, music) or video, to stop it or pause it. It supports playing more than one music or

video file simultaneously.

As an implementation issue it is wiser to use an already available library to

control audio and video streams and utilize peripherals such as sound and graphics card.

 11

There are many APIs providing methods for playing sound and video but the main

question arises here is which of these APIs is the most appropriate for the project.

OpenAL (Open Audio Library) is just one of the APIs mentioned above. It is

basically an audio library that contains functions for playing back 3D sounds and music

in a game environment. It allows a programmer to load whatever sounds he likes and

control certain characteristics such as position, velocity, direction and angles of the

sound. All sounds are positioned relative to the defined listeners which represents the

current place of the user in the game universe. This way as the user gets closer to a sound,

he hears it louder. The main advantage of OpenAL is its being open source and designed

to be cross platform API. Moreover its syntax and usage is closer to OpenGL providing

an ease of use for the programmer like us who are familiar to OpenGL.

Another API that is heavily used in games is SDL (Simple DirectMedia Layer), a

free cross-platform multi-media development API. SDL does provide methods for not

only playing audio but also playing video files. In fact, it also handles events, CD-ROM

audio, threads, timers, endian independence.

One may also consider using DevLib as a solution for implementing audio and

video playback. It provides user friendly abstraction of heavily used resources such as

fonts, images, 3D meshes, files, xml, zip-archives, sounds, videos. DevLib library itself

makes use of DevIL, FreeType 2, LUA, ODE, libjpeg, libmpeg2, libpng, TinyXML,

unzip, ZLib, SDL, DirectX 9, FMOD, GLEW and STL libraries to fulfill its

requirements.

DirectSound and DirectShow APIs can also be used while implementing the

multimedia module. The main disadvantages of these APIs are they are windows

platform dependent and harder to learn with respect to other APIs.

The decision of choosing the API that suits our needs most depends on its

capabilities, efficiency, ease of use, being free and platform independent, availability of

learning material (tutorials, guides, example codes). All of these APIs support MPEG-2,

MP3, OGG, WAV file formats. WAW format will be used as audio file format; MPEG-2

will be used as video file format. Previously in the initial design we have considered but

during design we have decided not to use Devlib. For just playing audio and video

DevLib would cause performance reduction and space redundancy. Instead of DevLib -

the higher level library that uses SDL- using SDL itself would be much more convenient.

Hence, we plan to make use of SDL in the first place to build the multimedia module.

 12

However, during implementation phase, use of OpenAL and DirectShow can be taken

into consideration as a B plan in case SDL stole from efficiency.

3.8 Physics Module
Another factor that affects realism in the game is obviously the behavior of the

objects with respect to some identified action. That is in particular the fall of a box must

be logical and should respect to the physics rules. This consideration of the behavior of

objects requires many numerical computations.

The routines that define the behavior of the objects as they are mentioned above

will be encapsulated in a module. These routines will be allowed to be reached from any

other module. Fortunately, many of these common calculations for the behaviors of

objects in the world are defined in a physics engine named ODE (Open Dynamics

Engine) which lightens our workload.

The Open Dynamics Engine (ODE) is a free library that is mostly written in C++.

It provides routines for simulating behavior of connected rigid bodies and helps

determining the dynamics of motion such a system does. Ode provides efficiency and

accuracy in platforms that virtual reality is essential. Its built-in collision detection

capability and stable integration that controls the simulation errors makes it a convenient

tool to be used in real-time simulations. Ode supports sphere, box, capped cylinder,

plane, ray, triangular mesh collision detection primitives and quad tree, hash space, and

simple collision spaces. One may model rigid bodies with arbitrary mass distribution and

ball-and-socket, hinge, slider (prismatic), hinge-2, fixed, angular motor or universal joint

types. Friction can also be modeled by using Ode. Another important feature of Ode is, it

has a native C interface and also C++ interface built on top of the C one.

4. Scene Management
 In order to implement visibility culling the team is going to use Binary Space

Partitioning trees as the data structure. All the level data shall be handled by use of the

BSP trees. BSP trees represent a recursive, hierarchical partitioning or subdivision of n

dimensional space into convex subspaces.

 A culling system renders only the parts of a game level that are not covered by

walls or other objects. The BSP tree system is the fastest and most effective, especially

for indoor levels. The BSP tree is created and initialized after the game engine creates an

instance of the graphics engine, by the graphics engine for the current level using the

 13

current level data. With a BSP tree culling system, the indoor rendering speed is

independent of the level size and number of objects, which allows games to run with a

decent frame rate even on old PCs.

 Constructing BSPs

 BSP tree construction is a process which takes a subspace and partitions it by

selecting a splitting axis and splitting point for a node interior of that subspace, then

dividing the objects into portions that intersect the left and right cells, and after that

recursively generating trees for the left and right portions of objects.

 For performance issues it is desirable to have a balanced tree, where each leaf

contains roughly the same number of polygons. However, there is some cost in achieving

this. To materialize this fact the splitting plane is selected by minimizing cost function

representing the cost for intersecting a ray with the current cell. The cost function

accounts for the surface areas of the new cells as well as the number of objects that they

enclose. The construction uses a static depth bound that is determined from the number of

objects in the scene to bound the memory usage for the tree.

 Intersecting a ray with a BSP tree involves sequentially stepping through the

nodes along the path of the ray. Traversing a node of the BSP tree involves choosing

which of the two children should be traversed first. The algorithm maintains the entry and

exit points for every cell that is traversed, and classifies these against the splitting plane

to determine the order in which the 2 cells should be traversed. Our implementation uses

an iterative traversal algorithm with a state stack storing untraversed nodes due to

performance issues.

