MIDDLE EAST TECHNICAL UNIVERSITY
DEPARTMENT OF COMPUTER ENGINEERING

Initial Design Report

PAPAGAN
by

Korsan £ Yazilim

DECEMBER, 2005

PAPAGAN Initial Design Report

Contents

1 Introduction 2
1.1 Purpose e 2
1.2 Scope 2
1.3 Description 2
2 Design Considerations 3
2.1 Assumptions and Dependencies 3

2.1.1 Reliability and Interoperability of Used Toolkits and
Libraries L o 3
2.1.2 Portability 0oL 3
2.1.3 Performance00 3
2.2 Development Methods 3
2.3 Goals and Objectives L. 4
3 System Architecture 4
3.1 Papagan Architecture Overview 4
4 Detailed System Design 6
4.1 Graphical User Interface 6
4.2 Class Diagrams e 12
4.2.1 Interface Classes 12
4.2.2 MySkeleton and MyJoint Classes 23
4.2.3 Animation and Motion Classes 24
4.2.4 DataStoreQueryHandler Class 26
4.2.5 AnimationPlayer Class 26
426 Other Classes 27
4.3 Interaction Diagrams 27
44 DataDesign. o o o 31
4.4.1 Database Tables 31
442 XMLDTDs i 33
References 38

Korsan Yazilim 1

PAPAGAN Initial Design Report

1 Introduction

1.1 Purpose

The purpose of this document is to describe how to map the complete
requirements of Papagan Education Tool into software architecture.

1.2 Scope

The initial design of the project focuses on critical implementation prior-
ities and establishes a base for further design processes. A critical imple-
mentation priority guides to a task that has to be done right for the success
of the overall project [1]. Therefore, beginning from the highest abstraction
level of the system, this phase decreases the abstraction by covering the
engineering details of each level until there is nothing to be left unclear for
implementing a practical solution for the problem. However, some design
details are left to detailed design documentation and there may be additions
or deletions to this document in the flow of the design process.

1.3 Description

In the analysis phase, we have stated the problem and specified higher
level description of Papagan. We have tried to capture requirements from
the customers’ perspective indepented of how these requirements will be
accomplished.

On the other hand, the design document is a blueprint for the implementa-
tion of the system. In this document, after giving introductory information
about our initial design report, we continue with design considerations; the
guidelines, aims and general limitations. Then, the very important part of
our document comes, the system architecture. We try to describe the ar-
chitecture from different interrelated views. The design phase should start
decomposing from the highest level system capabilities and stop when key
abstractions are simple enough to require no further decomposition. We
document and visualize the decomposition process and each decomposed
part of the system in the rest of the document.

Korsan Yazilim 2

PAPAGAN Initial Design Report

2 Design Considerations

2.1 Assumptions and Dependencies

2.1.1 Reliability and Interoperability of Used Toolkits and Li-
braries

We use Ogre3D for animating model which is created using Blender3D.
We assume that integration of Ogre3D components to our system is not
problematic.

2.1.2 Portability

Papagan is platform dependent and executable only under Microsoft .NET
framework.

2.1.3 Performance

3D animations in Papagan will need considerable amount of processing
for rendering animations at the rate of 25 to 30 frames per second.

2.2 Development Methods

In general, we partition the problem into simpler subproblems, each of
which can be considered independently (Divide and Conquer); delay some
decisions considered as details to focus on more crucial topics (Stepwise
Refinement); and begin with the most general aspects of the problem which
use other components (Top Down).

More specifically, we have an object oriented approach to design phase.
An object oriented design (OOD) is use case driven and architecture-centric
method. It can provide us benefits of reusability and maintainability. OOD
can be thought of in two phases. The first, high-level design, deals with
the decomposition of the system into large, complex objects. The second
phase, low-level design, attributes and methods are specified at the level of
individual objects [2] .

We use UML for visual modeling. Because of being an use case driven
and architecture-centric method, we can get most benefit from the UML by
using it in OOD method.

Korsan Yazilim 3

PAPAGAN Initial Design Report

2.3 Goals and Objectives

Our design goal is to achieve a well structured system that is functionally,
logically and physically cohesive; formed of loosely coupled subsystems [3].
This type of system is helpful for us to visualize, specify, construct and
document it from different, yet interrelated, aspects. Also, unavoidable

changes can be tolerated easily when working on this kind of system.

3 System Architecture

Every system, even composed of one component, has architecture. Our
main purpose for this phase is to create a suitable architecture for Papagan.
Mainly, our architecture defines major components of Papagan with relations
(structure) and interactions between these components.

3.1 Papagan Architecture Overview

Data Store handles file operations and database queries. This package
interacts with all the packages that need to execute file operations or
database queries.

Editor is able to create or edit animations. This package interacts with
Data Store for the file or database operations. It also interacts with
GUI for the user I/0.

Vocabulary Lessons is able to create or edit vocabulary based lessons. It
contains a specialized viewer for these lessons. This package interacts
with Data Store for the file or database operations. It also interacts
with GUI for the user 1/0.

Games include a vocabulary game called Initials. This package interacts
with Data Store for the file or database operations. It also interacts
with GUI for the user I1/0.

Dictionary includes a categorized lexicon of TID expressions. It is also
supported with additional materials such as pictures and videos. This
package interacts with Data Store for the file or database operations.
It also interacts with GUI for the user I/0.

Korsan Yazilim 4

PAPAGAN Initial Design Report

Data Store
p il e
-

—
—~ \ . e
> # 1 N
- 2 b N s, s
- -
== ~.
=il [Ny N $*‘ e
=<subsystem== \ = T
b <<subsystem>> <<subsystem>> N =<subsystem=> = =
Editor B Yt ==subsystem=>
Vocabulary Lessons Games \ DCictionary Eoa=ttr
i~ R =
. 7 5T e o
~ e e
~ v
T & P
= ==subsystem=» lee =0 -
Command Handler e
o o Lessons

|
\
\
\

M ediaPlayer
% g

—
—

<<subsystems=> <=subsystems>

Papadan Animation
Player i CHl —— - Macromedia
Flash Player
I ~

~
~
Oare MFC Ty
6.0 Picture
Viewer

Figure 1: Structure

FEvaluation package is able to create and evaluate multiple choice exams.
This package interacts with Data Store for the file or database opera-
tions. It also interacts with GUI for the user I/0O.

