CENG 491

Senior Design Seminar and Project

Presents

o

“The Flm
Detailed Design
10.01.2005
Authored By:

M.Zahit chan 1250588
Ibrahim Ozbay 1203355
Serhat Solak 1250711

INTRODUCTION.....cititiiiiiuiniiiiaitieiiteietaeietetacsesasasesssacsssacacnsnns 4

FLOWCHART DIAGRAM...ccutiiiiiiiiiiiiiiiuiciiiiimiectiscieciecncescsces 5

1Y 10110 1 8 B0 FR 6

3.1 Main Module......ccoeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieie i 6

3.2 Level Moduleccuvineiiniiieiiniiniiieniitiiiiiecinteieciacieciasinccnecncens 8

3.3 Object Moduleuvivniiiieieineiiiaieinrienatesescsscossscosassssscsnsssnssons 9

3.4 Weapon Modulecccovuviiiniiiniiinniiinieinecistcesscssscssssssnscsnssnns 12
3.5 Character Modulecccoeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiecianenes 13
3.6 Hero Modulecccevuvineiiniiniiieiiniiiiieiierieeieciecieciecinccscasenes 14
37 Map Modulec.uceiiiiiniiiiiniieiinnicsiestcsssssccsessscssssssssessscsssssses 16
3.8 Animation Moduleccccieiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiee, 19
3.9 AIModuleccviiniiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieier e e 19
3.10 Display Moduleccocuviiiiniiniinnicienaciosesstcssesscosssscssssscsssssccsns 20
311 Script Modulecovviiiiiiiuiiiinriieiinatcsnscsstossscssscssassssscsnsconas 21
3.12 Sound Moduleccevuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeees 23
3.13 User Input Module.......coeeiiiieiiiniiiniienieieicsnscssscsssscsnscsnssonnses 25
USE CASE DIAGRAMS....ciitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiniiecieciecncsaceees 25
4.1 takeObject() Collaboration Diagram.........cccceeeviieiiineciiercinncannns 26
4.2 dropObject() Collaboration Diagram..........ccceeeereiiinriinrcinccnnnens 26
4.3 changePosition() Collaboration Diagram..........ccccevveiiineiiinrcnnens 27
4.4 shoot() Collaboration Diagram........c.cccoeeiiiniinineiiieicinecinercnnscnns 27
EXTERNAL CODE....ccciitiiiiiiiiiiiiiiiiiiiiieiiiiiiitieciecieieciecsecacsscnses 28
ALGORITHMS....ciiiiiiiiiiiiiiiiiiiiiiiiiiieiteiiiiatiaseesesatessssnssasssses 29
6.1 Finding The Path of The Bullet.........ccccceiiiiiiiniiiiiiiniiinicincnnn 29
6.2 Finding The Shortest Path Between Two Points..........cccccevuinneen 30
DATA FLOW..uoiiiitiiiiiiiiiiiiiiiitiiiiiiititietietietatisciecsecstssssscscscssceses 31
45 S D) 3 D I8 I) | N 32
7.2 Game DFD Level 1. ...ccciviiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeenes 33
7.3 Save Game DFD Level 1......ccccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniieiinnns 34
7.4 Exit State DFD Level 1.....ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiicieieenen 34
7.5 Load Game DFD Level 1......cccciiviiiiiiiiiiiiiiiiiniiniiiinnnieee. 35
7.6 New Game DFD Level 1ccceiviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiienn 36

7.7 Render DEFD Level 2.....eeeeeeeuiiiiiiereeeeeeseeresecsssessescssssssesssscnnss 37

7.8 ALDFD LeVel 2..uuuuiiireeuniiiieeeeeeeeeeseesesssssssssssssssssssssssassssssnns 39

GAME TECHNIQUES......ciiiitiiiiiiiiieiieiiiiiieiietittatseseesssassssessnces 41
8.1 Ray CastiNg.....cceeieiriiiiniiiniiineiiiarisnrissntsssrssscsessosnscssssonssns 41
8.2 Data Driven Game DesSign.......cceiiieiiiniiiiaiiiniciieteinrcsecsnsscnnces 42
SOUND AND MUSIC....ciitiiiiiiiiiiniiniieiieiiiniieiiecieciresciscescssscsscnsne 42
FILE FORMATS....utitiiiitiiiiiiiiieiieiiiiniietieitiatiesessetsassssessnssnsasses 44
10.1 Character File Format........cccccoveiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiineenns 44
10.2 Weapon File Format.......c.cccctiiiiiiniiiiiiiieicieiiieicsscssetcsasconans 44
10.3 Map File Format.......ccccoeeiueeiiiaiiiniiiieionsscistssascssscssssssscsnaes 45
10.4 Object File Format.......ccccvveiiiniiiniiiniiinnieentcinscssnccsnscsnsconnses 45
10.5 obj File Format.......ccccovviiiieiiiniiiiniiiniiinnicinrcsnscsssccsnscsnsconnses 45
I 00% 0 DR 3 5 12N 2 L 47
USER INTERFACES....ccutitiiiiiiiiiiiiiiiiiiiiiiieiiiiiiietiiiieciecccscsscescnns 48

CONCLUSION...cutiiiiiiiiiiitieiittiiiatatiiiatatietacatiesasasssasscsssasasssnns 53

1. Introduction

The Flee from Alcatraz is a 3D first person shooter computer game. The player
chooses a character from 3 possible characters and controls this character with keyboard and
mouse inputs. The aim of the game is to solve the puzzles given in the levels and eliminate all
the enemies that are on the way.

This document’s purpose is to build the design of the project roughly, meaning that
not every single detail of the design is reported here and also there may be some additions or
modifications later.

We have done a bottom up design so that we have decided on most of the data
structures and algorithms to be used in the game. We have included the external codes
needed, how they will be used so that in the future coding will be easier since most of the
things has been structured and only a small amount of additions and some modifications will

need to be done.

2. Flowchart Diagram

YES

Return—_
Options T

23
NS
© O3
%,
o) N
NO
v New Game o B
Start Game «
A
Load Game
(0]
€
©
(O]
= L NO,
1L
TN N Save Game
Exit —Return———_
v
From Exit?

YES

1. The application starts executing after the user double clicks the game. Now the control is in
START state. The main interface will be shown on the screen and user input will be taken.
From this state the user may choose to load a previously saved game, start a new game,

change configuration settings or exit the game.