 Drawing BSPs

 In order to draw the contents of the tree, perform a back to front tree traversal.

Begin at the root node and classify the eye point with respect to its partition plane. Draw

the subtree at the far child from the eye, then draw the polygons in this node, then draw

the near subtree. Repeat this procedure recursively for each subtree.

 Dynamic Objects and Collision Detection using AABBs

 In order to draw a dynamic object which is separated from each static object by

a plane, it will be represented as a single point regardless of its complexity. This can

dramatically reduce the computation per frame because only one node per dynamic object

is inserted into the BSP tree. During tree traversal, each point is expanded into the

original object. Inserting a point into the BSP tree is very cheap, because there is only one

 14

front/back test at each node. Points are never split, which explains the requirement of

separation by a plane. The dynamic object will always be drawn completely in front of

the static objects behind it.

 A dynamic object inserted into the tree as a point can become a child of either a

static or dynamic node. If the parent is a static node, perform a front/back test and insert

the new node appropriately. If it is a dynamic node, a different front/back test is

necessary, because a point doesn't partition three dimensional space. The correct

front/back test is to simply compare distances to the eye. Once computed, this distance

can be cached at the node until the frame is drawn.

 We will use AABBs (axis aligned bounding boxes) to bound dynamic objects

and to embed them in a method that very quickly checks for collision between such a box

and a BSP processed complex level.

 The collision detection is accomplished by using the following basic

intersection checks: ray/polygon intersection check; ray/AABB intersection check;

edge/edge intersection check. The main collision detection function will be called with a

local AABB (minimum and maximum points relative to its origin), the current position

(p1) - the position the object reached in the left- and the desired destination position (p2)

- the position the object wants to move to in the current frame. The function will check if

the supplied AABB can move from p1 to p2 and, if a collision is found, it will process it

applying the collision response code and recourse to compute the path required by the

movement.

Figure : AABB defined by max and min points moving from p1 to p2 (left).
Collision -detection/response recursion. AABB was moving from p1 to p2.
Results on collision detection (right).

For a simple box/face intersection, only two loops will be required. The first

collision moves the box to p1' and computes the new destination position p2' using the

response code. Then it loops again doing collision detection for moving from p1' to p2'

 15

(in the above figure right). As no collision is found between p1' and p2', it will stop the

loop and return the p2' as the current position for the AABB.

 In some cases more loops are needed as in the case of another collision being

found between p1' and p2'. The collision detection method has to find if a box defined by

its minimum and maximum points, moving from point p1 to point p2, will collide

anything. To achieve this we will need to perform several computations, but fortunately

we can cull several of them with simple dot product tests, and thus facilitating real-time

performance.

5. Levels & Puzzles

Level Design & The Story
The bride will be a game with a total of five different game levels each having

their own maps and environments. The game will also have three different difficulty

levels in order to present the end user a changing atmosphere. While progressing between

the levels we will emphasize the role of the scenario with the head assassin that is going

to be killed to pass the current level. The player will meet with the head assassins

according to the order they are killed within the movies of “ Kill Bill”.

Now let us revisit the events happened before our game begins before explaining

the flow of events in our game. Uma (The Bride), who is a former assassin, betrayed by

her boss, is going to kill Bill, her former employer. She is going to take revenge from the

assassin circle, for shooting her at her wedding - along with everyone else in attendance -

and leaving her for dead. Four years after surviving a bullet in the head, Uma emerges

from a coma where our game begins. Uma opens her eyes in hospital in the very

beginning of the first level of the game and tries to get her way out of the hospital.

Afterwards she passes through streets, houses and reaches to the first head assassin,

namely Darly, by the help of the clues she gathers during the game. She has to solve a

puzzle to get to Darly and then she enters to second level if she “finishes her”.

In the second level she begins seeking track of Lucy to take her revenge and

continues her way in the subway. As expected new challenges like well trained assassin

members and promising puzzles wait for her. She is able to enter level three after killing

Lucy. The third level is full of puzzles to be dealt with and the most important of them is

obviously finding the way to Vivica. Uma should complete many subtasks to find her

way to Vivica.

 16

In the fourth level, Uma needs to find the house where master Hanzoi lives and

take a sword from him to slay the head assassin Micheal. However doing so is not an

easy task and the bridge needs to overcome several obstacles. After obtaining the sword

Uma goes to the assassin head quarter and there kills Micheal.

The final level consists of again struggling with assassin servants in the head

quarters and then learning the place of Bill. Uma goes to the motel where Bill stays as

soon as she learns where he is. There waits Uma a final battle with her former boss Bill.

As we have mentioned before during each level the hero would have to face with

various puzzles. The user should solve these puzzles to progress in the game and get

closer to the hero’s final goal, killing Bill. Generally speaking a puzzle is a problem for

which a method for the solution should be figured out and then necessary actions for

overcoming it should be taken.

There will be certain places where the hero will be able find key objects or

characters that she can speak and take information. All the information, items she collects

during the game will be vital for solving puzzles that have been faced but not solved or

that have not yet been faced. The information about puzzles is stored within the game

level data. We will not cover all of the puzzles in the scope of this document but we will

try to outline the basics of building puzzles.

The main objective of the game is helping to our hero namely the bridge to find

and then kill Bill. However, on her way to Bill, Uma -that is again another way of calling

our hero- will face with lots of obstacles whose aim is nothing but preventing her from

reaching her goal. Uma should defeat the evil – that is the members of the assassin circle

– by sometimes killing and sometimes deceiving them.

