
FINAL DESIGN REPORT

BELLATRIX
DIGITAL CIRCUIT SIMULATOR

Emin ÖZCAN - 1298090
Mehtap Ayfer PARLAK - 1347855

Mehmet Ergin SEYFE - 1298215
Ilgın YARIMAĞAN - 1409101

Eren YILMAZ – 1298470

Table of Contents
1 Introduction... 4

1.1 Purpose of the System...4
1.2 Design Goals... 4
1.3 Document Overview... 5

2 Data Flow ... 6
2.1 Level 0 Data Flow Diagram..6
2.2 Level 1 Data Flow Diagram..7
2.3 Level 2 Data Flow Diagram – GUI...8
2.4 Level 2 Data Flow Diagram – Scripting... 9

3 UML Diagrams..10
3.1 Use-Case... 10
3.2 Class Diagrams... 13

3.2.1 General Class Diagram..13
3.2.2 Class Diagram : Drawing.. 14
3.2.3 Class Diagram : Circuit Engine...17
3.2.4 Class Diagram : Scripting..20
3.2.5 Class Diagram : GUI and File Operations...21

3.3 Sequential Diagrams... 26
3.3.1 Circuit Design Module.. 26

3.3.1.1 Line Operations & Component Operations.. 26
3.3.1.2 Create Custom Component... 28

3.3.2 Simulation Module.. 29
3.3.3 File Operations Module...31

3.3.3.1 Save/Load... 31
3.3.3.2 Print...32
3.3.3.3 File Converter... 32

3.3.4 Script Module.. 34
3.3.4.1 Script Operations.. 34
3.3.4.2 Macro Operations..35

4 GUI Design..36
4.1 Bellatrix Overview..36
4.2 Menus..39

4.2.1 Project Menu... 39
4.2.2 Edit Menu.. 39
4.2.3 View Menu.. 40
4.2.4 Component Menu.. 40
4.2.5 Add Menu..40
4.2.6 Simulation Menu... 41
4.2.7 Macro Menu.. 42
4.2.8 Window Menu...42
4.2.9 Help Menu...42

5 Features..43
5.1 Custom Component Creation..43
5.2 Directory Structure..44
5.3 File Formats.. 45
5.4 Threads..45

6 Dynamic View...47
6.1 Action Specification..47

2

6.2 Action Types... 47
6.2.1 Select a Component From Workspace.. 47
6.2.2 Select a Component From Drawing Area... 47
6.2.3 Add a Component..48
6.2.4 Delete a Component from Pop Up Menu ...48
6.2.5 Move a Component... 48
6.2.6 Draw a Wire.. 48
6.2.7 Select a Wire .. 49
6.2.8 Delete a Wire from Pop Up Menu ..49
6.2.9 Move a Component... 49
6.2.10 New Project... 49
6.2.11 Open Project.. 49
6.2.12 Save Project...50
6.2.13 Print Document..50
6.2.14 Exit Bellatrix... 50
6.2.15 Undo the Last Action.. 50
6.2.16 Redo the Last Action...50
6.2.17 Add Sheet.. 51
6.2.18 Zoom In/Out.. 51
6.2.19 Show Status Bar Mode.. 51
6.2.20 Find Custom Component...51
6.2.21 Save Custom Component.. 51
6.2.22 Run Simulation..52
6.2.23 Pause Simulation... 52
6.2.24 Stop Simulation... 52

7 Project Plan..53
8 References... 54

3

1 Introduction

1.1 Purpose of the System

Designed for basically educational purposes, Bellatrix is capable of performing the simulation of
digital circuits consisting of various components and wires. Users will be able to add custom
defined components as well as well-known components such as multiplexers, flip flop, and gates
etc...

Bellatrix enables extended functionalities such as compatibility with Diglog file format, option to
print the circuit schema as a PDF file which are basically aimed to ease the jobs of students that are
taking logic design laboratories. Users will be able to save a Bellatrix file in several formats such
as JPEG GIF, PNG, PS, PDF, HTML.

One of the primary features that distinguishes Bellatrix from other digital circuit simulators is the
powerful script support it offers to its users. Scripting will mainly provide users a way to test the
circuit more effectively. Users will either enter the script commands to the script console or execute
a script file. Scope of scripting also includes most of the capabilities provided by the GUI as well as
testing. For example users will be able to add a component in a specified coordinate by scripting.

1.2 Design Goals
Extensibility:
The application should be able to accommodate additional functionality. In particular, our
system is designed so that it can be extended to accept user defined gates. This property will
also ease the implementation of basic components since they can be defined using the
program. The GUI is also designed so that its features can be expanded. (ex: the Edit menu).

Robustness:
The system should be able to manage invalid user inputs or inconsistent conditions. It
provides error checking to ensure the right input format and returns errors and warnings to
the user.

Reliability:
The system should produce the expected output for a valid input at all times.

Functionality:
The system should function according to the requirements specified in Requirements
Analysis Report.

Usability:
The GUI should be user friendly. The goal is to provide the user an easy- to- use interface.
The design of the GUI is based on that of Java based applications. This design is chosen due
to the familiarity of most users with this kind of interface. It consists of a menu bar, which is
further decomposed into sub menus. Text boxes, scrollbars and pop-up menus are used to
enhance user/system interaction. The user is placed in a familiar environment, which eases
the general use of the application.

4

1.3 Document Overview
This document explains the design of our application in detail and provides an overview of our

program’s functionality and implementation. Throughout this document the following major

sections will be stated: UML Diagrams and Dynamic View. Prior to these sections, the Data Flow

Diagrams are given again. In the UML Diagrams sections, the reader can find Use-Cases, Class

Diagrams and Sequential Diagrams. Some of these diagrams are supported with descriptions. In the

Dynamic View section, the actions that the user can do are explained.

