IO 101 (0o [0 Tex 1o] IR 2

1.1 Problem DefiNItiON........cooiiiiiiececie ettt sre e renne e 2
1.2 Project SCOPE and GOAIS........ccviiiiieiiee ettt ettt see e e e 3
G 0 L7 T [=T USROS 3
1.4 DESIGN CONSIIAINTSc.veivreeiiiieiie et se ettt sb e te e e sbe e e e bessaesresbeesaesteaneensenneens 4
1.5 DESIGN ODJECTIVES ...ttt bbbttt 5

B T L B =] o | SRR 7
PR BT - W@ o] =T od OSSR 7
A L B 1T o[44O 10
2.3 Data DICTIONAIY ...ttt b bbbttt ettt 11
2.4 Database DESCIIPLIONoceiiiiieie ettt ettt sre e e beaneeseesreenes 13

3. Architectural and Component-1eVel DeSIGNcccvviiiii e 14
3L STTUCKUNE CNAIT ...ttt bbbttt ettt 14
3.2 Data FIOW DIGIAIMSc.viiiiiiiiiiieiieitesieee ettt bbbt 16
B2 L DFD LEVEI 0 ..ttt et ne e nn e 16
B2.2DFD LEVEI L ...ttt et 17
323 DFDS LEVEI 2. bbb 18
3.2.4 Data DICTIONAIYc.viueeiieiiiiieiiite sttt bbbttt 22

3.3 State TranSition DIAGIAMS..........cciiiiieieieieise e 26
3.3.1 State Diagram Adding @ RUIE:c..oiiiieeeie et 26
3.3.2 Checking Logs State DIAgram:cccveiveiieeiieeieeseeseesieesinesee e e e e e e sneesneesneeeseeeseas 27
3.3.3 Request — ReSPONSE DIagramcccivviiiiiiiieie et 28

3.4 DeSCription OF COMPONENTS.ccuiiviieieieiieiseste ettt 29
R [0 To [T I AN (o] 1= od 1 ST 29
3.4.2 DefaUlt PIUQINSoveiee ettt sttt e e e ne e nreenrs 33
3.4.3 Capabilities of Default PIUGINScccoovviiiiieic s 37
KR N 11 1= o o= o] o OSSP 38
I TN I o 1o PSS ST 39

R U L O T I 1T Vo > o SRR 41
3.6 ACHVILY DIAGIAMS .. .ecvveiiiiieeic ettt e st e s e st e re et e sbeesbenbeaneeseenreenes 42
3.7 Collaboration DIAGIAMSciiiiiieieieieiee ettt ettt 47
3.8 SEOUENCE DIAGIAMS ...ttt bbbt b b 51
e IO TSR B T Vo [o SRR 56

O T [(=T Lot D T o [o SRS 57
IS o] 1= S o0 £SO 57
4.1, SUMMAEY VIBW ...uviiieiieeie ettt sttt sttt sttt et e e te s e saesteeseesaeeneentesaeeneeneennenns 57
O A T g o o T (01U oSSR 58
4.1.3 Plugin and Rule Management............ccceieiieiieieiieese st se e sre e sre e 58

A 14 SEEEINGS .ottt bbbt bbb 59

0 101 [o PSS 59

R R =0 (UL =] 00T] SRR 61
5.1 Minimal Hardware REQUITEMENTScc.civeieiiiieie ittt 61
5.2 Minimal Software REQUITEMENTSc.civeiiiiiiiieree e 61

B PrOJECT SCNEAUIE ...ttt ettt e te e seeereenaesaeeneas 62
TR o o] [T B I] - SRR 62
6.2 GANTE CNAMT......iteieeeee ettt bbbttt 64

7 TBSEING .tttk bbb bt E b bR bbbttt bbb s 65
8 R LT 1= oSSR 65
7.2 INteQration TESTING ...veicveeieeiie e e e e e st e st e sr e be e beeteesteesreesneeanneenreenes 65
I AN [o) 0 T = € o ST 65

1. Introduction

During the analysis phase of our project, we investigated the possible problems about web, its
usage, and its control within restricted zones. We tried to identify and define those problems, and
come out with creative solutions to those that are within our project’s scope. We provided
comprehensive information about those problems and our proposed solutions in our analysis
report. After our delivery of the analysis report, we continued working on the problem set and our
solutions. We came to conclusions on our project’s technical aspects and infrastructure.

1.1 Problem Definition

In recent years, Internet has seen a great rise in its popularity and usage areas. People of all
occupations and ages are on the internet, industries depend on it heavily, and there are completely
new businesses that exist primarily in the internet. Companies depend heavily on internet usage,
as a result most of the employees have access to the internet. Other than big companies, many
other organizations are open to internet. Some examples are governmental bodies, schools and
universities, non-profit organizations, hospitals, small offices. Examples are not limited to these,
and the most common internet user is the home user.

