DEVELOPER MANUAL

A. CLIENT SIDE:

1. LOGIN MODULE

 This class will handle all the interaction with users. This class gets the username, password and user type from the user and connects to database for checking the validity of the username and password information. When the user is student then this class checks whether any course is available. If any course is available, it sends the username and user type to server for registering. Then this class creates an instance of the VirtualClassroom class. If there is not available course then this class returns a notification message to user. In addition to that when the connection is not established, this class returns error message to user. When the user is admin or instructor then this class creates the instances of the AdminInterface or InstructorInterface respectively.

The most important members are as follows:

· username (string): Hold the username information of the user.
· password (string): Hold the password information of the user.
· usertype (char): Hold the user type.

· Serverip(string): Holds theip address of the server.

And the most important methods are as follows:

· connectDB (string username,string password,string usertype,string serverip): This method provides the connection to DB. If connection is refused then it returns false otherwise it returns true.
2. INSTRUCTOR INTERFACE MODULE

This class will handle all of the instructor operations. By this class instructor can see all of the courses, and select one of them. In addition to that he/she can start the selected course. There is no additional functionality of this module.
3. ADMIN INTERFACE MODULE

This class provides adding new user and course to database. Only admin can reach and use this class’ functions. Admin can add user and course to system. The functions are attached to the event handlers of the buttons. (i.e CreateCourse, CreateUser). When admin creates a course a folder named course name is created under thec VC folder of the server machine that resides under IIS .

4. VIRTUAL CLASS MODULE

This class controls all of the operations into the virtual class. Basically this class has four major operations. These are drawing operations, controlling the slide show (such as open, pause, resume, next, previous) operations, chat anad Q/A box module and also video module. Our virtual class module has drawing capabilities, editing capabilities, chat, streaming and also displaying slides capabilities.

The followings are the major global variables.

6.1. Members

· Client (TcpClient): Used for handling the connection with the server.
· ReadBuffer (byte []): Hold the message coming from the server.
· UndoBuffer (int [20][]): Hold the last 20 operations.
· LineHashTable (int [][]): Hold all of the lines information. Each row represents a line.
· EllpHashTable (int [][]): Hold all of the ellipse information. Each row represents an ellipse. Each ellipse is represented by two points. These two points create a rectangle (invisible), which indicates the boundary of each ellipse.
· RectHashTable (int [][]): Hold all of the rectangle information. Each row represents a rectangle. Each rectangle is represented by two points.
· SelectedLine: Holds the selected line.
· SelectedRectangle: Holds the selected rectangle.
· SelectedEllipse: Holds the selected rectangle.
· SelectedText: Holds the selected rectangle.
· LineNumber: Holds the number of line.
· RectNumber: Holds the number of rectangle.
· EllpNumber: Holds the number of ellipse.
· TextNumber: Holds the number of text.
· UserType: Holds the type of the user.
The followings are the major functions of the virtual class module.
6.2. Methods

· VirtualClass(string userT, string courseN, string userN, string ipAdress):

This is the constructor of the virtual class module. We have 2 types of constructor (for student and instructor).

· InitialEnable(string): This functions determine that which module is enabled or disabled according to the user type information.
· SendData (string): This method sends the message to server. This message says to server to make some operations.
· DoRead(): Asynchronously read the specified port. Get the inputs which are coming from the server.
· DisplayText(string): Display the chat message into the chat area.
· ListUserButton_Click (string): List the users into the user list area.
· ProcessServerCommand (string): This function makes some operations according to the incoming message (from server). When the client gets any command message, this function is called with this message. And according to this message the following operation is done:
1. Chat and Q/A message is got from server then it is dispalyed.

