

Ceng492 Graduation
Project

The Bride Project

Developer Manual

Presented by Meda

Ankara, 2005

Introduction:

 This documents aims to give useful information about the implementation of
the game. We will quickly start by looking to the files of the Bride and libraries
needed and then get into the details of each underlying parts constituting the Bride.
We will not however mention the details of the design. Therefore you may want to
(indeed we believe you should) look at the “The Bride Final Design Report”, “The
Bride User Manual” and “The Bride Coding Standards” before reading this manual.
You can find these documents on the web (http://senior.ceng.metu.edu.tr/2005/meda).

File Overview of the Bride:

+ Files related with program entry and driving:
 - Main.h
 - Main.cpp
 - Init.cpp

+ Files related with space:
 * (CVector2 & CVector3)
 - Vector.h
 - Vector.cpp
 * (Vector & Point)
 - utility.h
 - utility.cpp

+ Files related with Camera movement:
 - Camera.h
 - Camera.cpp

+ Files related with ODE (physics engine):
 - physics.h
 - physics.cpp

+ Files related with objects:
 - object.h
 - object.cpp

+ Files related with puzzles:
 - puzzle.h
 - puzzle.cpp

+ Files related with fonts & writings:
 - font.h
 - font.cpp

+ Files related with BSP loading:
 - Quake3Bsp.h
 - Quake3Bsp.cpp

+ Files storing 3d object (model - MD3) related structures:
 - Model.h

 2

http://senior.ceng.metu.edu.tr/2005/meda

+ Files related with 3ds model loading:
 - 3ds.h
 - 3dsLoader.h
 - CJPEGFile.h
 - 3ds.cpp
 - 3dsLoader.cpp
 - CJPEGFile.cpp

+ Files related with images (textures):
 - Image.h
 - jpeglib.h
 - Image.cpp

+ Files related with Md3 model loading:
 - Md3.h
 - Md3.cpp

Required Libraries:

- opengl32.lib : graphics engine
- glu32.lib : graphics engine
- glaux.lib : graphics engine
- jpeg.lib : image loader
- winmm.lib : windows multi media lib
- ode.lib : physics engine
- openal32.lib : sound engine
- alut.lib : sound engine
- python24.lib : scripting engine

Main Menu:

Ortho Mode:

Ortho mode allows us to use 2D coordinates instead of 3D coordinates. We
used Ortho Mode in order to implement the GUI, Inventory and InGameMenu where
the textures need to stay in front of the screen and never move. We also have the
inverse of the Ortho Mode where we transfer to the Perspective Mode, and to the 3D
world again.

Alpha Blending:

In order to have multilayered scene rendering we used alpha-blending to draw
GUI, Inventory, In Game Menu, the writings in the game environment and the
writings that are printed on the screen in Ortho Mode.

For example: glBlendFunc(GL_SRC_ALPHA, GL_ONE) with blending

turned on (glEnable(GL_BLEND)) will take a texture map and blend it with the
background. The closer a color is in the texture map to black, the more it will
disappear. If the color being blended is black, it will render the color behind it
instead. This means you can have a picture of a tree with a black background and it

 3

will only draw the tree and not the black background surrounding it. The problem
with this effect is that it makes the tree look transparent / faded. This works fine for
particle effects, but if you want the image to be clear and not faded, you will want to
either use a 32 bit image with an alpha channel or masking. Masking is basically
making it so you only draw the part of an image where its mask image has dark
colors. This means you have 2 images, one for the normal picture, and another black
and white image that holds the mask. And this is what we did in mapping the
InGameMenu.

We again used blending, but with different parameters as:
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

where we don’t need transparency, like the “GUI”, “OPTIONS” menu or the textures
mapped to the empty slots in the belt of the hero.

Scene Management:

Frustum Culling:

In order to have efficient scene rendering we culled the faces that are not in
our frustum using a technique as frustum culling. Frustum is simply the area of your
world visible to your current camera. The shape of the frustum is a pyramid with the
nearest peak truncated at what is deemed the ‘near’ clipping plane. In fact the frustum
itself is (or can be) defined by 6 planes. These planes are named the near plane, the far
plane, the left plane, the right plane, the top plane and the bottom plane. Frustum
culling is simply the process of determining whether or not objects are visible in this
area.

Since frustum culling is essentially a 3D world-space procedure, it can be

processed long before we even deal with individual polygons in our pipeline. Hence,
we can quickly reject on the object level, unlike back-face culling for example which
takes place much later in the rendering pipeline and works on a per-polygon basis.
This means that we don’t even have to send the data to the video card once the object
is frustum culled which of course makes quite a difference in rendering speed. It is
simply very, very fast to render nothing.

So basically we have pieces of codes that look for if a point, sphere, cube or

box is in our frustum. If it is not we have do not have to render those which reduces
the heavy weight of the video card a lot.
Thus to implement the technique thinking the frustum as a cube with the center and
the half of the length of (like a radius) given, we check all the points if it is in the
frustum. If some is found in front of a side we skip that point and pass to another one.

BSP Level:

 Actually we imported ready BSP levels as our development levels. These also
have their textures with reducing the responsibility of us a bit more.