5

2 Data Flow

2.1 Level 0 Data Flow Diagram

6

Figure 1: Level-0 DFD

2.2 Level 1 Data Flow Diagram

7

Figure 2: Level 1 DFD

2.3 Level 2 Data Flow Diagram – GUI

8

Figure 3: Level 2 DFD for GUI

2.4 Level 2 Data Flow Diagram – Scripting

9

Figure 4: Level 2 DFD for Scripting

3 UML Diagrams

3.1 Use-Case

10

Figure 5: The General Use-Case Diagram of Bellatrix

Usage Scenario:

In Project Bellatrix, user can design a circuit by opening a project. He can save the project at any

time he wants, and later he can open the same project from the disk. If he wants to open another

project, he has to close the recent one.

In a project, there are three spaces. First of them is drawing area. Drawing area is composed of

sheets. User can open numbers of sheets and can remove some of them from the drawing area if he

wants. Also he can operate these sheets view. He can choose tile or cascade view for seeing the

sheets more easily. In project, there is also a workspace area that is used for showing and searching

the components. Any user can reach any basic or extended components from there. Also he can

create his custom panel by searching the required components from the component library. In

addition to these spaces, there is also a console which is used for giving external controller code.

User can design a circuit by using drawing area. He can choose any component from the workspace

menu and drag it to the drawing area. At any time,he can move the component,rotate the component

by right angles, and copy, cut, paste and delete the component at any time. User can select only one

or lots of components and he can group them. There is also a redo, undo and clear support. For each

component, user can see its properties and he can change its color and name. In addition to

component drawing, user can draw connection lines. Firstly, he has to choose the line mode from

the tool bar for activating the line drawing. After the activation of line drawing mode, he can draw

wires. This activation prevents the accidental line drawing. Drawing area has default view settings.

However, any user could want to change these settings. For this reason, system provides some

competence to the user, such as changing the background color and controlling the grid view. Also

there is a zooming support. After doing some changes on the view of drawing area, user can save

them and load them any time he wants. Finally, user may want to deactivate the drawing area. So,

there is hand mode support. In hand mode,user can only see the circuit ,namely, he can do nothing

to the circuit.

In our program, user can test the circuit by using the simulator. Simulation mode is inactive when

the program is in edit mode. If a user wants to simulate the circuit, he has to switch on simulation

mode by selecting Run, from the tool bar or from Simulation on the menu bar. Also he can start the

simulation by giving a script code from the console. Then he can pause, reset or stop the simulation,

again by using the tool bar or console. In simulation of a circuit, a user can give inputs once or step

by step.

11

Project Bellatrix supports the user with a macro peculiarity. User can record the drawing process by

using the menu bar, or by giving an external code from the console. For recording the process, our

system creates a script file. The user can load this file and execute the macro for watching it. In

addition the automatic script file creation, our system gives a chance of manual script file creation

to the user. User can open a script editor from Macro on the menu bar and he can write his script

code here. After loading and executing his own script file, he will watch what this script does.

Finally, our system has a print support. After drawing a circuit, user can print out this circuit on a

paper. If he wants to see the view of the paper before getting the print-out, he has to select the print

preview button from the tool bar. User could want to change default print settings. Therefore, after

clicking the print button on the tool bar, a new pop-up menu will be opened and user can change the

settings,such as paper size or color.

12

3.2 Class Diagrams

3.2.1 General Class Diagram

13

Figure 6: General Class Diagram of Bellatrix

3.2.2 Class Diagram : Drawing

14

Figure 7: Class Diagram for Drawing

When the user drops a gate in the circuit drawing area of the program, or, when the user draws a

line, a Draw class object will be instantiated by the CircuitEngine class. All of the drawing process

will be done by the Draw class. Thanks to JGraph library, drawing is very easy. Let us continue

with explaining how JGraph draw objects and how Draw class uses it and the subclasses of Draw,

which are LineGraphCell and ComponentGraphCell.

First of all, JGraph library has a property that it displays its data by drawing individual elements.

Each element displayed by the graph contains exactly one item of data, which is called a cell. A cell

may either be a vertex(gate) or an edge(line). Vertices may have neighbors or not, and edges may

have source and target vertices or not, depending on whether they are connected. Since a line or a

gate has to be accessed from a cell, the line class and the component class extend from the

DefaultGraphCell of JGraph library. DefaultGraphCell extends from the DefaultMutableTreeNode

which is the general-purpose node in Jtree.

LineGraphCell and ComponentGraphCell classes represent for line and component, respectively,

they inherit the DefaultGraphCell. LineGraphCell class has three private objects which are value,

isGlowMode and color. Value and color are integer and isGlowMode is boolean. Color and

isGlowMode fields are used in line drawing and the value field is used in simulation. Value is

defined -1 as default,which shows its high impedance. If a line has a high voltage, it is 1 else it is 0.

LineGraphCell also has a public function, called setColorbyValue(int). It gives the value field as an

argument and set the color of the line object. If the value is undefined, i.e -1, the color is black. If it

is 1,the color of line is green,and if it is 0 the color is red.

In addition to LineGraphCell class, ComponentGraphCell class has five fields and two functions. It

has a type field which determines its type. For instance if the component is an AND gate the type is

equal to the “and” string. The second field is a FileInputStream object, called configFile. As an

input file, configFile is used for reading some necessary data. Every gate object has some numbers

of input ports and output ports. Ports' type, i.e inputport or outputport, its value, i.e -1, 0 or 1, and

their coordinate positions relative to the left top of the gate are the basic required data that will be

read from the input file. By using these ports, system can connect a line to a component. For

example, if a line is drawn, JGraph can detect that whether this line is connected to a port of a

component by using coordinate axis positions of both line and component. If a line start point is

connected to a port of a component, JGraph set the source of the line by this port. On the other

hand, if a line end point is connected to a port of a component, JGraph set the target of the line by

15

this port. In addition to the configFile, there are ImageIcon and URL fields, calling jgraphIcon and

jgraphUrl, respectively. These are two interrelated fields. The address of the icon is stored in the

URL object and then it will be given to the constructor of the ImageIcon class as an argument.