Lessons include flash animations for TID education. This package interacts
with Data Store for the file or database operations. It also interacts
with GUI for the user 1/0.

Papagan Animation Player includes a player for the 3D animations of TID
expressions. It interacts with Ogre3D external entity to visualize the

animations.

GUI interacts with all of the packages except Data Store. It is the layer
between the user and other packages that needs to communicate with
the user. This package also interacts with the external entities MFC
6.0, Media Player, Macromedia Flash Player, and Picture Viewer.

Korsan Yazilim

PAPAGAN Initial Design Report

4 Detailed System Design
4.1 Graphical User Interface
e Dictionary

PAPAGAN EEX

Dosya Gorinim Yardim

Sizlik

Kategorlyi Se¢
m F
B | Dol
emlik
c| Deniz
S | Deri
Direk
D Dénmek
E | Duymak
F | Diinya
G | E
C1 Elma
Emanet
Ense
J | Enteresan
- p
| K | Erik
. | ‘ ey
Kategori M Evlilik
n|E
| <<Yavas][MNormal H Hizli== l o Eaf |
o | Fasulye

Parmak Hecelemes| P Fener
X, Fermuar

R | Firsat
5 | Fotograf

— ‘\\ 5 | Fotograf Makinesi
! & Rifc]
» g”"i U | Gazete
. Tirmr g 7|
\

0
|Rasim1 ipo i W [video2avi J v
Y

Ek Dosyalar

Menil

Ana Menlye Don Programdan Gik

Parmak Hecelemesi Yapiliyor

Figure 2: Dictionary GUI

Dictionary GUI [Figure 2] is mainly based on two main parts. On
the right of the screen, user can select the word that he wonders to see
its matching animation. After selection, Papagan Animation Player
displays the selected word’s animation on the left of the screen. User
has the chance to arrange the speed of the animation with the help of
the buttons, placed right below the player. Moreover user can choose
to view the fingerspell of the word. The categories that contains the

Korsan Yazilim 6

PAPAGAN

Initial Design Report

selected course is viewed on the right hand side of the player, also the
pictures and the videos related with the word can be displayed on the
menu, placed at the bottom. User can access main menu and quit the
program directly from the menu. Furthermore, all the abilities that a
usual window has are added.

e VocabularyLessonEditor

PAPAGAN Kelime Bilgisi Ders Editorii

Dosya Gorinim

Yardim

Meyveler

EEX

Ders Ayarlan

Baglik: Meyveler |
Kelime Listasi

Kategori: Tiim Kategoriler v
AlBlc(o|E[FlG[HE
D -
Demiik

Deniz

Deri

Direk

Danmek

Duymak

Diinya

E

Elma

Emanet

Ense

Enteresan

Erik

Ev

Eviilik

<< Geri Sar] [Oynat >] ‘ Durdur l l lleri Sar == *
Eklenen Kelimeler
ST Armat 2 |
Elma a
~
Videalar
‘ csm)
Mend
ileri Saniyor
Figure 3: Vocabulary Lesson Editor GUI

Korsan Yazilim

PAPAGAN Initial Design Report

This interface [Figure 3] is designed to reduce the effort to build a
vocabulary training session. User selects the word to be added from
the right end of the screen. The player placed on the left side of
the screen, displays the wanted animation. The tiny menu on the
top right corner helps us to assign the title, to either the interface or
accordingly the lesson. Below the player, the usual video displaying
buttons can be observed. They can rewind, fast forward, play and
pause the animation. Moreover, the menu below the buttons let us to
determine what videos and pictures will be included. The menu on the
right bottom corner, displays the words that are already added to the
lesson. Like any other, a common menu and usual window attributes

are added.

e VocabularyLesson

Documents that are made with the VocabularyLessonEditor part
are displayed with this tool [Figure 4]. End user selects the title from
top right corner and starts to display the selected course. User can
also observe the words throughout the course on the menu below. The
animation, the photos and the videos can be displayed from the menus
given. Like any other interfaces the common parts are included.

e Animation Editor

This interface [Figure 5] is the tool for creating an animation manu-
ally, then attaching the required category, picture and video informa-
tion and finally pushing the package into the dictionary. The menu
on the top right corner helps us to choose matching categories, if it is
not listed, it can also be added with menu’s button. The menu below
is for browsing the pictures and the videos of the word. The package
is inserted in the database with the click on the right bottom button.
The timeline on the bottom is used for expressing the animation. As
all does, usual parts are added.

Korsan Yazilim 8

PAPAGAN Initial Design Report

PAPAGAN Kelime Bilgisi Dersi E@@
Dosya Gorindm Yardim

MeyVS|EF Dersler

Baghk: Meyvaber -

Kelimeler

[

Armut
Elma

[<< Geri Sar] [Oynat >] [Durakiat] I lleri Sar >> l
Resimler Videolar
“ n
Menii
Video Oynatilyor

Figure 4: Vocabulary Lesson GUI

o FExam Editor

Vocabulary exams are created via this interface[Figure 6]. On the
right side of the screen, dictionary is listed for selecting the required
words. Below this menu, we can adjust the time constraint and the
scope of the exam. Additionally we can see what we added up to then
and like all we meet the usual needs.