Characters:

 We imported the textures and animations for characters in the game from the
tutorials in thewell-known game-developers sites. Actually we are not real artists and
it was to hard for us to draw and animate a character on its own, so encouraged by our

 4

assitant we used the ready ones.

 However, the characters have attributes like health, experience, position which
are required for the game engine, and pointers to their polygons (vertex arrays) and to
the corresponding textures for the graphics engine.

Implementation of Objects:

 The Bride uses Object class to hold all the object information. “object.cpp”,
“object.h” contains the code for the implementation of objects appearing in the game.
Object class also makes use of “physics.h” where routines of ODE is used for adding
physics capability to objects, “utility.h” for point class, “3dsLoder.h” for loading and
drawing 3ds objects. 3ds loader have been retrieved from net and is problematic while
rendering objects without textures. 3ds models are also retrieved from Internet. Below
is the definition of the object class. Each field of the object is commented to show its
functionality.

class Object
{
private:
 int m_iid; // id of the object
 char m_modelfilename[20]; // name of the 3ds model (i.e. chair.3ds)
 Point m_pnposition; // position of the object
 Vvector m_vcrotation; // rotation vector defined for that model
 float m_fangle; // rotation angle defined for that model
 float m_fscale; // scale factor defined for that model
 objName m_ename; // enumerator denoting the name of obj. (i.e. box)
 objType m_etype; // enumerator denoting the type of obj. (i.e.
 // static)
 objState m_estate; // enumerator denoting the state of obj. (i.e.
open)
 objAppearance m_eappearance; // enumerator denoting the appearance of obj.
 // (i.e. visible)
 objPickability m_epickability; // enumerator denoting the pickability of obj.
 // (i.e. pickable)
 objName m_eusedwith; // name of the object this oject is used with
 float m_flx; // x length for bounding box
 float m_fly; // y length for bounding box
 float m_flz; // z length for bounding box
 float m_fr; // red coloring value if - non-textured object
 float m_fg; // green coloring value - if non-textured object
 float m_fb; // blue coloring value - if non-textured object
 dBodyID m_dbody; // the body id for ODE - if dynamic object
 dGeomID m_dgeometry; // the geometry representing body – if dynamic
 float hitpoint; // Hitpoint of object
 float damage; // Damage that object does - if weapon
 C3dsLoader m_3dsLoader; // 3ds loader object
 float m_fanimationangle; // value to rotate on VcRotation for animation
 float m_fanimationx; // value on x to be added to its x for animation
 float m_fanimationy; // value on y to be added to its y for animation
 float m_fanimationz; // value on z to be added to its z for animation

 5

public:
 Object();
 Object(Point pnpos);
 ~Object();
 inline Point getPosition() { return m_pnposition; }
 inline char * getModelFileName() { return m_modelfilename; }
 inline C3dsLoader get3dsLoader() { return m_3dsLoader; }
 inline objState getState() { return m_estate; }
 inline int getId() { return m_iid; }
 inline void setPosition(Point pnpos) { m_pnposition = pnpos; }
 inline void setModelFileName(char * fname) { sprintf(m_modelfilename,
"%s", fname); }
 void setState(objState state);
 void setType(objType type);
 void setAppearance(objAppearance appearance);
 void setPickability(objPickability picktype) { m_epickability = picktype;}
 inline void setId(int id) { m_iid = id; }
 objAppearance getAppearance() { return m_eappearance; }
 objPickability getPickability() { return m_epickability; }
 objType getType() { return m_etype; }
 objName getName() { return m_ename; }
 void render();
 void applyAction(actionType action);
 void addToInventory();
 void takeToHand();
 void use(CVector3 cpos, CVector3 cview);
 void useWith(Object & obj);

 friend int readObjectsFromFile(Object * pobjects, char * filename);
 friend int writeObjectsToFile(Object * pobjects, int nobj, char * filename);
 friend void initializeObjects(Object * pobjects, int nobj);
 friend void renderObjects(Object * pobjects, int nobj);
 friend void setObjectAttributes(Object * pobjects, int nobj, int objid, objType
type, objState state, objAppearance appearance, objPickability pickability);
 friend int findNearByObject(Object * pobjects, int nobj, CVector3 cpos,
CVector3 cview);
 friend bool checkObjectsForCollision(Object * pobjects, int nobj, CVector3
cpos, CVector3 cview);
};

 Though most of the methods above are straight forward to understand, render,
setSate class methods and findNearByObject, checkObjectsForCollision routines
deserve a little bit more explanation. render method draws the object by looking its
appearance and decides where to draw the object by looking if it is visible, in
inventory, at hand. If it is visible it takes any possible animation into account before
drawing the object in the world. It makes use of 3ds model renderer. setState methods
arranges state changes of the object and also calls applyAction if an action defined for
that state change. It also sets state change flag as true which alerts a state change and
causes updatePuzzle routine of the puzzle module called in the next frame.
findNearByObject which is called when 'E' is pressed looks to the position of the
model, compares it with the positions and boundaries of objects in object array and
returns the index of object in the coverage area if there is any.