2. In the OPTIONS state the player may choose to change the configuration settings in the
option menu such as game volume, music volume etc. The control can come to this state from
either START or GAME state, when exiting from the options the control is returned to the
state that it came from.

3. In the NEW GAME state the player chooses a character from 3 possible ones and the
difficulty of the game. Then the level 1 map, the objects on the map, textures are loaded. After
exiting this state the control enters the GAME state.

4. In the LOAD state the player chooses one of the saved game files from a list on the load
window. The data from this file contains the level data including map, objects and texture.
This file is loaded into game data structures. Then the control moves to GAME state.

S. In the SAVE state the player gives a filename and all the level data is written to a save file.
The control can come to this state either when escape buton is pressed or when the user
presses save buton in GAME state. Then the control moves back to the state that it came from.
6. In the GAME state the actual game playing occurs in a main loop. In this state the player
can change options, open a new game, save a game, load a game or exit from the game. The
control return back to this state except from EXIT state.

7. In the EXIT state all the memory allocated will be freed and control will return to OS.

3. Modules

3.1 Main Class

I
vead v Class /J
L

M=ain

+ Currenttdap: map®
CurrentLewelAnimations: Animation™

+ wconstroctors Maindstring, string) ; woid
+ mainLoopl:waid

Main Attributes

Attribute Details

public map*

private Animation

Main Methods

string levelMapFileName,

string levelScriptFileName):void

Operation Notes
public
Main(Sequential

<<constructor>>Parameters:
in string levelMapFileName

in string levelScriptFileName

it takes the level script file name as parameter, it goes
and opens the data driven file to initialize attributes.Also
it defines an object of map class with the parameter
levelMapFileName and it defines an object of script class
with the parameter levelScriptFileName.

public
mainLoop():void

Sequential
this is the main loop of the game where all the modules
are called one after the other. eg. Input->AI->Sound-

>Render.

3.2 Level Module

cd Object

Object

{root}

objectID: int
objectFile: string
textureFile: string

width: int
height: int
weight: int

directionx: int
animationFiles: string*
directiony: int
directionz: int
objectFace: face*
position: point
animationActiveFlag: int
scriptPointer: Script*
currentMap: Map*

«constructor» Object() : void
loadTexture() : bool

loadObject() : bool
changeDirection(int, int, int) : bool
changePosition(point) : bool
renderObject() : void

getWeight() : int

getHeight() : int

getWidth() : int

getObjectID() : int
loadAnimations(Animation®) : void
renderAnimation(int) : void
stopAnimation() : void
getDirectionX() : int
getDirectionY() : int
getDirectionZ() : int
assignCurrentMap(Map®) : void

«datatype»
face
+ vertex1: point
+ vertex2: point
+ vertex3: point
N
N 1
3
«datatype»)
. #
point
+ x: int #
+ y:int | #
+ z:int -
#
Animation
- animationFace: face™* 0.1,
+ loadAnimation(int, string*) : bool :
+
+
¥
¥
+
+
+
+
+
+
+
+
+
+
Character ﬂ
hitpoint: int
agility: int
ability: int
characterWeapon: Weapon™*
Alstatus: int
+ «constructor» Character() : void
+ getHitPoint() : int
+ changeHitPoint(int) : bool
+ getAgility() : int
+ getAbility() : int
+ getStatus() : int
+ changeStatus(int) : void

Hero
{leaf}

- xp:int
- currentWeapon: int
- inventory: Object™

getXP() :int
changeXP(int) : void
takeObject() : bool
changeWeapon(int) : void
uselnventory(int) : void
dropObject(int) : void

+ o+ o+ o+ o+ o+

R

Map
{root}

mapObjects: Object***

maxX: int
maxY: int
maxZ: int
maplD: int

heroPosition: point
visiblePoints: point*

magazineCapacity: int

- pointerAl: Al*
/“ + «constructor» Map(string) : void
1.7 + changePosition(point, point) : bool
+ checkPosition(point) : Object*
+ renderPosition(point) : void
+ addObject(Object*, point) : bool
+ removeObject(point) : void
+ getHeroPosition() : point
+ getObjectPointer(point) : Object*
+ assignAlpointer(Al*) : void
Weapon
{leaf}

- damage: int

- bullet: int

- bulletStock int

- range: int

+ o+ o+ o+ o+ o+

«constructor» Weapon() : void
shoot() : point

reload() : bool

getRange() : int

getbullet() : int

getCapacity() : int

3.3 Object Module

Object Attributes

Attribute

Details

private int
objectID

If you have two models of the same kind on the map
they both have the same object id. therefore it will be
used for identifying the type of the objects. eg. the
enemy objects will be given objectID's in the range 0-10
but the enemy with object id 0 is different than the one
with object id 1 (regarding the look of the model)

private string

objectFile

name of the file containing the model vertices.

private string

textureFile

the name of the texture file that stores the texture image

of the object.

private int
width

this is the maximum possible width of the object.

private int
height

this is the maximum possible height of the object.

private int

weight

protected int

directionx

it specifies the angle of the object from the x axis.

private string

animationFiles

contains the filenames of all the keyframes that
constitute all possible animations that the character can

make.

protected int
directiony

it specifies the angle of the object from the y axis

protected int

directionz

it specifies the angle of the object from the z axis

private face

this is the pointer to the planes forming the model.

objectFace
protected point this is the current position of the object on the map
position object

private int

animationActiveFlag

indicates whether any animation is active on some

object.

private Script*

contains the address of script class object which is

scriptPointer

created in the main package, when the program starts to

run.
private Map
currentMap
Object Methods
Operation Notes
public
Object():void Sequential
<<constructor>>

it doesn't take any parameter but using object id, it goes

and opens the data driven file to initialize attributes.

public
loadTexture():bool

Sequential
loads the texture of the object after reading the string
textureFile.

public
loadObject():bool

Sequential
loads the object model after reading the string objectFile

and allocates necessary storage for the objectFace.

public
changeDirection(
int anglez,
int angley,

int anglex):bool

SequentialParameters:
in int anglez
in int angley

in int anglex

takes three integers and rotates the object using these

with respect to the x, y and z axes.

public
changePosition(

point newposition):bool

SequentialParameters:

in point newposition

changes the position attribute of the object by the input

newposition amount.

public
renderObject():void

Sequential

draws the object on the screen by using the objectFace.
First of all it checks whether the animationActiveFlag is
false. If it is false it works as normal, and renders the
objectFace. If it is true it doesn't render the objectFace

so that only the animation of that object is rendered.