2. Line, rectangle, ellipse and text information is got and these object is created according to this informations.

3. Also slide show informations are also got from server and according to this information related operations is done.
· CopyObject (): This method copies the selected object into the copy array. If the selected object is line, the first column of the copy array will be 1, if it is ellipse, it will be 2, if it is rectangle, it will be 3. This method saves only the type of object and the index of this object, which indicates the place of this object in the array. For example; Copy[0] = 1 means that this object is line and Copy[1] = 25 means that 25. line in the LineVector array.
· PasteObject (): This method pastes the copied object into the clicked position of the mouse. The all points of the copied object moved according to the position of the mouse. After updating the points we call CreateMessage (points, AX) function. CreateMessage function prepare message for sending the server. Then server sends an information message to clients, and then all of the clients can see the new object into the desired points.
· MoveObject (int, int): This method moves the selected object. And also we call CreateMessage(index, MX). The row of the objects’ array will be updated by using this function. If there is not any selected object then this method moves the specified object (according to the arguments, one of the argument shows the type of object an the other represents the index of this object). Then the row of the objects’ array will be updated by using this function.
· SelectObject (): This method is used for selection of objects. Firstly we should indicate which type of object is selected. For ellipse and rectangle we have a rectangle boundary. This method searches the mouse point in these boundaries. If the mouse position is inside the more than one area then the nearest one is chosen. For line, the intersection point between the mouse position and line points is searched. This method saves only the type of object and the index of this object, which indicates the place of this object in the array. For example; Selected[0] = 1 means that this object is line and Selected[1] = 25 means that 25. line in the LineVector array.
· DeleteObject (int, int, int): This method erases the selected object. And also we call CreateMessage (index, EX). The row of the objects’ array will be deleted by using this function. If there is not any selected object then this method delete the specified object (according to the arguments, one of the argument shows the type of object an the other represents the index of this object). Then the row of the objects’ array will be deleted by using this function. If the third argument is 1 then this function returns, else saving this operation into the UndoBuffer is done. If undo stack is full we remove the oldest operation. And add the new operation into the top of the stack. The format of the UndoBuffer for erasing new object is like that:
UndoBuffer [top][0] = type of the operation (‘E’ means creation)

UndoBuffer [top][1] = type of the object (‘L’ means line, ‘E’ means Ellipse and ‘R’ means Rectangle)

And all the points of the erased objects are added to UndoBuffer.
· UndoOp(): When the user clicks the undo button this method is called. If the type of the undo buffer is erase (UndoBuffer[top][0] == E), then CreateMessage(points, UAX) is called for adding this object into white board of all clients. And also add these points into the objects’ array. If the type of the undo buffer is add (UndoBuffer[top][0] == A), then CreateMessage(index, UEX) is called for erasing this object into white board of all clients. And also erase this object from the objects’ array.
· DrawLine (): This method draws all lines according to the LineVector array information.
· DrawRectangle (): This method draws all lines according to the RectangleVector array information.
· DrawEllipse (): This method draws all lines according to the EllipseVector array information.
· AddNewObject (char, string, int): This method has basically two save operation. One is saving into the objects’ array. And the other is saving into the UndoBuffer. The first save is done according to the type of the object. The points in the second argument are added to the next row of the objects’ array, which is specified by the first argument. The points in the second argument are separated with special character. If the third argument is 1 then this function returns, else the second save operation is done into the UndoBuffer. If undo stack is full we remove the oldest operation. And add the new operation into the top of the stack. The format of the UndoBuffer for adding new object is like that:
UndoBuffer [top][0] = type of the operation (‘C’ means creation)

UndoBuffer [top][1] = type of the object (‘L’ means line, ‘E’ means Ellipse and ‘R’ means Rectangle)

UndoBuffer [top][2] = index (index of the object)

· ChangePen (string): If the user is instructor, then this method calls the CreateMessage (properties, CP). If it is not instructor then change the properties of the pen according to the received properties. The argument of this class is separated by special character.
· LoadSlide (string): If the instructor wants to open the slides, which is created before the lesson, this method is called. In this method, CreateMessage (slidename, O) and CreateTempFolder (slidename) are called. This method sends to server a message for downloading the ppt which is converted to images from server. All of the images of this ppt are sent to all clients. And this images are saved into the created folder (by CreateTempFolder (slidename)). Also server sends a special character to each user after sending the images. When the clients got this special character then the clients sends a message to server to indicate that downloading is completed. When the server received this special character from all users then it sends a special character to indicate that ‘you can start to show power point slide’.
· NextSlide (): Show the next slide into the white board as a background.
· BackSlide (): Show the previous slide into the white board as a
background.
· GetAllPptNames (string): This method calls the CreateMessage (‘’, S). This method is called in the constructor of this class.
· UpdateObject (string, char, int): This method is used for updating the points of the object. It has tree arguments which are indicates points, type, and the index object.
B. SERVER SIDE:

This class is the master of virtual classroom that handles all client connections, analyses all incoming messages from clients and responds according to those messages. Mainly, server listens two different port one for chat and login operations, and one port for whiteboard operations. When a connection is established from any client an instance of UserConnection class will be created and other operations will be handled.