Namely, an image file in a specific directory will be created by using these fields. Also, there is

another field, called isUserDefined. This field type is boolean, and it is used for determining

whether the component object is a user defined or a default component.

As a result, draw class keeps a LineGraphCell vector and a ComponentGraphCell vector. Also it

has another field, called graph. It is a JGraph object and it is used for keeping all drawn objects. In

addition to its field, Draw class has four methods. DrawLine method is used for adding new line

objects to the LineGraphCell vector and drawing all lines with two argument which types are

Point2D and comes from the GUI class. The first Point2D object represents the start point of the

line and the second one represents the end point of the line. In the same way, drawComponent

method is used for keeping component objects into the ComponentGraphCell vector and drawing

all component with two argument. But this time first one is a Point2D object and the second one is a

String. The first argument keeps the coordinate axis position of the component and it is comes from

the GUI class. The second argument keeps the type of the component. In addition to these draw

methods, there are remove methods. RemoveLine method is used for removing any line from the

drawing area by removing it from the LineGraphCell vector. In same way, the removeComponent

method is used for removing a picked gate from the drawing area by deleting it from the

ComponentGraphCell vector.

16

3.2.3 Class Diagram : Circuit Engine

17

Figure 8: Class Diagram for Circuit Engine

CircuitEngine class has Draw and Simulate objects. The main task of the CircuitEngine class is the

coordination of these two objects.

As explained before, Draw class will do all drawing process and will keep all information about the

drawn objects. In order to simulate the design, some data transformation is necessary. Another task

of the CircuitEngine class is to manipulate the data such that the design data will be used in

simulation class.

The Draw class is responsible for all drawing operations. This class keeps two vectors,

lineCellVector and compCellVector for lines and components respectively. The objects that are

being drawn are kept in these vectors. These vectors keep LineGrapCell and ComponentGraphCell

objects, all derived from DefaultGraphCell class of jgraph. LineGraphCell class keeps the drawn

lines' data, color and value information. The ComponentGraphCell class keeps the component data

in the same manner. This class keeps the components' image, configuration, origin and type data.

Some of these datum are required for converting the drawing into some structure that JHDL

understands.

At each mouse event that is related to drawing will invoke this class' methods. At each object

creation, the object will be given to the jgraph instance and copied to the related vector for

transferring the circuit data to the simulation engine.

CircuitEngine class is the connector class between the Draw class and Simulate class. The draw

class will supply this class the line and component vectors. Then CircuitEngine class will look for

user created components in the given component vector and replace them by the unserialized

vectors of the user created components. MergeCompCustom, MergeLineCustom will merge the

internal structure of this custom components with the vectors in the draw object. After all new

vectors will be created which will be necessary for the JHDL to simulate the design. This

replacement will not affect the visualization of the components. It is done for only simulation.

Simulate class will do the main simulation process. The TestBench interface is a top level cell for

generating test data to drive a circuit. Logic class provides many convenient methods for

accelerating structural design. For example, the method call and(a, b) instantiates a new 2-input

and gate automatically, wires up a and b to the inputs, instantiates a new wire and then connects the

new wire to the output of the gate, and returns the new wire. Because these method calls return

wires, not gates, it allows to have nested method calls to quickly build up complex logic circuits.

18

The CircuitEngine will pass the line and component vectors to the Simulation class as arguments to

load methods. The class, then, will keep these vectors in internal variables. The simulation methods

(simulate, oneStepSimulate, etc.) will then use these variables and do the simulation by calling

JHDL simulation methods.

19

3.2.4 Class Diagram : Scripting

The scripting module runs in the following order: The user inputs some script (either by the

scripting console in the GUI or by opening a script file) and the GUI directs this script to the

ScriptInputManager class. The ScriptInputManager has 3 methods to handle the incoming script.

After getting the script input, this class calls respective methods from the JythonEngine class. This

class does the main Python execution. After evaluating the script commands, JythonEngine class

calls the ScriptOutputManager to display the outputs. Then, the ScriptOutputManager calls relevant

GUI methods to display the results.

JythonEngine has an external module connection to the Simulation Module. If the script contains

some simulation control commands, the JythonEngine directly calls the Simulation Control

Methods. The results of this execution is then handled by the Simulation Module Classes.

Execution of macros are treated as simplified script commands. Macros have limited power relative

to scripts. The user initiates definition of the macro by GUI events and the MacroManager handles

these events and converts to Python script. Then, the macro is processed as a script file.

20

Figure 9: Class Diagram of Scripting Module

3.2.5 Class Diagram : GUI and File Operations

In order to generate the GUI stated at [SECTION 4], some components of javax.swing package will

be used in the GUI class such that a MenuBar, a ToolBar, two Panels, a TextPane and a number of

buttons, labels and icons. First Panel represents the WorkSpace Pane and the second one represents

the Drawing Area. The buttons, labels and icons will be used in the Tool Bar, Menu Bar and the

Workspace Pane in order to relate each component to a button, label or icon where necessary.

GUI class also encapsulates two CircuitEngines, a ScriptInputManager, a FileOperations and a

JGraph object. First circuitEngine object will be used for the simulation of the whole circuit.

21

Figure 10: Class Diagram for GUI and File Operations

Second circuitEngine object will be used for the simulation of the custom defined circuit. The

ScriptInputManager object will be used for performing script operations. The FileOperations object

will be used for all file operations such as saving the project, printing a document, converting a file.