10

public
getWeight():int

Sequential

returns the weight of the object.

public
getHeight():int

Sequential
returns the height of the object.

public
getWidth():int

Sequential
returns the width of the object.

public
getObjectID():int

Sequential
returns the objectID of the object.

public
loadAnimations(

Animation*

currentAnimationClass):void

SequentialParameters:

in Animation* currentAnimationClass

this function calls the

public
renderAnimation(

int animationID):void

SequentialParameters:

in int animationID

Gets the id of the animation as input and plays the
animation keyframes of that object. e.g Animation
MainAnimation.animationFace[objectID][animationID] :
plays the walking keyframes of the character by some
interpolation. also changes the position of the object in
the current class and also on the map. Makes the

animationActiveFlag true.

public
stopAnimation():void

Sequential
stops the current animation if there is any.

animationActive flag is reset to zero.

public
getDirectionX():int

Sequential

returns the direction of the object with respect to x axis.

public
getDirectionY():int

Sequential

returns the direction of the object with respect to y axis.

public
getDirectionZ():int

Sequential

11

returns the direction of the object with respect to z axis.
public
assignCurrentMap(SequentialParameters:
Map* pointerMapObject):void in Map* pointerMapObject
3.4 Weapon Module

Weapon Attributes

Attribute Details

private int

damage

private int
bullet

private int
bulletStock

private int

range

private int
. . the maximum number of bullets the weapon can hold.
magazineCapacity

Weapon Methods

Operation Notes

public

Weapon():void Sequential
<<constructor>>

it doesn't take any parameter but using object id, it goes

and opens the data driven file to initialize attributes.

public
shoot():point Sequential
returns the point on the map that is hit.
public
reload():bool Sequential

returns whether the hero was able to reload the weapon,

public
getRange():int

Sequential

returns the range of the weapon.

public
getbullet():int

Sequential

returns how many bullets are left in the magazine.
although it may seem unnecessary, we will use it to
display it on the screen for the user to see how many
bullets are left.

public
getCapacity():int

Sequential

returns the capacity of the magazine (for rendering

3.5 Character Module

Character Attributes

Attribute

Details

private int

hitpoint

the current amount of health the character has.

private int

agility

determines how fast the character can move.

private int

ability

specifies the specific ability a character has.

private Weapon*

characterWeapon

stores the address of the weapon that the character has.

private int
Alstatus

sleep, walk, run, hit, etc.

Character Methods

Operation Notes

public

Character():void Sequential
<<constructor>>

it doesn't take any parameter but using object id, it goes

and opens the data driven file to initialize attributes.

13

public
getHitPoint():int

Sequential

returns the current hitpoint of the character.

public
changeHitPoint(

int difference):bool

SequentialParameters:

in int difference

First of all changes the hitpoint according to the
difference parameter. Returns true if hitpoint is smaller
than zero, which means the character dies, also if the
character gets some health packs, it makes sure that the

health doesn't pass over 100%.

public
getAgility():int

Sequential

returns the agility of the character.

public
getAbility():int

Sequential

returns the ability of the character.

public
getStatus():int

Sequential

returns the status of the character.

public
changeStatus(

int newStatus):void

SequentialParameters:

in int newStatus

this function will be called by the interface between AI
and Level modules. It takes the new status of the
character and changes it simultaneously by calling the
renderAnimation function so that the animation reflects

the status of the character.

3.6 Hero Module

Hero Attributes

Attribute

Details

private int

the experience point determining the amount of

14

private int

currentWeapon

it is used to determine the weapon the hero is currently
using. In the base class of hero which is character class
the currentWeapon attribute won't be used because all

enemies will have one weapon in their hands.

private Object*

includes the objects that hero can carry other than

Hero Methods

Operation Notes
public
getXP():int Sequential
returns the xp of the hero.
public
changeXP(SequentialParameters:

int difference):void

in int difference

takes difference parameter as input and changes the xp

accordingly.

public
takeObject():bool

Sequential

when the hero is closer than a predefined distance to an
object which can be collected, the image of a hand will be
displayed instantly. so that the player will be aware that
there is some collectable object infront of him. from the
position on the map this function will reach the object
and get its ID. so that it will know where to place this
object (characterWeapon or inventory). eg. the weapon
ids are in some interval other than inventory ids. after
pressing the 'E' button this function will be called for this
hero. This function changes the position of the collected
object on the map. return type is bool, because the hero
has a limited storage and if he cannot collect the object

this function returns false.

public
changeWeapon(

int newweapon):void

SequentialParameters:

in int newweapon

currentWeapon is changed to the new weapon.

public
uselnventory(

int inv):void

SequentialParameters:

inintinv

15

uses the inventory specified with inv on some object

infront of the hero.

public
dropObject(SequentialParameters:
int objectID):void in int objectID

First of all it checks if the object to be dropped is an
inventory object. If so it is removed from inventory and
added to the map by using the Map's addObject(Object*
point) after checking if it can be dropped to that point
with Map's checkPosition(point). If the object to be
dropped is a weapon the same things above apply just
that it will be deleted from characterWeapon list and the

next weapon is assigned as the current weapon.

3.7 Map Module

Map Attributes

Attribute Details

private Object**]]]
holds the pointers to the objects on the X, y, z point.

mapObjects

private int
maxX

private int

maxyY

private int

maxZ

private int every map is given a unique id. a level may consist of a
mapID few maps if the level should have a big size.

private point

. holds the position of the hero.
heroPosition

private point
visiblePoints

private AL
pointerAl

Map Methods

Operation Notes
public
Map(Sequential

string levelMapFileName):void

< <constructor>>Parameters:

in string levelMapFileName

it takes map script file name as parameter, it goes and
opens the data driven file to initialize attributes and
allocate necessary space.Also it calls the constructors of

each object that is on the map.

public

changePosition(
point newpoint,
point oldpoint):bool

SequentialParameters:
in point newpoint
in point oldpoint

public
checkPosition(
point checkPoint):Object*

SequentialParameters:
in point checkPoint

returns the pointer to the object on that position we are
checking with the checkPoint parameter.

public
renderPosition(
point renderPoint):void

SequentialParameters:
in point renderPoint

renders the object on that point. it first gets the object

on that point and calls its Object::renderObject

public

addObject(
Object* newObject,
point objectPoint):bool

SequentialParameters:
in Object* newObject
in point objectPoint

adds the object to the position given by the point
parameter to the map. if there is already an object on

that position it returns false.

