Table of Contents

1 DEVELOPER MANUAL ...ttt
1.1 IronCurtain Development System........................

1.1.1 IronCurtain Core Proxy...........ccco.......

1.1.2 IronCurtain Admin Panel...................

1.1.3 IronCurtain Database............ccc...c.....

1.2 Developing Plug-insS........ccooviiiiiiiiiiiiii e

1.3 Folder and File System........cccccoooviviiiiiiiiiiiinnnn,

DEVELOPER MANUAL

IronCurtain Development System

Development system of IronCurtain mainly contains three parts:

1 Core Proxy
2 Admin Panel
3 Database

These three parts can run on independent machines. You need to change only some

configuration files mentioned in user manual for this.
Core Proxy and the Admin Panel parts share the same database.

IronCurtain Core Proxy

IronCurtain Core Proxy is developed on Eclipse SDK.
Also, gedit, kate were used.

The proxy listens for incoming connections from client. When a new connection
comes, it checks the authentication status of that ip address. If no user is
authenticated then the user is directed to the login page.Then the request of the user
is processed and rules that matched are applied.

IronCurtain operates using plugins and rules. A plugin defines a general template for
a rule and provides mechanisms for the rules' application. A plugin is a python file
which contains definition of the plugins actions, along with a variable called Args that

is used to generate the user interface for adding and editing the rules. After a plugin
is installed into IronCurtain, admin users can add new rules that take advantage of

the functionalities provided by the newly added plugin.

The communication with the database is handled by Sql Object. This library provides
an abstraction layer to the database. Accessing database is as easy as creating class
instances and calling functions.

IronCurtain Admin Panel

IronCurtain Admin Panel is developed using TurboGears framework.It is a web
application runs separately from the core proxy. It connects to the core proxy by
using sockets. Actions on the admin panel are sent to the core proxy using this
channel. Also, SQLObject is used for updates on database.

The admin panel allows uploading of new plugin files. It generates user interfaces for
the existing plugins, where an admin can add new rules for that plugin.

IronCurtain Database

The customer has the flexibility of choosing their own database engine for
IronCurtain's database. SQLObject library provides easy integration with any existing
database engines. The changes specified in user manual in two config files are
sufficient for changing your database.

Developing Plug-ins

A plugin is a python files that has specific constructs for IronCurtain.

Firs of all every plugin must import the predefined constants for answers, error
handling etc.
from constants import *

The plugin should define a class, named the same as the plugin's file. The class
should include some minimal functions and variables. (Desc, Args, ApplyTime,
__init_ (), act_on_res(), act_on_req()) Their definitions are as follows.

The plugin should include its description. This description will be shown to in the
Admin Panel and it can be defined in a string named "Desc"
Desc = "Changes request or respose headers"

There are three options a plugin may be invoked. It may be called just after HTTP
headers are received(before HTTP body) called "BEFORE_BODY". The other option is
to be called after 4KB of HTTP body has been received. This is mostly used for image
previewing, altering and blocking without downloading all of the file and indicated by
constant "AFTER_4KB". Last option is that the plugin is called after all of the HTTP
body is received, that is the constant "AFTER _BODY"

ApplyTime = AFTER_ BODY

If a plugin needs fields other than the defaults provided by IronCurtain (name,
description, applied users/groups, applied URLs, not applied URLs, applied Tags) it
should define a list of tuples named "Args". Each tuple defines a new field to be
generated on the user interface. The first part of a tuple is the internal name of the
field. Second part of the tuple is the text displayed to the user in the user interface.
Third part of the tuple defines the type of the input element; it can be "string" for a
plain text box and it can be "enum" for a combo box. Ifit is a combo box, there
should be a fourth partin the tuple, that should be another tuple listing the options in
the combo box. If there is no need for extra fields, the Args list should be defined and
left empty. An example can be seen below:
Args = [("Action", "Action", "enum", ("Replace", "Delete")),

("HeaderName", "Header Name", "string"),

("HeaderValue", "Header Value", "string"),

("RegRes", "Request/Response", "enum",

("Request", "Response", "Both"))
]

Access to the fields defined in "Args" is done by the "params" parameter of
__init_(self, params) Every field can be accessed like params["HeaderName"]

3

When rules are created using this plugin, the user will input data into the fields
defined in the "Args". For correct operation, the input should be validated. Input
validation is achieved using __init__ () function and exceptions. The plugin should
check the inputs for validity and throw a ParamError exception, and also should
provide a string to be displayed to user. An example;
try:
parsedImgWidth = int(params["ImgWidth"])
if (parsedImgWidth <= 0):
raise ParamError, PARAM CONTENT_ ERROR +
"Image Width should be positive"
except ValueError:
raise ParamError, PARAM TYPE MISMATCH +
"Image Width should be integer"

When a request or response occurs, and it matches all conditions of a rule (user,
group, appliedURL, applied tag) a corresponding function is called. act_on_req for
requests and act_on_res for responses. The parameters to these functions contain
whole HTTPRequest or HTTPResponse objects correspondingly. The HTTPResponse
may be incomplete, depending on the "ApplyTime" parameter.

def act_on_req(self, cReq):
def act_on_res(self, cRes):

These functions should return one of these results, defined in the imported constants
module;

(ACTION_BLOCK, message) : This tuple is returned to block access to site
completely. The "message" is displayed to the user and is meaningful only in this
case.

