FINAL DESIGN REPORT
orRIO

BELLATRIX
DIGITAL CIRCUIT SIMULATOR

Emin OZCAN - 1298090

Mehtap Ayfer PARLAK - 1347855
Mehmet Ergin SEYFE - 1298215
Ilgin YARIMAGAN - 1409101
Eren YILMAZ — 1298470

Table of Contents

I INEEOAUCTION. ...ttt bttt st sb e et b e bt et sae e bt e st e eb e e b e entesaeenbeennens 4
1.1 PUIPOSE Of the SYSTEIML.cccuuiiiiiiieiiiicciie ettt e e e e eeeaaeeesaeesnseeesnseaenes 4

1.2 DESIN GOAIS......uiiiiieiieeiie ettt ettt ettt e et e et e ssbeesbeeesbeenbeessseenseesseeenseennns 4

1.3 DOCUMENE OVETVIEW.....iiuiieiiieitieeiie ettt et et ettt et e st e e bt e sat e e bt e ssteebeesabeebeesaeeeseesaneans 5

2 DALA FLOW L.ttt ettt et b et et b et h e b et st enae et 6
2.1 Level 0 Data FIOW DI1a@ram.........c..ccccvieiiiieeiiieeciie ettt ettt eieeesiaeesaee e svee e eveeenavee s 6

2.2 Level 1 Data FIOW DIa@ram........c.ccccueeiiieriieeiiieiie ettt sttt eieeste et e seaeesseeseneenseas 7

2.3 Level 2 Data Flow Diagram — GUIL..........cccoooiiiiiiiiieiiie et e 8

2.4 Level 2 Data Flow Diagram — SCIIPtING........c.ceoieriierieeiieiieeieeniee ettt ere e eveesiee s 9

3 UML DIQGTAIMIS. ... vieeiiieeiieeetieeeieeeeieeeeieeestteeessteeeaaeeesaeesssaeessseaesssaeasssaeessseeesseeessseeesseesnsseesnseens 10
BT USE-CASC. ettt ettt ettt ettt ettt st a e et nbeeebeesaeeeas 10

3.2 Class DIQGIAIMS......ccccviiiiiieeeiieecieeeeteeete e et e e et eeeteeesteeessbaeesssaeessseeessseeensseeesseeensseennsees 13

3.2.1 General Class DIa@ram.........c.cecuieruieriieniieeiieiie et eiteeveeiee e esieesbeebeesaeeseesnseenseens 13

3.2.2 Class Diagram : DIaWING..........cccoiuieriuiieiiieeiiieesieeeeeeeeseeeeiteeeeeeeessseeesseeesseeesseeenns 14

3.2.3 Class Diagram : Circuit ENIne........cccccceviiiiiiiiiiienieciieieceese e 17

3.2.4 Class D1agram : SCTIPINE......c.eeeeuieeiieeeriieesieeeiteeeireeeireesaeeesseeesseeessseeessseesnsseesnnes 20

3.2.5 Class Diagram : GUI and File Operations.............ccoeeveeiienieeiieenienieenieeeieesieeeveeees 21

3.3 Sequential DIa@ramiS.........cccuiiiiiieeiiieeiiee et e et eite et eeeteeesteeessaeeessaeeesaeeesaeeesaeesnnaeenes 26

3.3.1 Circuit Design MoOdUIE..........ccciiriiiiiiiiieciice et 26

3.3.1.1 Line Operations & Component OPerations...........cccveeeeveeervreerveeesveessnveennnns 26

3.3.1.2 Create Custom COMPONENL.......cc..eerriueerririeriieeriieenieeeriteesreeesreeesreessaeee s 28

3.3.2 SImulation MOdULE........coouiiiiiiiie e 29

3.3.3 File Operations MOdULE...........c.oooiiiiiiiiiiiieieeeee ettt e 31

3.3.3.1 SAVE/LOAA. ... ueieeieeie et 31

3332 PIINE.cciiiiiieieeeee ettt ettt 32

3.3.3.3 File CONVEITRT......eiiiiiiiiieiieeiie ettt ettt et 32

3.3.4 SCrIPt MOUIE........oiiiieiiieie et ettt ebeeeaaeen 34

3.3.4.1 SCIIPt OPETALIONS......veievieeeiieeeiiieeiieeeitee ettt e etteesaeeesreeessseeessseessseesnseeesnseens 34

3.3.4.2 MACIO OPETALIONS.eeeutieeieeniieriieeieentieeteesteeseesseeesseesaresseesseeasseessnesnsaenssenns 35

4 GUI DIESIZN...cecuiiieeiiiieeiee ettt eeite ettt e ettt e ettt e et e e sabeeessbeeesssaeessseeasseeanssaeanssaeanssaeassaeenssseasseeesseennsees 36
4.1 BellatriX OVETVIEW....ccueiriiiiieiiieiieteete sttt sttt ettt et sttt sae e bt et e sat e beentesaeenaeenneas 36

A2 MIEIIUS. ...ttt ettt ettt e a e e b et e bt e et e e b bt e e bt e e st e e et e e et e e nabeeenane 39

4.2.1 PrOJECT IMIEIUL....euiieiiieiieeite ettt ettt ettt et e e et e e e esbeessaeenbaenseasnseensnesnseas 39

4.2.2 EdIt MEINU...c.eiiiiiiieiieiteeie ettt ettt ettt ettt et e et e s bt enteeneesaeenseeneesseenseeneans 39

4.2.3 VIBW MEMIUL...ccutiiiiiiiieiiiie sttt ettt sttt sb ettt b et et b et st e sbe et eaeenbeeatenanens 40

4.2.4 CoMPONENT IMEINUL....cceiiiiiiiieiiiiieeeeiieee et eeeeeit e e e et e e e esaaeeeessabbeeesestaeeessnnseeesennsees 40

4.2.5 Add MENUL....couiiiiiiiiiiee ettt sttt et 40

4.2.6 SIMUIAtION MENUL.....oiiiiiiiiiiiiiiee ettt ettt st e b e s ens 41

4.2.7 MACTO MEMNU......eiiiiiiiiiiiieiieeeit ettt ettt ettt ettt e b e aee 42

4.2.8 WINAOW MENUL...coutiiiiiiiiiiiiieie ettt ettt et e st e bt e st esbeesaeeebeeeaee 42

429 HEIP MENU.....oiiiiieiiieiieie ettt ettt ettt e et e et e et essaeeseesnseenseeenne 42

S F@ATULES. ...ttt et ettt et e et e et e et e et e et e e ettt e ab e e eateeenee 43
5.1 Custom Component CrEAtION.c.ueevierieeiieriieeieerteereesieeeteesteesbeeseessaeesseessseenseessseeseas 43

5.2 DITECLOTY SEIUCTUTE.eeiiiiieiiieeeiieeeiee et e este e et eetteeestaeesteeessseeessseeessseeessseessseeensseesnseens 44

5.3 Fle FOTMALS. ..ottt ettt sttt ettt ettt e e eaees 45

54 TIRIEAAS. ...ttt ettt et e et b e ehb e et e st e b e eab e e b e eeeeateas 45

6 DYNAMIC VIEW...eoutiiiiiiiiiieiiietie ettt ettt ettt ettt e st e e staeesbe e stesabeessteesseasseeenseessseanseesssesnseenssaans 47
6.1 ACtiON SPECTIICALION.eeiiiiieiiieeiiie ettt et e e et e et e e e e b e e taeeessaeeenseeenneesnseeesanes 47

0.2 ACTION TYPES..eeuiietieeiiieite ettt ettt et e st e it e e te e bt e esbeebeeeabeesseessbeenseesnseenseessseensaesnneans 47