The Jgraph object will be used for operations such as copy, paste, zoom in which will be explained

more detailed in the following paragraphs.

Finally there are certain fields in GUI class, namely selectedLines ,selectedComponents,

scaleFactor, componentColor, backgroundColor, isGridcurrentSheet. These fields are required to

pass arguments to JGraph object in order to perform GUI actions such as cut, copy, paste, undo,

redo which again will be explained in the following paragraphs.

GUI class basically provides a way to perform operations that require user interaction. For example

selecting a Menu Item, clicking on a ToolBar icon, dragging a Component from the Workspace

Pane to the Drawing Area, moving a component in the Drawing Area, entering text in the Script

Terminal.

Each action stated above triggers an event indicating that the user demands an operation. These

events are stated as follows in the class diagram:

MenuItem_actionPerformed(ActionEvent)

ToolBarIcon_actionPerformed(ActionEvent)

WorkspaceIcon_actionPerformed(ActionEvent)

WorkspaceIconDragged_actionPerformed(MouseEvent)

WorkspaceIconReleased_actionPerformed(MouseEvent)

TextPaneChanged_actionPerformed(ActionEvent)

Notation:

MenuItem_actionPerformed(ActionEvent)

ToolBarIcon_actionPerformed(ActionEvent)

• “MenuItem” represents all possible Menu Items of Bellatrix such as jMenuProjectSave,

jMenuSimulationRun. Similarly “ToolBarIcon” represents all possible ToolBar icons of

Bellatrix such as a run icon, a pdf icon and so on.

• ActionEvent can represent either choosing a Menu Item or selecting a ToolBar icon.

22

WorkspaceIcon_actionPerformed(ActionEvent)

WorkspaceIconDragged_actionPerformed(MouseEvent)

WorkspaceIconReleased_actionPerformed(MouseEvent)

• “WorkspaceAreaIcon” represents all possible DrawingArea Icons of Bellatrix such as an

And Gate icon or a Clock icon.

• ActionEvent represents choosing a Workspace icon

• MouseEvent can either represent dragging the mouse or releasing it.

TextPaneChanged_actionPerformed(ActionEvent)

• “TextPane” represents the script terminal.

• ActionEvent represents entering a text to the script terminal.

Each icon representing a component or a wire in the Drawing Area is called a DrawingAreaIcon

such as an icon representing an And Gate. The drawingArea icons are defined as the same type

with the WorkspaceArea icons. They are simply an ImageIcon object defined in javax.swing

package. Workspace icons are picked when the user triggers the

WorkspaceIcon_actionPerformed(ActionEvent) event by clicking on the icon from the Workspace

Pane. Workspace icons can be dragged to the Drawing Area by the user and after that they are

treated as DrawingArea icons. This is accomplished by the

WorkspaceIconDragged_actionPerformed(MouseEvent) and

WorkspaceIconReleased_actionPerformed(MouseEvent) methods.

 Also the user can select and drag the components (which are actually ImageIcons representing

gates, clock etc) in the drawing area which are accomplished by the the native methods of the

Jgraph object.

The sequence proceeds as follows: Each time the user triggers an event from the MenuBar (by

choosing a MenuItem), Toolbar (by clicking on a ToolBar Icon), TextPane (by entering text in Text

Pane) corresponding method of the related object (Circuit Engine, ScriptInputManager,

FileOperations, GUIActions) will be called and that method will handle the operation.

23

For example when the user selects the Save Option of the Project Menu, the

jProjectSave_actionPerformed(ActionEvent) event will be triggered and inside the event, the

saveProject method of the fileOperations object will be called in order to perform the save

operation.

Similarly when the user selects the Copy Option of the Edit Menu, the

jEditCopy_actionPerformed(ActionEvent) event will be triggered and inside the event, the copy

method of the jGraph object will be called in order to perform the copy operation.

A full list of used JGraph methods are stated as follows:

undo()

redo()

group(Object [])

ungroup(Object [])

showGrid()

removeGrid()

changeBackgroundColor()

selectAll()

deselect()

copy(Action)

cut(Action)

paste(Action)

setScale(double)

The methods are included in the JGraph library and used by the GUI class. Detailed examples

including the interaction between these classes will be explained in the sequence diagrams

[SECTION 3.3]

The file operations are intuitive. The FileOperations class handles the opening and saving file

operations. Saving the file in the .bx format will be done directly in this class.

Converting options will be handled by the subclasses of this class, FileConverter and

DiglogConverter. FileConverter class will be capable of converting the drawing to several formats,

including PS and PDF. This is done by corresponding methods in the FileConverter class. When the

user selects the Save As option from the Project Menu, a Save Dialog will be opened and the user

24

will choose to save the file in either ps, pdf, png, jpeg, html formats. According to the choosen

format, the corresponding method of the FileConvertor class will be called.

For example if the user chooses to save as pdf format from the Save Dialog, the saveAsPdf method

of the FileConverter class will be called.

Converting to Diglog format is handled by DiglogConverter class. This class takes the circuit data

and converts it to Diglog format. This class also responsible for importing Diglog files. The Diglog

format file is then converted to our format in the same way stated for saving as pdf format.

25

3.3 Sequential Diagrams

3.3.1 Circuit Design Module

3.3.1.1 Line Operations & Component Operations

Line operations will be done by three classes, CircuitEngine, Draw and LineGraphCell. In same

way, component operations will be done by CircuitEngine, Draw and ComponentGraphCell.

CircuitEngine holds a Draw object and Draw holds a LineGraphCell or ComponentGraphCell

object. The mouse events return the start and end points of the line (start point: the point where the

mouse is pressed; end point: the point where the mouse is released), or the origin of the component.