Korsan Yazilim 9

PAPAGAN

Initial Design Report

PAPAGAN Animasyon Diizenleyic|

Dosya

Gorindm Yardim

[<<Gerisar] [Oynat >

] [owadat | [llenisar=> |

Mend

Sol Bilek Eklemi:

Sag Bilek Eklemi:

Bayun Eklemi:

Bal Eklemi:

Zaman Gizelges|

Ana Menilye Din

Programdan Cik

Dosys Ozeliikleri | Eklem Ozellikleri |

Kategoriler

Sayilar

Gilnlisk Hayat -
Kategori Ekle

Resimler

Resim1.jpg
Resim2 jpg g

Videolar

Videol avi &
VideoZ.avi

Etiket: Ev |

Animasyonu Kayd ;k

>

Animasyon Kaydediliyor

e FExam

Figure 5: Animation Editor GUI

This interface[Figure 7] is for displaying the exam created by the
Exam Editor. The animation and the buttons for it are listed on the
top left corner. The answer can be given from the bottom menu or
the answer shall not be given. Moreover the exam’s name and the
remaining time are also displayed on the top significantly.

Korsan Yazilim

10

PAPAGAN

Initial Design Report

PAPAGAN Sinav Diizenleyicisi

Dosya Gorinam Yardim
Hayv%ql_?;omemi Kelime Listesi
_ aAle[c[oE|F|c|H]®
D ~
O Kedi Saruyu Sil De
e et
Ot ol
() Egak Danmek
Duymak
Soru 2 DEU"Ya
O Horoz Soruyu Si Elma
sio =
) Tavuk Enteresan
() Ordek EL"*
Eviilik
E
Fare
Fasulye
Fener
Fermuar
Firsat
Folografl
Fotodraf Makinesi 3
(oo |
Sinav Ayarlar
Baglk: Hayvanlar Alemi
Silre: o1t 2
Meni
Ana Meniye Din [Programdan Cik J
Kelime Ekleniyar
Figure 6: Exam Editor GUI
e Lesson
This interface is just like any other animation player tool. We can
display the exported animation, for example a Flash animation, with
the buttons added to the menu.
o Games

The game screen[Figure 9] involves the animation player on the left
side. The letters are typed into the boxes supplied and on the bottom

right corner, hint

menu can be used. User shall change what he typed

Korsan Yazilim

11

PAPAGAN Initial Design Report

PAPAGAN Sinav E'@'E

Dosya Gortndm Yardim
Hayvanlar Alemi
01:13
Sinav Secanekleri
Sinav: Hayvanlar Alemi vl
SoruNe: |1 -
<<GeriSar | [omat> | [pumkat | [lenSar>>
Soru 1
@ Kegi Bos Brak
g T, e
O At
(O Esek
Menii
Ana Mentye Don Programdan Cik
Soru Bog Birakilyor

Figure 7: Exam GUI

until he presses the submit button. His current score also is displayed.
Likely, the usual actions are listed in this interface.

4.2 Class Diagrams
4.2.1 Interface Classes

Interface classes are used in order to conduct user commands to the other
related classes and retrieve the data and animations and visualize them.
The methods implemented in these classes are triggered by user events such
as selecting an item from a combo box, clicking a button or checking a box.
Interface classes generally contain minimum data item for data only for visu-

Korsan Yazilim 12

PAPAGAN Initial Design Report

EEX

Dersler
Dosya Gorinim Yardim

<< Geri Sar] [Oynat >] [Duraklat] [fleri Sar ==]

Menu

[Ana Meniiye Dén] [Programdan Gk]

Yayin duraklatildi.

Figure 8: Lesson GUI

alization and they use the other classes’ methods in order to perform desired
operations. The interaction with the interface objects (such as combo boxes
, textboxes) are not described.

All interface classes are derived from the base class Baselnterface.

Base Interface

This is an abstract base class [Figure 10] which is used to derive the other
interface classes in order to perform interface functionalities. Baselnter-

Korsan Yazilim 13

PAPAGAN Initial Design Report

ilk Harf (=13

Dosya Gorinim Yardim
Menil
Yiiksek Skortan Gor
Oryun Ana Meniistine D3n
#Ana Mentiye Din
Programdan Cik
[<< Yavas] I Normal I [Hizh >=]
Q@ o N
) Kategorsinl Gor
Su anki toplam puan : 254 Parmak Hecelemesini Gir
Tpucu Kullaniliyor

Figure 9: Games GUI

face contains minimum functionality which are common in all other derived
classes . This functionalities can be stated as follows:

playAnimation() plays a sign animation activating the AnimationPlayer.
playFingerSpell() retrieves the sign animation of the word and plays it.
play Video() plays video of the word calling related ActiveX object.
stopAnimation() stops the current animation play thread.
rewindAnimation() rewinds the animation back.

viewPicture() views the picture of a word.

Korsan Yazilim 14

PAPAGAN Initial Design Report

Easelnterface
& animation : Animation®
& fingerspell : vectoreAnimation >
&player : AnimationPlayer™

®playAnimation()
®playFingers pell()
‘StUpAn imation()
SrewindAnimation()

BplayVideo()
v ‘\AewF\cture()
AnimationE ditorinterface
= DictionaryInterface
_—
=
LnttialsiniErans Lessonsinterface
E‘ —
| ExamEditorinterface ‘ ‘ VLE ditornterface H WLViewerinterface ‘ | TakeExaminterface ‘
I -

Figure 10: Base Interface

After describing the base class Baselnterface the description of interface
classes can be expanded explaining the derived classes.

VLViewerInterface Class

VL stands for Vocabulary Lesson [Figure 11] for short. It has two
protected attributes , one is the current lesson word (namely lessonWord)
to display to the user The other is a pointer to a VLViewer object, which is
used to fetch other words and related data.

As described above, the methods of VLViewerInterface mostly contain
calls to vocabularyLesson object methods. They usually do not have param-

eters, but they retrieve parameters from user interface objects when calling
vocabularyLesson methods.

setPanel() is sets the user interface components.

getVocabularyLessonList() is a method that invokes vocabulary lesson to
fetch the names of available lessons list and displays them.