There will be a number of puzzles that is related with deceiving an assassin

member or giving what he wants to progress in the game. Finding an item and give it to

the guards may be necessary to pass a door protected by these guards. Choosing the

correct path from other possible paths may also require solid background information

gathered from other characters in the game. Furthermore, guessing the correct

combination of actions might be necessary to proceed through the head assassins in the

level.

Let us consider a specific instance of the cases mentioned above. The bridge

learns from a character she has spoken that she needs to use the sword of master Hattori

to defeat head assassin. Therefore Uma needs to find where Hattori Hanzo lives and then

 17

take the sword. However the assistant of master Hattori does not allow the bridge to get

near to his master without proving her brevity. Uma should drink the nonpoisonous

potion from five existing potions to prove herself. Indeed all five potions is poisonous

and therefore fatal, she should make a mixture from these five potions and make the

nonpoisonous potion herself. Throughout the game Uma finds empty cab that she will use

in this puzzle and collects information about the qualifications of the chemicals from

other characters she speaks or books she finds.

Structures

As the example states, interpreting priori information and creative thinking plays

a significant role in the solving puzzle process. Since levels consist of many puzzles,

from the user’s point of view, one of the major effort consuming parts of the game will be

puzzles.

 In order to handle the game state in an efficient way, we are going to keep a

binary vector of all the dynamic objects within the level. A ‘0’ in the vector defines that

the corresponding facility for the object has not been realized and a ‘1’ defines the

opposite. Ex:

{

s11010111010010110

 s00101110101110110

 s01101101011010010

 s10101101111111000

}, for a level with this data we will be able to determine the dynamic objects for

the corresponding level and their initial situations. The length of this vector will be equal

to the number of dynamic objects in the level. It can be a long list but we need only one

bit for each interactive object in the level. The first line corresponds to the initial state

and the last line to the final state.

 In the initialization of the game the model & level data will be loaded using the

external data for the specified level within the files. During this process the vector for the

dynamic objects corresponding to this level, will be also initialized.

 The puzzles will also be coded as the binary vectors that show the necessary

changes that must be done to solve that puzzle, to the dynamic objects defined for the

level. There will be more than one puzzles coded by this way in the level data file. In the

following format (Brackets makes the documentation easier.):

 18

 {

p011001010101101010

 p101010101101010101

 p011011010010101010

 p011001101111111111

}

 For a level file with this data the level will have 4 puzzles defined with the first

line identifying the first puzzle.

 All the state & puzzle information will be handled by the game engine.

Comparison for, if a solution to a puzzle is reached will be done by taking the “Bitwise

AND” of the two vectors namely the puzzle & the current state vector, which is updated

at any time when an interaction between the hero and the environment occurs, and

looking if the state vector has the corresponding bits for the puzzle as ‘1’. And if the

puzzle is solved the level state will be updated to the next transition defined within the

transition for that level.

 We are also going to add a dependency graph for the solution sequence of the

puzzles. This graph will enable the user to skip some of the puzzles and also transitions

or reach to the final state by different ways.

 Ex: Let the user has to solve the first puzzle than, he will either solve the second

and third puzzles or the fourth, fifth and sixth puzzles in order to reach the final state to

finish the current level. Then we will have a dependency graph as:

 Sinitial

 P1

 P2 P4

 P3 P5

 Sfinal

 And this dependency within the puzzles will also be coded as a transition flow as:

 {

S1P1P2P3Sf

 19

 S1P1P4P5Sf

}, in the level data file after the data for the transitions and puzzles are given. As it

can be understood from the graph there can be also flows in the inner states depending on

puzzles, but it will not be possible for the user to reach the end of the game without using

one of the paths defined.

6. CLASS DEFINITIONS

6.1 Character
This class is the base class for handling different characters and their actions in the game.

6.1.1 Attributes:
- int intelligence : This attribute represents the intelligence level of the character.

- int health: This attribute represents the health value of the character.

- int power: This represents the attacking force of the character against the opponents.

- double strength: This attribute represents the strength coefficient for reducing the

damage effect on the character.

- double experience: This attribute represents the experience coefficient for improving

strength, health and power parameters.

- int direction: This is the angle of the character according to the starting position.

- Object usedItem: This is the object which is currently held by the character.

- Color textureInfo[][] : This is the color information of all pixels of the texture that will be

mapped to the character.

- CharacterMesh modelPosition: This attribute keeps the position of the character

relative to the origin.

- Vertex origin: This is the origin point for the mesh.

6.1.2 Methods: These are the pure virtual methods for character types.

- virtual void createAgent(void) : This method interacts with AIEngine and determines

the intelligence level of the character.

- virtual void acceptDamage(Object &): This method modifies the health of the

character according to the strength of the character and the power of the object.

- virtual CharacterMesh getMesh(void)

- virtual Vertex getOrigin(void)

- virtual void updatePlace(Vertex): This method changes the origin value.

 20

- virtual void walk(unsigned char axis): This method is for walking through the given

axis.

- virtual void talk(void): This method is to make character talk.

- virtual void render(void) : This method renders the Character.

6.2 Hero
This class is inherited from Character class

6.2.1 Attributes:
- Object *inventory: This attribute holds the items belong to Hero.

6.2.2 Methods: These are the pure virtual methods for character types.

Inherited Methods: These are the methods inherited from the Character class.

- void createAgent(void) : This method interacts with AIEngine and determines the

intelligence level of the hero.

- void acceptDamage(Object &): This method modifies the health of the Hero

according to the strenght of the Hero and the power of the object.

- CharacterMesh getMesh(void)

- Vertex getOrigin(void)

- void updatePlace(Vertex): This method changes the origin value.