If the object is a component, it also holds the type of the component. Then, CircuitEngine calls the

draw methods of the Draw class. Draw class creates a LineGraphCell or ComponentGraphCell

object and draws a line/gate on the circuit drawing area. If the object is LineGraphCell, it can set its

color according to its value, else if the object is ComponentGraphCell, it reads the configuration file

26

Figure 11: Sequential Diagram of Line Operations

from the disk and loads the corresponding image. In addition to drawing, CircuitEngine can control

the deletion of the objects. Thanks to Jgraph, if the mouse clicks on a line or a gate, the object will

be selected. Selected item will be deleted from the LineGraphCell or ComponentGraphCell vector

by calling the remove method of the Draw class. Therefore, the selected object will be removed

from the circuit drawing area.

27

Figure 12: Sequential Diagram of Component Operations

3.3.1.2 Create Custom Component

The creation of a custom component will proceed as follows:

When the user selects the Create Component option from the Component Menu, an

jMenuComponentCreateComponent_actionPerformed(ActionEvent) event will be triggered

informing the GUI that a user demanded to create a custom component. After that, GUI class will

call the newCustomComponent method of its FileOperations object. Finally FileOperation object

will simply use the write method of the fileWriter class of java.io package in order to save the

Custom component in a file.

28

Figure 13: Sequence Diagram for Create Custom Component

3.3.2 Simulation Module

29

Figure 14: Sequence Diagram for Simulation Module

Simulation will be done by two classes, CircuitEngine and Simulate. Before staring the simulation,

CircuitEngine must prepare the two vectors: line vector and component vector which Simulate class

will use for simulation. CircuitEngine does this job by loading the internal structure of the user

defined components used in the design and then merges their functionality (lines and components

defined in them) with the other components and lines. After all this pre-process Simulate object

starts simulation by calling the simulation functions of the JHDL. Simulate has a clock() method

which overrides the clock() method of JHDL. All value operations (giving new values to wires)

done in clock() method. JHDL calculate the new values of the wires step by step. Therefore

simulate method of Simulate object calls the clock() method, until simulation finishes; however the

oneStepSimulate method calls the clock() method only one time. Also JHDL considers the

propagation delay of components. Other options of the simulation like pause, stop, reset is done

again by using the methods of JHDL defined in its TestBench interface.

30

3.3.3 File Operations Module

3.3.3.1 Save/Load

Save/Load Operations will proceed as follows:

When the user selects the Save Option from the Project Menu, an

jMenuProjectSave_actionPerformed(ActionEvent) event will be triggered informing the GUI that

the user demanded to save the project. After that, GUI class will call the saveProject method of its

FileOperations object. Finally the FileOperations object will simply use the write method of the

fileWriter class of java.io package in order to save the project in a file.

When the user selects the Load Option from the Project Menu, an

jMenuProjectOpen_actionPerformed(ActionEvent) event will be triggered informing the GUI that

the user demanded to open a project. After that, GUI class will call the openProject method of its

FileOperations object. Finally the FileOperations object will simply use the read method of the

fileReader class of java.io package in order to open the project.

When the user selects the Open Option from the Project Menu, an

jMenuProjectNew_actionPerformed(ActionEvent) event will be triggered informing the GUI that

the user demanded to create a new project. After that, GUI class will call the newProject method of

its FileOperations object. Finally the FileOperations object will simply use the write method of the

fileWriter class of java.io package in order to create a new project.

31

Figure 15: Sequence Diagram for Save/Load

3.3.3.2 Print

As it can be seen from the diagram, GUI class calls the related function of Print class when the user

triggers an ActionEvent by selecting the corresponding option from the menu bar. Print class uses

the java.awt.print.PrinterJob library of Java to locate a service which can export 2D graphics to a

stream as Postscript. This may be spooled to a Postscript printer, or used in a postscript viewer.

3.3.3.3 File Converter

32

Figure 17: Sequence Diagram for File Converter

Figure 16: Sequence Diagram for Print

A File Conversion Operation will proceed as follows:

When the user selects the Save As Option from the Project Menu, an

jMenuProjectSaveAs_actionPerformed(ActionEvent) event will be triggered informing the GUI

that the user demanded to save the project in a printable file. After that, FileOperations object of the

GUI class will call the one of the SaveAsPDF, SaveAsPS, SaveAsJPG, SaveAsPNG,

SaveAsHTML methods of FileConverter class . Finally the FileConverter class will perform the

neccessary operations to save the project in the specified format.

33

3.3.4 Script Module

3.3.4.1 Script Operations

When the user inputs a script from the script console, the system forwards this input to

ScriptInputManager. This class pre-processes the script and then invokes the JythonEngine class'

runScript method. This method executes the script by instantiating a JythonInterpreter object. This

object now controlls the script execution. This way, the script may control the Simulation class

and/or CircuitEngine class.

34

Figure 18: Sequence Diagram for Script Operations

3.3.4.2 Macro Operations

Running a macro is very similar to running a script in the internal structure. This is because macros

are actually scripts. The macro is loaded from the file and pre-processed by the MacroManager

class. This class then passes the macro to the JythonEngine and the rest is the same as script

execution process.

35

Figure 19: Sequence Diagram for Macro Operations

4 GUI Design

4.1 Bellatrix Overview
Bellatrix EDA is based on a MDI concept (Multiple Document Interface). Several sheets can be
used to draw the schematics and simulate them.

Project title header contains the name of the application and the current active sheet.

36

Figure 20: The theoretical view of the GUI. Changes may be applied due to differences in Java window interface.

Figure 21: Title Bar of Bellatrix.

Menu bar allows to access all system features of the application.

Tool bar contains the symbols of most frequently used features.

Workspace view displays the components that are available.

37

Figure 22: Menu Bar of Bellatrix.