Korsan Yazilim 15

PAPAGAN Initial Design Report

Baselnterface

Y0Yiewednterface

TecurrentWord © LessonWord
Triewer W Liewer ©

®yetocabularyLessonList()
%startlesson()

®setPanel()

Fnextyvord()
®previousWWord()

get'Word Atlindex : int)
®selectlesson()
#finishLesson()

Figure 11: VLViewer Interface

A selected lesson can be started using startLesson(). nextWord(),
previousWord() and getWordAt() methods provide navigation through the
lesson. Animations,videos and pictures can also be viewed using base class
facilities.

VLEditorInterface Class

VLEditorInterface [Figure 12] provides the interface to access the vo-
cabulary lesson editor. It has a pointer to a VLEditor object, a vector of
strings that contain current available categories in the database, the cur-
rent word names related to selected category (if selected any, all dictionary
otherwise), pointer to the currently selected word, and name of the current
lesson.

The panel is set using the setPanel() function. Saving or loading a
lesson, or clearing the content is done by the related methods.

User can invoke the methods of the VLEditor Object in order to
navigate through the dictionary, add or remove lesson words to lesson;

Korsan Yazilim 16

PAPAGAN Initial Design Report

Baselnterface

W LEditorinterface
Beeditor : V0LEditar *
Tpcategories | vector <String=
TedictionaryVWordMames : vectar <String=
elessonmWordMames © vector <String>
ecurrentLessonWord © Lessonord *
Tecurrentord © WWard *
Tglesson ; String

®yetCategories()
SgetyWordNames()
®qetSelectedvWord()
‘setF'aneI()
SaddWordToLesson()
SaddvideoTowaord()
SadPicture ToWord()
®remme PictureFromiyvord()
SremovevideoF roriiord()
®amveleszon()
®clearlesson()
®loadLesson()
SmovevvordUp()
FrmovevvordDown()
®remmelWordF romlesson()

Figure 12: VLEditor Interface

add/remove pictures and videos to the lesson. The user can also move a
word up and down in the lesson.

Also an animation or a video can be played or a picture can be viewed
using base class facilities.

DictionaryInterface Class

Dictionary interface [Figure 13]is the way to interact with the dictio-
nary of PAPAGAN. It contains a pointer to a Dictionary object, a string
vector containing the category names available in the database, and a pointer
to the currently selected word as protected attributes.

The methods of the Dictionary object are invoked by the methods of
this interface. getCategory() fetches the available categories whereas get-
WordNames() get the names of the words belonging to a category. getSe-

Korsan Yazilim 17

PAPAGAN Initial Design Report

Baselnterface

Dictionarylnterface
@dictionary ; Dictionary*
o ateqoryMarmes | vector<String=
&ynordhames ; vector <String=

SyetWaordNarmes()
%petSelectedvord()
®setPanel()
%getCategoryNames()
Becporty ide of)

Figure 13: Dictionary Interface

lectedWord() retrieve the contents of the selected word. Also animation of
a word can be exported to video using the exportVideo() function.

As usual, play animations,videos and pictures can be viewed using the
base class facilities, setPanel() method adjusts the GUI components.

InitialsInterface Class

This class [Figure 14] provides interface to user to play initials. But
it differs from the other interface classes in some way. The other interface
classes completely separate the business logic from the interface. In initials
interface, some operations are done in user the interface level since the in-
teraction is with a single word only and, the timer used to keep time is in
the user interface side.

This interface contains a timer that sets that used to terminate cal-
culate score/terminate game. Also there is a pointer to the word which is
currently asked to the user, and integer attributes keeping remaining time
and current score. The categories of the question word are placed in a string
vector

startInitials() starts the game and gets the first word, checkAnswer()
evaluates the users answer and calls successfulAnswer(). If the answer is

Korsan Yazilim 18

PAPAGAN Initial Design Report

Easzelnterface

InitalsInterface

Tetimer : CTimer

Tgwvord ; Word *

Tetime @ int

Tescore | int

Tecategories vector<String=
Tginitials : Initials *

Sstartinitials()
®zetPanel])
$getCategaries()
Sgetvord()
®checkAnswer)
$zuccessfulAnswen)
‘check'ﬂmer()
SterminateGarme()
QdecreaseScore()
$finishG ame()
$playFingerSpell()
SincreaseScore()
$zendinswen)

Figure 14: Initials Interface

correct score is updated and new word is fetched by getNewWord(). CTimer
object timer invokes checkTimer() to check whether time is up if the time
is up terminateGame() is activated. When a hint is displayed (namely a
category of the word), decreaseScore() is invoked in order to adjust the
score.

When the game is finished, finishGame() is called, if the score is higher
than the score then the name of the player is recorded as the high scorer.

Korsan Yazilim 19

PAPAGAN Initial Design Report

Baselnteface

AnimationEd todnteface
&peditar - Editar

RsetPanel()
®selectloint()
¥setlointPose()
®addviden()
%addPicture()
BsetCategory()
Wgetiard()
®savednimation()
¥loadSelectedointP operties()
¥setlabel()
¥addCategory()
¥setlointFrames()
®CreateNewidnimation()
®loadd nimation(xM LDoc)

Figure 15: AnimationEditor Interface

AnimationEditorInterface Class

This interface [Figure 15] provides a way to edit animations. It has
a pointer to the currently selected word, and currently selected animation.
With selectJoint() user selects a join in cooperation with OGRE’s event
handler. User can add start/end points of a motion frame and sets motion
to the selected joint using setJointFrames(). Also the model in the screen
changes its pose upon setJointPose() method.

loadSelectedJointProperties() return the properties of the joint from
the skeleton (min/max rotations on axes , number of axes available to set
the proper motion.

getWord() loads the current word, in order to be update pictures and
videos using the methods related with pictures, videos and categories. Call-
ing setCategory() and getLabel() functions, current word can be edited.

Korsan Yazilim 20

PAPAGAN Initial Design Report

Animation can be saved using saveAnimation().

Also the pictures, movies and current animation can be viewed using
the methods provided by the base class.