public
removeObject(
point position):void

SequentialParameters:

in point position

deletes the object from the position given by the position

parameter.

public

17

getHeroPosition():point Sequential
returns the position of the hero on the map.
public
getObjectPointer(SequentialParameters:
point position):Object* in point position
returns the pointer of the object at the position.
public
assignAlIpointer(SequentialParameters:
AI* pointerAlobject):void in AI* pointerAlobject

point Attributes

Attribute Details

public int

X

public int
Yy

public int

face Attributes

Attribute Details

public point

vertex1l

public point

vertex2

public point

vertex3

3.8 Animation Module

Animation Attributes

Attribute

Details

private face**
animationFace

Animation Methods

Operation

Notes

public
loadAnimation(
int objectID,

string* animationFiles):bool

SequentialParameters:
in int objectID

in string* animationFiles

First it looks at the AnimationFace and checks if the
animation of the caller object's type (objectID), is loaded
or not. If it is not loaded, it loads the animations required

for that object. e.g Animation

3.9 AI Module

cd Al g

Al

pointerkizplay: Display®
enemyFointer: Object”
Currenthdap: Map®

+

aszignbisplayPointenizplay™ : woid
decidefloEnemyfction(: woid
aszignhdap0bjecthlap™ : waid

Al Attributes

Attribute

Details

private Display
pointerDisplay

private Object

enemyPointer

19

private Map*
CurrentMap

Al Methods

Operation

Notes

public

assignDisplayPointer(
Display*

pointerDisplayObject):void

SequentialParameters:

in Display* pointerDisplayObject

public
decide&DoEnemyAction():void

Sequential

this is the main function of the AI class.It finds the
enemyPositions one by one by using enemyPointer
attribute of the current class and calls the
calculateVisiblePoints function of Display Class with the
positions of enemies.It gets the visible points of enemies
from that function as return value.After that it decides
the next action of the enemy according to the objects
that are on the visible points.Then it changes the status

of the enemy according to do decided action.

public
assignMapObject(
Map* pointerMapObject):void

Parameters:

in Map* pointerMapObject

3.10 Display Module

|r.d Narde- /J

Di=splay

wiziblePaints: point®
Currenthdap: Map®

+

calculateVisiblePointsglint, int, int, point): point®

dramifisiblePoints]) ; woid
assignhdapObjechdlap™ : waid

Display Attributes

Attribute

Details

private point*
visiblePoints

20

private Map*
CurrentMap

Display Methods

Operation

Notes

public
calculateVisiblePoints(
int directionz,
int directiony,
int directionX,

point currentPoint):point*

SequentialParameters:
in int directionZ
in int directionY
in int directionX

in point currentPoint

This function calculates the visible points for the object
whose current coordinates and directions are given as
input.And returns them while it stores them in the

visiblePoints.

public
drawVisiblePoints():void

Sequential

calls all the objects' render functions in these points.To
do this it calls maps renderPosition function for the
visiblePoints and the function in the map class calls

individual objects own render functions.

public
assignMapObject(
Map* pointerMapObject):void

SequentialParameters:

in Map* pointerMapObject

3.11 Script Module

Script

heroSeriptFile: string
enemyScriptFile: string
weapanScriptFile: string
imventansSeriptFile: string
levelPuzzleScriptFile: string

wionstructore Soriptstring) : woid
returnSeriptFilelint) : string®

21

Script Attributes

Attribute

Details

private string
heroScriptFile

private string

enemyScriptFile

private string

weaponScriptFile

private string
inventoryScriptFile

private string

levelPuzzleScriptFile

Script Methods

Operation

Notes

public
Script(

string scriptFiles):void

Sequential
< <constructor>>Parameters:

in string scriptFiles

it takes the script file which contains names of all the
script files.Also according to these file names, it assigns
the names of script files one by one to the attributes of

this class.

public
returnScriptFile(
int objectID):string*

SequentialParameters:

in int objectID

the constructor of object calls this and according to the id
of the object the corresponding script file hame is

returned.

22

3.12 Sound Module

cd Sound

Sound

musicFiles: string®
soundEffectFiles: string™

+ playMusicint) : baal
playSoundEffectint) : boal
+ woonstroctors Soundisting®, string™) : waid

+

gl VEISION A & (U UINEOISTE)

Sound Attributes

Attribute

Details

private string

musicFiles

contains the filenames of all the music files.

private string*

soundEffectFiles

contains all the filenames of the soundeffects that will be
used in the game.

Sound Methods

int musicID):bool

Operation Notes
public
playMusic(SequentialParameters:

in int musicID

plays the music given with the musicID. returns true if it

can play the music.

public
playSoundEffect(
int soundEffectID):bool

SequentialParameters:
in int soundEffectID

plays the sound effect with the given id. returns true if it

can play the sound effect.

public

Sound(
string* levelSoundEffects,
string* levelMusicFiles):void

Sequential
<<constructor>>Parameters:
in string* levelSoundEffects

in string* levelMusicFiles

23

3.13 UserInput Module

|-:=d User Input A
_________ —

Userinput

pointerhdain: hain®

wionstructore Userlnpotl) : weid
keyboardFunetion(int) : woid
mouseFunctionint, int, int, int) ; woid
motionFuncint, int) : waid

+ + + +

UserInput Attributes

Attribute Details
private Main*
pointerMain
UserInput Methods
Operation Notes
public
UserInput():void Sequential
<<constructor>>

address of Main will be passed to the instance of the

input.

public
keyboardFunction(
int button):void

SequentialParameters:

in int button

public
mouseFunction(
int button,
int mousey,
int mouseX,

int state):void

SequentialParameters:
in int button

in int mouseY

in int mouseX

in int state

public
motionFunc(
int mousey,

int mouseX):void

SequentialParameters:
in int mouseY

in int mouseX

24

4. Use Case Diagrams

cd Jse Case /

TakeObject
(from HERO)
DropObject

Hero (fme HEHO)
(from HERO)

ChangePosition

The use case diagram above explains the use cases of our “hero”. The “hero” can takeObject
from a position which is close to the hero.It can Drop any Object that it carries.Also It can
shoot by the input given by the user and change it’s position according to the user input. We
didn’t show the use case diagrams of the user.Because they are explained in the following
parts as Data Flow Diagrams(Start New Game,l.oad Game,Save Game,Play Game,Exit

Game).