Figure 23: Tool Bar of Bellatrix.

Figure 24: Workspace: Standard and
User-Defined Components.

Console view is used to display informations related to the Edit and Simulation modes.

Status Bar displays some interesting informations like the current cursor position in file when the
user edits a script file or the system clock.

Drawing Area is the place where the circuit is drawn. This place can support various pages called
“sheets”.

38

Figure 25: Console: The general input-output area of the system.

Figure 26: Status Bar shows the current status of the system.

Figure 27: Main Drawing Area

4.2 Menus

4.2.1 Project Menu

4.2.2 Edit Menu

39

New reate a new project.

Open open an existing project.
Close close the current project.
Save save the current project.
Save as save the current project with a different
name.
Print prints the current project.
Print Preview enables the user to see the print
format of the current project.
Print Setup enables the user to view and change the
print settings
Recent Files enables the user to view and open the
most recently used files
Exit enables the user to exit from the program.

Undoundo the last action before the user save the
current project.
Redo redo until the first undo action.
Cut cut the selected item(s).
Copy copy the selected item(s).
Paste paste the last cut or copied item(s).
Select All select all items in the current sheet.
Deselect deselect a selected item.
Select Inverse select all items except the selected
item in the current sheet.
Group group the selected items.
Ungroup ungroup the selected group.
Clear clear the selected items.
Delete All delete all items in the current sheet.
Preferences contains the background color and grid
view options.

Background color provides a color
palet to the user in order to set the
background color of the drawing area.
Default color is white.
Show Grid provides a grid view.

4.2.3 View Menu

4.2.4 Component Menu

4.2.5 Add Menu

40

Add Sheet insert a new sheet to the current project.
Remove Sheet option shall enable the user to
remove the current sheet from the project.
Console option shall enable the user to show or hide
the console view.
Workspace option shall enable the user to show or
hide the workspace view.
Status Bar option shall enable the user to show or
hide the status bar.
Zoom options shall be listed such that Fit to
Window, Fit to Page, 50%, 75% ..., Custom.

Properties display the name, code and input/output
informations of the selected component.
Library display the library pages which contains all
the components that are available as listed.
Find Component display a pop up window which
contains a text box for the name of the searched
component and enable the user to find it.
Create Component adds a new component defined
by the user.

Wire connect components with wires.
Bus option add bus connections.
In Connection add input connection instead of
line drawing between sheets.
Out Connection add output connection instead of
line drawing between sheets.
Component display the basic components panel
in the workspace.
Label add label.
Box draw boxes around the circuits.

4.2.6 Simulation Menu

4.2.7 Macro Menu

4.2.8 Window Menu

4.2.9 Help Menu

41

Run start the simulation of the current project. All the
following commands in this menu shall be selectable
after the simulation is started by run command.
Pause suspend the simulation of the current project.
Single Step perform the simulation step by step and
showing the internal steps
Reset restart the simulator.
Stop exit from the simulation of the current project and
return to the edit mode.

Cascade cascade the sheets of the current project.
Tile Horizontally tile the sheets of the current project
horizontally.
Tile Vertically tile the sheets of the current project
vertically.

About connect to the our web site in order to give
information about the Project Bellatrix.
Language Help display the tutorials about the scripting
language.
Custom Help display the tutorials about the usage of
the tool.

Record save the current project as a macro in order to
support reusage of the drawing.
Load Macro load a previously recorded macro.
Script Editor open a text file with the file extension
.bx in order to enable the user to write or edit a script
file. These scripts can be used for testing.
Execute execute the selected script file.

5 Features

5.1 Custom Component Creation

As we wrote in our previous reports, the user will be able to create new components. This will be
done by "Create Custom Component" pop-up window. The idea is that the user will define the
behaviour of the circuit by just drawing it as a circuit.

In this window, the user will supply the name, image file and number of input and output ports into
corresponding text boxes. As soon as the user gives the number of ports, the input and outputs of
the component will be created and displayed on the drawing area. After this, the user will draw the
component's behaviour as a circuit. Then, the user will save the component using the file menu. The
component will be saved under components/custom directory in serialized class form.
Configuration and image of the component will be saved under the same directory, all having the
name given by the user in the window.

The component will be verified before being saved. If there are any unconnected components, and
such other errors, the application will give an error.

From the file menu, the user will be able to open and edit an existing custom component.

A detailed help and tutorial will be supplied with the application.

42

Figure 28: Pop-up window for creating a new component

5.2 Directory Structure

This figure shows the directory structure of Bellatrix. The top-
level directory will have the application icon, splash screen,
base configuration and shortcut files, that are mostly standard
in all applications.

The executable files of the application will be kept under the
bin directory. All the digital circuit components will be
under components directory. This directory will have three
subdirectories: basic, extended and custom, for basic,
extended and custom components respectively. These
directories will keep the components' configuration, image
and behavior in separate files under the components' unique
names.

Under the docs directory, the user will find the help and
tutorial of Bellatrix. These files will be also accessible from
the help menu of the application.

The lib directory will keep the specific libraries that will be
used in the application. Two of these are JHDL.jar and
jgraph.jar. JHDL is the simulation library that we explained in
detail in previous work reports. Jgraph is a drawing library for
Java, which uses native Java swing and Java2D libraries.

The projects directory will be a default directory for user
projects to be saved. The user, by the way, will be able to save
his/her projects under any other directory.

The src directory is an optional directory. If the user wants
to work with the source code of Bellatrix, he/she will be able
to install the source code with the installation of Bellatrix.

43

Figure 29: Directory structure of Bellatrix

5.3 File Formats
{component}.dat : Save format of custom components. The custom components will be kept
in serialized object form, others will be precompiled objects.