Baselnterface

Lessonsinterface
Bpselectedlesson | String

Yyetlessonsbist() : String[]
¥setSelectedlessan(lessonMame © String)
YyetSelectedlessan() : Sting
¥playSelectedlesson()

VzetPanel()

Figure 16: Lesson Interface

LessonInterface Class

This class [Figure 16] provides an interface to select and play flash
animation lessons.

ExamEditorInterface Class

This class [Figure 17] provides the interface to prepare en exam. It
contains an pointer to Exam object, all operations call methods of this
Exam object., examName the string containing the name of the exam, a
time integer an integer index to selected words and a char denoting the
correct answer.

Korsan Yazilim 21

PAPAGAN Initial Design Report

Baselnterface

?

ExamEditorinterface
l%exam Exanm
EpexamNarme : String
l%d\ctmnaryWDrds wector <keyvalue=
ptime : int
l%selected\l\furdlndex int
&selectedLetterindex : char

SgetWordList() | vector<KeyV alue=
®selectWordF romLi st()
SchangeTime()
.SEVEEXEFFIU
¥delete Question()
®zetExamiamel)
@createMewCuestion()
®sethnzwer()
SsetPanel()
®createhlewExami)
BeditExistingExam()

Figure 17: ExamEditor Interface

A new exam can be created using createNewExam(), loaded to be
edited using editExistingExam(). A word can be retrieved according to
its category. It can be added to the exam question as a selection. With
setAnswer() function, a selection can be marked as true. A new question
can be created or an existing question can be deleted. Using the methods
createNewQuestion(), deleteQuestion() . changeTime() sets the exam time.
At the end an exam can be saved.

TakeExamInterface Class

TakeExamlInterface [Figure 18] provides user the interface to take an
exam. It contains pointer to an exam object, a string vector holding the
available exam names, string for the name of the exam, integers denoting
the number of questions and score .

Exam list can be retrieved, an exam can be selected and started. Using
the methods provided, user can answer a question, leave one unanswered and
proceed to next questions.

Korsan Yazilim 22

PAPAGAN

Initial Design Report

Baselnterface
N —————

TakeExaminterface

Epexamlist : vector<String>
EselectedExamMame - Sting
&pcumentCuestionhumber : int
& scoreAterFinishedExam : int
SpselectedExanm | Exarn®

SpetExarmlist()

$startSelectedExam()
$finishCurentExam() - int
SnextQuestion()
#eaveCuestionUnanswered()
$selectQuestion()
@selectChoice()
@¥displayScoreAfterr inishing()
setPanel()
@selectExamiexamName © String)

Qpl ayAnirnation(anAnimation : Anirmation)

Figure 18: TakeExam Interface

When the exam is finished or the time is over, exam is finishCur-
rentExam() activated and the exam is evaluated.

4.2.2 MySkeleton and MyJoint Classes

Wiyl oint
Foname : Sting
fohone : Ogre:Bone *
ouis constint = 1
oy constint = 2
oz4s constint = 3
FexRotation: float = 0 0F
FoxRotationhin: float = 0.0f

Elbavdoint (| RoxRotationhax: float = 0.0f
— SoyRotation: flost - 0.0f
*EIhowointString) | TeyRotationMin: float = 0.0f

ToyRotationhiax: float = 0.0
FezRotation: float = 0.0f

TpzRotationmin: float = 0.0f
— RorRotationhax: fioat = 0.0
SyristlointString) Srotateq)
R
Swaistiointnam e String)
[Shoulderdoint NeckJaint

Fingeriaint

1 I
‘ Sshaulder) oint(Sting) | ‘ ¥ eckJoint(Sting)

Figure 19: MySkeleton

MySkeletan
ogreskeleton : Ogre:Skeleton =
1eftvvris L oint: VWristloint™

T oint: Wristioint*
IeftElowJoint : Elbow.loint
&rightElbowJaint : ElbowJoint™

(& 1eftshoulderloirt : Shoulderlint™
@rightshaulderJaint : Shoulderoint
@necklaint: Neckloint

8w aistloint* - WaistJaint®
&eftf11 : FingerJoint
FingerJaint®

FingerJaint*

FingerJaint®

FingerJaint®

FingerJaint:

FingerJaint:

FingerJaint®

FingerJaint®

Fingerdaint®
Fingerlaint
Fingerlaint
Fingerloint*
FingerJaint
FingerJaint
Fingerloint
Fingerloint:
FingerJaint
Fingerlaint

=

&rightts2

iy keleton(Ogre - ‘Skeletan *y

“applyRotation rotationDegreeList vestor<Rota anDegree>) : void

and MyJoint

Korsan Yazilim

23

PAPAGAN Initial Design Report

MySkeleton class [Figure 19] is a class encapsulating the model which will
be used in the animations. MySkeleton consists of a Ogre::Skeleton and
numerous joints which are subject to move in the application.

MyJoint is an underlying class in MySkeleton. They consist of a pointer to
an Ogre::Bone and float angle values which are the limits of rotation of joints
. There are joint classes derived from MyJoint named as follows: WristJoint,
ElbowJoint, ShoulderJoint, NeckJoint, WaistJoint, FingerJoint. These join
types do not differ in methods but differ in rotation limits described above.

The joints are shown in the following skeletons [Figure 20 21] and the
decision is made according to the procedure described below.

First of all, we start with selecting the initial model or its modified version
from MakeHuman which is a tool, providing 3D virtual human. Exporting
the file, with an .obj extension which is compatible with Blender3D, we can
use the concepts that Blender3D supports. Besides these, we need to implant
bones into the character for a realistic animation. Having the character, we
should first build a hierarchy of bones that is namely the skeleton. Any
place that can move, has a bone attached to it. The term Bone is used
for specifying the rotation axis. For example, you can implant bones into
the eyebrows of the character for providing eyebrow mimics even there is no
such bone in real eyebrows. We need both forward and inverse kinematics
concepts in order to keep the skeleton consistent and reasonable. Blender3D
ensures forward kinematics if the hierarchy is correctly expressed. Having
the parent child relation in hand, we can force the skeleton to support inverse
kinematics. Inserting the required dummy bones to the skeleton, inverse
kinematics can be implemented. Assuming a thoroughly matching skeleton
object pair is acquired, we shall pass these to the Blender Ogre Exporter.
This tool can get a Blender3D file and pass it to Ogre3D, besides splitting
the file into the mesh file and the skeleton file. In Ogre3D, you can manually
rotate and translate the selected joint.