The giant structure and variety of the internet makes it a valuable information source and
communication medium. But any useful thing has some drawbacks, and internet is no exception.
In fact ease of access and abundance of uncontrolled traffic makes the internet a difficult place to
stay safe. And a large organization is not only concerned with outside threats, but also inside
threats which stem from workers or members. The workers or members of the organizations may
visit sites or download files that may bring harm to the whole network of the organization. Some
sensitive information may leak from the network to the outside world, either by a careless worker
or one with a malicious intent.

Companies and organizations mostly used traditional firewalls, which does packet filtering by
looking at easily extractable data, like IP address or port of the communicating parties. This
would be useful if the intent was to block and control some servers/protocols only. But the
internet traffic around the world consists of web traffic mostly, distributed to a large number of
servers in many different locations throughout the world. Traditional firewalls are not able to
tackle with difficulties presented by such a gigantic network, especially in a corporate
environment defined above. It is the content of the traffic, not the source/destination that should
be checked to provide comprehensive control over the information flow. In a present day

environment, where nearly the whole internet traffic is web traffic, blocking ports have little
influence on the information security.

Our project aims to solve the most important problems of the modern day corporate and
organizational network, by providing an application layer gateway; which will enable the network
manager to control web traffic of the network in many different ways. Name of our project is
IronCurtain and it will not only solve problems of big corporations and organizations, but also
home users and small networks. IronCurtain will provide flexible control over the whole web
traffic, user and group based control, extensive logging capabilities, and a configuration interface
that is accessible from web. We plan to design and build IronCurtain so flexible, strong and easy
to use, such that it will answer most of the modern day internet-based concerns.

1.2 Project Scope and Goals

Our project, named IronCurtain, will implement an application level gateway for web filtering
and access control. Our project's goals are as follows:

e Complete HTTP/1.1 support

e HTTPS support

e Decomposition of Entire Communication

¢ Plugin architecture for rules and actions

e Complete configuration over Web

e Secure User Authentication

¢ Logging and Accounting

e Multi-threaded (thread-pool) implementation
e Alerts (via plugins)

e Content identification (via plugins)

1.3 Usage Areas

IronCurtain will be flexible enough to satisfy needs of a great variety of entities. From large
enterprises to home users, IronCurtain will have an answer to all of these entities' problems,

thanks to the flexible and extendable plugin mechanism.

e Companies: Modern day companies use internet access extensively to maintain their

operations and profitability. It is essential for companies to access internet. If the access is
uncontrolled, many adverse effects of the internet give harm to the company overall. Some of
these are: Productivity loss associated to worker distraction caused by uncontrolled web site
access, maliciously designed web sites, leakage of sensitive company information, etc. By
using IronCurtain, companies can enable appropriate filters to take precautions about these
problems. Also IronCurtain would be a security layer between company servers and the
internet, checking for possible security violations and attacks and preventing according to the
rules. This would require no modification of the system, only writing the appropriate rules will
be sufficient. Also sensitive information about the company network may be blocked using
IronCurtain. IP address of the computers can be replaced by the address of the proxy.

e Universities: A university environment is usually more relaxed than a corporate one. But still
administration of a university would need firm control on the network. Students and
academics in the university might use up all the bandwidth of the university. Or they might
cause legal trouble by downloading illegal files. It would be possible to control bandwidth of
the users and their internet activities using IronCurtain.

e Other Areas: Flexible plugin architecture of IronCurtain will enable its usage in a variety of
networks, even a single computer network. Appropriate rules and plugins for the area of
application will be chosen and IronCurtain will protect the network from inside or outside
malicious traffic, and it will enforce other principles determined by the network's owners.

1.4 Design Constraints

Our main design constraints are as follows:

e Time
Our fixed schedule is determined by our course syllabus. We have approximately six
months remaining to finish the project completely. The design should be finished in one
month. During the design we will also work on the prototype and it will be finished in
one and a half months from the delivery of initial design report.

¢ Language constraints
We decided to use the Python language as implementation language. It allows easy usage
of plugin. In fact, python is used as a scripting language inside many applications. Most
of the time we will be using Python's integrated libraries.

e Performance and Network Latency

IronCurtain application level gateway aims to introduce lowest levels of latency to the
network communication speed. The software will use threads to be more performant than
a forking implementation. Also the software will reuse existing connections and will not
try to open a new connection which takes CPU time and introduces latency. GZIP
compression and chunked encoding feature of HTTP 1.1 standard will be used to reduce

latency.

Maintenance

The IronCurtain will require minimal maintenance. After the administrator defines the
plugin, rules, general settings, per user and per group settings; there will be no need to
check the operation of the gateway, other than the cases of; adding of a new rule and

querying for statistics.