6.2.1 Select a Component From Workspace...........ccveeriieeriieeiiieniieeciie e 47
6.2.2 Select a Component From Drawing AT€a..........ccceeevuierieiiiienieeiieniieeieesiee e eseneeiens 47
6.2.3 Add @ COMPONENL......oiiiiiiierrieeeiieeeieeertee et e et e e et e e steeesbeeessseeessseeesseeessseesssseessseens 48
6.2.4 Delete a Component from Pop Up Menuccocceeviiieiiiniiiiieiececeeeceeee e 48
6.2.5 MOVE @ COMPONECNL...cciiiiiiiieriiiieeeeiiiieeeeiteeeeesiteeeeetteeeessbteeessnteeesssnsaeeeesnneeeesnneees 48
6.2.0 DIAW @ WITC....ooiuiiiiiiiiieiie ettt ettt ettt ettt e ettt e et e e saeessbeessaeenbeesseeenseensaesnsaens 48
0.2.7 SELECE @ WITE ettt ettt ettt et e st e b e 49
6.2.8 Delete a Wire from Pop Up MENUcooiiiiiiiiiiiieiiecitee et 49
6.2.9 MOVE @ COMPONENL...cciiiiiiiieiiiiieeeeiiieeeeeiieeeeesiteeeeeiteeeessseeeessateeessnnsaeeessansaeeesnnsees 49
6.2.10 NEW PIOJECT.....eeiiiiieiiieiteite ettt ettt e et e e teesate e bt e enbeesseesnteenseeenne 49
6.2.11 OPEN PrOJEC. .. iiiieiieeciie ettt et e e et e e st e e saaaeesaseeesnseeeenseeenns 49
6.2.12 SAVE PrOJEC....eiiutiieiiieiie ettt ettt ettt ettt e bt e e e et s ateebeeenbeeneas 50
6.2.13 Print DOCUMENL..........oiiiiiiieiiiieciee et eeiee ettt eeeeeare e s e e e s beeessbeeesseeensaeesnsaeeennns 50
6.2.14 EXit BEIIAITX..euiieiiiiieeiieeie ettt st ettt et et neeeane s 50
6.2.15 UNdo the Last ACHOMN.....cccuiiiiiieeiieeciieeciee et estee et e e eeeeaeeeareeeseeeeaeeesnneeesnneees 50
6.2.16 Redo the Last ACLION.......c.ceouiiiiieiieeit ettt st e 50
0.2.17 Add SREETL.....coneieieieee ettt ettt sttt et enees 51
6.2.18 ZOOM IN/OUL.......oiiiieiieiiecieeie ettt ettt e sete et eessbeebeesnaeenseennneans 51
6.2.19 Show Status Bar MOdE.........coovuiiiiiiieiiecee ettt e 51
6.2.20 Find Custom COMPONENL........cccuieriieriieiieeieeniieeteerite et esteeeteesseesreesseeeseesaeesnseenenas 51
6.2.21 Save Custom COMPONENL......cccuuirerriiieeeeriiieeeeeiteeeeerieeeeeseteeeeesneseeeessnreeeesnsneeeesnnns 51
6.2.22 RUN STMUIATION.eeiiiieiiieiie ettt ettt et e s e et e e sseeeteesseeenne 52
6.2.23 Pause STMUIATION.cuiiiiiiieeiie ettt ettt e et e st e e saeeesbeeesaeeesnseessneeens 52
6.2.24 StOP STMULALION.eeiiiieiieeiieiieeieee ettt ettt st e et e sbeebeesaseesee e 52
A 55 () 11 A0 o - TSP 53
8 RETETEICES. ..ttt ettt b ettt b et et sh et et be e eaees 54

1 Introduction
1.1 Purpose of the System

Designed for basically educational purposes, Bellatrix is capable of performing the simulation of
digital circuits consisting of various components and wires. Users will be able to add custom
defined components as well as well-known components such as multiplexers, flip flop, and gates
etc...

Bellatrix enables extended functionalities such as compatibility with Diglog file format, option to
print the circuit schema as a PDF file which are basically aimed to ease the jobs of students that are
taking logic design laboratories. Users will be able to save a Bellatrix file in several formats such
as JPEG GIF, PNG, PS, PDF, HTML.

One of the primary features that distinguishes Bellatrix from other digital circuit simulators is the
powerful script support it offers to its users. Scripting will mainly provide users a way to test the
circuit more effectively. Users will either enter the script commands to the script console or execute
a script file. Scope of scripting also includes most of the capabilities provided by the GUI as well as
testing. For example users will be able to add a component in a specified coordinate by scripting.

1.2 Design Goals

Extensibility:

The application should be able to accommodate additional functionality. In particular, our
system is designed so that it can be extended to accept user defined gates. This property will
also ease the implementation of basic components since they can be defined using the
program. The GUI is also designed so that its features can be expanded. (ex: the Edit menu).

Robustness:

The system should be able to manage invalid user inputs or inconsistent conditions. It
provides error checking to ensure the right input format and returns errors and warnings to
the user.

Reliability:
The system should produce the expected output for a valid input at all times.

Functionality:
The system should function according to the requirements specified in Requirements
Analysis Report.

Usability:

The GUI should be user friendly. The goal is to provide the user an easy- to- use interface.
The design of the GUI is based on that of Java based applications. This design is chosen due
to the familiarity of most users with this kind of interface. It consists of a menu bar, which is
further decomposed into sub menus. Text boxes, scrollbars and pop-up menus are used to
enhance user/system interaction. The user is placed in a familiar environment, which eases
the general use of the application.

1.3 Document Overview

This document explains the design of our application in detail and provides an overview of our
program’s functionality and implementation. Throughout this document the following major
sections will be stated: UML Diagrams and Dynamic View. Prior to these sections, the Data Flow
Diagrams are given again. In the UML Diagrams sections, the reader can find Use-Cases, Class
Diagrams and Sequential Diagrams. Some of these diagrams are supported with descriptions. In the

Dynamic View section, the actions that the user can do are explained.

2 Data Flow

2.1 Level 0 Data Flow Diagram

User

."}}re
7 ot
?CG Co \.\“wma
Pt py g
Data &
B E L LATR IX Re po s Usgr
o o,
\f\‘i""\' f"::’r'és‘y
File i
Directory File

Directory

Figure 1: Level-0 DFD

2.2 Level 1 Data Flow Diagram

input data
interface commands -

Graphical
Interface

Print
Manager
g
e Ll

" %

: § é@,

= §

g

oy

2
g = o
9 8 ' €
g 2 &
E % & Circuit
gz ‘§ Design
B Lt §

: S

Script
Engine
output file

Figure 2: Level 1 DFD

-
&
& "
e
w.
5,
==
2

User

File Directory

2.3 Level 2 Data Flow Diagram — GUI

Interface
Profile
Manager

Configuration
Manager

Circuit
Design

Figure 3: Level 2 DFD for GUI

2.4 Level 2 Data Flow Diagram — Scripting

Input File
Manager

e

SChipt f;

Embedded
Jython

Engine

Figure 4: Level 2 DFD for Scripting

3 UML Diagrams

3.1 Use-Case

Line
Operations

Componert
Operations

Incremental
Interactive
Surmlarion

Script
Operations

Figure 5: The General Use-Case Diagram of Bellatrix

10

Usage Scenario:
In Project Bellatrix, user can design a circuit by opening a project. He can save the project at any
time he wants, and later he can open the same project from the disk. If he wants to open another

project, he has to close the recent one.

In a project, there are three spaces. First of them is drawing area. Drawing area is composed of
sheets. User can open numbers of sheets and can remove some of them from the drawing area if he
wants. Also he can operate these sheets view. He can choose tile or cascade view for seeing the
sheets more easily. In project, there is also a workspace area that is used for showing and searching
the components. Any user can reach any basic or extended components from there. Also he can
create his custom panel by searching the required components from the component library. In

addition to these spaces, there is also a console which is used for giving external controller code.

User can design a circuit by using drawing area. He can choose any component from the workspace
menu and drag it to the drawing area. At any time,he can move the component,rotate the component
by right angles, and copy, cut, paste and delete the component at any time. User can select only one
or lots of components and he can group them. There is also a redo, undo and clear support. For each
component, user can see its properties and he can change its color and name. In addition to
component drawing, user can draw connection lines. Firstly, he has to choose the line mode from
the tool bar for activating the line drawing. After the activation of line drawing mode, he can draw
wires. This activation prevents the accidental line drawing. Drawing area has default view settings.
However, any user could want to change these settings. For this reason, system provides some
competence to the user, such as changing the background color and controlling the grid view. Also
there is a zooming support. After doing some changes on the view of drawing area, user can save
them and load them any time he wants. Finally, user may want to deactivate the drawing area. So,
there is hand mode support. In hand mode,user can only see the circuit ,namely, he can do nothing

to the circuit.

In our program, user can test the circuit by using the simulator. Simulation mode is inactive when
the program is in edit mode. If a user wants to simulate the circuit, he has to switch on simulation
mode by selecting Run, from the tool bar or from Simulation on the menu bar. Also he can start the
simulation by giving a script code from the console. Then he can pause, reset or stop the simulation,
again by using the tool bar or console. In simulation of a circuit, a user can give inputs once or step

by step.

11

Project Bellatrix supports the user with a macro peculiarity. User can record the drawing process by
using the menu bar, or by giving an external code from the console. For recording the process, our
system creates a script file. The user can load this file and execute the macro for watching it. In
addition the automatic script file creation, our system gives a chance of manual script file creation
to the user. User can open a script editor from Macro on the menu bar and he can write his script

code here. After loading and executing his own script file, he will watch what this script does.