25

4.1 takeObject() Collaboration Diagram

sd Interactions

h:Hero m:Map o:Object

T
1
i
takeObiject() !

getObjectPointer(m.heroPosition)

return(object)

< ____________________________

removeObject(m.heroPosition)

addObjectTolnventory(o) 4[|:|<—_|

< ____________________________

e
1
[}
1
1
1
1

(from takeObject) (from take Object) (from takeObject)

When hero takes an object it sends a message to map. Map finds the object at the position of

hero then hero adds the object at the position of hero to the inventory.

4.2 dropObject() Collaboration Diagram

e .)
cd droplivect
VO TC Y o)

h:Hero m:Map 0:0bject

)
]
dropObject(o) :
1

addObject(o,m.heroPosition)

changePosition(m.heroPosition)

addObject(o,m.heroPosition)

26

When hero drops an object it sends a message to map. Map determines if it is possible to add
the object to the position of hero. If it is possible adds the object to map and returns true to
hero.

4.3 changePosition() Collaboration Diagram

cd changePosition /

h:Hero m:Map 0:Object

changePosition(newposition)

L g

changePosition(m.heroPosition,newposition) J:|

changePosition(newPosition)

changePosition(newposition)

When hero tries to change his position firstly it sends a message to map to identify whether it
is possible to change its position to new position. If it is possible firstly he changes his
position to new position then he change all the objects positions in the inventory.

4.4 shoot() Collaboration Diagram

h:Hero w:weapon m:Map

shoot()

shoot()

returnPoint() j:|
<_ ______________________________

changeHitPoint(w.damage)

S
—
i

27

When a hero shoot it send a message to the current weapon of the hero. Then weapon sends to
map the direction and position of the weapon to calculate the point hit. Then there is an

enemy at the point the hitpoint of the enemy will decrease according to the weapon damage.

5. External Code

For scripting and playing sound in an OpenGl application we need to use some
external code. These are SDL, Python, SWIG. There are two fundamental ways in which
scripting is used. In the first one you embed a script in your main application written in a
compiled language such as C++, so from the code in C++ you call the scripts when it is
needed. In the second one, everything is vice versa. So you write modules in C++, the
scripting language runs the main application and calls these external modules as needed. We
have decided to use Python as our scripting language because it is used in many games and
applications and it has many documents. There exists a problem of binding these two different
languages, C++ and Python. You have to bridge function in order to forward parameters and
return values between the two languages. There are tools to do this. One of them is SWIG,
Simplified Wrapper and Interface Generator. SWIG is a tool that connects programs written
in C and C++ with a variety of high-level programming languages, such as Perl, Python,
Ruby,. Assume you have some functions written in C++. Your main goal is to turn them into
modules so that they can be called from the scripting language. For this you first write an
interface file in which you name the module, include headers and stuff. Then swig ouputs the
module and in the scripting language you directly call the functions by import modulel,
modulel.f(int x, int y).

Our main objective in using scripting is to manage object systems, describe weapon
effects, specify events and triggers. We will use scripting for defining weapon attributes,
maps, heroes and levels. The main application will run in C++ and we will get the objects
from the script files when needed.

We will use SDL (Simple Direct Media Layer) for playing sound in a multithreaded
fashion. So while the game play continues the music and sound of the other objects like the
weapons will still be heard.

We will be using one of the free 3d modelling programs called MilkShape 3d. It is a
low polygon modeler in which you can draw simple models by creating vertices by simply

clicking on a point in one of the views; front face view, side view, top view. After creating the

28

vertices you create faces by selecting the vertices with select option. So we will draw simple
objects such as a desk, a switch or a door by using this program. But the process of creating
an object to be used in a game such as a weapon is very complicated if you want a weapon to
look realistic so we will import the free modesl that we find to be useful on the internet to the
MilkShape 3d program. Then we will export these objects with this program as a .obj file. An
obj file consists of vertice coordinates (written one after the other and indexed starting from
1), normal vectors, faces. In addition to holding the geometric information in an obj file you
can also specify the materials to be used. All the faces are mapped to the texture material
nearest to it from above. We will be using code from a program that loads an .obj file into an

OpenGl application and then maps a texture in .bmp onto the object .

6. Algorithms

6.1 Finding the Path of the Bullet

Firstly we must find the direction of the bullet. As we explained in ray casting the
character has a 60 degrees field of view. If the hero has a weapon in hand there will be an
aiming circle on the screen which is used to aim at enemies. We know the x coordinate of the
circle. If we subtract the x coordinate of the circle from the x coordinate of the center of the
screen and multiply this value with 30 degrees we will find the angle of the bullet with respect
to character’s current direction. Than adding this angle to the character’s current angle gives
us the direction of bullet with respect to x=0 on the map.

Now we know the direction of the bullet and the position of the character. We will
cast an imaginary ray starting from the position of the chracter which has a direction equal to
the direction of the bullet. If the ray hits some object (i.e enemy , wall etc.) on the first square
on the direction of bullet then we return the position of hit on the map. Else we continue with
tracing the ray until it hits an object. (until it pass the range of the weapon). We can
summarize the algorithm as follows.

1.Calculate the direction of bullet path with respect to character’s direction.

2.Add the direction of bullet to the direction of character to find the direction of bullet

with respect to x=0 on the map.

3.Starting from the position of the character cast a ray

A.Calculate the next square in the direction of bullet on the map.
B.If it hits an object return the position of hit

C.If it is in the range of weapon trace the ray and go to step 3A

29

4. Return O (It does not hit any object)

6.2 Finding the Shortest Path Between Two Points

If an enemy sees the hero and the hero is out of the range of the weapon the enemy
uses , enemy needs to find the shortest path to the hero. To find the shortest path between two
points we will use A* algorithm.

We start with the position of enemy and add that square to the open list. (The open list
is a list of squares that may need to be checked out.). Than we look the walkable squares
adjacent to the starting point and add them to the open list. Every square on the open list has
the following three values.

1.The parent square : We need the parent square to find the path when we reach the

destination.

2.Cost: The movement cost to move from the starting point (position of enemy) to

that square following the path generated to get there.

3.Remaining cost : The estimated movement cost from that square to the destination.

To find the cost we need to add 10 to the cost of the parent if that square is reached
with a horizontal or vertical move and add 14 if it is reached with a diagonal move.
(0=10/14) . To find the remainig cost calculate the number total of squares moved
horizantally and vertically to reach the target square from the current square.

