
1. Introduction ... 2
1.1 Problem Definition.. 2
1.2 Project Scope and Goals.. 3
1.3 Usage Areas .. 4
1.4 Design Constraints .. 5
1.5 Design Objectives ... 6

2. Data Design ... 7
2.1 Data Objects .. 7
2.2 ER Diagrams ... 12
2.3 Data Dictionary ... 13
2.4 Internal Software Data Structures ... 16
2.5 Database Description .. 20
2.6 Database Normalization .. 20

3. Architectural and Component-level Design .. 21
3.1 Structure Chart .. 21
3.2 DFD... 22

3.2.1 DFD Level 0 .. 22
3.2.2 DFD Level 1 .. 23
3.2.3 DFDs Level 2... 24

3.3 State Transition Diagrams... 28
3.3.1 State Diagram Adding a Rule: ... 28
3.3.2 Checking Logs State Diagram: .. 29
3.3.3 Request – Response Diagram .. 30

3.4 Description of Components... 31
3.4.1 Plug-in Architecture... 31
3.4.2 Plug-in and Rule directory structures .. 34
3.4.3 Request / Response architecture .. 35
3.4.4 Data Dictionary.. 36
3.4.5 Algorithmic Model (PDL) ... 40

3.5 Use Case Diagram... 42
4. User Interface Design .. 43

4.1 Interface design rules .. 43
4.2 Screenshots.. 45

4.2.1 Summary View .. 45
4.2.2 User and Group.. 46
4.2.3 Plug-in and Rule Management .. 47
4.2.4 Settings .. 48

5. Requirements... 49
5.1 Functional Requirements .. 49
5.2 Non-functional Requirements ... 51
5.3 Minimal Hardware Requirements ... 53
5.4 Minimal Software Requirements .. 54

6. Project Schedule .. 54
6.1 Project Task Set .. 54
6.2 Gannt Chart ... 57

7. Testing ... 58
7.1 Unit Testing... 58
7.2 Integration Testing .. 58
7.3 Higher Order Testing .. 59

8. Issues to be Addressed in Final Design Report ... 59

 1

1. Introduction

During the analysis phase of our project, we investigated the possible problems about

web, its usage, and its control within restricted zones. We tried to identify and define

those problems, and come out with creative solutions to those that are within our

project’s scope. We provided comprehensive information about those problems and our

proposed solutions in our analysis report. After our delivery of the analysis report, we

continued working on the problem set and our solutions. We decided on our project’s

technical aspects and infrastructure.

1.1 Problem Definition

In recent years, Internet have seen a great rise in its popularity and usage areas. People of

all occupations and ages are on the internet, industries depend on it heavily, ant there are

completeley new businesses that exist primarily in the internet. Companies depend

heavily on internet usage, as a result most of the employees have access to the internet.

Other than big companies, many other organizations are open to internet. Some examples

are governmental bodies, schools and universities, non-profit organizations, hospitals,

small offices. Examples are not limited to these, and the most common internet user is the

home user.

The giant structure and variety of the internet makes it a valuable information source and

communication medium. But any useful thing has some drawbacks, and internet is no

exception. In fact ease of access and abundancy of uncontrolled traffic makes the internet

a difficult place to stay safe. And a large organization is not only concerned with outside

threats, but also inside threats which stem from workers or members. The workers or

members of the organizations may visit sites or download files that may bring harm to the

whole network of the organization. Some sensitive information may leak from the

network to the outside world, either by a careless worker or one with a malicious intent.

Companies and organizations mostly used traditional firewalls, which does packet

filtering by looking at easily extractable data, like IP adress or port of the communicating

parties. This would be useful if the intent was to block and control some servers/protocols

only. But the internet traffic around the world consists of web traffic mostly, distributed

 2

to a large number of servers in many different locations throughout the world. Traditional

firewalls are not able to tackle with difficulties presented by such a gigantic network,

especially in a corporate environment defined above. It is the content of the traffic, not

the source/destination that should be checked to provide comprehensive control over the

information flow. In a present day environment, where nearly the whole internet traffic is

web traffic, blocking ports have little influence on the information security.

Our project aims to solve the most important problems of the modern day corporate and

onrganizational network, by providing an application layer gateway; which will enable

the network manager to control web traffic of the network in many different ways. Name

of our project is IronCurtain and it will not only solve problems of big corporations and

organizations, but also home users and small networks. IronCurtain will provide flexible

control over the whole web traffic, user and group based control, extensive logging

capabilities, and a configuration interface that is accesible from web. We plan to design

and build IronCurtain so flexible, strong and easy to use, such that it will answer most of

the modern day internet-based concerns.

1.2 Project Scope and Goals

Our project, named IronCurtain, will implement an application level gateway for web

filtering and access control. Our project's goals are as follows:

● Complete HTTP/1.1 support

● HTTPS support

● Decomposition of Entire Communication

● Plugin architecture for rules and actions

● Complete configuration over Web

● Secure User Authentication

● Logging and Accounting

● Multi-threaded (thread-pool) implementation

● Alerts (via plugins)

● Content identification (via plugins)

 3

1.3 Usage Areas

IronCurtain will be flexible enough to satisfy needs of a great variety of entities. From

large enterprises to home users, IronCurtain will have an answer to all of these entities'

problems, thanks to the flexible and extendable plug-in mechanism.

● Companies: Modern day companies use internet access extensively to maintain theri

operations and profitability. It is essential for companies to access internet. If the

access is uncontrolled, many adverse effects of the internet give harm to the company

overall. Some of these are: Productivity loss associated to worker distraction caused

by uncontrolled web site access, maliciously designed web sites, leakage of sensitive

company information, etc. By using IronCurtain, companies can enable appropriate

filters to take precautions about these problems. Also IronCurtain would be a security

layer between company servers an the internet, checking for possible security

violations and attacks and preventing according to the rules. This would require no

modification of the system, only writingthe appropriate rules will be sufficent. Also

sensitive information about the company network may be blocked using IronCurtain.

Ip adress of the computers can be replaced by the adress of the proxy.

● Universities: A university environment is usually more relaxed than a corporate one.

But still administration of a university would need firm control on the network.

Students and academics in the university might use up all the bandwith of the

university. Or they might cause legal trouble by downloading illegal files. It would be

possible to control bandwidth of the users and their internet activities using

IronCurtain.