The most important members are as follows:

· Clients(Hash Table): This data structure will hold all clients as UserConnection objects whenever a new connection is established
· Listener(TcpListener): Used for listening the specific port in the ListenThread the incoming connections from clients.
· ListenThread(Thread): Thread used for listening the ports
· Coursename(string): Used for holding the current online course name

· inst_name(string): Used for holding the name of the instructor.
· Insip(string); Holds the ip address of the instructor.
And the most important methods are as follows:

· SendToClients(string, UserConnection): This subroutine sends a message to all attached clients except the sender. The first argument is the message to be sended and the second argument is used for sending to all clients reside in Clients method. While sending the message the SendData method of UserConnection objects is used.
· Disconnect(UserConnection): This subroutine notifies other clients that sender left the chat, and removes the name from the clients Hashtable.
· DoListen(): This method is used as a background listener thread to allow reading incoming messages.
· ListUsers(UserConnection): This method concatenates all the client names and sends them to the user who requested user list.

· Broadcast(string strMessage); Sends the message that is written from server to all attached clients.

· ConnectUser(string userName, UserConnection sender): his subroutine checks to see if username already exists in the clients Hashtable. if it does, send a REFUSE message, otherwise confirm with a JOIN.

· SendPptNames(string instName, string ppts): This method sends the instructor the files that exists under the course folder.
· OnLineReceived(UserConnection sender, string data) : This is the event handler for the UserConnection when it receives a full line.Parse the cammand and parameters and take appropriate action. Some messages are: CONNECT, GETINSIP, CLEAR, CHAT etc. According to these messages the server acts accordingly.
· CheckAccess(string student) : Checks whether the user has the cappability to use the webcam.
· SendIp() : Sends the instructor ip.
· DownloadFileFromInst(string fileName,string hostip) : Downloads the file from the instructors computer to the courses folder.

· CreateFolder(string nameOfFolder) : Creates a folder under the course folder that will keep powerpoint slides.
· CreatePptFolder(string course, string pptN) : Creates the ppt folder

· PreparePPT(string course,string pptname) : This function brings the powerpoint slides into a openable form on the whiteboard.

· SendChat(string message, UserConnection sender) : Send a chat message to all clients except sender.
C. USERCONNECTION

This class is used for handling the connections to the server. When a new connection is found an instance of this class will be created in server class

and this object will handle all operations. This class encapsulates the functionality of a TcpClient connection with streaming for a single user.

The most important members are as follows:

· Client (TcpClient): Used for handling the connection.
· ReadBuffer (byte []): Used for storing the data received
· Username (string): Used for storing the username
And the most important methods are as follows:

· UserConnection (TcpClient): Start the asynchronous read thread and saves the data to the ReadBuffer.
· SendData (string): This subroutine uses a StreamWriter to send a message to the user. In this routine it locks the stream for no other threads to use the stream at the same time
· StreamReceiver ():This is the callback function for TcpClient.GetStream.Begin. It begins an asynchronous read from a stream.
B. VIDEO/AUDIO MODULE:

Audio/Video streaming is working on Macromedia Communication Server, which is the multimedia server processing Macromedia Flash files with best quality. So, capturing video from webcam and sending it to clients is very fast. There is a only one flash file which is capturing webcam, but when students executes that file it works as a player capturing teacher's camera and microphone.

This file works from broadcast_speaker.html for teacher and broadcast.html for students, these files are located in teachers wwwhome/VC/ and student connects that file from ip address of teacher's computer. This file is created using Macromedia Flash including Action Script programming.

 Steps that are used in Virtual Class Interface:

 - When Instructor executes this interface firstly video module connects to localhost/VC/broadcast_speaker.html and camera starts capturing. This is in constructor of Virtual Class interface when the user is Teacher.

 -When Student executes interface firstly video module connects to TeacherIp/VC/broadcast.html to get Audio/Video from Macromedia Communication Server.

 -Also, second video module shows connected student's audio/video which works from server computer when student clicks webcam start button..