User Interface

IronCurtain is not a user interface intensive application. Most of its operation happens
behind the communication of the members of the network. The user interface is accessed
when settings are to be changed, or statistics are to be displayed. Other than these
conditions, no user interface is required for normal operation. The user interface of the
settings and statistics parts of the software will be easy and intuitive to use. The statistics
should be displayed in a variety of easy to understand approaches.

1.5 Design Objectives

Our project’s design objectives are as follows:

Portability

Our usage of Python language makes IronCurtain easily portable to any operating system
that has the necessary Python run-time components; Linux, BSD, Mac OS X, Microsoft
Windows, AlX, Amiga, AROS, AS/400, BeOS, 0S/2, 0S/390, Irix, Palm OS, Plan 9,
PlayStation 2, Psion, QNX, RISC OS, Sharp Zaurus, Solaris, Symbian OS, VMS,
VxWorks, Windows CE/Pocket PC, Xbox.

Because of this portability, users with any specified OS should be able to use IronCurtain.

Extendibility

The plugin architecture of IronCurtain will enable very extendible and flexible operation.
If there is a need for a new limitation/control/statistics options, there may be possible
affordable solutions using IronCurtain. The easiest one is the usage of existing plugin and
writing of new rules that satisfy the requirements. Or a new plugin can be written using
the python programming language. Using plugins any kind of behavior can be added to
IronCurtain.

Maintainability

Maintainability is an important objective for IronCurtain. The plugin system is very
modularly designed, plugin are independent of each other. Also functionality of
IronCurtain is upon plugin. Because of this modular design, we could change the
internals of any plugin without causing problems for the other untouched plugins and
general operation of IronCurtain. This makes IronCurtain easy to maintain, because
changes to one plugin/functionality do not require the rewriting of other plugin.

Reliability

The system should be as bug free as possible. All sub components should work
asynchronously, so that any delay caused by one of the components should not block
other components’ work flow.

Security

There are two aspects of security. First, the internal network which clients connect to our
software may not be secure. User authentication should be handled over a secure
connection using SSL. Secondly, the Internet is, unfortunately, filled with people with
malicious intents. IronCurtain must be safe from malicious code attacks like buffer
overruns(which, we think that coding in a high-level language like Python will help
enormously) itself, and also it must provide methods that allow administrators to define
rules to block such known attacks.

2. Data Design

The plugins and rules will be kept in separate files on the file system. The data of users, groups
and rules will be stored in the database. The logs of users and rule actions will be written to
database as well. In order to store the data in a structured form, the data objects will be used. In
this section, we will look at the data objects, their relationships, the ER-diagram and the data
dictionary to describe the data.

2.1 Data Objects

User

The User entity will store data associated with the users of the system. When they register with
the system the data they enter will be stored as an instance of the User object and they can change
the information at any time. The attributes of the entity will be:

» User_ID
» Real_Name
» Passwd
» Email

» Group_ID
The User_ID will be a string that will be used as the primary key as it will be unique to each user
in the network. The User_ID and password will be used to log on during authentication. Passwd
is the MD5 hash of the user password. Group_ID will be the reference to Group entity, which the
user is associated with. The user does not have to be assigned to a Group. Email will be the user’s

e-mail address. The user will be notified by e-mail if necessary.

Admin

Admin entity is just a User entity, but it will be used to identify the administrators. Admin entity
will keep the User_ID’s of the users who has administrative rights. The users in this entity will be
able to log in to administrative page of the system with their passwords.

Group

Group entity is the generalization of User entity. It will be used to group users to ease applying
same rules to many users. The attributes of the entity will be:

» Group_ID
» Description

The Group_ID will be a string that will be used as the primary key as it will be unique to each
Group. Description will be just an info string.

UserLog
UserLog entity will store the logs of the user actions.

» User_ID

» Site

» Domain

» Bandwidth
» Open_Time
» Close_Time

User_ID and the Open_Time together will be the primary key. User_ID is the foreign key and
reference to User entity. Site is the string to hold the site URL that is visited. Domain is a string
and it is the domain name of the visited site. Bandwidth is an integer that is the size of the data
transfer. Open_Time and Close_Time are the action times. Site, Domain, Bandwidth will be stored
associated with the user.

Plugin

The Plugin entity will store the identifiers of the plugins in the system. The plugin schemas will
be saved as xml files so we will just keep the ids of the plugins to relate them with the rules. The
attributes of this entity will be:

» Plugin_ID

» Plug_File

» Schema_File
» Plug_Hash

» Schema_Hash
» Description

The Plugin_ID will be a string that will be used as the primary key as it will be unique to each
Plugin. This key will be read from the xml file. The Plug_File and Schema_File attributes will

keep the paths of the Plugin file and schema file of the Plugin, respectively. The MD5 hashes of
the files will be stored in Plug_Hash and Schema_Hash, accordingly. If any change occurs in
these files, it will be checked from hashes. Description will be just an info string.