● Other Areas: Flexible plugin architecture of IronCurtain will enable its usage in a

variety of networks, even a single computer network. Appropriate rules and plugins

for the area of application will be chosen and IronCurtain will protect the network

from inside or outside malicious traffic, and it will enforce other principles determined

by the network's owners.

 4

1.4 Design Constraints

Our main design constraints are as follows.

Time

Our fixed schedule is determined by our course syllabus. We have approximately six

months remaining to finish the project completely. The design should be finished in one

month. During the design we will also work on the prototype and it will be finished in

one and a half months from the delivery of initial design report.

Language constraints

We decided to use the Python language as implementation language. It allows easy usage

of plugin. In fact, python is used as a scripting language inside many applications. Most

of the time we will be using Python's integrated libraries. But we may use some other

language like PHP for the user interface, or we may use also Python as the interface

language.

Performance and Network Latency

IronCurtain application level gateway aims to introduce lowest levels of latency to the

network communication speed. The software will use threads to be more performant than

a forking implementation. Also the software will reuse existing connections and will not

try to open a new connection which takes CPU time and introduces latency. Gzip

compression and chunked encoding feature of HTTP 1.1 standard will be used to reduce

latency.

Maintenance

The IronCurtain will require minimal maintenance. After the administrator defines the

plug-in, rules, general settings, per user and per group settings; there will be no need to

check the operation of the gateway, other than the cases of; adding of a new rule and

querying for statistics.

 5

User Interface

IronCurtain is not a user-interface intensive application. Most of its operation happens

behind the communication of the members of the network. The user interface is opened

when settings are to be changed, or statistics are to be displayed. Other than these

conditions, no user interface is required for normal operation. The user interface of the

settings and statistics parts of the software will be easy and intuitive to use. The statistics

should be displayed in a variety of easy to understand approaches.

1.5 Design Objectives

• Portability

Our usage of Python language makes IronCurtain easily portable to any operating

system that has a python run-time components; Linux, BSD, Mac OS X,

Microsoft Windows, AIX, Amiga, AROS, AS/400, BeOS, OS/2, OS/390, Irix,

Palm OS, Plan 9, PlayStation 2, Psion, QNX, RISC OS, Sharp Zaurus, Solaris,

Symbian OS, VMS, VxWorks, Windows CE/Pocket PC, Xbox, z/OS. And also

all of the hardware platforms that support above operating systems and the python

run-time components.

Because of this portability, users with any specified OS should be able to use

IronCurtain, and if we decide to use another library, we will try to keep this

platform independency.

• Extendibility

The plug-in architecture of IronCurtain will enable very extendible and flexible

operation. If there is a need for a new limitation/control/statistics options. There

may be possible affordable solutions using IronCurtain. The easiest one being

usage of existing plug-in and writing a new rule satisfying the needed options. Or

a new plug-in can be written using the python programming language. Using

plug-in any kind of behavior can be added to IronCurtain.

 6

• Maintainability

Maintainability is an important objective for IronCurtain. The plug-in system is

very modularly designed, plug-in are independent of each other. Also

functionality of IronCurtain is upon plug-in. Because of this modular design, we

could change the internals of any plug-in without causing problems for the other

untouched plug-ins and general operation of IronCurtain. This makes IronCurtain

easy to maintain, because changes to one plug-in/functionality do not require the

rewriting of other plug-in.

2. Data Design
The data of users, groups, their logging levels and rules will be stored in the database.

The logs of users and rule actions will be written to database as well. In order to store the

data in a structured form, the data objects will be used. In this section, we will look at the

data objects, their relationships, the ER-diagram and the data dictionary to describe the

data.

2.1 Data Objects

User

The User entity will store data associated with the users of the system. When they

register with the system the data they enter will be stored as an instance of the User

object and they can change the information at any time. The attributes of the entity will

be:

 User_ID

 Real_Name

 Passwd

 Email

 Group_ID

 LogLevel_ID

 7

The User_ID will be a string that will be used as the primary key as it will be unique to

each user in the network. The User_ID and password will be used to log on during

authentication. Passwd is the MD5 hash of the user password. Group_ID will be the

reference to Group entity, which the user is associated with. The user does not have to be

assigned to a Group. LogLevel_ID is the reference to LogLevel entity and it will define

what to log for the user. Email will be the user’s e-mail address. The user will be notified

by e-mail if necessary.

Admin

Admin entity is just a User entity, but it will be used to identify the administrators.

Admin entity will keep the User_ID’s of the users who has administrative rights. The

users in this entity will be able to log in to administrative page of the system with their

passwords.

Group

Group entity is the generalization of User entity. It will be used to group users to ease

applying same rules to many users. The attributes of the entity will be:

 Group_ID

 LogLevel_ID

 Description

The Group_ID will be a string that will be used as the primary key as it will be unique to

each Group. LogLevel_ID will define which information will be logged for the members

of the users. Description will be just an info string.

LogLevel

The LogLevel entity will store the logging rules for users and groups. The attributes of

the entity will be:

 LogLevel_ID

 Site

 Domain

 8

 Bandwidth

LogLevel_ID is an integer and the primary key. The other attributes are of type boolean.

These will be used to set if the related information will be logged or not. For Site

attribute, it will be set to true if we want to set up a log level that logs the site names.

Domain will be used to log the domain information of the visited site. Bandwidth will be

used to enable or disable logging of data transfer size.

UserLog

UserLog entity will store the logs of the user actions according to users’ logging levels.

 User_ID

 Site

 Domain

 Bandwidth

 Open_Time

 Close_Time

User_ID and the Open_Time together will be the primary key. User_ID is the foreign key

and reference to User entity. Site is the string to hold the site URL that is visited. Domain

is a string and it is the domain name of the visited site. Bandwidth is an integer that is the

size of the data transfer. Open_Time and Close_Time are the action times. Site, Domain,

Bandwidth will be stored according to user’s logging level, LogLevel_ID attribute of the

User or Group entity.

Plugin

The Plugin entity will store the identifiers of the plug-ins in the system. The plug-in

schemas will be saved as xml files so we will just keep the ids of the plug-ins to relate

them with the rules. The attributes of this entity will be:

 Plugin_ID

 Plug_File

 Schema_File

 9

 Plug_Hash

 Schema_Hash

 Description

The Plugin_ID will be a string that will be used as the primary key as it will be unique to

each Plug-in. This key will be read from the xml file. The Plug_File and Schema_File

attributes will keep the paths of the Plug-in file and schema file of the Plug-in,

respectively. The MD5 hashes of the files will be stored in Plug_Hash and

Schema_Hash, accordingly. If any change occurs in these files, it will be checked from

hashes. Description will be just an info string.