After looking at the adjacent squares we drop that square from open list and add it to
close list(not look again). Than pass to the square with minimum (cost + remaining cost)
value. Look at walkable adjacent squares , add them to open list, calculates the three values
for those squares and remove the current square from the open list and add it to close list. If
an adjacent square is already in the open list and the cost from the current square is smaller
we have to change the cost and parent of that square.

We have to do these operations until we find the destination square. When we find it
we can easily find the path between two points because we know the parent of each square.
We can summarize the algorithm as follows.

1.Add the starting square to the open list.

2.Repeat the following

A.Look at the lowest (cost + remaining cost) square on the open list.
B.Switch it to the close list

C.For every adjacent square to this square

30

a.If it is not walkable or it is on the close list ignore it.
b.If it is not on the open list make the three assignments and add it to open list.
cIf it is in the open list calculate the new cost. If the new cost is smaller
change the cost and parent values.
D.If you reach the target square or the open list is empty (no path) than stop.
3.Save the path.Working backwards from the target square , go from each square to its

parent until you reach the starting square.

7. Data Flow

Our game data will be stored in script files written with Python scripting language.
These will include level scripts, object scripts, map scripts, weapon scripts, hero scripts. Each
level will point to a map script and several object scripts that will take place in the course of
the level. When the game starts first of all the player will choose a new game or load a
previously played game. As soon as he chooses a new game the information about the level,
the map, the hero and the objects residing on the map will be loaded from the script files into
the required data structures allocated in main memory. If this wasn't a new game then when
the user quitted previously a new script file would have been created including his level, his
heroes status, the status of the objects on the map, the weapons he is carrying currently. The
transfer of data will be carried on between Python and our main application C++ via the
bridge function created by SWIG. So the data will flow in both directions between them.

When loading it will flow towards C++, when saving it will be towards Python.

31

7.1 DFD Level 0

Start User Data—

New Game

(Levt

»———User Input——» Options

4 New Game Options

Current Options

Data taken from a

User

J7specific game file——»
A
Load Game

L

Initialized Data
el Data & Character Info)

New Game
Options

input

| Game —

Current Options

Save Game |«

Exit

File Name(taken from user)

Level Data

32

7.2 Game DFD Level 1

a GAME

Sound Render

- /

The GAME state is actually the main loop of the game. The user’s mouse and
keyboard inputs are fed into the INPUT state. In this state the character position and direction
are affected by the mouse and keyboard inputs. There are two calculations in this state. First
one checks whether the hero can actually move in the direction he is trying i.e if he is not
trying to go through a wall. If he can move then the heroes position attributes are updated.
The second calculation occurs when the mouse input is attack. When the user attacks
character.shoot() function of the hero is called (go to character class for function’s properties).
Then the same input which entered INPUT state and the structure returned from

character.shoot() is fed into the Al state.

33

7.3 Save Game DFD Level 1

a SAVE GAME I

HeoPosifon |

Write to Files

T

Tl e

- J

The control comes to this state from GAME state. Hero position, level data, enemy
positions which are currently in appropriate classes’ objects are passed to the WRITE TO

FILE state which in turn writes these into the harddisk in level file format (see file formats

section for level file).

7.4 Exit State DFD Level 1

a EXIT N\

Free Memory Save Options

The ‘option flag’ is checked to see whether anything has been changed in the options
menu. If a change is made user’s option data that he has changed is fed into this state as data.

So that when he loads the game in future, he will be able to play it with the same

34

configuration. After saving options all the memory that has been allocated for level, map,

characters, objects are deleted and the game exits to windows.

7.5 Load Game DFD Level 1

a LOAD GAME N\

Game
Initialization

o /

When the user is in START state, if he chooses to load a game he clicks on a saved
game and then presses the load button. Therefore the filename is fed into the LOAD state.
FILE state takes this filename input, and reads in the level file (see file formats for level file)
which holds all the information about the level script files, enemy Al scripts, map, places of
objects and characters (which can be both the hero or enemies) on the map and the characters
attributes. Then passes these data to GAME INITIALIZATION state, which in turn stores

them in the appropriate classes’ instances for use in the game.

35

7.6 New Game DFD Level 1

: NEW GAME ™

Level
Initialization

File

Attribute
Assignment

Character
Selection

Character ID

- /

When the user is in START state, if he chooses to start a new game we are in LEVEL
INITTIALIZATION state. The user is prompted for character that he wants to play with in
CHARACTER SELECTION state and then this state feeds the id of the character into the
ATTRIBUTE ASSIGNMENT state which in turn creates a hero class object and puts the
character file into it. Then FILE state reads in the 1st level file from the level script files and

again creates the level class object and puts these values into the object.

36

7.7 Render DFD Level 2

RENDER

1 Ray Casting]e

Object Ip

Object ID

Draw 7

Direction

Al Objects

' 7 Current Weapon
, Skeleton Points

37

There are 2 main states included in RENDER state. One of them is RAY CASTING
and the other one is DRAW. In raycasting state only the map is drawn according to the input
coming from the hero’s position and direction, and additionally map data is coming from the
level object. So in this state we have enough information for ray casting. In the level file map
we have all the object id’s so after this state finishes the object ids existing in this level are
passed to the draw state in order. DRAW also gets the current_weapon and hitpoint. These
two are needed because there will be a health gauge horizontally placed on the top left hand
corner of the screen, which increases or decreases with respect to hitpoint and ofcourse the
current weapon is the weapon in the hero’s hand and it has to be displayed on the screen with
it’s model information (vertices, texture, faces etc.) as we are seeing from the hero’s eye. All
the objects that aren’t connected to Al such as a desk, a door, a switch will be held in object
class objects. DRAW state will give object id to OBJECT state and the model data of the one
with that id will be passed to DRAW state. The other objects are related to Al for example
enemies. The object id is passed to AI OBJECTS state and direction of the object, current

weapon, model data, texture, and skeleton points are retrieved.

38

7.8 AI DFD Level 2

INPUT

All Character Positions
(Including the Hero)

Structure Returne:
From
Character.Shoot()

Global Variable Indicatin
Whether Attack Button is
Pressed

/

\

Al]

Reduce Enemy
Hitpoint
Change

Enemy Status

to Hit

Turn to Hero

NO

Is Enemy
Status Sleep

Is Enemy
Status Watch

NO

Is Hero
Visible?

s Attack Butto!
Pressed?

/ CONTINUE

Shoot()
Status="hit’
Move_ toward_hero()
NO YES NO Status="hit’ ‘
YES
YES

s Hero Visible?