Finally, our system has a print support. After drawing a circuit, user can print out this circuit on a
paper. If he wants to see the view of the paper before getting the print-out, he has to select the print
preview button from the tool bar. User could want to change default print settings. Therefore, after
clicking the print button on the tool bar, a new pop-up menu will be opened and user can change the

settings,such as paper size or color.

12

3.2 Class Diagrams

3.2.1 General Class Diagram

MacroManager

java.awt.print.Printable

DiglogConverter

Scriptlnputhlanager

JyvtonEngine

pythonbase.Pyhtonlnterpreter

Simulate

i

jhdLbase.TestBench

jhdl.Logic

Figure 6: General Class Diagram of Bellatrix

Print Manager FileConverter
ScriptOutputManager FileOperations
GUI
jeraph.JG raph
Diraw
CircuitEngine /
S ComponentGraphCell

N\

N

jeraphgraph DefanltG raphCell

13

3.2.2 Class Diagram : Drawing

joraph.graph DefaultGraphCel

LineGraphCell

- value int
-iz(7lowhviode ;hoolean
- color it

— void setCol otBvV dlue(int)

ComponentGraphCell

- type String

- cotfigFile (Fil eliymurSey eam
- jeraphlcon :Inagelcon

- jeraphlUrl : URL

- isl7serDefined ‘boolean

-+ readConfigFil e String)
+ loadimaze{TUURL)}

Draw

- zraph JGraph

- lineC ellVec :Vector “LineGraphCell>
- compl ellVee ‘Vector <ComponentGraphCell>

+ woid drawline(P oitt? D, Point?D))

+ woid dravComponent(P oitt2 D, Sring)

+ woidremoveline]LineGraphCell, Vector<LineGraphCell>)
+— woid removeComponent| ComponentGraphCell, Vector<ComponetGraphCell>)

joraph.graph

Figure 7: Class Diagram for Drawing

14

When the user drops a gate in the circuit drawing area of the program, or, when the user draws a
line, a Draw class object will be instantiated by the CircuitEngine class. All of the drawing process
will be done by the Draw class. Thanks to JGraph library, drawing is very easy. Let us continue
with explaining how JGraph draw objects and how Draw class uses it and the subclasses of Draw,

which are LineGraphCell and ComponentGraphCell.

First of all, JGraph library has a property that it displays its data by drawing individual elements.
Each element displayed by the graph contains exactly one item of data, which is called a cell. A cell
may either be a vertex(gate) or an edge(line). Vertices may have neighbors or not, and edges may
have source and target vertices or not, depending on whether they are connected. Since a line or a
gate has to be accessed from a cell, the line class and the component class extend from the
DefaultGraphCell of JGraph library. DefaultGraphCell extends from the DefaultMutableTreeNode

which is the general-purpose node in Jtree.

LineGraphCell and ComponentGraphCell classes represent for line and component, respectively,
they inherit the DefaultGraphCell. LineGraphCell class has three private objects which are value,
isGlowMode and color. Value and color are integer and isGlowMode is boolean. Color and
isGlowMode fields are used in line drawing and the value field is used in simulation. Value is
defined -1 as default,which shows its high impedance. If a line has a high voltage, itis 1 else it is 0.
LineGraphCell also has a public function, called setColorbyValue(int). It gives the value field as an
argument and set the color of the line object. If the value is undefined, i.e -1, the color is black. If it

is 1,the color of line is green,and if it is O the color is red.

In addition to LineGraphCell class, ComponentGraphCell class has five fields and two functions. It
has a type field which determines its type. For instance if the component is an AND gate the type is
equal to the “and” string. The second field is a FileInputStream object, called configFile. As an
input file, configFile is used for reading some necessary data. Every gate object has some numbers
of input ports and output ports. Ports' type, i.e inputport or outputport, its value, i.e -1, 0 or 1, and
their coordinate positions relative to the left top of the gate are the basic required data that will be
read from the input file. By using these ports, system can connect a line to a component. For
example, if a line is drawn, JGraph can detect that whether this line is connected to a port of a
component by using coordinate axis positions of both line and component. If a line start point is
connected to a port of a component, JGraph set the source of the line by this port. On the other

hand, if a line end point is connected to a port of a component, JGraph set the target of the line by

15

this port. In addition to the configFile, there are Imagelcon and URL fields, calling jgraphlcon and
jeraphUrl, respectively. These are two interrelated fields. The address of the icon is stored in the
URL object and then it will be given to the constructor of the Imagelcon class as an argument.
Namely, an image file in a specific directory will be created by using these fields. Also, there is
another field, called isUserDefined. This field type is boolean, and it is used for determining

whether the component object is a user defined or a default component.

As a result, draw class keeps a LineGraphCell vector and a ComponentGraphCell vector. Also it
has another field, called graph. It is a JGraph object and it is used for keeping all drawn objects. In
addition to its field, Draw class has four methods. DrawLine method is used for adding new line
objects to the LineGraphCell vector and drawing all lines with two argument which types are
Point2D and comes from the GUI class. The first Point2D object represents the start point of the
line and the second one represents the end point of the line. In the same way, drawComponent
method is used for keeping component objects into the ComponentGraphCell vector and drawing
all component with two argument. But this time first one is a Point2D object and the second one is a
String. The first argument keeps the coordinate axis position of the component and it is comes from
the GUI class. The second argument keeps the type of the component. In addition to these draw
methods, there are remove methods. RemoveLine method is used for removing any line from the
drawing area by removing it from the LineGraphCell vector. In same way, the removeComponent
method is used for removing a picked gate from the drawing area by deleting it from the

ComponentGraphCell vector.

16

3.2.3 Class Diagram : Circuit Engine

Draw

- comp CellVer
- raph :JGraph

- lineCellVer ‘Wector <LineGraphCell-

Vector <ComponertGraphCell

~ void drawline(Pont?D, Pomt?D)

~ void drawComp onent{Point?D, String)

+ void removeline{LineGraphCell, Vector<LineGraphCell>)
~ void removeC omponetit(Comp onentGraphCell, Vector< Comp onentGraphCell>)

l

CircuitEngine

- draw Draw

- sitrlation :Sinmulate

- allComponents ‘Vector <ComponentGraphCell>
- dlllines ‘Vector <LineGraphCell>

- nternalStructf ile FielnputStream

=+ Point?D createStartCord()

= Point?D createEndCord()

— LineGraphCell pickLine()

= Point?D createCompCord()

= String createCompTvpel)

= ComponentGraphCell pickComponert()
= virid loadTnrernal S aact(String)

= wvirid mergeCompCustoml)

= virid mergelineCustom)

!

Simulate

- inpurWires -Vector<wire:
- outputWires ‘Vector<wire>
- isInputSet ‘Vector<wire>

- isCutputS et Vector<wire>
- inpurVectorL ength sint

- inpursGiven it

- outputVectorLength it

- outputsTaken ittt

+ void load Wires(Vector<Comp onentGraphCell>)
+ void updateWireValues(Vector<LineGraphCell>)
+ void doclkl)

— void sinmlate()

~ void oneStepSimmilate()

+ void pause()

+ void reset()

+ void stop()

Figure 8: Class Diagram for Circuit Engine

17

CircuitEngine class has Draw and Simulate objects. The main task of the CircuitEngine class is the

coordination of these two objects.

As explained before, Draw class will do all drawing process and will keep all information about the
drawn objects. In order to simulate the design, some data transformation is necessary. Another task
of the CircuitEngine class is to manipulate the data such that the design data will be used in

simulation class.

The Draw class is responsible for all drawing operations. This class keeps two vectors,
lineCellVector and compCellVector for lines and components respectively. The objects that are
being drawn are kept in these vectors. These vectors keep LineGrapCell and ComponentGraphCell
objects, all derived from DefaultGraphCell class of jgraph. LineGraphCell class keeps the drawn
lines' data, color and value information. The ComponentGraphCell class keeps the component data
in the same manner. This class keeps the components' image, configuration, origin and type data.
Some of these datum are required for converting the drawing into some structure that JHDL
understands.

At each mouse event that is related to drawing will invoke this class' methods. At each object
creation, the object will be given to the jgraph instance and copied to the related vector for

transferring the circuit data to the simulation engine.

CircuitEngine class is the connector class between the Draw class and Simulate class. The draw
class will supply this class the line and component vectors. Then CircuitEngine class will look for
user created components in the given component vector and replace them by the unserialized
vectors of the user created components. MergeCompCustom, MergeLineCustom will merge the
internal structure of this custom components with the vectors in the draw object. After all new
vectors will be created which will be necessary for the JHDL to simulate the design. This

replacement will not affect the visualization of the components. It is done for only simulation.