Rule

The Rule entity will store the identifiers of the rules that are generated from Plugins.

Every rule derives from a Plug-in template. The attributes of the entity will be:

 Rule_ID

 Plugin_ID

 File

 File_Hash

 Description

Rule_ID is a string and primary key. Rule_ID is the identifier of the rule that is generated

from a plugin schema and written to an xml file. The File attribute will keep the path of

the xml file. File_Hash will be the MD5 hash of the file and make it possible to check

whether any change occurs in the file. Plugin_ID is the foreign key and reference to

Plugin entity. Description is just an info string.

RuleLog

RuleLog entity will store the logs of rule actions. It has a similar schema to UserLog

entity.

 Rule_ID

 Site

 Domain

 10

 Action_Time

 Action_Desc

Rule_ID and the Action_Time together will form the primary key. Rule_ID is the foreign

key and reference to Rule entity. Site is the string to hold the site address that is visited.

Domain is a string and it is the domain name of the visited site. Action_Time is the time

of the action taken. Information about the action will be kept inside the Action_Desc

attribute.

 11

2.2 ER Diagrams

Data Objects

 12

ER-Diagram

2.3 Data Dictionary

User
Name User
Alias -
Where / How used The people that will use the system
Description Every actor using the system is defined to be a user.

 13

User_ID
Name User_ID
Alias -
Where / How used The users will enter their User_ID together with their passwords to

log into the system. Administrators will have permission to access to
control panel page with their passwords.

Description Every user has a unique User_ID.

Passwd
Name Passwd
Alias -
Where / How used While logging into the system
Description The password is to secure the system. Unauthorized users cannot

access the control panel page. The user’s password is converted to
MD5 hash and checked with the one in the database.

Admin
Name Admin
Alias Administrator
Where / How used -
Description Admin is a special type of user who has all privileges. He/she will

be able to access the control panel page. Then he/she will:
- add/remove users
- change users’ and groups’ logging and filtering rules
- check logs
- add/remove rules

Group
Name Group
Alias -
Where / How used Create Groups and add users to groups.
Description Groups will be created by the ‘Admin’ and they will be used to

assign common logging levels and rules to many people at once. It
will make the user management easier.

 14

Plugin
Name Plugin
Alias -
Where / How used While creating new rules.
Description After a Plugin is written, it defines a schema and a proper template

will be generated in order to create new rules from this Plugin.

Rule
Name Rule
Alias -
Where / How used They are defined using an existing Plugin and assigned to users and

groups.
Description Admin defines the rule on the web control page and assign the rule

to any user or group.

LogLevel
Name LogLevel
Alias -
Where / How used While customizing the users’ and groups’ logging
Description It will be possible to define logging levels by logging different

items, which are site, site domain and bandwidth usage. Users’ and
groups’ actions will be logged according to their logging level.

UserLog
Name UserLog
Alias -
Where / How used While logging users actions
Description UserLog contains log items: site as visited site’s name; domain as

site domain; bandwidth as data transfer size.

RuleLog
Name RuleLog
Alias -
Where / How used When rules take action
Description Rules will write their actions to database as ‘RuleLog’s. Visited site,

site domain, action, time, action description will be saved.

 15

2.4 Internal Software Data Structures

User

CREATE TABLE User
(
User_ID VARCHAR(15),
Group_ID VARCHAR(15),
LogLevel_ID INTEGER,
Passwd VARCHAR(32),
Real_Name VARCHAR(50),
Email VARCHAR(35),
PRIMARY KEY(User_ID),
FOREIGN KEY(Group_ID) REFERENCES Group,
FOREIGN KEY(LogLevel_ID) REFERENCES LogLevel
);

Data Type & Size Format
User_ID Char-15 Text
Group_ID Char-15 Text
LogLevel_ID Integer Number
Real_Name Char-50 Text
Email Char-35 Text
Password Char–32 Text

CREATE TABLE Admin
(
User_ID VARCHAR(15),
PRIMARY KEY(User_ID),
FOREIGN KEY(User_ID) REFERENCES User
);

Data Type & Size Format
User_ID Char-15 Text

CREATE TABLE Group
(
Group_ID VARCHAR(15),
LogLevel_ID INTEGER,
Description VARCHAR(255),
PRIMARY KEY(Group_ID),
FOREIGN KEY(LogLevel_ID) REFERENCES LogLevel
);

 16

Data Type & Size Format
Group_ID Char-15 Text
LogLevel_ID Integer Number
Description Char-255 Text

CREATE TABLE LogLevel
(
LogLevel_ID INTEGER,
Site CHAR(1),
Domain CHAR(1),
Bandwidth CHAR(1),
PRIMARY KEY(LogLevel_ID)
);

Data Type & Size Format
LogLevel_ID Integer Number
Site Yes/No Yes/No
Domain Yes/No Yes/No
Bandwidth Yes/No Yes/No

CREATE TABLE UserLog
(
User_ID VARCHAR(15),
Site VARCHAR(255),
Domain VARCHAR(255),
Bandwidth INTEGER,
Open_Time VARCHAR(255),
Close_Time VARCHAR(255),
PRIMARY KEY(User_ID, Open_Time),
FOREIGN KEY(User_ID) REFERENCES User
);

 17

Data Type & Size Format
User_ID Char-15 Text
Site Char-255 Text
Domain Char-255 Text
Bandwidth Integer Number
Open_Time Char-255 Text
Close_Time Char-255 Text

CREATE TABLE Plugin
(
Plugin_ID VARCHAR(15),
Plug_File VARCHAR(255),
Schema_File VARCHAR(255),
Plug_Hash VARCHAR(32),
Schema_Hash VARCHAR(32),
Description VARCHAR(255),
PRIMARY KEY(Plugin_ID)
);

Data Type & Size Format
Plugin_ID Char-15 Text
Plug_File Char-255 Text
Schema_File Char-255 Text
Plug_Hash Char-32 Text
Schema_Hash Char-32 Text
Description Char-255 Text

CREATE TABLE Rule
(
Rule_ID VARCHAR(15),
Plugin_ID VARCHAR(15),
File VARCHAR(255),
File_Hash VARCHAR(32),
Description VARCHAR(255),
PRIMARY KEY(Rule_ID),
FOREIGN KEY(Plugin_ID) REFERENCES Plugin
);