MoveTo_LastLocationOf_Hero()

Count++

- =

‘'YES
v Status=Walk
NO
In Range
L—»
NO > CONTINUE |« NO—
Move_ toward_herb() /
1 Status='hit’
Shoot()
Q
K YES Status="hit’ \ \ J
New

Skeleton

Success in Enemy lGlobaI Data Indicating 1
Vertices

Shooting the Hero Whether Attack Button
is Pressed

Sound

39

The input values passed from INPUT state to Al state are all the character’s positions,
a global variable indicating whether attack button is pressed or not, and the structure returned
from character.shoot() function of the character class.

Struct shoot_output {

int damage;

char * sound_file name;
int position_x;

int position_y;

}

All the characters have a status attribute which are ‘Hit’, ‘Sleep’, ‘Walk’, ‘Watch’.
The AI module makes the characters act in different fashions according to these attributes.

In the AI state the structure returned from character.shoot() contains amount of
damage and the position of the enemy affected by the damage. We go to that position in the
map and take the character® character which points to the enemy on that location then the
amount of damage is deducted from the enemy’s hitpoint and enemies status is changed to
‘Hit’. Also if the enemy is not looking toward the hero then after character.shoot() is called(by
the hero) the enemy’s direction will be changed to hero’s direction by character.turnToHero()
(by the enemy) function. Then we check for enemy status. If it is ‘Hit” we check for whether
hero is in range or not. If he is not in range the character moves to the last seen position of the
hero on the map and increment a movedtolastlocationcounter. When this character that was
hit enters this Al module the second time his status will still be ‘Hit’ so AI will again check if
hero is visible. If again the hero is not visible then the character will stop trying to go to the
last position the hero was seen. After a predefined number of movedtolastlocationcounter is
reached the Al will decide that the hero is not around so the status of the character (that was
hit some time ago) will be changed to ‘Walk’.

If the character is sleeping then Al module doesn’t change his position on the map but
ofcourse if the hero shoots at the sleeping character the status is changed to ‘Hit’ and the
routine for characters with status attribute ‘Hit’ is executed.

If the character status is ‘Walk’ then AI makes the character change position in the
predefined manner such as going back and forth between two points in the map. which will
update the new value of the position of the enemy. Also whether the hero is visible or not will
still be checked by the Al If the hero is visible then range will be checked. If hero is near
enough character.shoot() will be called and character status will be changed to ‘Hit’ even

though this character wasn’t hit. If hero is not in range character.movetowardhero() will be

40

called and the character status will be changed to ‘Hit’. We do this so that the character tries
to search for the hero.

If the character status is “Watch’ the character stays in one position and the position is
not changed as long as the hero is not seen or the status is not changed by Al because Al will
change the status of the characters randomly to make the characters act like in a random
manner. After some time which is passed to Al by a timer, Al will interchange the status other
than ‘Hit’. For example after 5 minutes a character’s attribute will be changed from ‘sleep’ to
‘Watch’.

So the output of the AI state will be the ‘success in enemy shooting the hero’,
‘success in hero shooting the enemy’, ‘global data indicating whether attack button was
pressed’, ‘the hero has moved’ and ‘new skeleton vertices of the visible enemies’. These
values will be passed to the SOUND state. So if ‘success in hero shooting the enemy’ is
passed then the ‘hit sound” which was previously loaded is played. If ‘the hero has moved’ is
output, then ‘walking sound’ will be played also in another thread. Then these values which
were output from the Al state to SOUND state will also be passed to RENDER state from
SOUND state.

8. Game Techniques

8.1 Data Driven Game Design

Games are very complex applications and must be subdivided so that it would be
easier to implement. They are usually divided into two main parts , Data and Logic.
Otherwise , by programming all of them in code , any small changes to the data means a
complete recompile. This means that staff other than programmers can not make changes to
the game design. To separate game logic and game data , game logic should be an executable
application and game data must be separated from game logic into external data files. This
process is called Data Driven Game Design.

To make the separation of game data from game logic we need to a parser that can be
read these external data. In flee from alcatraz we will use phyton as scripting language to read

external files.

41

In our game we will keep constants and some Al behaviors in external files. Properties
of weapons and characters , and map information can be some examples to what an external
file contains. By keeping these data in externals file we can easily make changes in our data

and we can see the results of our changes without recompiling the code.

9. Sound and Music

Music and Sound effects are integrals part of any 3D adventure game. These effects
help the game player feel more in the action. SDL (simple direct media layer) will be used for
this purpose. “SDL is a cross-platform multimedia library designed to provide low level
access to audio, keyboard, mouse, joystick, 3D hardware via OpenGL, and 2D video

framebuffer.”[http://www.libsdl.org/index.php]. It is used by MPEG playback software,

emulators, and many popular games, including the award winning Linux port of "Civilization:
Call To Power". SDL is a library which normally requires installation of it and any of its
extension libraries on the system which the game will run. Since our development and testing

platforms are “windows” machines, it is possible to perform these installations.

Audio for the game will be mixed through the use of SDL Mixer. There will be

multiple channels for sound effects and a channel for background music.

SDL._mixer: "SDL_mixer is a simple multi-channel audio mixer library. It supports any
number of simultaneously playing channels of 16 bit stereo audio, plus a single channel of

music" [http://www.libsdl.org/projects/SDL_mixer/index.html]

SDL Mixer supports many formats for playing music and sound samples including the

formats that we will use which are ogg, mp3 and wav.
Here are the steps in using SDL_Mixer in a program

Open up the audio device
Load samples into memory
Play them when necessary

Clean up

To use SDL_mixer functions in a C/C++ source code file,SDL._mixer.h has to be
included with the main library of SDL which is “SDL.h”. Required library files (ex:SDL.lib)
should be added to the project.

#include <SDL_mixer.h>

42

#include "SDL.h"

Starting from here we will try to write some information about the main functions of

SDL_Mixer.

When using SDL mixer functions, the use of some SDL functions has to be avoided.
(Ex:SDL_OpenAudio, SDL_LockAudio).

Before using SDL_mixer functions , SDL must be initialized with
SDL_INIT_AUDIO. After that the most important function of SDL_mixer library which is
Mix_OpenAudio should be called with the required frequency.
int Mix_OpenAudio(int frequency,Uint16 format,int channels,int chunksize);

Most games use 22050Hz and some of them use 44100Hz for frequency. The
frequency in our game will be decided later. Chunksize is the size of each mixed sample. If
this number is small on a slow system sound may be skip. If it is too large sound effects will
lag behind the action more. So that a medium
value will be chosen for this integer.