Rule

The Rule entity will store the identifiers of the rules that are generated from Plugins. Every rule
derives from a Plugin template. The attributes of the entity will be:

Rule_ID
Plugin_ID
File
File_Hash
Description

V V V V V

Rule_ID is a string and primary key. Rule_ID is the identifier of the rule that is generated from a
plugin schema and written to an xml file. The File attribute will keep the path of the xml file.
File_Hash will be the MD5 hash of the file and make it possible to check whether any change
occurs in the file. Plugin_ID is the foreign key and reference to Plugin entity. Description is just

an info string.

RuleLog
RuleLog entity will store the logs of rule actions. It has a similar schema to UserLog entity.

Rule_ID

Site

Domain
Action_Time

V V V V V

Action_Desc

Rule_ID and the Action_Time together will form the primary key. Rule_ID is the foreign key and
reference to Rule entity. Site is the string to hold the site address that is visited. Domain is a string
and it is the domain name of the visited site. Action_Time is the time of the action taken.
Information about the action will be kept inside the Action_Desc attribute.

2.2 ER Diagrams

Passwd

Email

/153 N\ Group

Admin
Schema Hash @
Schema_ File @

Rule

Plug_File

E]|i"'|] J

Plugin

o Domamn
Rule_ID Action_Time
o Doman
User 1 Eandw idth

RuleLog

Data Objects

10

P Iuzin

G ilq: AO

User :__3-0 O Rule

<R o>

UserLog EuleLog

Lege m:l|

O-———— [Fero or one (optional)|
=O——] Zera or Many (Optional)|

ER-Diagram

2.3 Data Dictionary

User

Name User

Alias -

Where / How used The people that will use the system

Description Every actor using the system is defined to be a user.

11

User_ID
Name

Alias
Where / How used

Description

Passwd
Name

Alias
Where / How used

Description

Admin
Name

Alias
Where / How used

Description

Group
Name

Alias
Where / How used

Description

User_ID

The users will enter their User_ID together with their passwords to log
into the system. Administrators will have permission to access to control
panel page with their passwords.

Every user has a unique User_ID.

Passwd
While logging into the system

The password is to secure the system. Unauthorized users cannot access
the control panel page. The user’s password is converted to MD5 hash and
checked with the one in the database.

Admin
Administrator

Admin is a special type of user who has all privileges. He/she will be able
to access the control panel page. Then he/she will:

- add/remove users

- change users’ and groups’ logging and filtering rules
- check logs

- add/remove rules

Group
Create Groups and add users to groups.

Groups will be created by the ‘Admin’ and they will be used to assign
specific rules to many people at once. It will make the user management
easier.

12

Plugin

Name

Alias

Where / How used

Description

Rule
Name

Alias
Where / How used

Description

UserLog
Name

Alias
Where / How used

Description

RuleLog
Name

Alias
Where / How used

Description

Plugin
While creating new rules.

After a Plugin is written, it defines a schema and a proper template will be
generated in order to create new rules from this Plugin.

Rule

They are defined using an existing Plugin and assigned to users and
groups.

Admin defines the rule on the web control page and assign the rule to any
user or group.

UserLog
While logging users actions

UserLog contains log items: site as visited site’s name; domain as site
domain; bandwidth as data transfer size.

RuleLog
When rules take action

Rules will write their actions to database as ‘RuleLog’s. Visited site, site
domain, action time, action description will be saved.

2.4 Database Description

The database management system we are using for IronCurtain is SQL.te. Tables will be created

and be filled using Python’s SQL.te library. Database will store all of the information of the

user’s actions as logs. Also, user and rule relation are stored in the database. When the system

needs retrieving data, SQL queries are used to get the necessary records.

13

3. Architectural and Component-level Design

This section gives details about program structure, components, and software interface.

3.1 Structure Chart

Our project has mainly into two modules which are named as input controller and output
controller. Our system is also responsible of the appropriate coordination of these main parts and
the system’s maintainability with the ultimate updates.

Catput Controller
Itput Controller i

AT Rule actions

PluginController Fule Controller

Adenin MMonitoring

Adrin login

Create Template Add new plugin

The followings are the modules in our application.

e Accept/Reject
This module determines whether our proxy accept or reject the content. The parser can accept
or reject the HTML according to the rules applied.

e Parse Request/Response

14

Every HTTP Request and Response will be parsed in this module. Parser will first check the
user and then it will get the rules for this user. Then it will parse the content by using the
selected rules.

e Create Template

This module is for creating a template of plugins so that we can easily create rules over
plugins. It writes the template to an XML file. The template creation operation is only done
once when we created a new plugin.

e Add new plugin

This module is for adding a new plugin to our proxy. A new plugin is a python code. In our
parser we will import that code when we are using a user defined rule. After adding a new
plugin also Create Template module creates a template for that plugin.

e Associate Rules
This module is used for determining which rules are applied to which users. A rule can be
applied more than one user or group. This information are stored and changed in this module.

e Add new Rule

This module is for creating a new rule from a plugin. First the user selects a plugin from the
menu. Then a template is shown on the screen and the user fills the variables and functions
that he will use. Then the rule is created.

e Admin/User login

This module is authentication. We will use an SSL encrypted web-based authentication
system. User will simply provide a username and a password, then it will be checked whether
that user is an administrator.

e Check user actions
Admin can check user actions in this module. He can get statistical info about users. He can
search for specific information in logs.