Simulate class will do the main simulation process. The TestBench interface is a top level cell for
generating test data to drive a circuit. Logic class provides many convenient methods for
accelerating structural design. For example, the method call and (a, b) instantiates a new 2-input
and gate automatically, wires up a and b to the inputs, instantiates a new wire and then connects the
new wire to the output of the gate, and returns the new wire. Because these method calls return

wires, not gates, it allows to have nested method calls to quickly build up complex logic circuits.

18

The CircuitEngine will pass the line and component vectors to the Simulation class as arguments to
load methods. The class, then, will keep these vectors in internal variables. The simulation methods
(simulate, oneStepSimulate, etc.) will then use these variables and do the simulation by calling

JHDL simulation methods.

19

3.2.4 Class Diagram : Scripting

'

JythonFngine
ScriptInputilanager
-interp : JvthonInterpreter
+ initialize} : void
+ runScript{in ScriptStream © String) : void + takelnputScript{in ScriptStream : String) : void
+ mnScriptFile(in ScriptFile © Sting) : void + takelnputS criptFilein InputSenptFile : String) : void
+ runhdacro{in MacroFile : String) : void + takelnputhlacro(in MacroFile : String) : void
ScriptOutputManager MacroManager
+ outputhlacroBesults{) : void + takeMacrofin MacroFile : String) © void
—+ outputScrptResults(in CutputFile : String) : void

Figure 9: Class Diagram of Scripting Module

The scripting module runs in the following order: The user inputs some script (either by the
scripting console in the GUI or by opening a script file) and the GUI directs this script to the
ScriptInputManager class. The ScriptlnputManager has 3 methods to handle the incoming script.
After getting the script input, this class calls respective methods from the JythonEngine class. This
class does the main Python execution. After evaluating the script commands, JythonEngine class
calls the ScriptOutputManager to display the outputs. Then, the ScriptOutputManager calls relevant
GUI methods to display the results.

JythonEngine has an external module connection to the Simulation Module. If the script contains
some simulation control commands, the JythonEngine directly calls the Simulation Control

Methods. The results of this execution is then handled by the Simulation Module Classes.
Execution of macros are treated as simplified script commands. Macros have limited power relative

to scripts. The user initiates definition of the macro by GUI events and the MacroManager handles

these events and converts to Python script. Then, the macro is processed as a script file.

20

3.2.5 Class Diagram : GUI and File Operations

jeraph.JGraph PrintManager
+ print(in : Graphics2D, in Vector<String=, in : int) : void
GUI FileConverter

- selectedLines : Vector<LineGraphCell

- selectedComponents : Vector<ComponentGraphCell>
- scaleFactor : double

- componentColor : int

- backgroundColor : int

- isGrid:boolean

- sheetCount :currentSheet

+ saveAsPDF(in : String, in : String) : void
+ saveAsPS(in : String, in : String) : void

+ saveAsPNG(in : String, in : String) : void
+ saveAsTPG(in : String, in : String) : void

+ save AsHTML(in : String, in : String) : void

- iMenuBar : menuBar

- jToolBar : toolBar

- jPanel : workspace

- jPanel: drawingArea

- jTextPane : seriptTerminal
- buttons : Vector<jButton=
- labels: Vector<jLabel>

- icons: Vector=Icon™

- iMenultem : project

- jMenultem : edit

- iMenultem : view

- iMenultem : component

- iMenultem : add

- iMenultem : simulation

- jMenultem : macro

- jMenultem : window

- iMenultem : help

- engine: CircuitEngine

DiglogConverter

-+ importDiglogFile(in : String) : void
-+ ExportDiglogFile(in: String) : void

FileOperations

- customEngine : CircuitEngine
- seript: ScriptinputManager
- file:FileOperations

- converter : DiglogConverter

+ openProject(in : String, in : String) : void
+ openRecentProject(in : int) : void

- graph: Jgraph + closeProject() : void

+ newProject(in : String, in : String) : void

+ saveProject(in Vector<LineGraphCell=, in Vector<ComponentGraphCell) : void

+ saveAsProject(in Vector<LineGraphCell>, in Vector<ComponentGraphCell>, in : String,
in : String, in : String) : void

+ saveCustomComponent(in : CircuitEngine) : void

+ updateCustomComponent(in : String) : void

+ deleteCustomComponent(in : String) : void

+ convertDiglog(in : String) : void

+ convertBellatrix(in String) : void

+ void Menultem_actionPerformed(ActionEvent)

+ void ToolBarlcon_actionPerformed(ActionEvent)

+ void Workspacelcon actionPerformed(ActionEvent)

+ void WorkspacelconDragged actionPerformed(MouseEvent)
+ void WorkspacelconReleased actionPerformed(MouseEvent)
+ void TextPaneChanged actionPerformed(ActionEvent)

Figure 10: Class Diagram for GUI and File Operations

In order to generate the GUI stated at [SECTION 4], some components of javax.swing package will
be used in the GUI class such that a MenuBar, a ToolBar, two Panels, a TextPane and a number of
buttons, labels and icons. First Panel represents the WorkSpace Pane and the second one represents
the Drawing Area. The buttons, labels and icons will be used in the Tool Bar, Menu Bar and the
Workspace Pane in order to relate each component to a button, label or icon where necessary.

GUI class also encapsulates two CircuitEngines, a ScriptInputManager, a FileOperations and a

JGraph object. First circuitEngine object will be used for the simulation of the whole circuit.

21

Second circuitEngine object will be used for the simulation of the custom defined circuit. The
ScriptInputManager object will be used for performing script operations. The FileOperations object
will be used for all file operations such as saving the project, printing a document, converting a file.
The Jgraph object will be used for operations such as copy, paste, zoom in which will be explained

more detailed in the following paragraphs.

Finally there are certain fields in GUI class, namely selectedLines ,selectedComponents,
scaleFactor, componentColor, backgroundColor, isGridcurrentSheet. These fields are required to
pass arguments to JGraph object in order to perform GUI actions such as cut, copy, paste, undo,

redo which again will be explained in the following paragraphs.

GUI class basically provides a way to perform operations that require user interaction. For example
selecting a Menu Item, clicking on a ToolBar icon, dragging a Component from the Workspace
Pane to the Drawing Area, moving a component in the Drawing Area, entering text in the Script

Terminal.

Each action stated above triggers an event indicating that the user demands an operation. These
events are stated as follows in the class diagram:

Menultem_actionPerformed(ActionEvent)

ToolBarlcon_actionPerformed(ActionEvent)

Workspacelcon actionPerformed(ActionEvent)

WorkspacelconDragged actionPerformed(MouseEvent)

WorkspacelconReleased actionPerformed(MouseEvent)

TextPaneChanged actionPerformed(ActionEvent)

Notation:

Menultem_actionPerformed(ActionEvent)

ToolBarlcon_actionPerformed(ActionEvent)

- “Menultem” represents all possible Menu Items of Bellatrix such as jMenuProjectSave,
jMenuSimulationRun. Similarly “ToolBarlcon™ represents all possible ToolBar icons of
Bellatrix such as a run icon, a pdf icon and so on.

- ActionEvent can represent either choosing a Menu Item or selecting a ToolBar icon.

22

Workspacelcon _actionPerformed(ActionEvent)

WorkspacelconDragged_actionPerformed(MouseEvent)

WorkspacelconReleased_actionPerformed(MouseEvent)

« “WorkspaceArealcon” represents all possible DrawingArea Icons of Bellatrix such as an

And Gate icon or a Clock icon.

ActionEvent represents choosing a Workspace icon

« MouseEvent can either represent dragging the mouse or releasing it.

TextPaneChanged_actionPerformed(ActionEvent)

« “TextPane” represents the script terminal.

ActionEvent represents entering a text to the script terminal.

Each icon representing a component or a wire in the Drawing Area is called a DrawingArealcon
such as an icon representing an And Gate. The drawingArea icons are defined as the same type
with the WorkspaceArea icons. They are simply an Imagelcon object defined in javax.swing
package. Workspace icons are picked when the user triggers the
Workspacelcon actionPerformed(ActionEvent) event by clicking on the icon from the Workspace
Pane. Workspace icons can be dragged to the Drawing Area by the user and after that they are
treated as DrawingArea icons. This is accomplished by the
WorkspacelconDragged actionPerformed(MouseEvent) and

WorkspacelconReleased actionPerformed(MouseEvent) methods.

Also the user can select and drag the components (which are actually Imagelcons representing
gates, clock etc) in the drawing area which are accomplished by the the native methods of the

Jgraph object.