- void walk(unsigned char axis): This method is for walking through the given axis.

- void talk(void): This method is to make Hero talk.

- void render(void) : This method renders the Hero.

Specific Methods: These are the methods specific to Hero class.

- void useItem(Object &): This method is for activating an object.

- void takeItem(Object &): With this method, Hero takes the specified item to its

inventory and this item is removed from the environment.

- void dropItem(int): With this method, Hero drops the item from the inventory.

6.3 Enemy
This class is inherited from Character class

6.3.1 Attributes: –

6.3.2 Methods:
Inherited Methods: These are the methods inherited from the Character class.

 21

- void createAgent(void) : This method interacts with AIEngine and determines the

intelligence level of the enemy.

- void acceptDamage(Object &): This method modifies the health of the Enemy

according to the strenght of the Enemy and the power of the object.

- CharacterMesh getMesh(void)

- Vertex getOrigin(void)

- void updatePlace(Vertex): This method changes the origin value.

- void walk(unsigned char axis): This method is for walking through the given axis.

- void talk(void): This method is to make Enemy talk.

- void render(void) : This method renders the Enemy.

Specific Methods: These are the methods specific to Enemy class.

- void useItem(Object &): This method is for activating an object.

6.4 Citizen
 This class is inherited from Character class

6.4.1 Attributes: –

6.4.2 Methods:
Inherited Methods: These are the methods inherited from the Character class.

- void createAgent(void) : This method interacts with AIEngine and determines the

intelligence level of the citizen.

- void acceptDamage(Object &): This method modifies the health of the Citizen

according to the strenght of the Citizen and the power of the object.

- CharacterMesh getMesh(void)

- Vertex getOrigin(void)

- void updatePlace(Vertex): This method changes the origin value.

- void walk(unsigned char axis): This method is for walking through the given axis.

- void talk(void): This method is to make Citizen talk.

- void render(void) : This method renders the Citizen.

Specific Methods: –

6.5 Node
This is the basic element in order to implement BSP class.

6.5.1 Attributes:
- Object *items: This attribute is the Object array to keep items in that Node.

 22

- Character *people: This attribute is the character array to keep characters in that Node.

- Color textureInfo[][] : This is the color information of all pixels of the texture that will be

mapped to the environment.

- Mesh modelPosition : This attribute keeps the position of the environment.

- Node *left: This is the left child of the class.

- Node *right: This is the right child of the class.

6.5.2 Methods:
- void addObject(Object)

- void AddCharacter(Character)

- void removeObject(void)

- void removeCharacter(void)

- void update(void)

- Mesh getMesh(void)

- void render(void) : This method renders the Node.

6.6 Object
 This class is the base class for handling different objects and their actions in the game.

6.6.1 Attributes:
- Vertex origin : This is the origin point of the mesh.

- int direction : This is the angular value of the direction of the object.

- Color textureInfo[][] : This is the color information of all pixels of the texture that will be

mapped to the object.

- ObjectMesh modelPosition : This attribute keeps the position of the object relative to the

origin.

- bool activity: This is the activity flag to show if the object is active or inactive.

6.6.2 Methods:
- virtual ObjectMesh getMesh(void)

- virtual Vertex getOrigin(void)

- virtual void updatePlace(Vertex) : This method changes the origin value.

- virtual void useItem(void): This method is for activating the object.

- bool getActivity(void): This method returns the value of activity flag.

- virtual void render(void) : This method renders the Object.

 23

6.7 Weapon
 This class is the class for handling swords and pistols and inherited from object class.

6.7.1 Attributes :
- int power : This represents the attacking force of the weapon against the opponents.

6.7.2 Methods: These are the pure virtual methods for swords and pistols.

Inherited Methods: These are the methods inherited from the Object class.

- virtual ObjectMesh getMesh(void)

- virtual Vertex getOrigin(void)

- virtual void updatePlace(Vertex) : This method changes the origin value.

- virtual void useItem(void): This method is for activating the weapon.

- virtual void render(void) : This method renders the Weapon.

6.8. Sword
This class is the class for swords and inherited from weapon class.

6.8.1 Attributes : –

6.8.2 Methods:
Inherited Methods: These are the methods inherited from the Weapon class.

- ObjectMesh getMesh(void)

- Vertex getOrigin(void)

- void updatePlace(Vertex) : This method changes the origin value.

- void useItem(void): This method is for hitting with sword by changing the position of the

sword.

- void render(void) : This method renders the Sword.

Specific Methods: –

6.9. Pistol
This class is the class for pistols and inherited from weapon class.

6.9.1 Attributes:
- Magazine magazine: This attribute holds the magazine of the pistol.

6.9.2 Methods:
Inherited Methods: These are the methods inherited from the Weapon class.

- ObjectMesh getMesh(void)

- Vertex getOrigin(void)

- void updatePlace(Vertex) : This method changes the origin value.

 24

- void useItem(void): This method is for firing the pistol.

- void render(void) : This method renders the Pistol.

Specific Methods:

- void addMagazine(Magazine): This method is for inserting magazine to the pistol.

- int getNumberOfBullets(void)

- bool isEmpty(void)

6.10 Box
This class is the class for general purpose objects such as boxes, tables, etc… and inherited from

object class.

6.10.1 Attributes:
- int power : This represents the damage force of the box.

6.10.2 Methods:
Inherited Methods: These are the methods inherited from the Object class.

- ObjectMesh getMesh(void)

- Vertex getOrigin(void)

- void updatePlace(Vertex) : This method changes the origin value.

- void useItem(void): This method is for throwing the box by changing the position.