¢ Admin monitoring

This module is used for monitoring admin actions. All admin actions are recorded as logs.

15

e User monitoring

This module is used for monitoring user actions. All user actions are recorded as logs.

3.2 Data Flow Diagrams

In this section, the functional model of IronCurtain is presented. It is composed of process
specifications and DFD of the three levels (LevelO, Levell and Level2) of the system.

3.2.1 DFD Level 0
FProcessed HTTP Reuest
ey ar —————— HTTF Response meryear
Processed HTTE Response > st
dathenticati onInfo Logand Statistica Infio
: Adrministrator
IronCurtain e
Client ——HTTF F equest Software 'y
level O alett
Fule info
= otfl g ati on Infio
Aqdhenti cation Info o
=
E |z
zer [nfo 'E-. g=! Fule Infa
» B g
Adrninistrator 5 =
= |3
B oo
E |3
La)
l b b

Database

As seen from the diagram, we have three users: server, client and administrator. The main

functionalities of the users are shown on the diagram. According to the requests IronCurtain

writes some information to the database or process it and give a response to the users.

16

3.2.2 DFD Level 1

This is a more detailed diagram of IronCurtain. The main parts of IronCurtain are filtering,
control mechanism, configuration and logging process. These parts communicate with users and

each other.
- HTTF Response - Processed HTTP Request
- .
filtering
HTTF Request ‘(1
el
Processed HTTP response——m Client
IP Info 1
\i\\‘i‘\\\qa Request/Response
Authentication info \p‘\\: & '{.}/ info
- 2,
-
control :
mechanism loggmg
2 .
nio process
X 4 %
% e i
: @ 2,
Client © %, %, @,
= /C;? % d?/.
=~ Al () o
S %, (3 e,
g % %, ‘G,
3 2, 7
& , “ 1y s
& k -
F
<
o V .
oot) =t
m\‘\g\‘t Z configuration E
o _,..--‘?;' 3 =
{0 =z, ‘= e
quie 1 z Z Administrator
= = 3
ini E e -
Admimstrator Z, 2 £
= e
=] =1
. = &
\ T {or [ﬁl
User Inic 2 oz g
_ - =
@ = =
=4 =3

ojut
“""‘-—-—
— L

Database

17

3.2.3 DFDs Level 2

Filtering
- i

| \1\\;'.-1\“““.L

Reave®

5.,
)\f ' /lf;;”_) \Q‘-‘\ ..'\(;\'1(“"
oy o el
V) e\ -
i W .Qﬂ\\'
»e
A
A)
N had & X
AN 5 &2 ’r?-,
a Q =) < 6
/\3-" Q“‘, - = - /'
) = -
3’ 5 ? ool
i = : - \-LCL\\\L.
i
'("\'“\.“:"';":k

Processed HTTP Response

This is a more detailed diagram of the filtering part in IronCurtain. This is the most important part
because all the requests and responses are processed here. First the requests and responses are
parsed and then it is analyzed. In analyze part the validity of the request and response is checked

by the control mechanism. After analyzing the processed request or response are sent by

dispatcher to the users.

18

Control Mechanism

Decision
Mechanism
2.2

User i

rule It

\5\“ 3

0ju] UONEALUDPNY

¢

4 f;;m.\,c v
otify.

i, fr),, '-._
Database

Control mechanism briefly checks the access rights and user authentication. It is connected to all

the other modules. It gets the info from the other parts and checks whether this user has the right
to do that action or not. According to that it sends an answer of approval/disapproval.

19

Configuration

DFD LEVEL2
3. CONFIGURATION

4 ‘WJ".?‘_.”)
.’L-‘?‘, 5
T0p
7
g

information
33

Database

Configuration part is used for changing the properties of users, rules and main configuration of
the proxy. It checks the access rights of the user by using control mechanism. It writes the
information to the database. Only administrator user can use that part of the IronCurtain.

20

Logging
DFD LEVELZ2
4. LOGGING

connection
information
4.1

User Info

Send
information
4.3

Database

Logging process is used for logging all the activities of the user and also alerting if there is a
violation of a predefined condition. All the request and response info is provided to logging
process by filtering part. The logging process sends log and statistical info to the database and

administrator user.