{component}.inf : The configuration of the component. This configuration file keeps the
input/output ports of the component. These ports are kept in relative coordinates to the component
image. This configuration is required while drawing the component. The input/output ports will be
the anchor positions in the drawing. No lines will be able to be connected to any other points on the
drawn component.

{component}.jpg : The image file of the component. Custom components' images will be
renamed to the component's name and copied under the directory where the configuration file is
saved.

savefile.bx : The saved project format. The save file will be just the serialized form of the
CircuitEngine object.

savefile.lgf : The Diglog file format. Bellatrix will be able to save projects in Diglog file
format.

5.4 Threads
Bellatrix has two threads. They are as follows:

• Draw

• Simulate

These classes implement the Runnable interface and can be run concurrently. They will call wait(),

notify() methods of Runnable interface to interact with each other and to perform the concurrency

in a proper way.

Bellatrix has both a continuous simulation (on the fly, always running) and a one step simulation

support. In the continuous simulation mode (which is the default case unless changed from the

GUI), the circuit will be simulated again each time the user makes a change in its design which

requires synchronization between simulate() method of Simulate class, and all the methods of the

Draw class that are modifying its lineCellVec and compCellVec vectors which are namely

drawLine, drawComponent, removeLine and removeComponent methods. Also note that since

Bellatrix makes a continuous simulation, Draw thread has higher priority then the Simulate thread

which enables performing the simulation always according to the the latest version of the circuit.

44

In order to handle the synchronization, for each modify-simulate cycle, simulate method must wait

for any method that modifies the lineCellVec and compCellVec vectors of Draw to finish its

execution. For example if a method is modifying the vectors in the Draw thread, and the simulate

method is executed in the Simulate thread at the same time, the Simulate thread must wait for the

Draw thread. When the method finishes its job, it will notify the Simulate thread to continue from

the point it left its execution.

Also if the user initiates a change in the drawing of the circuit, the Draw thread takes over the CPU

in order to modify the lineCellVec and compCellVec vectors accordingly since Draw thread has

higher priority than the Simulate thread.

45

6 Dynamic View

6.1 Action Specification
Actions are data messages providing the interactions among the users in the system. The actions are

transferred through action channel. The action types are defined in the following format:

6.2 Action Types
Action Generator: is the user who creates the action.

Action Event: is the event that triggers the action

Action Data: keeps the required data to perform the action. First element of the Action Data String

keeps the action type which defines which event done by the event generator, i.e. action type tells us

the user selected a component from the component panel. And the remaining part of this string

defines the action arguments. The number of arguments can change according to the type of the

action.

Action Location : describes where the action event is triggered.

Action Processes: describes the processes to be performed when the action is triggered.

6.2.1 Select a Component From Workspace
Action Generator: User

Action Event: Clicking on a component in the workspace view

Action Data: <Action type> <Component type>

Action Location: GUI Workspace Pane

Action Processes: The component that is clicked from the related workspace panel is selected.

6.2.2 Select a Component From Drawing Area
Action Generator: User

Action Event: Clicking on a component in the drawing area

Action Data: <Action type> <Component type>

Action Location: GUI Drawing Area

Action Processes: The component that is clicked with the mouse in the drawing area is selected.

46

6.2.3 Add a Component
Action Generator: User

Action Event: Clicking on a component in the workspace view

Action Data: <Action type> <Component type>

Action Location: GUI Drawing Area

Action Processes: The selected component from the workspace pane, is dragged to the drawing area

and is drawn to the location pointed by the cursor.

6.2.4 Delete a Component from Pop Up Menu
Action Generator: User

Action Event: Choosing the Delete Option from the Pop Up Menu for the selected component.

Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The selected component is deleted from the drawing area

6.2.5 Move a Component
Action Generator: User

Action Event: Dragging a component in the drawing area.

Action Data: <Action type>

Action Location: GUI Drawing Area

Action Processes: The selected component is moved in the drawing area by dragging the mouse.

6.2.6 Draw a Wire
Action Generator: User

Action Event: Dragging the mouse by pressing the left button continuously in the drawing area.

Action Data: <Action type> <Drawing Coordinate>

Action Location: Drawing Area

Action Processes: The wire is drawn in the drawing area between start and end points. The start

point of the line is specified by the location pointed by the cursor when the left mouse is first

pressed and the end point is specified by the location pointed by the cursor when the left mouse is

finally released.

47

6.2.7 Select a Wire
Action Generator: User

Action Event: Clicking on a wire in the drawing area

Action Data: <Action type> <Component type>

Action Location: GUI Drawing Area

Action Processes: The wire that is clicked with the mouse in the drawing area is selected.

6.2.8 Delete a Wire from Pop Up Menu
Action Generator: User

Action Event: Choosing the Delete Option from the Pop Up Menu for the selected component.

Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The selected component is deleted from the drawing area

6.2.9 Move a Component
Action Generator: User

Action Event: Dragging a wire in the drawing area.

Action Data: <Action type>

Action Location: GUI Drawing Area

Action Processes: The selected wire is moved in the drawing area by dragging the mouse.

6.2.10 New Project
Action Creator: User

Action Event : Choosing the New Option from the Project Menu in the Menu Bar

Action Data: <Action type>

Action Location: Menu Bar

Action Processes: An empty project is created.

6.2.11 Open Project
Action Creator: User

Action Event : Choosing the Open Option from the Project Menu in the Menu Bar

Action Data: <Action type> <Project Name>

Action Location: Menu Bar

Action Processes: The specified project is opened.

48

6.2.12 Save Project
Action Creator: User

Action Event : Choosing the Save Option from the Project Menu in the Menu Bar

Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The current project is saved.

6.2.13 Print Document
Action Creator: User

Action Event : Choosing the Print Option from the Project Menu in the Menu Bar

Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The selected document is printed.

