	Middle East Technical University
Department of Computer Engineering

	Software testing report
[CENG 492]

	Group: NOVART

	

Preface

This testing report is intended to be a guideline for testing software product which is being developed and maintained by a group of people gathered under the group name NOVART. In very short terms, software product above is a 3-D adventure game with textures, sounds, multiple characters and more. In this document, software-testing issues are considered and they are in no ways complete or strict and are due to change as the project gets further in its development. There are four main sections constituting a document – in first one, required testing strategies are discussed; next, quantitative issues are in consideration; then come topics regarding physical sides having any activities in testing process; and lastly timing issues end up the report.

Testing strategies

Unit testing

In unit testing of the product, the unit is expected to be a module within the project. As the project grew, it resulted in such modules that are not wholly stand-alone. In such a case, the more attention is on the code testing rather than on validity, in the sense that a module can not be separately build and run so that one can judge on what is under the specifications and what is not. As a result, while testing modules a tester have to be well informed what a module is expected to perform and keep close relation with developer. The unit testing is considered to be a basic testing strategy based on codes written and, hence, also closely related to performance tracking.

Integration testing

In integration testing the main concern is on the modules integrity. Each module approved by unit testing is to be integrated to a whole system without any problems. These problematic points may be ambiguities in definitions, functions or class structures, unnecessary changes of global or external variables, or just reference problems. As noted before in unit testing sub-section, modules are not fully stand-alone, therefore top-down integration approach is the one suitable for this project. In other words, modules are integrated by starting from a main control module down to other dependent modules.

Validation testing

From the customer’s point of view the validation testing would be the sublime of all testing kinds though there is no such one among strategies. To give its right, validation testing is the main part where specification conformance is tested in its up most attention. In the scope of this project, validation testing is done by testers according to a detailed design report. Additionally, the project group arranges periodical meetings with customers where some demonstrational presentation is provided so that a feedback can be obtained for every time period.

System testing

As the word system has a wide range of meanings, the phrase system testing will not be an exception. System testing is meant to be about hardware, security, and performance testing. These testing strategies are under one title as no one worth constituting a single title in the scope of this project. To see it clearly, let’s consider them in turn. Hardware configuration is an important point in gaming industry as graphical operations consume much of processor power. Fortunately, today’s average computational power fulfills almost all of gaming software. Furthermore, the product under consideration is not of that games that are in hunger of computational power, so hardware testing is not necessary in most cases. Regarding hardware issues, it is strongly recommended to have up-to-date driver for graphics card.

Concerning security testing, it is not of such importance for a gaming software taking into account that there is not a network gaming. As for performance, it is much related to hardware in the scope of this project but performance issues are not ignored and they are kept in sight during unit tests.

Time distribution

Testing is not an additional part of the project nor it is an afterthought, it is ongoing process from the beginning to the end of the project lifecycle. With this in mind testing was included in the project from the beginnings and the distribution of testing strategies is discussed herein. The first testing strategy to be in process has been unit testing. Unit testing is expected to be done by both developers and testers. As long as coding is being done the unit testing will be in progress so the distribution of unit testing strategy is spread over the whole project.
After a while, when there is a bunch of code, they have to be organized in well formed groups according to certain criteria thus forming modules. At the moment when there are modules, integrity issues emerge, and from this point on and afterwards integrity testing starts its lifetime. This way, as the project evolves, unit and integrity testing are in progress – when a new code is involved into the project space, unit testing of its corresponding module have to be done and, having an altered module, integrity testing have to be carried out thereafter.
Later, when the skeleton is ready and the product becomes more or less apparent, validation testing comes into play. Validation testing is significant in that it checks product agreement with specifications thus avoiding inconsistencies whose fixating would be much more complex unless handled on time. Validation testing is not as prevalent as unit or integrity testing; rather it is done at certain stages. For example, validation testing might be done at the completion of each module.
Doing so leads to an overall validity of the product.

Who does testing and when?

Each developer tries hard to be careful while coding and reexamining what he/she has done. Although their best efforts, there are points they miss. That is why external testers have to be involved into the project and these testers are the ones who apply testing strategies. They have to skim over codes if necessary during unit testing; they do integration testing every time there are changes in modules; validation testing is also under testers’ responsibility as validity checks have to be worked out by external sides. As the product closes up to its final releases, end users are also involved in testing but after that point there could not be dramatic changes unless something crucial rises out. End users tests may be somehow considered as stress testing as they may be doing unordinary actions and thus leaving developers in choice either to abandon such case as unhandled or to deploy further functionality or operability if possible.