21

3.2.4 Data Dictionary

Name Authentication Info
Aliases Authentication Info2
User name/Password
Where used/ Control Mechanism - Authentication 2.1 (input/output)
How used Client (output)
Administrator (output)
Database (input/output)
Description This data is the username and the password.
Format An aggregate object consisting of User_ID and Passwd of type string.
Name Authentication Response
Aliases None
Where used/ Control Mechanism - Authentication 2.1 (output)
How used Configuration — Check Validity 3.2 (input)
Description Result of the username, password and administrative rights checking
Format An aggregate object consisting of User_ID and Passwd of type string and
iSAdmin of type boolean.
Name HTTP Request
Aliases Raw HTTP Request
Where used/ Filtering — Parse 1.1 (input/output)
How used Filtering — Plugin Engine 1.2 (input)
Client (output)
Description Request coming from users is sent to Parser and Plugin Engine to be
filtered.
Format An HTTP request object consisting of Line, Header and Body
Name Processed HTTP Request
Aliases None
Where used/ Filtering — Dispatcher 1.3 (output)
How used Server (input)
Description Filtered HTTP Request
Format An HTTP request object consisting of Line, Header and Body
Name HTTP Response
Aliases Raw HTTP Response
Where used/ Filtering — Parse 1.1 (input/output)
How used Filtering — Plugin Engine 1.2 (input)
Server (output)
Description Response coming from server is sent to parser and plugins to be filtered.
Format An HTTP response object consisting of Line, Header and Body
Name Processed HTTP Response
Aliases None

22

Where used/ Filtering — Dispatcher 1.3 (output)

How used Client (input)

Description Filtered HTTP Response is sent to client.

Format An HTTP response object consisting of Line, Header and Body.

Name Request/Response Info

Aliases None

Where used/ Filtering — Plugin Engine 1.2 (output)

How used Logging — Get Connection Information 4.1 (input)

Description Information to be logged after the analysis

Format Request or Response object

Name IP Info

Aliases None

Where used/ Filtering — Plugin Engine 1.2 (output)

How used Control Mechanism — Authentication 2.1 (input)

Description To check User filtering rules Plugin sends the user IP to Control
Mechanism.

Format IP is composed of 4 integers.

Name User Info

Aliases User Profile Info

Where used/ Filtering — Plugin Engine 1.2 (input)

How used Control Mechanism — Decision 2.2 (input/output)
Control Mechanism — Authentication 2.1 (output)
Control Mechanism — Rule Process 2.3 (input)
Configuration — Send information 3.3 (input/output)
Configuration — Get information 3.1 (input)
Logging — Check Validity 4.2 (input)
Database (input/output)

Description User’s information will be passed through the modules

Format User Object consisting of User_ID, Group_ID of type string.

Name Rule Info

Aliases None

Where used/ Filtering — Plugin Engine 1.2 (input)

How used Control Mechanism — Decision 2.2 (input/output)
Control Mechanism — Rule Process 2.3 (output)
Configuration — Send information 3.3 (input/output)
Configuration — Get information 3.1 (input)
Database (input/output)

Description A new rule is added to the system over the web interface by the
Administrator. Rules are stored in the DB and they are sent to
‘Configuration Module’ to get into action.

Format An object containing the Rule attributes. The object may vary depending on

the plugin that the rule is created from.

23

Name Decision and Packet Info

Aliases None

Where used/ Filtering — Plugin Engine 1.2 (output)

How used Filtering — Dispatcher 2.2 (input)

Description Actions and filtered HTTP packets are sent to Dispatcher in order to deliver
related client and server.

Format HTTP Request/Response Object

Name Change Notification

Aliases None

Where used/ Control Mechanism — Rule Process 2.3 (input)

How used Configuration — Send Information 3.3 (output)

Description When a new rule is added to the system, its information will be sent to the
Rule Process to use the rule immediately.

Format An object containing Rule identifier.

Name Configuration Info

Aliases None

Where used/ Configuration — Get Information 3.1 (input)

How used Configuration — Send Information 3.3 (output)

Administrator (output)
Database (input/output)

Description Administrator makes changes to the system configuration. Admin can
change group, user and rule interrelations over the web. The changes are
written to DB.

Format Configuration change object

Name Log and Statistical Info

Aliases None

Where used/ Logging Process — Send Information 4 (input/output)

How used Administrator (input)

Database (input/output)

Description The logs and statistical information from these logs will be stored in the
database and showed to Administrator.

Format A Log object containing the User_ID/Rule_ID, Site, Domain, Bandwidth
and Action_Time (Open_Time, Close_Time), Action_Desc attributes.
These are explained in Data Objects part.