6.2.14 Exit Bellatrix
Action Creator: User

Action Event : Choosing the Exit Option from the Project Menu in the Menu Bar

Action Data: <Action type>

Action Location: Menu Bar

Action Processes: Exits from the program.

6.2.15 Undo the Last Action
Action Generator: User

Action Event: Choosing the Undo Option from the Edit Menu in the Menu Bar

Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The last action performed in the drawing area is undone.

6.2.16 Redo the Last Action
Action Generator: User

Action Event: Choosing the Redo Option from the Edit Menu in the Menu Bar

Action Data: <Action type>

Action Location: Menu Bar

Action Processes:The last action performed in the drawing area is redone.

49

6.2.17 Add Sheet
Action Generator: User

Action Event: Choosing the Add Sheet Option from the View Menu in the Menu Bar

Action Data: <Action type>

Action Location: Menu Bar

Action Processes: A blank sheet will be added to the current project.

6.2.18 Zoom In/Out
Action Generator: User

Action Event: Choosing the Zoom Options (%50,%100) from the View Menu in the Menu Bar

Action Data: <Action type>

Action Location: Menu Bar

Action Processes: Drawing Area will be zoomed in/out.

6.2.19 Show Status Bar Mode
Action Generator: User

Action Event : Choosing the Status Bar Option from the View Menu in the Menu Bar

Action String: <Action type>

Action Location: Menu Bar

Action Processes: The current status bar mode will be displayed in the Status Bar

6.2.20 Find Custom Component
Action Creator: User

Action Event : Choosing the Find Component Option from the Component Menu in the Menu Bar

Action Data: <Action type> <Component name>

Action Location: Menu Bar

Action Processes: The search is performed for the specified component name.

6.2.21 Save Custom Component
Action Creator: User

Action Event : Choosing the Create Component Option from the Component Menu in the Menu Bar

Action Data: <Action type> <File name>

Action Location: Menu Bar

Action Processes: The specified component is saved as a custom component in the specified file

name.

50

6.2.22 Run Simulation
Action Generator: User

Action Event : Choosing the Run Option from the Simulation Menu in the Menu Bar

Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The simulation of the circuit is started.

6.2.23 Pause Simulation
Action Generator: User

Action Event : Choosing the Pause Option from the Simulation Menu in the Menu Bar

Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The simulation of the circuit is paused

6.2.24 Stop Simulation
Action Generator: User

Action Event : Choosing the Stop Option from the Simulation Menu in the Menu Bar

Action Data: <Action type>

Action Location: Menu Bar

Action Processes: The simulation of the circuit is stopped.

51

7 Project Plan

52

8 References
[1] Java Hardware Description Language, JHDL Home Page, www.jhdl.org
[2] Jgraph Home Page, www.jgraph.com
[3] Sun Java Home Page, http://java.sun.com
[4] Python Scripting Language Home Page, www.python.org
[5] Jython, The Java Port of Python Language, www.jython.org

53

http://www.jhdl.org/
http://www.jython.org/
http://www.python.org/
http://java.sun.com/
http://www.jgraph.com/

	1 Introduction
	1.1 Purpose of the System
	1.2 Design Goals
	1.3 Document Overview

	2 Data Flow
	2.1 Level 0 Data Flow Diagram
	2.2 Level 1 Data Flow Diagram
	2.3 Level 2 Data Flow Diagram – GUI
	2.4 Level 2 Data Flow Diagram – Scripting

	3 UML Diagrams
	3.1 Use-Case
	3.2 Class Diagrams
	3.2.1 General Class Diagram
	3.2.2 Class Diagram : Drawing
	3.2.3 Class Diagram : Circuit Engine
	3.2.4 Class Diagram : Scripting
	3.2.5 Class Diagram : GUI and File Operations

	3.3 Sequential Diagrams
	3.3.1 Circuit Design Module
	3.3.1.1 Line Operations & Component Operations
	3.3.1.2 Create Custom Component

	3.3.2 Simulation Module
	3.3.3 File Operations Module
	3.3.3.1 Save/Load
	3.3.3.2 Print
	3.3.3.3 File Converter

	3.3.4 Script Module
	3.3.4.1 Script Operations
	3.3.4.2 Macro Operations

	4 GUI Design
	4.1 Bellatrix Overview
	4.2 Menus
	4.2.1 Project Menu
	4.2.2 Edit Menu
	4.2.3 View Menu
	4.2.4 Component Menu
	4.2.5 Add Menu
	4.2.6 Simulation Menu
	4.2.7 Macro Menu
	4.2.8 Window Menu
	4.2.9 Help Menu

	5 Features
	5.1 Custom Component Creation
	5.2 Directory Structure
	5.3 File Formats
	5.4 Threads

	6 Dynamic View
	6.1 Action Specification
	6.2 Action Types
	6.2.1 Select a Component From Workspace
	6.2.2 Select a Component From Drawing Area
	6.2.3 Add a Component
	6.2.4 Delete a Component from Pop Up Menu
	6.2.5 Move a Component
	6.2.6 Draw a Wire
	6.2.7 Select a Wire
	6.2.8 Delete a Wire from Pop Up Menu
	6.2.9 Move a Component
	6.2.10 New Project
	6.2.11 Open Project
	6.2.12 Save Project
	6.2.13 Print Document
	6.2.14 Exit Bellatrix
	6.2.15 Undo the Last Action
	6.2.16 Redo the Last Action
	6.2.17 Add Sheet
	6.2.18 Zoom In/Out
	6.2.19 Show Status Bar Mode
	6.2.20 Find Custom Component
	6.2.21 Save Custom Component
	6.2.22 Run Simulation
	6.2.23 Pause Simulation
	6.2.24 Stop Simulation

	7 Project Plan
	8 References