The sequence proceeds as follows: Each time the user triggers an event from the MenuBar (by
choosing a Menultem), Toolbar (by clicking on a ToolBar Icon), TextPane (by entering text in Text
Pane) corresponding method of the related object (Circuit Engine, ScriptlnputManager,

FileOperations, GUIActions) will be called and that method will handle the operation.

23

For example when the wuser selects the Save Option of the Project Menu, the
jProjectSave actionPerformed(ActionEvent) event will be triggered and inside the event, the
saveProject method of the fileOperations object will be called in order to perform the save

operation.

Similarly when the wuser selects the Copy Option of the Edit Menu, the
jEditCopy_actionPerformed(ActionEvent) event will be triggered and inside the event, the copy
method of the jGraph object will be called in order to perform the copy operation.

A full list of used JGraph methods are stated as follows:

undo()

redo()
group(Object [])
ungroup(Object [])
showGrid()
removeGrid()
changeBackgroundColor()
selectAll()
deselect()
copy(Action)
cut(Action)
paste(Action)
setScale(double)

The methods are included in the JGraph library and used by the GUI class. Detailed examples
including the interaction between these classes will be explained in the sequence diagrams
[SECTION 3.3]

The file operations are intuitive. The FileOperations class handles the opening and saving file
operations. Saving the file in the .bx format will be done directly in this class.

Converting options will be handled by the subclasses of this class, FileConverter and
DiglogConverter. FileConverter class will be capable of converting the drawing to several formats,
including PS and PDF. This is done by corresponding methods in the FileConverter class. When the

user selects the Save As option from the Project Menu, a Save Dialog will be opened and the user

24

will choose to save the file in either ps, pdf, png, jpeg, html formats. According to the choosen
format, the corresponding method of the FileConvertor class will be called.
For example if the user chooses to save as pdf format from the Save Dialog, the saveAsPdf method

of the FileConverter class will be called.
Converting to Diglog format is handled by DiglogConverter class. This class takes the circuit data

and converts it to Diglog format. This class also responsible for importing Diglog files. The Diglog

format file is then converted to our format in the same way stated for saving as pdf format.

25

3.3 Sequential Diagrams

3.3.1 Circuit Design Module

3.3.1.1 Line Operations & Component Operations

: CircuitF ngine : Draw : LineGraphCell
[
| createStartCord])

-

t

ldrawl ine(P oint2 D Point)

| |
I I
| |
I I
createEndC ord]) ! !
I I
| |
I I
| |
| |

(LineGraphCell() <5

| sy s aamed
setCol orBv alue(ing

pickLine()

f——
| tem oveL ine(LineGrraphCell Vector<L ineGraphC ell>)

-

| "
|
|

|
Figure 11: Sequential Diagram of Line Operations

Line operations will be done by three classes, CircuitEngine, Draw and LineGraphCell. In same
way, component operations will be done by CircuitEngine, Draw and ComponentGraphCell.
CircuitEngine holds a Draw object and Draw holds a LineGraphCell or ComponentGraphCell
object. The mouse events return the start and end points of the line (start point: the point where the
mouse is pressed; end point: the point where the mouse is released), or the origin of the component.
If the object is a component, it also holds the type of the component. Then, CircuitEngine calls the
draw methods of the Draw class. Draw class creates a LineGraphCell or ComponentGraphCell
object and draws a line/gate on the circuit drawing area. If the object is LineGraphCell, it can set its

color according to its value, else if the object is ComponentGraphCell, it reads the configuration file

26

from the disk and loads the corresponding image. In addition to drawing, CircuitEngine can control
the deletion of the objects. Thanks to Jgraph, if the mouse clicks on a line or a gate, the object will
be selected. Selected item will be deleted from the LineGraphCell or ComponentGraphCell vector
by calling the remove method of the Draw class. Therefore, the selected object will be removed

from the circuit drawing area.

: CircnitEngine Draw : ComponentGraphCell

I
|createCompCord])

I

I

I I
by | I
I I
I

I

I

I

I

createCompTipe)

]

|l draaC omponent(P oirt2 D, String)

I
I
I
I
I
I
I
I
I
™ I

ComponeniCraphCell])

|
IreaanrﬁgEile{sttingj
I
I
I

| loadimage{UEL)

piekComponet)

-

removeComponent{C omponerntGraphC 1,
Vector<ComponentraphCell=)

|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| %
| |

Figure 12: Sequential Diagram of Component Operations

27

3.3.1.2 Create Custom Component

The creation of a custom component will proceed as follows:

GUI :FileOperations :java.io.fileWriter
I S
T ; | | |
MenuComponentCreateComponent_actionPerformed(
ActionEvent) | newCustomComponent(! !
1
string. string. inf, int) >I |
1
write(String) |

se
|
' >
| tector<LineGraphCell=, vector=ComponentGraphCell=,
| ' |
I |

| |
I b
| I | “1
: I | I
| I | I
: I | I
; I | I

Figure 13: Sequence Diagram for Create Custom Component

When the user selects the Create Component option from the Component Menu, an
jMenuComponentCreateComponent actionPerformed(ActionEvent) event will be triggered
informing the GUI that a user demanded to create a custom component. After that, GUI class will
call the newCustomComponent method of its FileOperations object. Finally FileOperation object
will simply use the write method of the fileWriter class of java.io package in order to save the

Custom component in a file.

28

3.3.2 Simulation Module

: CircuitEngine
[

! loadInternal Struct()
I

I

I MergeCompCustom()
I
I

g

Mergel ineCustom()

I
I
I
| -—
I
I

loadWires()

: Simulate

X _ ¥ _ Y e e e e

f

|

! updateWireValues()

[

! simulate()

I

|

I I clock()
|

I I

| hg——
| oneStepSimulate() |

| g

: : clock()
| |

I r
| pause(I
= o

I I

| reset() I

| g

I I

| stop() |

| ™

| [

Figure 14: Sequence Diagram for Simulation Module

29

Simulation will be done by two classes, CircuitEngine and Simulate. Before staring the simulation,
CircuitEngine must prepare the two vectors: line vector and component vector which Simulate class
will use for simulation. CircuitEngine does this job by loading the internal structure of the user
defined components used in the design and then merges their functionality (lines and components
defined in them) with the other components and lines. After all this pre-process Simulate object
starts simulation by calling the simulation functions of the JHDL. Simulate has a clock() method
which overrides the clock() method of JHDL. All value operations (giving new values to wires)
done in clock() method. JHDL calculate the new values of the wires step by step. Therefore
simulate method of Simulate object calls the clock() method, until simulation finishes; however the
oneStepSimulate method calls the clock() method only one time. Also JHDL considers the
propagation delay of components. Other options of the simulation like pause, stop, reset is done

again by using the methods of JHDL defined in its TestBench interface.

30

3.3.3 File Operations Module

3.3.3.1 Save/Load

User
! [Save Option Selected]
| jMenuProjectSave_actionPerformed(
ActionEvent) saveProject(
vector<LineGraphCell>,
vector<ComponentGraphCell=)

h

write(Strin)

1

1

=)

1

. i

[Open Option Selected] |
jMenuProjectOpen_actionPerformed(

ActionEvent) |

1

L

1

1

1

1

1

1

1

1

o

openProject(
String String)

[New Option Selected]
jMenuProjectNew actionPerforted(
ActionEvent)

read()

-

newProject(
String)

write(String)

-

T A .

Figure 15: Sequence Diagram for Save/Load

Save/Load Operations will proceed as follows:

When the wuser selects the Save Option from the Project Menu, an
JMenuProjectSave actionPerformed(ActionEvent) event will be triggered informing the GUI that
the user demanded to save the project. After that, GUI class will call the saveProject method of its
FileOperations object. Finally the FileOperations object will simply use the write method of the

fileWriter class of java.io package in order to save the project in a file.

When the user selects the Load Option from the Project Menu, an
jMenuProjectOpen_actionPerformed(ActionEvent) event will be triggered informing the GUI that
the user demanded to open a project. After that, GUI class will call the openProject method of its
FileOperations object. Finally the FileOperations object will simply use the read method of the

fileReader class of java.io package in order to open the project.

When the user selects the Open Option from the Project Menu, an
jMenuProjectNew_actionPerformed(ActionEvent) event will be triggered informing the GUI that
the user demanded to create a new project. After that, GUI class will call the newProject method of
its FileOperations object. Finally the FileOperations object will simply use the write method of the

fileWriter class of java.io package in order to create a new project.