 18

Data Type & Size Format
Rule_ID Char-15 Text
Plugin_ID Char-15 Text
File Char-255 Text
File_Hash Char-32 Text
Description Char-255 Text

CREATE TABLE RuleLog
(
Rule_ID VARCHAR(15),
Site VARCHAR(255),
Domain VARCHAR(255),
Action_Time VARCHAR(255),
Action_Desc VARCHAR(255),
PRIMARY KEY(Rule_ID, Action_Time),
FOREIGN KEY(Rule_ID) REFERENCES Rule
);

Data Type & Size Format
Rule_ID Char-15 Text
Site Char-255 Text
Domain Char-255 Text
Action_Time Char-255 Text
Action_Desc Char-255 Text

CREATE TABLE UserRule
(
User_ID VARCHAR(15),
Rule_ID VARCHAR(15),
PRIMARY KEY(User_ID, Rule_ID),
FOREIGN KEY(User_ID) REFERENCES User,
FOREIGN KEY(Rule_ID) REFERENCES Rule
);

 19

Data Type & Size Format
User_ID Char-15 Text
Rule_ID Char-15 Text

CREATE TABLE GroupRule
(
Group_ID VARCHAR(15),
Rule_ID VARCHAR(15),
PRIMARY KEY(Group_ID, Rule_ID),
FOREIGN KEY(Group_ID) REFERENCES Group,
FOREIGN KEY(Rule_ID) REFERENCES Rule
);

Data Type & Size Format
Group_ID Char-15 Text
Rule_ID Char-15 Text

2.5 Database Description

The database management system we are using for IronCurtain is SQLite. Tables will be

created and be filled using Python’s SQLite library. Database will store all of the

information of the user’s actions as logs. Also, the logging level, user and rule relation

are stored in the database. When the system needs retrieving data, sql queries are used to

get the necessary records.

2.6 Database Normalization

The database in our software is designed avoiding redundancy cases and we tried to suit

them to the BCNF notation. To obey these rules we did some modifications over the real

data tables. Instead of creating separate tables for each relation, we added a new attribute

to one of the entities of the relation that is, a foreign key and reference to the other table.

One of the most important modifications is assigning a “LogLevel_ID” and “Group_ID”

to the “User” table. This was done to simplify the interaction between “User”, “Group”

and “LogLevel” tables. By this modification, we avoided redundancy of the tables. As a

result, there are no insertion, update and deletion anomalies. Moreover, these will ease

the queries for relations. Since more than one rule can be related with a user, we have to

 20

keep another table “UserRule”. The same approach is used for “Group” and “Rule” tables

to form “GroupRule” table.

 3. Architectural and Component-level Design

This section gives details about program structure, components, and software interface.

 3.1 Structure Chart

Our project has mainly into two modules which are named as input controller and output

controller. Our system is also responsible of the appropriate coordination of these main

parts and the system’s maintainability with the ultimate updates.

 21

 3.2 DFD

In this section, the functional model of IronCurtain is presented. It is composed of

process specifications and DFD of the three levels (Level0, Level1 and Level2) of the

system.

 3.2.1 DFD Level 0

As seen from the diagram, we have three users: server, client and administrator. The main

functionalities of the users are shown on the diagram. According to the requests

IronCurtain writes some information to the database or process it and give a response to

the users.

 22

 3.2.2 DFD Level 1

This is a more detailed diagram of IronCurtain. The main parts of IronCurtain are

filtering, control mechanism, configuration and logging process. These parts

communicate with users and each other.

 23

3.2.3 DFDs Level 2

Filtering

This is a more detailed diagram of the filtering part in IronCurtain. This is the most

important part because all the requests and responses are processed here. First the

requests and responses are parsed and then it is analyzed. In analyze part the validity of

the request and response is checked by the control mechanism. After analyzing the

processed request or response are sent by dispatcher to the users.

 24

Control Mechanism

Control mechanism briefly checks the access rights and user authentication. It is

connected to all the other modules. It gets the info from the other parts and checks

whether this user have the right to do that action or not. According to that it sends an

answer of approval/disapproval.

 25

Configuration

Configuration part is used for changing the properties of users, rules and main

configuration of the proxy. It checks the access rights of the user by using control

mechanism.It writes the information to the database. Only administrator user can use that

part of the IronCurtain.

 26

Logging

Logging process is used for logging all the activities of the user and also alerting if there

is a violation of a predefined condition. All the request and response info is provided to

logging process by filtering part. The logging process sends log and statistical info to the

database and administrator user.

 27

 3.3 State Transition Diagrams

 3.3.1 State Diagram Adding a Rule:

The figure given below explains how a rule is added to the system by the administrator
by using web interface.
Adding a plug-in is represented below, too.

For a new rule to be added, there must exist a plug-in for it.

 28

 3.3.2 Checking Logs State Diagram:

The diagram below gives the state diagram for checking logs, starting from the
administrator web interface.

 29

 3.3.3 Request – Response Diagram

 30

• When a new Request comes, IronCurtain will create a new thread to our thread
pool.

• Then it will send request to our parser.
• Parser will get information from configuration module. Information is about

which rules to apply for this user? The bandwidth limit of the user. The time limit
of the user.

• After getting information about user parser sends these to Rules. In rules module
it will select the proper rules and apply them to the request in parallel.

• Then Rules will send the updated request to the connection table.
• There, the connection will be checked if it is opened before, it will use the

previous connection. (HTTP 1.1 persistent connection property) If not it will
create a new connection.

• Then the request will be sent to the server.
• Server will send the response.
• The response will be taken by Parser. It gets the information from configuration

module.
• Then it will send the response to Rules.
• Rules will apply the proper operations to the response and then send the new

response to the user.

 3.4 Description of Components

 3.4.1 Plug-in Architecture

Let's go over the process of creating a new rule.

We want to write a rule that changes the value of the “User-Agent” header in an HTTP
request to “Protoxy/0.0.1” if the site is in a German or French domain. Let's assume that
no plug-in has the necessary infrastructure for such a task (of course, in Protoxy there
will be such an infrastructure), so we will also write a plug-in.