- void render(void) : This method renders the Box.

Specific Methods: –

6.11. Key
This class is the class for keys and inherited from object class.

6.11.1. Attributes:
- int keyId : This represents the key number.

6.11.2 Methods:
Inherited Methods: These are the methods inherited from the Object class.

- ObjectMesh getMesh(void)

- Vertex getOrigin(void)

- void updatePlace(Vertex) : This method changes the origin value.

- void useItem(void): This method is for inserting the key.

- void render(void) : This method renders the Key.

Specific Methods:

- int getKeyId(void)

 25

6.12. Door
This class is the class for doors and inherited from object class.

6.12.1. Attributes:
- int doorId : This represents the door number.

6.12.2. Methods:
Inherited Methods: These are the methods inherited from the Object class.

- ObjectMesh getMesh(void)

- Vertex getOrigin(void)

- void updatePlace(Vertex) : This method changes the origin value.

- void useItem(Key): This method is for opening the door.

- void render(void) : This method renders the Door.

Specific Methods:

- int getDoorId(void)

6.13 Magazine
This is the class of magazines and inherited from object class.

6.13.1 Attributes:
- int numberOfBullets : This is the number of bullets in the magazine.

6.13.2 Methods:
Inherited Methods: These are the methods inherited from the Object class.

- CharacterMesh getMesh(void)

- Vertex getOrigin(void)

- void updatePlace(Vertex) : This method changes the origin value.

- void useItem(void): This method is for shooting the bullets.

- void render(void) : This method renders the Magazine.

Specific Methods:

- int getNumberOfBullets(void)

- bool isEmpley(void)

6.16. Level
6.16.1 Attributes:
- Node *levelTree: This is the Binary Space Partitioning (BSP) tree.

- Puzzle *puzzles: This is the array of puzzles.

 26

- int difficulty: This is the difficulty value of the current Level.

6.16.2 Methods:
- Node *getLevelTree(void)

6.17. MultiMedia Class
This class is for Multimedia operations.

6.17.1 Attributes:
- static Audio * audios: The array that contains all the audio files played at a moment.

- static Video * videos: The array of videos that are played at a moment.

- static int na: The number of the audios stored in audios array.

- static int nv: The number of the videos stored in videos array.

6.17.2 Methods:
- static void addAudio(char*): Play the audio file with the given name (music,

shooting, cry, creature, hit sound of an metalic object, broking sound of glass, ..).

- static void remAudio(int): Stops the identified sound or all of the sound according to

the argument.

- static void playVideo(char*, int, int, int, int): Play the video file with the given

name in the given frame.

- static void stopVideo(int): Stops the video with the given id.

6.18. PhysicsEngine Class
6.18.1 Attributes: –
6.18.2 Methods:
- Vertex* findPath(int): Calculates the points that are on the path of a given motion

- Vertex* detectCollision (Object, Object): Check collision of two objects

6.19. GameEngine Class
This is the base Class handling the game progress.

6.19.1. Attributes:
- Node *currentNode: This pointer holds the information for the current place of the

hero.

- int *borders: Holds the border information that is going to be used in visibility culling.

- Level *currentLevel: This pointer holds the current Level information.

6.19.2 Methods:

 27

GameEngine(// Options Specified Before Game): This is the constructor that creates

an instance of the game engine using the data specified in options field.

- void loadInputData(void): This method loads all the needed input data through the

DataLoading object.

- void initializeEngine(InputData &): This methods initializes the current state and

environment variables using current level data.

- void updateScreen(Node &): This method calls the update functions of the objects

that need to be updated for the current screen. In order to update, the graphics engine and

when needed, the physics engine work together to calculate the information precisely that

is going to be rendered.

- void getResponse(Script &): This method is needed in order to get the response that

is generated by the AI engine, thus making it possible to determine the next action.

6.20. ScriptingEngine Class
Base Class handling scripting using the input information. We will use python as the

scripting language and call its APIs from C++.

6.20.1 Attributes:
string [] moduleFiles : This is an array of the names of the script files which are written

in Python.

PyObject *[] modules: This is an array of PyObject pointer type which is predefined in

the Python APIs. This array holds each module which are defined in each script file.

int numberOfModules: This is the number of script files held in the moduleFiles array.

6.20.2 Methods:
- ScriptingEngine(string []) : This method is the constructor of the class. It takes a string

array that holds the script file names and initialize the moduleFiles array with it. It also

set the number of modules.

- void loadModules() : This method loads the modules defined in the script files held in

the moduleFiles array into the modules array by using the Run_Function method of

“pyembed” library that we will use to make communication of C++ with Python easier.

- void callFunction(string, string, string [], char * &) : This method calls the specified

method given as the first argument in the specified module given as the second argument

 28

with the specified arguments given as the third argument and sets the return value of the

method to the (char *) variable given as the last argument.

6.21. Input Class
This is the main class handling all the input possible for a user to specify.

6.21.1 Attributes:
These are the input buffers in order to handle the input data effectively.

char *consoleInput: This attribute holds the inputs from the console.

FILE *scriptInput: This attribute holds the Script files.

6.21.2 Methods:
These methods get all the input entered from the keyboard, mouse shell & files and

update the state variables.

- void keyboardHandler(void)

These methods get all the input entered from the keyboard, mouse shell & files and
update the state variables. Hero's actions are controlled by the inputs from keyboard.
These inputs ('W', 'A', 'S', 'D', ←, →, ↑, ↓) will invoke the method:
updatePlace(Point) of Character class.