31

3.3.3.2 Print

I I |
Actor
I I I |
[iMenuProjectPrint_actionPerformed I |
{(ActionEvent)
| 4 | |
—1
I I print{Graphics2D, Ve n:tcuriSUing}:intjl I
-

| | | |

I I plrint::G-raphics: PageFormat, int) .J
| I I |
| I I |
| I I |

| I I |
Figure 16: Sequence Diagram for Print

As it can be seen from the diagram, GUI class calls the related function of Print class when the user
triggers an ActionEvent by selecting the corresponding option from the menu bar. Print class uses
the java.awt.print.PrinterJob library of Java to locate a service which can export 2D graphics to a

stream as Postscript. This may be spooled to a Postscript printer, or used in a postscript viewer.

3.3.3.3 File Converter

.!i!'l .E"EEDHI-EI:IEI:

Actor

[SaveAs Project is selected]
MenuProjectSaveAs actionPerformefl(
ActonEvent) -

[Tvpe PDF is selected]
saveAsPDF(Swing, Sm'ngi_

[Tvpe PS is selected]
savelAsPS(Swing, String) -

[Tvpe JPG is selected]
saveAsJPG{String, Sm'.na_

[Tvpe HTML is selected)
save AsHTMI (String, ’St:u

=)
e

[Tvpe PNG is selected)
save A sPNGSinng. Sm'g

Figure 17: Sequence Diagram for File Converter

32

A File Conversion Operation will proceed as follows:

When the user selects the Save As Option from the Project Menu, an
jMenuProjectSaveAs_actionPerformed(ActionEvent) event will be triggered informing the GUI
that the user demanded to save the project in a printable file. After that, FileOperations object of the
GUI class will call the one of the SaveAsPDF, SaveAsPS, SaveAsJPG, SaveAsPNG,
SaveAsHTML methods of FileConverter class . Finally the FileConverter class will perform the

neccessary operations to save the project in the specified format.

33

3.3.4 Script Module

3.3.4.1 Script Operations

:ScriptOutputManager ‘ :CircuiEngine

:GUIL | JvthonEngine

:SeriptinputMansz ‘ |
r

| :Simulation | | :FileOperations

User

jTextPaneChanged actionPerformed(
ActionEvent)

er
!]
| 1
! 1
l 1
|

I fakeScript(String) 3

runScript(String) 3

<< Circuit Modification Methods >

|

|

| |

I S 4 |
== Simulation Control Methods ==

[I =1

| | |

output3criptResults() 3 |

<< Quiput FJJ Methods >>

>
| |

T

1

1

1

|

1

1

1
>
1

|

1

|

1

1

1

1

1

| 1

Figure 18: Sequence Diagram for Script Operations

When the user inputs a script from the script console, the system forwards this input to
ScriptInputManager. This class pre-processes the script and then invokes the JythonEngine class'
runScript method. This method executes the script by instantiating a JythonInterpreter object. This
object now controlls the script execution. This way, the script may control the Simulation class

and/or CircuitEngine class.

34

3.3.4.2 Macro Operations

5

ActionEvent)

[—

s |
MenuMacroExecute_actionPerformed(|

Ly

T T T T T T
| | | | | |
| | 1 | | 1
I I I I | I
<<'lnput File Methods > ! l I I
]] 1 | |
takeMacrp(String) .
| | t ral
! réinMacro(String) |
€
I] 1
| | |
outputMacroResults()
T Eal |
I I |
== Circuit Modificgtion Methods == |
>
|

F igure 19: Sequence Diagram for Macro Operations

<= Simulation Cotlm'ol Methods >
T

gl
<< Output Filg Methods >>

I
I
|
I
I
1
|
I
I
|
>
|

Running a macro is very similar to running a script in the internal structure. This is because macros

are actually scripts. The macro is loaded from the file and pre-processed by the MacroManager

class. This class then passes the macro to the JythonEngine and the rest is the same as script

execution process.

35

4 GUI Design

4.1 Bellatrix Overview

Bellatrix EDA is based on a MDI concept (Multiple Document Interface). Several sheets can be
used to draw the schematics and simulate them.

| Belark.shost =10/ x|

Propect Edit View Clowponesnt Add Swmlation Macro Wmdow Hzlp
JD = nn:?-_ |§ [a> B 100 = B @’_’JSlmulntlun #|v|®’_’]9_"5’ g

Ei Sheet 1] Sheet 2

| sneets |

Search for a component
L

Seript Console | Debug

I Outpt

Edit Meacle

§> add and2 (inputl, input2, outl} coord(35,

25}

| N

Figure 20: The theoretical view of the GUIL. Changes may be applied due to differences in Java window interface.

Project title header contains the name of the application and the current active sheet.

=I0ix]

Figure 21: Title Bar of Bellatrix.

36

Menu bar allows to access all system features of the application.

Proget Edit View Component Add Smmlation Macro Window Help
Figure 22: Menu Bar of Bellatrix.

Tool bar contains the symbols of most frequently used features.

J O = nﬁf;_ ié (&2 B e = == @?JSlmulntlun wb|v @?J:‘”}' g
Figure 23: Tool Bar of Bellatrix.

Workspace view displays the components that are available.

W orkspace

il ol

NOR
Lahel—= NELT I
Label outeur |

Search for a component

col

Figure 24: Workspace: Standard and
User-Defined Components.

37

Console view is used to display informations related to the Edit and Simulation modes.

Seript Console | Debug |Dutp-ut |

§> add and2({inputl, input?, ocutl} coord{35, 25}

Figure 25: Console: The general input-output area of the system.

Status Bar displays some interesting informations like the current cursor position in file when the
user edits a script file or the system clock.

Edt Mode NUM
Figure 26: Status Bar shows the current status of the system.

Drawing Area is the place where the circuit is drawn. This place can support various pages called
“sheets”.

sheet] | sneet2 | Smeets |

Figure 27: Main Drawing Area

38

4.2 Menus

4.2.1 Project Menu

Project FEdit View Component

Mew
Crpen...
Close
Save

Save As

Prnt...
Puant Praview

Print Sstup...

1 i Belgelemm.. tenp bx
2 ¢ Belgelenmi. . \ast bx

Exat

4.2.2 Edit Menu

Project | Edit View Component

ndo
Rado

Cut
Copy
Paszta

Balzct All
[ezzlact
Balzct Invarse

Clear
Dielate All

Gronp
Lngroup

BackUround Color
show Crid

New reate a new project.

Open open an existing project.

Close close the current project.

Save save the current project.

Save as save the current project with a different
name.

Print prints the current project.

Print Preview enables the user to see the print
format of the current project.

Print Setup enables the user to view and change the
print settings

Recent Files enables the user to view and open the
most recently used files

Exit enables the user to exit from the program.

Undoundo the last action before the user save the
current project.

Redo redo until the first undo action.

Cut cut the selected item(s).

Copy copy the selected item(s).

Paste paste the last cut or copied item(s).

Select All select all items in the current sheet.
Deselect deselect a selected item.

Select Inverse select all items except the selected
item in the current sheet.

Group group the selected items.

Ungroup ungroup the selected group.

Clear clear the selected items.

Delete All delete all items in the current sheet.
Preferences contains the background color and grid
view options.

Background color provides a color
palet to the user in order to set the

background color of the drawing area.
Default color is white.
Show Grid provides a grid view.

39

4.2.3 View Menu

Project Edit View Component

Add Bheet

Remove Bhest

Congols
WorkSpace

Status Bar

Fit to Window
Fit to Page
50%%

75%

L2

150%%

200

Ay
Cuatom...

4.2.4 Component Menu

Edit View

| Component Add

Add Sheet insert a new sheet to the current project.
Remove Sheet option shall enable the user to
remove the current sheet from the project.

Console option shall enable the user to show or hide
the console view.

Workspace option shall enable the user to show or
hide the workspace view.

Status Bar option shall enable the user to show or
hide the status bar.

Zoom options shall be listed such that Fit fo
Window, Fit to Page, 50%, 75% ..., Custom.

Properties

Library

Find Component

Create Component

4.2.5 Add Menu

View Component

A

Wire

Bua

In Connmection

Tt Clonmisction

Component
Lahel
Box

Properties display the name, code and input/output
informations of the selected component.

Library display the library pages which contains all
the components that are available as listed.

Find Component display a pop up window which
contains a text box for the name of the searched
component and enable the user to find it.

Create Component adds a new component defined
by the user.

Wire connect components with wires.

Bus option add bus connections.

In Connection add input connection instead of
line drawing between sheets.

Out Connection add output connection instead of
line drawing between sheets.

Component display the basic components panel
in the workspace.

Label add label.

Box draw boxes around the circuits.