Name Alert

Aliases None

Where used/ Logging Process — Send Information 4.3 (output)

How used Administrator (input)

24

Description On predefined conditions depending on the actions and the logs, the
Logging Process module will send a notification e-mail to Administrator.

Format A text that describes the action or situation briefly.

Name Action

Aliases None

Where used/ Filtering — Plugin Engine 1.2 (output)

How used Logging Process — Get Connection Information 4.1 (output)

Description One of the 4 predefined actions is returned by the Plugin according to the
action performed.

Format Enumerated value corresponds to the action taken: ACTION_BLOCK,
ACTION_ANSWER, ACTION_REDIRECT, ACTION_FORWARD

Name Analyzed Info

Aliases None

Where used/ Configuration — Get Information 3.1(output)

How used Configuration — Check Validity 3.2(input)

Description After the incoming information is analyzed, it is sent to be validated with
the authentication info.

Format One of the Configuration, User, Rule objects

Name Validated Info

Aliases None

Where used/ Configuration — Send Information 3.3(input)

How used Configuration — Check Validity 3.2(output)

Description After the information is validated, it is transferred to Send Information
module.

Format One of the Configuration, User, Rule objects

Name Connection Info

Aliases None

Where used/ Logging — Get Connection Information 4.1(output)

How used Logging — Check Validity 4.2(input)

Description Connection Information is sent to Check Validity 4.2 module

Format Request or Response Object and User identifier.

Name Info

Aliases None

Where used/ Logging — Send Information 4.3(input)

How used Logging — Check Validity 4.2(output)

Description After the information is validated, it is transferred to Send Information
module.

Format Reguest or Response Object and User identifier.

25

3.3 State Transition Diagrams

3.3.1 State Diagram Adding a Rule:

The figure given below explains how a rule is added to the system by the administrator by using

web interface. Adding a plugin is represented below, too.

A rule is a particular instantiation of a plugin

State Diagrare Adding A New Rue

Admin Lagged

0
0 g W f}?m’fﬁ‘ce

Fuf Pythan ffla fa

Plug-in Added
Hecesz any files

f-‘u:lmip fha plug-inzs
logged-in to dirgciory
the system

el Interface

[at8
: plug,jntflﬂgundﬂr“
go P

fol s

alect plug "

Flug-in =
template

Header template
Showing

Showing
template for template for
Header Body Template

Template

Add 3 new rule

Rule & an
instance of

Body Template

are in the
directory

Other Templates

Showing
templates fir
other Templates

Rule Added

26

3.3.2 Checking Logs State Diagram:

The diagram below gives the state diagram for checking logs, starting from the administrator web
interface.

State Diagrare Checking Logs

Admin Logged
Admin
logged-in to
web interface

9“3'3:6‘? <o -

S‘DEC'
g ‘;,?;"f{a &

Allusers
lags screen

Group log
sCreens

Logs for ane

U= er=creen

=
g .
% =
=
8 £ 2
)
o Y g z
) =8 = E
] @
3
w9
Fittared web &
sites soreen Blach listscreen g '
- ! fawrite web sites screen
showing users 3,

which enter

showes which pages
inconvenient sites P23

requested most by a
aroup

shaw which wsers
pxceeded fiesr guafa

Lz er Hwrites
S rasn

hdost click ed
weh sites

Filtered or not

Bandwidth usage

Sresn
quota contral

Showe users
which
exceeded their
quota

27

3.3.3 Request — Response Diagram

Idle

! !{—_f dofwrait for Request

User

;‘:I Reguest
i

Parser | W paopemin (Configuration

check for configuration Jﬁ

Reguest

J/ .

Rules . ‘

apply the niles j

Hew Reguest

search user info

o

Mot Found

o~

Check a Connection

Not Exists | Connection Table Exists '
use the previous connection

\.I,f— !
Create a new connection
)

WNew Eeguest

Server
Send response J

i Response
'/

User properties Configuration

-

Parser ‘

check for confimuration search user info

} Response
¥

Eules

apply the rules

Response

28

When a new Request comes, IronCurtain will create a new thread to our thread pool.
Then it will send request to our parser.

Parser will get information from configuration module. Information is about which rules
to apply for this user? The bandwidth limit of the user. The time limit of the user.

After getting information about user parser sends these to Rules. In rules module it will
select the proper rules and apply them to the request in parallel.

Then Rules will send the updated request to the connection table.

There, the connection will be checked if it is opened before, it will use the previous
connection. (HTTP 1.1 persistent connection property) If not it will create a new
connection.

Then the request will be sent to the server.

Server will send the response.

The response will be taken by Parser. It gets the information from configuration module.
Then it will send the response to Rules.

Rules will apply the proper operations to the response and then send the new response to
the user.