Pressing W makes the Hero go forward.
Pressing A makes the Hero go left.
Pressing S makes the Hero go back.
Pressing D makes the Hero go right.
Pressing → makes the Hero turn right.
Pressing ← makes the Hero turn left.
Pressing ↑ makes the Hero look up.
Pressing ↓ makes the Hero look down.
Pressing ‘q’ invokes takeItem(Object &) method of the Hero class.
Pressing DEL invokes dropItem(Object &) method of the Hero class.
Pressing CTRL invokes useItem(Object &) method of the Hero class.

- void mouseHandler(void)

The orientation of the camera, which actually reflects the view of the hero, is controlled

by the mouse. We are also going define the functionalities of the buttons as follows: right

button will invoke useItem(Object &) method of the Hero class and pressing left button

will invoke takeItem(Object &) method of the Hero class.

- void consoleHandler(void)

This method is to handle the commands that are entered through the keyboard, after a

return accepted this method evaluates the information entered and will be able to change

the game state or the state of the hero if there is a match occurs between this information

 29

and the predefined sentences.

- void handle(int): This function decides which handle method to call according to it’s

parameter.

6.22. DataLoading Class
This class is for loading the data from the md3 formatted files to the specified data

structures.

6.22.1 Attributes:
tMd3MeshInfo mesh : This is the data structure for the animated models that includes

the object list(such as arms, legs…), textures and colors for each objects.

6.22.2 Methods:
These methods load the specific data identified by their names from the files to the data

structures defined to get the model data from specific files with the md3 file format.

- void loadModelData(string, t3DModel): This method loads the model data from the

md3 file into a data structure having the name t3DModel. Mainly, this is a ready-defined

class to parse the md3 files.

- void convertDataStructures(t3DModel): This method is for converting the data

from the t3DModel into the tMd3MeshInfo class. When this is implemented, the data

structure will have the object list having the normals, textures, vertices and the triangles

list. It keeps the animation property by keeping the vertices of each of the frames of the

objects on each element of the object list.

6.23. AIEngine Class
This class handles the modification of the current game state, accorrding to the

behaviours of the Agents.

6.23.1 Attributes

- int *gameState: Carries the game state information which will be analyzed by the

inference mechanism.

- Character* currentAgent: To hold the information of the current character.

6.23.2 Methods
- void updateState(void): This method updates the gameState within the progress of

the game.

- Agent getAgentInfo(void): This method is required to get the related information of

 30

an agent.

- void createAgent(int type): This method defines the capability of an agent according

to the type specified and current game status.

- Script findResponse(void): This method is to find the response of the current agent

through the inference mechanism.

6.24. GUI
This module is the implementation of The GraphicalUser Interface.

6.24.1 Attributes
- int gameMenu: This is the context that is created to handle the top-level window which

utilizes the accessibility to the game functionality.

- int saveMenu: This window utilizes the functionality that is required in order to save a

game.

- int loadMenu: This window utilizes the load facility.

- int options: This window displays the options menu.

- int playMenu: This is the window that displays the game information during the game.

6.24.2 Methods
These methods create menus with the following identified names.

- int openGameMenu(void)

- int openSaveMenu(void)

- int openLoadMenu(void)

- int openOptionsMenu(void)

- int openPlayMenu(void)

- void openHelpMenu(void)

These methods are needed to generate the facility identified within their names.

- void startGame(void): This method creates an instance of a game engine with the

level 1 game data.

- void quitGame(void): This method is called whenever the user interrupts to quit.

- void returnGame(void): This method is called whenever the user wants to continue

to an interruted game

- void selectGame(): This method selects the game from the save game menu list.

- void loadGame(): This method creates an instance of the game engine, with the saved

game data identified from the load game list.

 31

6.25. GraphicsEngine class
This module is for rendering the Objects, Characters and the Environment.

6.25.1 Attributes: –
6.25.2 Methods:
- void render(Node*)

6.26. Puzzle class
This module is for handling puzzles.
6.25.1 Attributes:
- bool * puzzleInfo: This attribute presents the puzzle information which contains

state information.

6.25.2 Methods:
- bool compare(bool *): This method compares the given state with the state information

of the puzzle.

7. TESTING ISSUES

7.1. Test Design
First of all, we have decided to test the system modularly. More clearly, we

divided our system into different parts and we will test them. As we have mentioned in

our Gantt Chart, in the first and second weeks of May we are planning to do unit testing.

After uncovering errors of each class and making them function well we will pass to

integration testing. In this step we will apply use-based testing. We will integrate

collections of classes that respond to the same use-case in a bottom-up manner. In the last

week of May we will do validation testing. Finally, after applying performance tests we

will come up with the final version of our software.

7.2. Test Cases

7.2.1. Unit Testing
We will start testing with unit testing. We will test each class separately. For

example, we will test the methods of an object from the Character class without loading it

to the Environment.

 32

Similarly, we will test the Level class without loading any Character or Object in it and

just with a camera we will test the empty Nodes of the Level’s BSP Tree.

7.2.2. Integration Testing
After unit testing, we will integrate the error-free classes in a bottom-up manner.

Namely, we will integrate the atomic modules, test the integrated system and pass to

higher level classes and so on. For example, after testing Hero, Citizen and Enemy

classes we will integrate them to the Character class. Similarly, after the integration of the

Character Class and Object Class, we will inherit these classes from the Node Class. As a

developer, in the meanwhile, we will do white-box testing to be sure that the integrated

system executes the necessary methods in an expected order.

7.2.3 Validation Testing

In the validation testing, we thought that beta testing is the best idea to see the

bugs of our system with the help of independent users. We will distribute the first version

of our software to our friends and make them play our game. In order to shorten the

learning process, we will also give the manuals of the game. With the help of the

feedbacks coming from the independent users, we will be able to detect and correct the

bugs of the system.