A plug-in is a python file with a few quirks. In the file, there will be one class with the
same name as the file(case-sensitive), which defines at least one function act_on with no
arguments, and a static variable called Args. Also, the constructor of the class must take
one argument, a dictionary (also known as, associative array).

act_on: is the function that gets when the rule works. It can optionally return a constant
value to indicate the course of action for IronCurtain.
The constants are:

ACTION_BLOCK: A blocked request is never answered; the browser's connection is
closed and the browser reports an error or uses a "broken image" icon.
ACTION_ANSWER: An answered request is handled directly by the proxy. In a sense,
the proxy acts as a web server.
ACTION_REDIRECT: A redirected request is sent to a location other than for what
location it was originally intended.

 31

ACTION_FORWARD: A forwarded request is sent to the web server for which it was
originally intended.

If act_on function does not return a value, the action taken is ACTION_FORWARD.

Args: should be declared as a list of tuples that lists the arguments to the rule. For
example;

Args = [(“MatchURLs”, “Match urls”, “array”, 1), (“Actions”, “Actions”, “enum”,
(“Add”, “Replace”, “Delete”)), (“HeaderName”, “Header Name”, “string”),
(“HeaderValue”, “Header Value”, “string”)]

Args is a matching between argument names and their types. An element in the list is a 3-
tuple or a 4-tuple.
The first is the actual name of the argument.
The second is the text as it will look on the HTML Page.
The 3rd and 4th are indicators of data types. Only 4 structures are allowed: int, string,
enum, and array. The first two (int and string) are obvious.
Of the rest enum is an n-tuple of strings.
Last, array is a list of strings. Two numbers follow array declaration to indicate its size.
The first is the minimum size of array, the second is the maximum. If the second is
omitted, it is assumed that maximum is infinity.

The argument to the constructor: is a dictionary. Params will contain the instances of
arguments defined by Args. Following the previous example;

(Assuming such a declaration) def __init__(self, Params):

Params["Actions"] -> "Replace"
Params["HeaderName"] -> "User-Agent"
Params["HeaderValue"] -> "Protoxy/0.0.1"
len(Params["MatchURLs"]) -> 2
Params["MatchURLs"][0] -> "http://*.de"
Params["MatchURLs"][1] -> "http://*.fr"

Once we are happy with our code, we upload it as a new plug-in over IronCurtain's web
interface. This creates a new directory under plugins/ directory with the name of the plug-
in. Let's assume we named it HeaderPlugin. Under that directory
it puts the file HeaderPlugin.py and a hidden xml file with the name
HeaderPlugin_$schema$.xml. The schema file is an explicit from the Args variable.
Continuing our example, it would look like this;

 32

<Plugin ID="1">
 <MatchURLs displayname="Match urls" type="array" minsize="1"/>
 <Actions displayname="Actions" type="enum" choices="3">
 <choice>
 Add
 </choice>
 <choice>
 Replace
 </choice>
 <choice>
 Delete
 </choice>
 <HeaderName displayname="Header Name" type=string/>
 <Heade_Value displayname="Header Value" type=string/>
</Plugin>

Once this file is generated, the web interface will show the new plug-in immediately. To
add the rule we select the ‘Add New Rule’ tab and click on our previously defined plug-
in as the template.

When we click the apply button, the web interface generates an XML document to store

 33

the relevant data. The document is put in under rules/. Our rule would look like this:

<Rule pluginID=”1” ID=”1”>
 <Title type="string">
 Replace 'User-Agent'
 </Title>
 <Description type="string">
 Replaces 'User-Agent' header to 'Protoxy/0.0.1
 </Description>
 <MatchURLs type="array" size="2">
 <element type="string">
 http://*.de
 </element>
 <element type="string">
 http://*.fr
 </element>
 </MatchURLs>
 <Actions type="string">
 Replace
 </Actions>
 <HeaderName type="string">
 User-Agent
 </HeaderName>
 <HeaderValue type="string">
 Protoxy/0.0.1
 </HeaderValue>
</Rule>

3.4.2 Plug-in and Rule directory structures

The directory structure of our plug-ins will be as follows.

 The files in a plug-in directory

 34

 The files in rules directory

 3.4.3 Request / Response architecture

The structure of a request or response will be like as the following schema:

 35

 3.4.4 Data Dictionary

Name Authentication Info

Aliases Authentication Info2
User name/Password

Where used/
How used

Control Mechanism - Authentication 2.1 (input/output)
Client (output)
Administrator (output)
Database (input/output)

Description This data is the username and the password.
Format An aggregate object consisting of User_ID and Passwd of type string.

Name Authentication Response

Aliases None

Where used/
How used

Control Mechanism - Authentication 2.1 (output)
Configuration – Check Validity 3.2 (input)

Description Result of the username, password and administrative rights checking
Format An aggregate object consisting of User_ID and Passwd of type string and

isAdmin of type boolean.

Name HTTP Request

Aliases Raw HTTP Request

Where used/
How used

Filtering – Parse 1.1 (input/output)
Filtering – Plug-in Engine 1.2 (input)
Client (output)

Description Request coming from users is sent to Parser and Plug-in Engine to be
filtered.

Format An HTTP request object consisting of Line, Header and Body

Name Processed HTTP Request

Aliases None

Where used/
How used

Filtering – Dispatcher 1.3 (output)
Server (input)

Description Filtered HTTP Request
Format An HTTP request object consisting of Line, Header and Body

Name HTTP Response

Aliases Raw HTTP Response

Where used/
How used

Filtering – Parse 1.1 (input/output)
Filtering – Plug-in Engine 1.2 (input)
Server (output)

Description Response coming from server is sent to parser and plug-ins to be filtered.
Format An HTTP response object consisting of Line, Header and Body

 36

Name Processed HTTP Response

Aliases None

Where used/
How used

Filtering – Dispatcher 1.3 (output)
Client (input)

Description Filtered HTTP Response is sent to client.
Format An HTTP response object consisting of Line, Header and Body.

Name Request/Response Info

Aliases None

Where used/
How used

Filtering – Plug-in Engine 1.2 (output)
Logging – Get Connection Information 4.1 (input)

Description Information to be logged after the analysis
Format Request or Response object

Name IP Info

Aliases None

Where used/
How used

Filtering – Plug-in Engine 1.2 (output)
Control Mechanism – Authentication 2.1 (input)

Description To check User filtering rules Plug-in sends the user IP to Control
Mechanism.

Format IP is composed of 4 integers.