 6

checkObjectsForCollision does nearly the same thing but the main difference it is
called in camera with possible next position of the character so that it can detect and
prevent collisions. It also adds force to the object collided if it is dynamic.

 During the initialization of a level, objects of that level are red and initialized
from objects file which is by default <level_id>_objects.txt. The objects are stored in
a global array called g_pobjects and max number of objects that can be stored is 100.
Below is a few lines of the objects file and the comments in the first 2 lines explain
what each field denotes.

#_This_object_file_need_not_to__be_sorted_with_respect_to_x_and_then_z_position
#Model__objId___Position__RAng__RVec__Scale__OName__OType__OState__O
Appear__OPick__UWith___lx_ly_lz___r_g_b
seating.3ds 1 -1010 -10 -250 0 1 0 0 0.5 8 0 0
 0 1 20 55.0 80.0 15.0 0.3 0.1 0.2
painting.3ds 2 -1280 -10 -55 -90 0 0 1 3.0 7 0 2 0
 1 20 15.0 80.0 60.0 0.0 0.0 0.0
key.3ds 3 -675 410 1170 0 1 0 0 0.06 9 0 2 0
 1 13 10.0 360.0 40.0 0.8 0.8 0.2

Implementation of Puzzles:

 Puzzle class is used to hold all the puzzle information. “puzzle.cpp”,
“puzzle.h” contains the code for the implementation of puzzles. Puzzle class also
makes use of “objects.h” for inheriting object attributes. Below is the definition of the
puzzle class. Each field of the puzzle is commented to show its functionality.

class Puzzle
{
private:
 int m_ipid; // id of the puzzle
 puzState m_epstate; // state of the puzzle (i.e. completed)
 puzType m_eptype; // type of the puzzle (i.e. unordered)
 pelement m_pelements[MAX_ELEMENTS]; // array holding elements
 // of the puzzle (object id, otype, ostate, oapp., opick.)
 pelement m_pactions[MAX_ACTIONS]; // array holding actions
 // of the puzzle (object id, otype, ostate, oapp., opick.)
 int m_inelement; // number of elements
 int m_inaction; // number of actions occur at the completion of puzzle

public:
 Puzzle(){}
 ~Puzzle() { };
 inline puzState getPuzzleState() { return m_epstate; }
 inline setPuzzleState(puzState state) { m_epstate = state; }

 friend int readPuzzlesFromFile(Puzzle * ppuzzles, char * filename);
 friend int writePuzzlesToFile(Puzzle * ppuzzles, int npuz, char * filename);
 friend void initPuzzles(Puzzle * ppuzzles, int npuz);
 friend void updatePuzzle(Puzzle * ppuzzles, int npuz, Object * pobjects, int
nobj);
};

 7

 The crucial method in the puzzle class is updatePuzzle which is called
whenever state change flag is set, that is at least one object changes state. It checks
every element of every puzzle with the corresponding object in the global object array
and if all the objects residing in the elements of the puzzle are satisfying the desired
attributes the actions defined in the puzzles occurs that is the objects in the action list
are set with the new attributes.

 During the initialization of a level, like objects, puzzles of that level are red
and initialized from puzzles file which is by default <level_id>_puzzles.txt. The
puzzles are stored in a global array called g_ppuzzles. Below is a few lines of the
objects file and the comments in the first 3 lines explain what each field denotes.

#pId__pType__pState__nElms__nActns__dummy__(Elements-are-in-the-following-
line)
#oid__oType__oState__oAppearance__oPickability__(Elements)
#oid__oType__oState__oAppearance__oPickability__(Actions-occur-at-the-end-of-
puzzle:heroid=-1,headassasinid=-2)
1 0 0 1 3 #
12 0 0 0 1
7 0 1 0 1
8 0 1 0 1
9 0 1 0 1
2 0 0 3 1 #
7 0 0 0 1
8 0 1 0 1
9 0 0 0 1
2 0 1 0 1

Implementation of User-Hero-Object-Puzzle Interaction:

 Implementation of user-hero-object-puzzle interaction is the heart of the game.
Main.cpp is the program entry point. In this code in a loop inputs are checked, puzzles
are controlled and then objects and characters are rendered. Camera, object, puzzle,
inventory, Quake3Bsp classes are used in the main.cpp to handle the movement and
selection requests and call necessary routines for puzzles and objects (i.e.
updatePuzzle, findNearByObject) and change their attributes. In addition to these
classes font, menu, physics, sound, utility, vector implementations constitutes the
whole game. The scene writings and system messages use “font.cpp”, “font.h”.

Contact:

Website: http://senior.ceng.metu.edu.tr/2005/Meda

 You may visit our website for more information about the game and contact
information. Also don't forget to check it for new updates.

 Since it is possible that this page can be removed from server, please do not
hesitate to contact via email to emreguney@gmail.com or ibrahim_aliz@yahoo.com
for any questions and comments.

 8

http://senior.ceng.metu.edu.tr/2005/Meda
mailto:emreguney@gmail.com
mailto:ibrah_aliz@yahoo.com