(ACTION_FORWARD, message) : This tuple is returned to indicate the content is
OK for this plugin. T

(ACTION_ANSWER, message) : This tuple is returned to indicate the content is
changed by this plugin.

Other than these functions, a plugin developer can define arbitrary number of helper
functions and classes.

Folder and File System

Auxiliary files, plugins and scripts have their own directories. Main structure is as
following, and the detailed explanations follow;

IronCurtain/
IC-Plugins/
IC-Admin-Panel/

IronCurtain/ -- Core proxy resides in this directory
fetch-sm-cvs.sh --script that downloads spider monkey java script
engine's sources

IronCurtain/data --this directory contains auxiliary files for plugins

4

ads.txt -- Regular expressions for ad sites
popup.txt - Regular expressions for pop-up links
images/ -- Contains images used by plugins

IronCurtain/util/ -- Contains scripts

blacklister.sh -- a script to add black sites to database
blacklister.py -- helper for blacklister
rootcreate.py -- script to create an initial root user for the Admin Panel

IronCurtain/src/ -- Source files

Auth.py -manages login process of the users

config.py --contains setting for the core proxy

constants.py --commonly used constants in Core Proxy and Plugins

core.py --handles two way traffic in the proxy, and applies the previously
defined rules to this traffic. Each request generates a new thread for serving.

HttpReply.py --contains the class to represent and operate on HTTP
Replies.

HttpRequest.py --contains the class to represent and operate on HTTP
Requests.

ICLog.py --contains the class to write the logs into the database. It works
in its seperate thread.

JSFilter.py --executes the JavaScript code found in the webpages. This is
used for catching dynamically generated content on the browser.

model.py --contains the schema of the database to be used in the
SqglObject Library.

PlugCore.py --main plugin engine. handles adding and removing plugins
and rules.

ProxyListener.py --uses asynchat library of python to communicate with
the admin panel. It executes the commands sent by the admin panel. (i.e. adding or
updating a rule)

start-ironcurtain.py -- Starts the IronCurtain Proxy Module

plugins/ -- Plugin sources files. Initially it is empty. Newly added plugins
will be stored here.
js/ --Javascript engine files

IC-Plugins/ - Bundled IronCurtain Plugins

BandwidthLimiter.py -—it enables to set quotas to each user. It blocks
the user access if quota is exceeded.

ChangeHeader.py -- inspects Http Headers and acts according to the
defined rules (i.e. changing/removing a header)

ContentBlocker.py --inspects pages' content and classifies its content
according to topics. It is the main classification plugin that we are using. It is first
trained with more than 400 sites. It has the following categories (developer may add
new categories): Arts & Humanities, Business & Economy, Computers & Internet,
Education, Entertainment, Government, Health, News & Media, Recreation & Sports,
Science, Social Science, Society & Culture.

GifDeanimate.py -- takes the first frames of the animated gif images
and displays only the first frame. Effectively it disables the animation

ImageBlocker -- blocks all the images in webpages. Replaces them with
transparent gifs of the same size, thus it keeps the layout of the webpage.

5

ImageSize.py -- Blocks image files according to the user defined width
and height of the image and also according to the format of the image

ModifyContent.py --modifies the content of the webpage. It may directly
block the page,or remove or replace keywords. It may affect on user defined tags.

Modifyjavascript.py --modifies the dynamic content generated by
javascript on the browser.After using Java Script Engine ,spider monkey., the plugin
acts on the final content that the user will see.

UriBlocker.py --blocks the access to a site with given URL completely.

IC-Admin-Panel/ -- the main directory of the Admin Panel
start-icadminpanel.py -- Starts the IronCurtain Web Admin Panel Module

icadminpanel/ - Contains the admin panel source files

icconfig.py —-has settings for connection to the core proxy

controllers.py - creates dynamically generated web pages for
admin panel. Each page in the panel has corresponding function in this file.

model.py --contains the schema of the database to be used in
the SqlObject Library.

ProxyConn.py --opens connection to the core proxy and sends
the commands generated in the admin panel

config/ -- Contains the config files

static/ -- appearance and function of admin panel. Css files for
the style of the Html pages. Images used in the admin panel. Javascript files that
provide client side functionality to the admin panel.

templates/ - Includes Turbogears's kids template files for GUI.
This allows easy creation of webpages from python code.