Name User Info

Aliases User Profile Info

Where used/
How used

Filtering – Plug-in Engine 1.2 (input)
Control Mechanism – Decision 2.2 (input/output)
Control Mechanism – Authentication 2.1 (output)
Control Mechanism – Rule Process 2.3 (input)
Configuration – Send information 3.3 (input/output)
Configuration – Get information 3.1 (input)
Logging – Check Validity 4.2 (input)
Database (input/output)

Description User’s information will be passed through the modules
Format User Object consisting of User_ID, LogLevel_ID, Group_ID of type string.

Name Rule Info

Aliases None

Where used/
How used

Filtering – Plug-in Engine 1.2 (input)
Control Mechanism – Decision 2.2 (input/output)
Control Mechanism – Rule Process 2.3 (output)
Configuration – Send information 3.3 (input/output)
Configuration – Get information 3.1 (input)
Database (input/output)

Description A new rule is added to the system over the web interface by the

 37

Administrator. Rules are stored in the DB and they are sent to
‘Configuration Module’ to get into action.

Format An object containing the Rule attributes. The object may vary depending on
the plug-in that the rule is created from.

Name Decision and Packet Info

Aliases None

Where used/
How used

Filtering – Plug-in Engine 1.2 (output)
Filtering – Dispatcher 2.2 (input)

Description Actions and filtered HTTP packets are sent to Dispatcher in order to deliver
related client and server.

Format HTTP Request/Response Object

Name Change Notification

Aliases None

Where used/
How used

Control Mechanism – Rule Process 2.3 (input)
Configuration – Send Information 3.3 (output)

Description When a new rule is added to the system, its information will be sent to the
Rule Process to use the rule immediately.

Format An object containing Rule identifier.

Name Configuration Info

Aliases None

Where used/
How used

Configuration – Get Information 3.1 (input)
Configuration – Send Information 3.3 (output)
Administrator (output)
Database (input/output)

Description Administrator makes changes to the system configuration. Admin can
change logging levels, group, user and rule interrelations over the web. The
changes are written to DB.

Format Configuration change object

Name Log and Statistical Info

Aliases None

Where used/
How used

Logging Process – Send Information 4 (input/output)
Administrator (input)
Database (input/output)

Description The logs and statistical information from these logs will be stored in the
database and showed to Administrator.

Format A Log object containing the User_ID/Rule_ID, Site, Domain, Bandwidth
and Action_Time (Open_Time, Close_Time), Action_Desc attributes.
These are explained in Data Objects part.

 38

Name Alert

Aliases None

Where used/
How used

Logging Process – Send Information 4.3 (output)
Administrator (input)

Description On predefined conditions depending on the actions and the logs, the
Logging Process module will send a notification e-mail to Administrator.

Format A text that describes the action or situation briefly.

Name Action

Aliases None

Where used/
How used

Filtering – Plug-in Engine 1.2 (output)
Logging Process – Get Connection Information 4.1 (output)

Description One of the 4 predefined actions is returned by the Plugin according to the
action performed.

Format Enumerated value corresponds to the action taken: ACTION_BLOCK,
ACTION_ANSWER, ACTION_REDIRECT, ACTION_FORWARD

Name Analyzed Info

Aliases None

Where used/
How used

Configuration – Get Information 3.1(output)
Configuration – Check Validity 3.2(input)

Description After the incoming information is analyzed, it is sent to be validated with
the authentication info.

Format One of the Configuration, User, Rule objects

Name Validated Info

Aliases None

Where used/
How used

Configuration – Send Information 3.3(input)
Configuration – Check Validity 3.2(output)

Description After the information is validated, it is transferred to Send Information
module.

Format One of the Configuration, User, Rule objects

Name Connection Info

Aliases None

Where used/
How used

Logging – Get Connection Information 4.1(output)
Logging – Check Validity 4.2(input)

Description Connection Information is sent to Check Validity 4.2 module
Format Request or Response Object and User identifier.

 39

Name Info

Aliases None

Where used/
How used

Logging – Send Information 4.3(input)
Logging – Check Validity 4.2(output)

Description After the information is validated, it is transferred to Send Information
module.

Format Request or Response Object and User identifier.

 3.4.5 Algorithmic Model (PDL)

Main
input none
output none
 Loop forever
 If there is a new request then
 Check if the thread pool has any threads available
 If there is a thread available then
 Associate the thread with the request and ServeRequest(request) (The thread
does the function Serve)
 Else enlarge the thread pool and associate the thread with the request and
ServeRequest(request)
 Once the ServerRequest function is done, put the thread back to thread pool

ServeRequest
input request
output none
 Parse request, get Request Line, Headers and Body if exists
 Get the user IP of request
 Learn the user ID from user IP, also get the list of rules that apply to that user
 Action = None
 For each rule in list of rules
 Run rule
 If rule returns a block action then
 Action=block
 Block the requst
 Else if rule returns an answer action
 Action=answer
 Else if rule returns redirect and Action is not answer
 Action=redirect
 If action is None then action=forward
 DoAction(request, action)

DoAction
input request, action
output none
 If action is Forward then

 40

 Check if a connection to the destination already exists
 If such a connection exists then
 Send request to destination over that connection
 Else
 Create a new connection to the destination
 Send request to destination over that connection
 Else if action is redirect then
 Create a new request with uri being the destination
 Else if action is answer then
 generate response page and send to the client
 Loop forever
 If the response has arrived then
 break
 ServeResponse

ServeResponse
input none
output none
 Read the response
 Parse response, get Response Line, Headers and Body if exists
 action = None
 For each rule in list of rules
 Run rule
 If rule returns a block action then
 action=block
 Block the requst
 Else if rule returns an answer action
 action=answer
 Else if rule returns redirect and action is not answer
 action=redirect
 DoActionResponse(response, action)

DoActionResponse
input response, action
output none
 If action is Forward then
 Pass the response to the client
 Else if action is redirect then
 Create a new request with uri being the destination
 Else if action is answer then
 generate response page and send to the client

 41

3.5 Use Case Diagram

 42

 4. User Interface Design
This section gives detailed information about user interfaces, interface design

rules, components available and, UIDS.