7.2.4 Performance Testing

Finally, one of the most important criteria for a successful game is the

performance. We will test the run-time performance of our software and if necessary we

will make changes and optimizations to get a better performance.

 33

8. DIAGRAMS

 34

 35

9. CLASS DIAGRAM
9.1. DIAGRAM

 36

9.2 EXPLANATION

RELATIONS:
- Control: This relation is for controlling the GameEngine class according to the

requests of the user by the help of GUI class.

- MakeDecision: This relation is for parsing the scripts used in the GameEngine

class with the ScriptingEngine class to change the flow of the game.

- MakeComputation: This relation is for finding new positions for objects or

charecters by the help of PhysicsEngine class when a physical effect is applied to

them while the GameEngine class is working.

- Display: This relation is for displaying the game data by giving the level

information in the GamaEngine class to the GraphicsEngine class.

- Render: This relation is for rendering the current node elements of the Level class

by using GraphicsEngine class.

- Open: This relation is for implementing opening action on the Door class by using

the information from the Key class.

AGGREGATIONS:
- Game Engine – Level: GameEngine class includes a Level object.

- Level – Puzzle: Each Level includes zero or more Puzzles.

- Level – Node: Each Level includes a pointer to the Node object.

- Node – Character: Each Node includes one or more Characters.

- Node – Object: Each Node includes zero or more Objects.

- Character – Object: A Character may use zero or more Objects.

- Closet – Object: A Character may insert some Object into the Closet.

- Pistol – Magazine: The Hero can insert a Magazine to her Pistol.

INHERITANCES:
- Character → {Hero, Citizen, Enemy}: Character class is the base class for Hero,

Citizen and Enemy classes.

- Object → {Weapon, Box, Key, Magazine, Door } : Object class is the base class

for Weapon, Box, Key, Magazine, Book, Door and Closet classes.

- Weapon → {Pistol, Sword} : Weapon is the base class for Pistol and Sword classes.

 37

Controls hero’s actions (move,
fight, use/take/drop item, speak)

Clicks and then sees & modifies
objects in hero’s inventory.

Selects a menu option (new game, save
game, load game, exit, credits or options)
in the game menu.

Clicks and sees level map.

Starts a new game.

Watches credits of the game.

Loads an existing game.

Modifies game options.

Exits the game.

Saves the game he/she is playing.

User hears various kinds of sound effects
following the events related to environmental
happenings, weapons and behaviours of the
characters.

Tries to figure out and solve the
puzzles to progress in the game.

Observes health, strength and
experience of the hero and weapon
information.

10. USE CASE DIAGRAM
10.1 DIAGRAM

 38

10.2 EXPLANATION OF USE CASE DIAGRAM

Flow of Events for the Save Game Hero Use-case
Objective Saving the current game that is played.
Precondition User is in game-playing mode.
Main Flow 1. The user interacts with keyboard and mouse to signal the

request to the system
2. A save menu appears where user chooses to save current game
or quit current game.
3. If save game is selected, the system stores information about
the status of the current game.

Alternative Flows -
Post-condition Game data is saved.

Flow of Events for the Control Hero Use-case
Objective Controlling actions of the hero in the game.
Precondition User is in game-playing mode.
Main Flow 1. The user interacts with keyboard and mouse to signal the

request to the system
2. The system makes the necessary modifications in the system
to take the desired action.
 2.1. If the action is “move” system updates the positions of the
elements in the environment.

Alternative Flows Step 2.1 can be either
 2.2. If the action is open/close/take/drop/use item system
updates items location/state.
or
 2.3. If the action is speak, system initiates conversation with the
user and the character identified.

Post-condition Hero’s place is updated with respect to the defined action.
Description During the play mode user controls the actions of the hero (main

character) by directing her forwards, backwards, rightwards,
leftwards, upwards (jumping) or making her
open/close/take/drop/use objects or speak/interact with other
characters.

 39

Flow of Events for the Query Inventory Use-case
Objective Seeing and modifying inventory of the hero.
Precondition User is in game-playing mode.
Main Flow 1. The user interacts with keyboard or mouse to signal the

request to the system
2. The system displays the inventory in a new sub window.

Alternative Flows In addition to 1&2,
3. The system updates the locations of the objects in the
inventory.

Post-condition Inventory information is displayed to the user and inventory is
updated considering the changes made.

Description When clicked the inventory button the user sees the contents of
the inventory of the hero and takes information (name, usage,
description, damage rate if applicable) about items in inventory
by moving scroll over an item. The user also modifies the
inventory by changing the places objects, using or dropping
them.

Flow of Events for the Query Map Use-case
Objective Seeing map of the level.
Precondition User is in game-playing mode.
Main Flow 1. The user interacts with keyboard and mouse to signal the

request to the system
2. The system displays the level map in a sub window.

Alternative Flows -
Post-condition The visited path information of the level that user is in, is

displayed.
Description After clicking map button the user sees the map information

related with the level. The paths that are passed up to that
moment are displayed in a sub window that is displayed at the
center of the game window.

Flow of Events for the New Game Use-case
Objective Start playing a new game.
Precondition User is in main menu.
Main Flow 1. The user interacts with keyboard and mouse to signal the

request to the system
2. The system displays new game information.
3. System emerges level 1of the game and user starts controlling
the hero.

Alternative Flows -
Post-condition User is enters in game-play mode, level 1 of the game is initiated

and hero obeys the commands that the user gives.