40

4.2.6 Simulation Menu

Add | S imulation Macro

Eun

Pause
Single Step
Beset

Stop

4.2.7 Macro Menu

Simulation | Macro Window

Record
Load Macro
Senpt Editor

BExecute

4.2.8 Window Menu

Macro | W indow Help

Cascade
Tile Honzontally
Tile Vertically

4.2.9 Help Menu

Window
About
Language Help

Custom Help

| Hep

Run start the simulation of the current project. All the
following commands in this menu shall be selectable
after the simulation is started by run command.

Pause suspend the simulation of the current project.
Single Step perform the simulation step by step and
showing the internal steps

Reset restart the simulator.

Stop exit from the simulation of the current project and
return to the edit mode.

Record save the current project as a macro in order to
support reusage of the drawing.

Load Macro load a previously recorded macro.

Script Editor open a text file with the file extension
.bx in order to enable the user to write or edit a script
file. These scripts can be used for testing.

Execute execute the selected script file.

Cascade cascade the sheets of the current project.

Tile Horizontally tile the sheets of the current project
horizontally.

Tile Vertically tile the sheets of the current project
vertically.

About connect to the our web site in order to give
information about the Project Bellatrix.

Language Help display the tutorials about the scripting
language.

Custom Help display the tutorials about the usage of
the tool.

41

5 Features

5.1 Custom Component Creation
=101.xf

Propet Edit View Component Add Smmlation Macre Window Help

e L &7 B e - o 27 |smuaton 5 (- @2 | F
_ Sheet1 | sneet2 | sneers |
Basic Components
EBT a1
== OR File Edit View Insert Help
= XOR | Name: | MvComponent Image File:| ~/image jpeg
= NaAND | Mumber of inputs: [5 Numberofnutputs:lz—
O e NOR
— INVIR1
Lahel—= INFIIT
~=Lahel OUTPL
finn cLoc
LAREL

2 3 .
: output2
Exended Components

Search for a component
s

Seript Console | Debug

§> add and? (inputl, input2, outl} coord(35, 25}

Exlit Macle | INUM

Figure 28: Pop-up window for creating a new component

As we wrote in our previous reports, the user will be able to create new components. This will be
done by "Create Custom Component" pop-up window. The idea is that the user will define the
behaviour of the circuit by just drawing it as a circuit.

In this window, the user will supply the name, image file and number of input and output ports into
corresponding text boxes. As soon as the user gives the number of ports, the input and outputs of
the component will be created and displayed on the drawing area. After this, the user will draw the
component's behaviour as a circuit. Then, the user will save the component using the file menu. The
component will be saved under components/custom directory in serialized class form.
Configuration and image of the component will be saved under the same directory, all having the
name given by the user in the window.

The component will be verified before being saved. If there are any unconnected components, and
such other errors, the application will give an error.

From the file menu, the user will be able to open and edit an existing custom component.

A detailed help and tutorial will be supplied with the application.

42

5.2 Directory Structure

E ,_r’ bellatriz

,_* / cotnponents
E}’ extendad
E}’ Custom

,_f ,_f doecs

E tutorial

E projects
e

Figure 29: Directory structure of Bellatrix

This figure shows the directory structure of Bellatrix. The top-
level directory will have the application icon, splash screen,
base configuration and shortcut files, that are mostly standard
in all applications.

The executable files of the application will be kept under the
bin directory. All the digital circuit components will be
under components directory. This directory will have three
subdirectories: basic, extended and custom, for basic,
extended and custom components respectively. These
directories will keep the components' configuration, image
and behavior in separate files under the components' unique
names.

Under the docs directory, the user will find the help and
tutorial of Bellatrix. These files will be also accessible from
the help menu of the application.

The 1ib directory will keep the specific libraries that will be
used in the application. Two of these are JHDL.jar and
jgraph.jar. JHDL is the simulation library that we explained in
detail in previous work reports. Jgraph is a drawing library for
Java, which uses native Java swing and Java2D libraries.

The projects directory will be a default directory for user
projects to be saved. The user, by the way, will be able to save
his/her projects under any other directory.

The src directory is an optional directory. If the user wants

to work with the source code of Bellatrix, he/she will be able
to install the source code with the installation of Bellatrix.

43

5.3 File Formats
{component}.dat : Save format of custom components. The custom components will be kept

in serialized object form, others will be precompiled objects.

{component}.inf : The configuration of the component. This configuration file keeps the
input/output ports of the component. These ports are kept in relative coordinates to the component
image. This configuration is required while drawing the component. The input/output ports will be
the anchor positions in the drawing. No lines will be able to be connected to any other points on the
drawn component.

{component}.jpg : The image file of the component. Custom components' images will be
renamed to the component's name and copied under the directory where the configuration file is
saved.

savefile.bx : The saved project format. The save file will be just the serialized form of the
CircuitEngine object.

savefile.lgf : The Diglog file format. Bellatrix will be able to save projects in Diglog file
format.

5.4 Threads

Bellatrix has two threads. They are as follows:

e Draw

» Simulate

These classes implement the Runnable interface and can be run concurrently. They will call wait(),
notify() methods of Runnable interface to interact with each other and to perform the concurrency

in a proper way.

Bellatrix has both a continuous simulation (on the fly, always running) and a one step simulation
support. In the continuous simulation mode (which is the default case unless changed from the
GUI), the circuit will be simulated again each time the user makes a change in its design which
requires synchronization between simulate() method of Simulate class, and all the methods of the
Draw class that are modifying its lineCellVec and compCellVec vectors which are namely
drawLine, drawComponent, removeLine and removeComponent methods. Also note that since
Bellatrix makes a continuous simulation, Draw thread has higher priority then the Simulate thread

which enables performing the simulation always according to the the latest version of the circuit.

44

In order to handle the synchronization, for each modify-simulate cycle, simulate method must wait
for any method that modifies the lineCellVec and compCellVec vectors of Draw to finish its
execution. For example if a method is modifying the vectors in the Draw thread, and the simulate
method is executed in the Simulate thread at the same time, the Simulate thread must wait for the
Draw thread. When the method finishes its job, it will notify the Simulate thread to continue from

the point it left its execution.
Also if the user initiates a change in the drawing of the circuit, the Draw thread takes over the CPU

in order to modify the lineCellVec and compCellVec vectors accordingly since Draw thread has

higher priority than the Simulate thread.

45

6 Dynamic View

6.1 Action Specification

Actions are data messages providing the interactions among the users in the system. The actions are

transferred through action channel. The action types are defined in the following format:

6.2 Action Types
Action Generator: is the user who creates the action.

Action Event: is the event that triggers the action

Action Data: keeps the required data to perform the action. First element of the Action Data String

keeps the action type which defines which event done by the event generator, i.e. action type tells us

the user selected a component from the component panel. And the remaining part of this string

defines the action arguments. The number of arguments can change according to the type of the

action.
Action Location : describes where the action event is triggered.

Action Processes: describes the processes to be performed when the action is triggered.

6.2.1 Select a Component From Workspace

Action Generator: User

Action Event: Clicking on a component in the workspace view
Action Data: <Action type> <Component type>

Action Location: GUI Workspace Pane

Action Processes: The component that is clicked from the related workspace panel is selected.

6.2.2 Select a Component From Drawing Area

Action Generator: User

Action Event: Clicking on a component in the drawing area
Action Data: <Action type> <Component type>

Action Location: GUI Drawing Area

Action Processes: The component that is clicked with the mouse in the drawing area is selected.

46

6.2.3 Add a Component

Action Generator: User

Action Event: Clicking on a component in the workspace view

Action Data: <Action type> <Component type>

Action Location: GUI Drawing Area

Action Processes: The selected component from the workspace pane, is dragged to the drawing area

and is drawn to the location pointed by the cursor.

6.2.4 Delete a Component from Pop Up Menu

Action Generator: User

Action Event: Choosing the Delete Option from the Pop Up Menu for the selected component.
Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The selected component is deleted from the drawing area

6.2.5 Move a Component

Action Generator: User

Action Event: Dragging a component in the drawing area.
Action Data: <Action type>

Action Location: GUI Drawing Area

Action Processes: The selected component is moved in the drawing area by dragging the mouse.

6.2.6 Draw a Wire

Action Generator: User

Action Event: Dragging the mouse by pressing the left button continuously in the drawing area.
Action Data: <Action type> <Drawing Coordinate>

Action Location: Drawing Area

Action Processes: The wire is drawn in the drawing area between start and end points. The start
point of the line is specified by the location pointed by the cursor when the left mouse is first
pressed and the end point is specified by the location pointed by the cursor when the left mouse is

finally released.