4.2.3 Animation and Motion Classes
Animations [Figure 22] are stored in the instances of a class Animation,

each animation consist of a motion list vector for each joint.

Motion class consists of float values for rotation angles for each axis, a
start and finish time for the rotation.

Korsan Yazilim 24

PAPAGAN Initial Design Report

Figure 20: Skeleton

Korsan Yazilim 25

PAPAGAN Initial Design Report

Figure 21: Hand

4.2.4 DataStoreQueryHandler Class

This is an operational class [Figure 23] connects PAPAGAN with the
datastore (xml files and database). Its methods provide the capability to
retrieve animation and vocabulary lessons and exams from xml files, update
and query the database, returning info and animation to the system.

4.2.5 AnimationPlayer Class

This is the class [Figure 24] that each interface class contain a pointer to
one of its instances. As seen in the name it’s a class that controls animation
playing. playAnimaton() and playFingerspell() methods start animation
and fingerspell. These methods are firing threads to play the related ma-
terial. The playing threads (either single animation or fingerspell) can be
stopped by stopAnimation() . rewindAnimation() sets the animation to a
desired point.

Korsan Yazilim 26

PAPAGAN Initial Design Report

Animation

EleftyristM otionList : vector<Motion=
Eright'ristM otionList : vector<Mation=
EleftE lhowMotionList : vector<M otion=
&rightE lhowM otionList : vectorsMation=

& leftShoulderMationList © vector<Mation>
@nghtShDu\ der otionList : vector<Motion=
& neckMaotionlist : vectoraMation>
&pwaistMotionList © vector<Motion=

¥createXmi(animationkey : int) : void
W ation :read}{rnl(ammatiml'(ey int) : vaoid
: getlointRotationAnglelist(time © int) . vector<RotationAngle=
gxggzt:g:i:g:z :E:: ®addleftWristh ation{motian : Maotion) : void
@\szotationAngle e FaddRightyWristh ation(mation : Mation) : void
@start - int ®addleftElbowh otion(mation © Mation) - void
Efinish - int PaddRightEIbowh ati on(mation : Motion) : void
®zddLeftShoulder oion{mation © M otion) : void
®zddRightShoulder otion(mation : Maotion) : vaid
FaddMeckMation(rmaotion : Mation) : void
®addvWaistM otion(mation : Motion) : void
FrrodifyLeftWristh otion(index : int, mation : Maotion) void
®rmodifyRightyWristM otionfindex : int, mation © Motion) - void
FrrodifyLeftElbow otion(index : int, motion : Mation) : wid
"mudlfleghtElthMDtlnn(mdex int, motion : Mation) . void
FrrodifyLeftShoulderMotionindex : int, mation : Motion) : woid
FrnodifyRight Shoulderh otion(index © int, mation © Mation) © vaid
®rnodifyhleckMation(index : int, mation : Motion) : void
FrnodifyvWaistM otionindes : int, mation : Motion) : vaid
"Anlmatmn()

Figure 22: Animation and Motion

4.2.6 Other Classes

The other classes [Figure 25, 26, 27] are classes performing operations
about editor, lessons, vocabulary lessons, game and exams. The main func-
tionality and interaction is described in interface classes and their diagrams
are illustrated below.

4.3 Interaction Diagrams

Dictionary

After setting DictionaryInterface [Figure 28], whole dictionary is retrieved
from database via DataStoreQueryHandler object. As described in Dictio-
nary Use Case Diagram in requirement analysis report, at any time, user
searches for a word and plays either its sign animation or finger spell.

Korsan Yazilim 27

PAPAGAN Initial Design Report

DataStoreCueryHandler

®getAnimation(id © int) : Anirmation®
®petAnimation(narme © String) . Animation”
®petFingerSpelliid © int) - vector<Animation®s
Saddvvardinord - Word™)

© Pictures(word : Ward®)

hcopyVideosfword | Word®)
draddvardtoDatabase(word = Word®)
EaddAmmatlunTU}G\flL(anlmat\un Animation®, ward . Word®)
®getvocabularylessonCategonies() | vectar<String=
’get\/ncahularyLesson(lessnnname s string) XM LDoc
®savey ocabularyLesson)

‘getLessun(). sinffile: String

®saveExam()

#¥loadExam(examMame © String)
®petDictionaryFromDatabase() | Dictionary®
®petExarmlist() | wector<String=

®getlessonlist() | vector=String=

®getExam()

SoetWordForlnitials(initial Char : char)
®getCategories () vectar<String>
®petHighScore() « int

Figure 23: DataStoreQueryHandler

AnimationPlayer

S etinitial()

¥playAnimation(anAnimation : Animation®, speed : int, stattFrame : int)
®playFingerSpellfingerSpell | vector<Animation *=, speed : int, startFrame : int)
¥pausednimation()

Srewindanimation(s tartFrame © int)

Figure 24: AnimationPlayer

Animation Editor

User has two basic choices [Figure 29], either editing an existing animation
or creating a new one. However, for both of the choices, system allows to
select a specific joint, set a time interval and modify the final position of the
model for the selected joint. Obviously, user can save the animation as he
completes setting model’s pose for each time frame.