 4.1 Interface design rules

Interface design focuses on three areas of concern:

1. The design of interfaces between software modules;

2. The design of interfaces between the software and other nonhuman producers and

consumers of information (i.e., other external entities);

3. The design of the interface between a human (i.e., the user) and the computer.

The important properties are the following;

• Easy to Learn

• Readability

• Easy navigate between interfaces

Our guidelines are provided below;

Data Display Guidelines

1. Consistency of display

2. Efficient assimilation of information by the user

3. Compatibility between data entry and display

4. Flexibility of user control

Menu Guidelines

1. Shallow, wide menus preferred over tall deep menus

2. User has access to all relevant items without referencing a manual

3. Logical item presentation sequence

a. Numeric

b. Alphabetic

 43

4. Icons are harder to recognize than text during visual search

5. Ensure consistent navigation

Screen Formatting Guidelines

1. Focus on readability and user acceptability

2. Don’t clutter the screen (white space is free)

3. Choose pleasing color combinations

4. Use full width of the screen

5. Keep only relevant info on the screen

Guidelines for Effective Use of Color

1. Use color to group similar items

2. Limit the total number of colors

3. Watch out for bad color combinations (red/blue, blue/black)

4. Keep in mind people may view it in monochrome

Prompt and Response Guidelines

1. Use upper/lower case letters (for emphasis as needed)

2. Tasks should be interruptible without loss

3. Give user a means of controlling multiple screens(or blocks in web page)

4. Give user a reasonable amount of time to respond

5. Compose in screen rather than lines

6. When long delays are inevitable, put up an indicator

 44

4.2 Screenshots

Our interface mockups are as follows.

4.2.1 Summary View

 45

4.2.2 User and Group

 46

4.2.3 Plug-in and Rule Management

 47

4.2.4 Settings

 48

5. Requirements

This section gives details about functional, non-functional and minimal software /

hardware requirements.

 5.1 Functional Requirements

Functional requirements can be listed as:

• Enable or Disable IronCurtain

In some cases, it may be necessary to suspend IronCurtain completely. There will be an

option to disable the gateway actions. Then all connections will have direct access

without any inspection. Anytime with the enable option, system will continue to control

and secure the traffic

• Web Content Control

In Web pages, apart from text, there exist images, multimedia objects such as Flash,

ActiveX, Java frames. These objects may contain insecure code fragments. To avoid

them there will be options to filter the incoming pages. Ads, animated GIFs, Flash and

ActiveX objects can be disabled by authorized user. Incoming or outgoing web content

will be analyzed based on HTTP request and response headers, the HTML page, images,

references to other sites. Basically IronCurtain will track and parse all the communication

between the server and the client. Then it will expose the data to our plug-in

environment.

In IronCurtain plug-in environment the proper module will perform on the parsed data, it

will apply the pre-defined rules.

• Add/Remove Users or Groups

IronCurtain will allow adding and removing of users or groups. It will be possible to

configure access and accounting per-user and per-group.

 49

• Control User Accounts

Every user in this system will have an account saved in the database. There may be

alternatives for identifying users;

It may be IP address or MAC based authentication, this would be more useful for a

transparent proxy. It may use an existing authentication scheme for proxy authentication,

Kerberos or NTLM.

• Secure Login

Administrator is required to enter his/her ID and password before using our proxy server.

The entered login information is checked against the stored information: if they match,

the user is logged on to the system; if they do not match, the system should print an error

message and again present the login screen.

• Add/Remove Rules

Through the web interface, the administrator will be able to add arbitrary new rules, such

as modifying HTTP headers or blocking images. The administrator will also be able to

remove them from the system. When there is any change in the rules, the system will take

action immediately.

IronCurtain will have a plug-in based architecture. Rule plug-ins, which will be written in

our programming language or a simple script language, will define the mechanism.

Rules, which will be defined over the web interface, will use plug-ins as their underlying

template and will define the policy.

• Check the bandwidth usage

The bandwidths of the networks and Internet access are limited. So, too many

unnecessary downloads or uploads of some users lead to slow connections, delays, denial

of service problems for other users and programs. In order to avoid this, a proper logging

 50

of bandwidth usage should exist in this system. For every user this logged bandwidth

usage data will be displayed and there will be an option to limit the upload or download

quota of a specific user. This is necessary for preventing users from exploiting the

bandwidth and suffering other users on the net.

• Check user actions

There will be restrictions and some controls to prevent users from being distracted. In

order to do this control all the user actions will be logged. Then the visited web sites and

durations on these sites will be displayed. And it will be possible for authorized user to

block any user’s access to some sites. There will be also black lists. The sites in these

lists will be unreachable by any user. The administrator will be able to change this list

manually by adding or removing sites.

• Check statistical data

All of the user actions, or a part of it if the administrator configures as such, will be

logged extensively.

Statistical data will be generated from the logs of users’ actions, and it will be updated in

real-time. A table will be displayed showing the web sites visited, a counter and a

duration field. This information can be used for a general view of the Internet usage. The

general problems such as bandwidth bottleneck can be detected. Moreover, it can provide

critical information in case of hostile actions, viruses and worms. The links that nearly all

the computers connect and a counter with a high value for that link may indicate a worm.

It will be possible to take action by adding that link to black list, before its unwanted

consequences. Statistical data for connections will also be displayed as diagrams.

 5.2 Non-functional Requirements

Non-functional requirements can be listed as:

• Scalability

 51

Since Web Access Control is an important issue for large companies too, our software

must scale equally well to any number of users. Even, in large corporal networks, users

should face minimal or no latency in their regular Web usage.

• Maintenance

Maintainability is required to be able to solve issues encountered before and after

enabling the system. Later on it may be requested to add new functionality or enhance the

system. Therefore, the source code must be maintainable.

• User Interface

The user interface will mainly be a website for the administrator to configure the system.

The interface must be robust. Since, administrators will want to have a fine-grained

control over their network, the web interface must enable the administrator to configure

both macro details like the size of the thread pool or micro details like blocking a specific

user from accessing a specific web site.

• Security

There are two aspects of security. First, the internal network which clients connect to our

software may not be secure. Therefore, we must provide methods (such as, NT Lan

Manager (http://en.wikipedia.org/wiki/NTLM) or Kerberos

(http://web.mit.edu/kerberos/www/) to enable secure user authentication over insecure

networks. Secondly, the Internet is, unfortunately, filled with people with malicious

intents. IronCurtain must be safe from malicious code attacks like buffer overruns(which,

we think that coding in a high-level language like Python will help enormously) itself,

and also it must provide methods that allow administrators to define rules to block such

known attacks.

Also the people that are being protected and controlled by the IronCurtain may try to

bypass IronCurtain. The system must be resistant to such attempts, and should log and

 52

http://web.mit.edu/kerberos/www/

alert the administrator also. To prevent bypassing IronCurtain, there are things an

administrator must do; like blocking all outgoing HTTP connection attempts, an allowing

only the IronCurtain's access to outside.