Mix_chunk *Mix_LoadWav(char *file)

*This function loads the sample file for example “sample.wav” .Then Video Mode

should be chosen by SDL_SetVideoMode function.

Int Mix_PlayChannel (int channel,Mix_Chunk *chunk,int loops)

Channel--> Channel to play on. For the first free unreserved channel “-1” is chosen.
Chunk --> sample to play.

Loops --> It is the number of loops. -1 means infinite loop. 1 means the sample will be played
with one loop that is two times.

Int Mix_HaltChannel(int channel)

channel--> channel to stop playing , or -1 for all channels

Int Mix_PlayMusic (Mix_Music *music ,int loops)

music--> pointer to Mix_Music to play.

Loops-->Number of times to play through the music.

To shutdown and cleanup the mixer Mix_CloseAudio should be called.

void Mix_CloseAudio();

After calling this all audio, is stopped and the device is closed. However it has to be
called the same number of times that Mix_OpenAudio called.

Sound Effects:

43

Mostly, We will use preconstructed sound effects in our game
following websites.

http://www.therecordist.com/pages/game_sfx.html

http://soundmatter.thegamecreators.com/?f=pack3

10. FILE FORMATS

that can be taken from

In this part of the report the file formats used by the game will be described. There is an

example after each attributes in parenthesis for clearance . At the end of each attributes there

will be an end line character.

10.1 Character File Format

CharacterID (103)
Position (3521)
Direction (53 degree)
Speed (15)
Model (novartl.obj)
Objects (112 53 35)
Current Object (53)
Weapons (10 15 33)
Current Weapon (33)
Hit Point 35)
Special Ability (43)

10.2 Weapon File Format
ObjectID (68)
Range (20)
Weight (3)
Texture (rifle.bmp)
Model (rifle.obj)
Damage (15)
Magazine Capacity (12)
AnimationFileName (“shoot.anm”)
MaxWidth (10)
MaxHeight (30)

44

10.3 Map File Format

MaplD (map no\n)

Map size (width*height*depth\n)

Map information (objectID x_coordinate y_coordinate z_coordinate\n)
R \n)

e.g. Assume that we have 3 objects on a map. The map id is 2 and its size is
(20*30*10). The id’s of the objects are 1, 7, 22, and they are on the positions [1][10][15],
[2][16][23], [19][40][78]. Then our map file will be as follows.

2
20*30*10
111015
721623
22194078

10.4 Object File Format

ObjectID (18)
Weight (10)
Texture (box.bmp)
Model (box.obj)

10.5 obj File Format
The file format to make 3D modeling in our game is obj. format. Blank space and
blank lines can be added to obj. files for readability .The obj. file format includes the
followings.
some text
means that it is a comment line
v float float float
The coordinates of vertex's geometric position in space. The first vertex has index
1 and subsequent vertices are numbered sequentially.
vn float float float
It represents the coordinates of a normal. The first vertex has index 1 and
subsequent vertices are numbered sequentially.

vt float float

45

It represents a texture coordinate. The first texture coordinate has index 1 and
subsequent texture coordinates are numbered sequentially.
f int int int or
f int/int int/int int/int or
f int/int/int int/int/int int/int/int
It represents a polygonal face. The numbers are indexes into the arrays of vertex
positions , texture coordinates and normals respectively. A number may be omitted if , for
example , a texture coordinates are not being defined in the model.
g group name
It represents a group. When a group is defined it remains the current group until
another group is defined. If no group is specified in the file, everything in the file
is in the current group.
usemtl material name
It represents a material. Like groups materials are applied to all faces following the
material declaration until another material declared.
A valid obj. file can be made using only “v” ”f” flags. The use of other flags are

optional.

46

11 Time Chart

o

i |

o

2|1 31 41 5(1
Jan 1) 2005 May 23, 2005
Detailed Map Class Hero Class
Design Implementation Implementation
Jan1 , 2005
Prototype Object Class(base)
plementatio Implementation
Jan i Sound Class ;2005
Implementatiol
n
1 I
Jan1 Main Class1 Character and 2005
Implementatfo Weapon Classes Testing
n
2.1 31 41 5.1
Jan1,2005 May 23, 2005

47

12 User Interfaces

12.1 Main Menu

The Flee From Aleatraz

Start New Game

Load Game

Game Options
Exit to Windows

12.2 Load Game

The Flee From Alcatraz
Select Game

Game 4
Game |
Game ¢
Game 3
Game 4
Game b
Game B
Game B
Game 8

Game Options
Exit to Windows

BACK

48

12.3 Start New Game

The Flee Prom Alcatraz
Select Your HERQ

Game Options
Exit to Windows

BACK

12.4 Main Menu when game is paused

The Flee From Aleatraz

Start New Game

Save Game

Lame Load Bame

Paused

Game Options
Exit to Windows

Return To game

49

Lxit to Windows Without Saving?

VES M

12.5 Game Options

The Flee From Aleatraz

Enter Player Name HOTREYS Gredits

Difficulty hangs to Default Optins

G Ao Music Volume Sound Volume

Uptions J. “"
1

Seve Changes Gancel

Exit to Windows

BACK

50

12.6 Hotkeys

The Flee From Alcatraz

HOTKEYS

Move Forward Up Arrow

Turn Right 0
Turn Left

A
Change Weapon T

Toom In Right Click

H[|’[|(Eyg Shoot Left Click
Change to Default

Seve Changes Cancel

Exit to Windows

BACK

Lxit to Windows?

Credits

51

12.7 Save Game

The Flee From Aleatraz

Enter Game Name

SAVE fame List

Game |

Game 7
bame 3
Game &
Game &

Game Options
Exit to Windows

BACK

Uverwrite Previously Saved bame?

¥ CANGH

52

13. Conclusion

In this document we have outlined the technical aspects of our game development
project. Upto this time we had been very concerned about the implementation phase. Now we
have created the foundation for our game and the implementation will build on top of it. The
classes, data structures, modules have been decided which help us to see the whole picture
rather than the details. The flow chart have been created which help us visualize the main
flow of control. The data flow diagrams have been created which help us to visualize the flow
of data, what module needs what kind of data, which module has to be connected to which
one.

To conclude the making of this detailed design document helped us create a picture of

what is going on in the game control and architecture.

53