Exam Editor

After setting the Exam Editor Interface [Figure 30], system creates a blank
exam then allows user to set it properties as duration and add any number

Korsan Yazilim 28

PAPAGAN Initial Design Report

Exam

Bvexamiuestions : vector<ExamQuestion *=
SpexcamDuration : int
BremainingExarmTime : int

score :int

BpcumentExamQuestionMo © int

Estitle : String

®setExarnDurationftime : int)
¥insertNewExamuestion(answerD © int, nurberOfChoices : int)
SgethlextQuestion() | ExamGuestion
Sstantxam()

SfinishExarm() : int

SevaluateAnsweruserChoice : Keyy aluePair)
$getExamQuestions() - sector<Examuestions=
$Esam(name © String)

Sgeneratexi L)

| adEx armF rormd L miPath : String)
SremoveCuestion(index : int)

BcetTitle(name : String)

¥saveExam()

Key aluePair ExamCuestion
Q}key int EpanswerlD - int
&pvalue : Stiing &choices © vector<KeyV alueP air>
Spetvalue() ®eval uate(se lectedChoice © KeyWaluePair) : bool
Vgetkey() ¥ExarmQues tion@answedD : int, nurberOfChoice s - int)
Vsetkey() ®ranclom zeChoices()
Ysetvalue() Fsettnswer(aWordlD © int)

Figure 25: Exam

of questions. Obviously, exam is saved for further usage.

Exam

After Take 31 is set, all the exams are retrieved from data store in order
to let user to choose one of them. When the time is up or user explicitly
finishes the exam, score is displayed.

Games

As it is described in Initials Game [Figure 32] Use Case Diagram, in re-
quirement analysis report, until user quits the game he receives new words
as he succeeds in the previous one. When a wrong guess is made, user loses
points. On the other hand, for a successful guess new points are gained.

Korsan Yazilim 29

PAPAGAN

Initial Design Report

VLViewer

vocLesson : VocabularyLesson*
&lessonWord : LessonWord *

QgetVocabu\aryLesson(name‘ String) : XMLDoc
@setl esson()
@getVocabularyLessonList() : vector <String>
$getNextWord() : LessonWord*
®getPrevious Word () : LessonWord*
®get\WordAt(index : int) : LessonWord*
®getlessonWords () : vector<String>

O

|

|
VocabularyLesson

Rwords : vector <Word *>
Teposition : int
fname : String

@V ocabularyLesson@XmiDoc : XMLDoc)

@V ocabulalyLesson(ame : String, words : vector<LessonWord *>)

@getNextWord() : LessonWord *
@getPreviousWord() : LessonWord *
@getWordAt(index : int) : LessonWord *
®getName() : Sting

$getWordList(: vector <String>
®saelesson(: bool

VLEditor

gvocabularyLesson : VocabularyLesson *
&dictionary Words : vector<Word *>
lessonWords : vector <LessonWord *>
lessonList : vector <String>
pcategoryList | vector<String>

D & 3 G5

®getWordNames() : vector <String>

®getl essonWordNames) : vector<String>
$getCategoryltems index : int)

$getl essonName() : String

$getlessonWord(index : int) : LessonWord *
®getWord(index : int) : Word *

®addWord(index : int)

®removeWord (index : int)
®addPictureToWord(picturelndex : int, wordindex : int)
®addVideoToWord(videohdex : int, wordindex : int)
®remoweVidecFromWord(videdndex : int, wordindex : int)
®remowePictureF romWord(picturelndex : int, wordindex : int)
®moveWordUp(wordindex : int)
®moveWordDown(wordindex : int)

$saelesson(name : String) : bool

clearlesson()

®loadLesson(index : int) : bool

®getlessonNames()

SvoidGetlessonWords()

Figure 26: Vocabulary Lesson

Lessons

Initials

&eword : Word *
Fpscore : int

PstartGame()
“®getWord(aWord : Word *)
®successfulAnswer(score : int)
®getCategories() : vector<String>
®terminateGame() : bool
®checkHighScore() : bool
%finishGame()
@rrandomChar() : char
&PgetWordStartsWith(@Char : char)
%updateHighScore() : bool

Figure 27: Initials

Most of the work is done by an external entity, in other words Flash Player,
for the lessons section of PAPAGAN and user only [Fgure 33]selects a lesson
from Lessons Interface and plays it.

Vocabulary Lesson Editor

User either edits an existing lesson or creates a new one [Figure 34]. When
he chooses to edit, the selected lesson, which is stored as an XML document,

Korsan Yazilim

30

PAPAGAN Initial Design Report

Figure 28: Dictionary

is retrieved from data store and loaded. For both of the cases, user shall
insert/remove words, pictures and videos into/from the lesson. Obviously,
changes are saved when user finishes his job.

Vocabulary Lesson

User simply selects an existing lesson [Figure 35] in the data store and starts
it.

4.4 Data Design

Revising the ER diagram in the requirement analysis phase, word data
will be kept in a mySQL database, vocabulary lessons and animation data
will be stored in XML files whose DTDs are given below.

4.4.1 Database Tables

ITEM (
ITEMID: INTEGER,
ITEMNAME: CHAR(30),
ANIMATIONPATH: VARCHAR(100)

Korsan Yazilim 31

PAPAGAN Initial Design Report

| el | | Annmonsdytera e | | a-~=-.o-|| it || \-.w:-.c-\::-z-l

s ? |
d o |

FaAiTTOeE T

SRR ANIVESON

| | i

| |
| |
| |
| |
| |
| |
| |
| |
1 |
| |
i |
| |
| |
| |
| |
| |
| |
| I
| |
-

Figure 29: Animation Editor

PICTURE (
ITEMID: INTEGER,
PICTUREPATH: VARCHAR(100)

)
VIDEO (
ITEMID: INTEGER,
VIDEOPATH: VARCHAR(100)
)

Korsan Yazilim 32

PAPAGAN Initial Design Report

‘ :MeinGU| | | : ExamBditorinterfs os ‘ ‘ . Exam | E EstsEm’a‘I‘.;.e--i-ar:I?|
]
Exam{String

setExambDurstion{int) |

?*.!wex"ExsrrC.us[icn;i":.|i:1!,.