• Platform Independent Use

IronCurtain should be operational and functional across different platforms like UNIX,

Windows, etc.

• Reliability

The system should be as bug free as possible. All sub components should work

asynchronously, so that any delay caused by one of the components should not block

other components’ work flow.

 5.3 Minimal Hardware Requirements

Minimal hardware requirements for our project are:

A PC with the following configuration will be needed:

Development

A PC with the following configuration will be needed:

• Intel Pentium IV 1 GHz

• 512 MB DDR RAM

• 40GB Hard Disk Space

• Internet Connection

End User

• Intel Pentium IV 2 GHz

• 1GB DDR RAM

• 100MB Hard Disk Space

• Local or Wide Area Network

 53

 5.4 Minimal Software Requirements

Software requirements for the project are divided into categories:

Development

• Recent Linux Distribution such as Ubuntu 5.10, or Windows XP or newer

• Full Installation of Python 2.4

• SPE Python IDE or Eclipse Installation with PyDev Plug-in

• Navicat (MySQL Manager)

• LaTeX Suite

End user

• Recent Linux Distribution such as Ubuntu 5.10, or Windows XP or newer

• Full Installation of Python 2.4

• MySQL Client

• Web Browser (Mozilla Firefox, Microsoft Internet Explorer)

 6. Project Schedule
Project scheduling is one of the most important subtasks of project management. For this

project, scheduling activities and tasks are given below.

 6.1 Project Task Set

Framework Activities
• Customer Communication √
• Initial Design √
• Design
• Programming
• Testing

Task Set

• Requirements specification √

• Learning the languages and tools √

 54

• Prototype construction

• Database construction

• Plug-in & Rule Construction

• Construction of Logging

• Interface construction

• Adaptation of modules

• Testing

List of deliverables

Documentation

• Project Proposal √

• Analysis Report √

• Initial Design Report √

• Design Report

Functional Decomposition of these tasks

Requirements Specification

Interviews with some software companies √

Internet Search √

Learning the languages and tools

Determining the proper language √

Determining the tutorials and manuals √

Studying the tutorials √

Prototype Construction

Database Construction

Initial Database Design

Initial Database Implementation

Complete Database Design

Complete Database Implementation

 55

Plug-in & Rule Construction

Plug-in & Rule design

Plug-in & Rule initial implementation

Plug-in & Rule complete implementation

Logging

Logging and reporting

Interface Construction

Administrator web interface

Adaptation of modules

Database & rules

Database & logging

Full connection among all

Testing

Web Interface testing

Proxy testing

Database testing

Full package testing

 56

 6.2 Gannt Chart

 57

7. Testing

Since this is initial design we will give just basic structure of testing strategies for

our project.

 7.1 Unit Testing

We are going to test our login

• Plug-in and module: Processing rules synchronously or threaded will be

problematic. We are going to point at this, while testing.

• Database: We will use database mostly for accessing user information and

reaching statistical information. Database structure is very important for

our project since fast responding system is necessary for users to access

internet. Testing for performance issues will be mostly related to the

database.

• Web interface: Security issues will be important since web interface is

just for the administrator and securing his/her information will be

important.

• Log module: Statistical data will be gathered by this module. Database

testing will be an important issue because we will record information on

the database and also, get statistical information from the database.

 7.2 Integration Testing

We are going to test the system as whole after combining different modules in

IronCurtain. We will ensure synchronized processing of sub-modules is correct.

 58

 7.3 Higher Order Testing

 Higher order testing is going to take place when complete integration is

maintained on IronCurtain.

8. Issues to be Addressed in Final Design Report
There are some issues about IronCurtain design that is left to final design report.

These need some extra technical research and elaboration on the topic. We may list them

as follows.

• Authentication: We will research about NTLM and Kerberos.

• Default Plug-ins: We will detail the list of the plug-ins that we will ship by

default, and their functions. These may include, among others, bandwidth

management and cookie management.

• Robustness of Plug-ins: Currently, one rule who fails to return can lock-up the

system. In addition to this, the rules work one by one which may introduce an

undesirable latency. Also, the rules act on parsed complete requests or responses,

there should be an option to allow incrementally decided actions. That is, as soon

as a packet that forms a part of an HTTP request/response is received, it will be

passed to plug-ins for processing. We plan to completely solve these issues in the

final design report.

 59

	 1. Introduction
	1.1 Problem Definition
	1.2 Project Scope and Goals
	1.3 Usage Areas
	1.4 Design Constraints
	1.5 Design Objectives
	2. Data Design
	2.1 Data Objects
	User
	Admin
	Group
	Plugin
	Rule

	2.2 ER Diagrams
	2.3 Data Dictionary
	User
	User_ID
	Passwd
	Admin
	Group
	
	 Plugin
	Rule
	LogLevel
	UserLog
	RuleLog

	2.4 Internal Software Data Structures
	2.5 Database Description
	2.6 Database Normalization

	3. Architectural and Component-level Design
	3.1 Structure Chart
	3.2 DFD
	3.2.1 DFD Level 0
	 3.2.2 DFD Level 1
	 3.2.3 DFDs Level 2

	3.3 State Transition Diagrams
	3.3.1 State Diagram Adding a Rule:
	3.3.2 Checking Logs State Diagram:
	3.3.3 Request – Response Diagram

	3.4 Description of Components
	3.4.1 Plug-in Architecture
	3.4.2 Plug-in and Rule directory structures
	3.4.3 Request / Response architecture
	
	 3.4.4 Data Dictionary
	3.4.5 Algorithmic Model (PDL)

	3.5 Use Case Diagram

	4. User Interface Design
	4.1 Interface design rules
	4.2 Screenshots
	4.2.1 Summary View
	4.2.2 User and Group
	 4.2.3 Plug-in and Rule Management
	4.2.4 Settings

	 5. Requirements
	5.1 Functional Requirements
	5.2 Non-functional Requirements
	5.3 Minimal Hardware Requirements
	5.4 Minimal Software Requirements

	6. Project Schedule
	6.1 Project Task Set
	 6.2 Gannt Chart

	 7. Testing
	7.1 Unit Testing
	
	7.2 Integration Testing
	7.3 Higher Order Testing

	8. Issues to be Addressed in Final Design Report