 40

Flow of Events for the Load Game Use-case
Objective Start playing an existing game.
Precondition User is in main menu and a game that has been saved before

exists.
Main Flow 1. The user interacts with keyboard and mouse to signal the

request to the system
2. The system displays existing games.
3. System loads the specified game and user starts controlling the
hero.

Alternative Flows -
Post-condition The game is initiated with the identified level information and

hero obeys the commands that the user gives.

Flow of Events for the Credits Use-case
Objective Getting information about the credits of the game.
Precondition -
Main Flow 1. The user interacts with keyboard and mouse to signal the

request to the system
2. The system displays credits of the game.

Alternative Flows -
Post-condition Credits of the game are displayed as a new window.

Flow of Events for the Options Use-case
Objective Configuring options of the game.
Precondition User is in main menu.
Main Flow 1. The user interacts with keyboard and mouse to signal the

request to the system
2. The system displays options of the game.
3. User sees and modifies the options.

Alternative Flows -
Post-condition Options are updated.

Flow of Events for the Exit Game Use-case
Objective Quitting the game.
Precondition User is in main menu.
Main Flow 1. The user interacts with keyboard and mouse to signal the

request to the system
2. The system

Alternative Flows -
Post-condition System stops running.

 41

11. STATE TRANSITION DIAGRAM
11.1. DIAGRAM

 42

11.2. EXPLANATION
 - reading user input : This is a state of GUI which waits inputs from the user.

We can change this state to loading state with openLoadMenu event, _play game_

state with startGame event and options state with openOptionsMenu.

- loading : This is a state of GUI which loads the saved game data. We can change

this state to reading user input state with returnMenu event and _play game_ state

with startGame event.

- _play game_ : This is the game playing state of GUI. We can change this state to

save game state with openSaveMenu event, quit game state with quitGame event

and information display state with openHelpMenu event.

- save game : This is a state of GUI which implements game saving. We can

change this state to _play game_ state with returnGame event and reading user

input state with returnMenu event.

- quit game : This is a state of GUI which implements quit game. We can change

this state to reading user input state with returnMenu event and save game state

with openSaveMenu event.

- information display : This is a state of GUI which displays the level information.

We can change this state to _play game_ state with returnGame event.

- options : This is a state of GUI which displays the options and lets the user to

change them. We can change this state to reading user input state with

returnMenu event.

 43

12. ACTIVITY DIAGRAM
12.1 DIAGRAM

 44

12.2. EXPLANATION
 We have 5 activities originated from the starting condition. These are select new

game, select loaded game, select options, select credits and click exit game. Select

options and select credits returns to the initial condition after implementing their

activities. On the other hand, exit game implements exit game and finishes the activities.

 Select loaded game and select new game passes another condition after their

activities. 5 activities originates from that condition. These are click menu button,

use/take/drop/open/close object, direct hero, click map button and click inventory button.

After their activities, use/take/drop/open/close object, direct hero, click map button and

click inventory button are returned to the condition from which they are originated. Click

menu button creates another activity named saves the game or returns to the starting

condition according to the result of the exit or save game selection. If it creates the “saves

the game” activity, “saves the game” activity returns the condition from which the click

menu button activity is originated.

13. SEQUENCE DIAGRAM
13.1 DIAGRAM

 45

13.2 EXPLANATION OF SEQUENCE DIAGRAM

We represented the time-method sequence relationship and the class relationships in

this diagram.

- Firstly, GUI class has a relationship with GameEngine class with openPlayMenu

method.

- When the play-game status occured, GameEngine class associates with the

LoadData class with load event to implement the loading of models, textures, level

information etc.

- After that, GameEngine class relates with input class using handle event to

implement user interaction.

- Then, it is the turn of scripting engine. Against the action of the user,

ScriptingEngine class reads the script related to that action, parses the script and gives

the answer for the action to the GameEngine class. GameEngine class and

ScriptingEngine class associates with each other by the help of parseScript event.

- After that the action parsed by scripting engine is given to AIEngine class with

updateState event. AIEngine implements the deciding action and gives the answer

against the action of the user.

- Then, the GameEngine class associates with PhysicsEngine class by the help of

findPath event. PhysicsEngine makes the calculations for the action generated by

AIEngine class and returns the effect of action to the GameEngine class.

- After that, another important phase comes. It is rendering phase and implemented by

the GraphicsEngine. GameEngine associates with the GraphicsEngine class by the

help of render event. GraphicsEngine class renders the graphics and gives the control

to the GameEngine class again.

- Then, MultiMedia class is associated with GameEngine class with the

playMultiMedia event. The related medias are played and the control again bellongs

to GameEngine cass.

- Lastly, GameEngine class is related with the GUI again by the help of quitGame

event.

 46

14. COLLABORATION DIAGRAM
14.1. DIAGRAM

14.2. EXPLANATION
We have shown the relationships of the classes in this diagram.

GameEngine class:

 LoadData with load();

 Input with handle(int);

 ScriptingEngine with parseScript(FILE *)

 AIEngine with updateState();

 PhysicsEngine with findPath(int);

 GraphicsEngine with render(Node *);

 MultimediaEngine with playMultiMedia();

 GUI with quitGame();

GUI class:

 GameEngine with openPlayMenu();

 47

15. Gantt Chart

 48

 49

16. Appendix

16.1. Game Menu

16.2. Starting a New Game

 50

16.3.Load Game Menu

16.4.Game Options Menu

 51

16.5.Game Credits

16.6.SaveMenu

 52

16.7. Inventory Window

16.8. Map Menu

 53

16.9. First Person View

16.10. Third Person View