s@vsExam] |

l satPanal) 1
I'J cregtelawEwaam!)
|
|
|
|
|
|
|
|
|
|
I

\i seveExam| |
|
|
|

Figure 30: Exam Editor

CATEGORY (
CATEGORYID: INTEGER,
CATEGORYNAME: CHAR(100)

)

CATEGORIZED (
ITEMID: INTEGER
CATEGORYID: INTEGER

)

4.4.2 XML DTDs

e Animation

<!ELEMENT animation motion+ >

<!ELEMENT motion EMPTY >

<!ATTLIST motion joint (leftWristJoint | rightWristJoint |
leftElbowJoint | rightElbowJoint | leftShoulderJoint |
rightShoulderJoint | neckJoint | waistJoint | leftll |

Korsan Yazilim 33

PAPAGAN Initial Design Report

‘ MainG U ‘ 2 TakeExamInterfa:% ‘ : Exam H 2 Da‘taStoreQuergHandl%g‘ : AnimationPIay;eg‘

T T T T T
setPanel’) | | { |

etExdmList() _[]

seILf.:tExam(String) |

= getEkam(1 i

s{arﬁ%xam(j |

ExamiString)

1% [remaningTime = 0] getNeSdQuestion(1

iy s ;élayAnimation(Animat jon *,int, int)

1525 evalua'teAns:».v\:er(KeWaluePair)
[fe——

finishExam(

SCOFe

Figure 31: Exam

left12 | left21l | left22 | left31l | left32 | left4l |
left42 | leftbl | left52 | rightil | rightl2 |
right21 | right22 | right31 | right32 | right41l |
right42 | right51 | right52) #REQUIRED >

<!'ATTLIST motion startingFrame CDATA #REQUIRED>

<!'ATTLIST motion endingFrame CDATA #REQUIRED>

<!'ATTLIST motion rotationAngleX CDATA #REQUIRED>

<V'ATTLIST motion rotationAngleY CDATA #REQUIRED>

<!ATTLIST motion rotationAngleZ CDATA #REQUIRED>

Korsan Yazilim 34

PAPAGAN Initial Design Report

=0
— | |
| |
1.7 getWordrorinitisls{cha | |
1 playehnim.at! -'f:‘.'l”-: tint |
I
2.7 [Hint : [eEegondoetCateqonzs | |-||
= 2.1, getCatagons:
I
R Gedd N |
= 1.3.1.% playFingsrSpe F’:l:l”.‘-‘ mat nt, int] |
-| | 2= getFingarSpaiifing |

n
T
Tl
I

D27 [unsucoesgllAnsweriecessstoorg

Figure 32: Games

e Lesson

<!ELEMENT lesson (word+)>

<!'ATTLIST lesson title CDATA #REQUIRED>
<!ELEMENT word (animation, picturex, video*)>
<!'ATTLIST word name CDATA #REQUIRED>

Korsan Yazilim 35

PAPAGAN Initial Design Report

:MainGUl : Lezsonzinterface : DataStor=QueryHandler
|
|
|
|
|
|
|
|
|
|
I

]
i

=etP anel }

PRy A

getle=sonlist()

set5eleftedLesson(String)

getleszon()

1

plﬂ;.G-Flsctdeseecm }

-—

—_—

|
|
|
]
|
|
|
1
|
|
|

Figure 33: Lessons

<!ELEMENT animation (motion+)>

<!ELEMENT motion EMPTY>

<!ATTLIST motion joint (leftWristJoint | rightWristJoint |
leftElbowJoint | rightElbowJoint | leftShoulderJoint |
rightShoulderJoint | neckJoint | waistJoint | leftll |
leftl12 | left21 | left22 | left31 | left32 | left4l |
left42 | left51 | leftb52 | rightll | rightl2 |
right21 | right22 | right31 | right32 | right41l |
right42 | right51 | right52) #REQUIRED>

<!'ATTLIST motion startingFrame CDATA #REQUIRED>

<!ATTLIST motion endingFrame CDATA #REQUIRED>

<!ATTLIST motion rotationAngleX CDATA #REQUIRED>

<!ATTLIST motion rotationAngleY CDATA #REQUIRED>

<!ATTLIST motion rotationAngleZ CDATA #REQUIRED>

<!ELEMENT picture (#PCDATA)>

<!ELEMENT video (#PCDATA)>

Korsan Yazilim 36

PAPAGAN

Initial Design Report

nHzEngiEr |

e Exam

<!ELEMENT
<!ATTLIST
<VATTLIST
<!ELEMENT
<!ATTLIST
<!ELEMENT
<!ATTLIST

Figure 34: Vocabulary Lesson Editor

exam (questiont+)>

exam title CDATA #REQUIRED>

exam duration CDATA #IMPLIED>
question (choice+)>

question answerID CDATA #REQUIRED>
choice EMPTY>

choice id CDATA #REQUIRED>

Korsan Yazilim

37

PAPAGAN Initial Design Report

“ pEy AnimBicnpanimaon <

Figure 35: Vocabulary Lesson

References
[1] http://www.techiwarehouse.com/cms/engine.php?page_id=18a41ffa
[2] http://cs.wwc.edu/KU/SEBOOK/Design.html

[3] Booch, Rumbaugh, Jacobson. The Unified Modeling Language User
Guide Addison Wesley, 1998

Korsan Yazilim 38

	kapak.pdf
	initdesign.pdf
	Introduction
	Purpose
	Scope
	Description

	Design Considerations
	Assumptions and Dependencies
	Reliability and Interoperability of Used Toolkits and Libraries
	Portability
	Performance

	Development Methods
	Goals and Objectives

	System Architecture
	Papagan Architecture Overview

	Detailed System Design
	Graphical User Interface
	Class Diagrams
	Interface Classes
	MySkeleton and MyJoint Classes
	Animation and Motion Classes
	DataStoreQueryHandler Class
	AnimationPlayer Class
	Other Classes

	Interaction Diagrams
	Data Design
	Database Tables
	XML DTDs

	References