47

6.2.7 Select a Wire

Action Generator: User

Action Event: Clicking on a wire in the drawing area
Action Data: <Action type> <Component type>
Action Location: GUI Drawing Area

Action Processes: The wire that is clicked with the mouse in the drawing area is selected.

6.2.8 Delete a Wire from Pop Up Menu

Action Generator: User

Action Event: Choosing the Delete Option from the Pop Up Menu for the selected component.
Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The selected component is deleted from the drawing area

6.2.9 Move a Component

Action Generator: User

Action Event: Dragging a wire in the drawing area.
Action Data: <Action type>

Action Location: GUI Drawing Area

Action Processes: The selected wire is moved in the drawing area by dragging the mouse.

6.2.10 New Project

Action Creator: User

Action Event : Choosing the New Option from the Project Menu in the Menu Bar
Action Data: <Action type>

Action Location: Menu Bar

Action Processes: An empty project is created.

6.2.11 Open Project

Action Creator: User

Action Event : Choosing the Open Option from the Project Menu in the Menu Bar
Action Data: <Action type> <Project Name>

Action Location: Menu Bar

Action Processes: The specified project is opened.

48

6.2.12 Save Project

Action Creator: User

Action Event : Choosing the Save Option from the Project Menu in the Menu Bar
Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The current project is saved.

6.2.13 Print Document

Action Creator: User

Action Event : Choosing the Print Option from the Project Menu in the Menu Bar
Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The selected document is printed.

6.2.14 Exit Bellatrix

Action Creator: User

Action Event : Choosing the Exit Option from the Project Menu in the Menu Bar
Action Data: <Action type>

Action Location: Menu Bar

Action Processes: Exits from the program.

6.2.15 Undo the Last Action

Action Generator: User

Action Event: Choosing the Undo Option from the Edit Menu in the Menu Bar
Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The last action performed in the drawing area is undone.

6.2.16 Redo the Last Action

Action Generator: User

Action Event: Choosing the Redo Option from the Edit Menu in the Menu Bar
Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The last action performed in the drawing area is redone.

49

6.2.17 Add Sheet

Action Generator: User

Action Event: Choosing the Add Sheet Option from the View Menu in the Menu Bar
Action Data: <Action type>

Action Location: Menu Bar

Action Processes: A blank sheet will be added to the current project.

6.2.18 Zoom In/Out

Action Generator: User

Action Event: Choosing the Zoom Options (%50,%100) from the View Menu in the Menu Bar
Action Data: <Action type>

Action Location: Menu Bar

Action Processes: Drawing Area will be zoomed in/out.

6.2.19 Show Status Bar Mode

Action Generator: User

Action Event : Choosing the Status Bar Option from the View Menu in the Menu Bar
Action String: <Action type>

Action Location: Menu Bar

Action Processes: The current status bar mode will be displayed in the Status Bar

6.2.20 Find Custom Component

Action Creator: User

Action Event : Choosing the Find Component Option from the Component Menu in the Menu Bar
Action Data: <Action type> <Component name>

Action Location: Menu Bar

Action Processes: The search is performed for the specified component name.

6.2.21 Save Custom Component

Action Creator: User

Action Event : Choosing the Create Component Option from the Component Menu in the Menu Bar
Action Data: <Action type> <File name>

Action Location: Menu Bar

Action Processes: The specified component is saved as a custom component in the specified file

name.

50

6.2.22 Run Simulation

Action Generator: User

Action Event : Choosing the Run Option from the Simulation Menu in the Menu Bar
Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The simulation of the circuit is started.

6.2.23 Pause Simulation

Action Generator: User

Action Event : Choosing the Pause Option from the Simulation Menu in the Menu Bar
Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The simulation of the circuit is paused

6.2.24 Stop Simulation

Action Generator: User

Action Event : Choosing the Stop Option from the Simulation Menu in the Menu Bar
Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The simulation of the circuit is stopped.

51

7 Project Plan

January February March April May June

TASKS

st | 2nd | 3rd | 4th | 1st | 2nd | 3rd | 4th | 1st | 2nd | 3rd | 4th | 1st | 2nd | 3rd | 4th | st [2nd | 3rd | 4th 1st | 2nd | 3rd | 4th
week |week | week |week | week | week | week | week | week | week |week |week | week | week |week | week |week | week | week |week | week | week | week | week

1. Sub Project : Frototype

Production " P

1.1. Work Package : Initial
Implementation of GUI Class

1.2. Work Package : Initial
Implementation of Circuit
Engine Class

1.3. Work Package : Initial
Implementation of
Simulation Class

1.4. Work Package : Initial
Implementation of
Script Class

1.5. Work Package : Initial
Implementation of File =
Operations Classes

1.6. Work Package :
Integration of whole class
structure

2. Sub Project :
Implementation 4 b

2.1. Work Package :
Implementation of GUI

2.2. Work Package :
Implementation of Circuit
Engine

2.3. Work Package :
Implementation of
Simulation

2.4. Work Package :
Implementation of
Script Engine

2.5. Work Package :
Implementation of File
Operations

2.6. Work Package :
Integration of whole class
structure 7]

3. Sub Project :
Documentation < ’

3.1. Work Package:
Preparation of
Users Manuals

3.2. Work Package: . -
Preparation of Help Pages

4. Sub Project : Testing and
Debugging ‘ ’

4.1. Work Package :
Determination of Test Cases 1

4.2. Work Package :
Application of Test Cases i 3

4.3. Work Package : |
Debugging - | ‘ | 2 @

KEY

@ Milestone: Prototype Demo
% Milestone: First Release

%1 Milestone: Product Release

8 References

[1] Java Hardware Description Language, JHDL Home Page, www.jhdl.org
[2] Jgraph Home Page, www.jgraph.com

[3] Sun Java Home Page, http://java.sun.com

[4] Python Scripting Language Home Page, www.python.org

[5] Jython, The Java Port of Python Language, www.jython.org

53

http://www.jhdl.org/
http://www.jython.org/
http://www.python.org/
http://java.sun.com/
http://www.jgraph.com/

	1 Introduction
	1.1 Purpose of the System
	1.2 Design Goals
	1.3 Document Overview

	2 Data Flow
	2.1 Level 0 Data Flow Diagram
	2.2 Level 1 Data Flow Diagram
	2.3 Level 2 Data Flow Diagram – GUI
	2.4 Level 2 Data Flow Diagram – Scripting

	3 UML Diagrams
	3.1 Use-Case
	3.2 Class Diagrams
	3.2.1 General Class Diagram
	3.2.2 Class Diagram : Drawing
	3.2.3 Class Diagram : Circuit Engine
	3.2.4 Class Diagram : Scripting
	3.2.5 Class Diagram : GUI and File Operations

	3.3 Sequential Diagrams
	3.3.1 Circuit Design Module
	3.3.1.1 Line Operations & Component Operations
	3.3.1.2 Create Custom Component

	3.3.2 Simulation Module
	3.3.3 File Operations Module
	3.3.3.1 Save/Load
	3.3.3.2 Print
	3.3.3.3 File Converter

	3.3.4 Script Module
	3.3.4.1 Script Operations
	3.3.4.2 Macro Operations

	4 GUI Design
	4.1 Bellatrix Overview
	4.2 Menus
	4.2.1 Project Menu
	4.2.2 Edit Menu
	4.2.3 View Menu
	4.2.4 Component Menu
	4.2.5 Add Menu
	4.2.6 Simulation Menu
	4.2.7 Macro Menu
	4.2.8 Window Menu
	4.2.9 Help Menu

	5 Features
	5.1 Custom Component Creation
	5.2 Directory Structure
	5.3 File Formats
	5.4 Threads

	6 Dynamic View
	6.1 Action Specification
	6.2 Action Types
	6.2.1 Select a Component From Workspace
	6.2.2 Select a Component From Drawing Area
	6.2.3 Add a Component
	6.2.4 Delete a Component from Pop Up Menu
	6.2.5 Move a Component
	6.2.6 Draw a Wire
	6.2.7 Select a Wire
	6.2.8 Delete a Wire from Pop Up Menu
	6.2.9 Move a Component
	6.2.10 New Project
	6.2.11 Open Project
	6.2.12 Save Project
	6.2.13 Print Document
	6.2.14 Exit Bellatrix
	6.2.15 Undo the Last Action
	6.2.16 Redo the Last Action
	6.2.17 Add Sheet
	6.2.18 Zoom In/Out
	6.2.19 Show Status Bar Mode
	6.2.20 Find Custom Component
	6.2.21 Save Custom Component
	6.2.22 Run Simulation
	6.2.23 Pause Simulation
	6.2.24 Stop Simulation

	7 Project Plan
	8 References