3.4 Description of Components

3.4.1 Plugin Architecture

3.4.1.1 Structure of a Plugin

A plugin is a Python file with a few quirks. In the file, there will be one class with the same name

as the file (case-sensitive), which defines at least one function act_on with no arguments, and a

static variable called Args. Also, the constructor of the class must take one argument, a dictionary

(also known as, associative array).

act_on: is the function that is called when the rule works. It can optionally return a constant value

or a tuple to indicate the course of action for IronCurtain.

The constants are:

ACTION_BLOCK: A blocked request is rejected; the browser's connection is closed and the

proxy returns an error page or a "broken image™ icon.

29

ACTION_ANSWER: An answered request is handled directly by the plugin. In a sense, the
proxy acts as a web server, and sends the web page that it created to the client by itself. If the
action is ACTION_ANSWER, web page is returned as the second argument of a tuple.

ACTION_REDIRECT: A redirected request is sent to a location other than for what location it
was originally intended. In this case, the second argument of the tuple will be the new location to
be redirected.

ACTION_FORWARD: A forwarded request is sent to the web server for which it was originally
intended.

If act_on function does not return a value, the action taken is ACTION_FORWARD.
Args: should be declared as a list of tuples that lists the arguments to the rule.

Args is a mapping between argument names and their types. An element in the list is a 3-tuple or
a 4-tuple.

The first is the actual name of the argument.

The second is the text as it will look on the HTML Page.

The 3 and 4™ are indicators of data types. Only 4 structures are allowed: int, string, enum, and
array. The first two (int and string) are obvious.

The third, enum, is an n-tuple of strings. It represents a group of choices of which only one can be
selected.

Last, array is a list of strings. Two numbers follow array declaration to indicate its size. The first
is the minimum size of array, the second is the maximum. If the second is omitted, it is assumed
that maximum is infinity.

The constructor of the class: The constructor should be written to expect only one argument: a
dictionary. It will contain the instances of arguments defined by Args.

3.4.1.2 Activating the Plugin

After the coding is completed, we upload the plugin over IronCurtain's web interface. This
creates a new directory under plugins/ directory with the name of the plugin. Under that directory,

30

IronCurtain will put the plugin file and a hidden XML file with the name
<plugin_name>_$schema$.xml. The schema file is generated from the Args variable.

Once this is done, the new plugin will be available in the web interface. The administrator will be
able to instantiate new rules from this plugin. All rules are stored under the rules/ directory. Rule
is stored as a XML file. The name of the XML file will be “<plugin_id>_<rule_id>.xml”. At the
next startup, lronCurtain will scan the rules/ directory and start all active rules.

3.4.1.3 An Example Plugin and Rule

Let's go over the process of creating a new rule.

We want to write a rule that changes the value of the “User-Agent” header in an HTTP request to
“Protoxy/0.0.1” if the site is in a German or French domain. Let's assume that no plugin has the
necessary infrastructure for such a task (of course, in Protoxy there will be such an

infrastructure), so we will also write a plugin.

Args = [(*MatchURLs”, “Match URLs”, “array”, 1), (“Actions”, “Actions”, “enum”, (“Add”,
“Replace”, “Delete™)), (“HeaderName”, “Header Name”, “string”), (“HeaderValue”, “Header

Value”, “string™)]
(Assuming such a declaration) def __init__(self, Params):

Params["Actions"] -> "Replace”

Params["HeaderName"] -> "User-Agent"

Params["HeaderValue"] -> "Protoxy/0.0.1"

len(Params["'MatchURLSs"]) -> 2

Params["MatchURLs"][0] -> "http://*.de"

Params["MatchURLs"][1] -> "http://*.fr"

Once we are happy with our code, we upload it as a new plugin over IronCurtain's web interface.
This creates a new directory under plugins/ directory with the name of the plugin. Let's assume
we named it HeaderPlugin. Under that directory

it puts the file HeaderPlugin.py and a hidden xml file with the name
HeaderPlugin_$schema$.xml. The schema file is an explicit from the Args variable. In our case,

it would look like this;

<Plugin ID="1">
<MatchURLSs displayname="Match urls" type="array" minsize="1"/>
<Actions displayname="Actions" type="enum" choices="3">
<choice>

31

Add
</choice>
<choice>
Replace
</choice>
<choice>
Delete
</choice>
<HeaderName displayname="Header Name" type=string/>
<HeaderValue displayname="Header Value" type=string/>
</Plugin>

Once this file is generated, the web interface will show the new plugin immediately. To add the
rule we select the ‘Add New Rule’ tab and click on our previously defined plugin as the template.

Header Rule
Title: |Replace 'User-Agert’ |
Description: Changes the 'User Agent' header to .
'"Protoxy/0.0.1'
Match urls: it ™. de E|
it/ fr
Rermove selected |
Action: I replace j
Header name: |User-Agert |
Header value: [Protosy/0.0.1 |
ey]

When we click the apply button, the web interface generates an XML document to store the
relevant data. The document is put in under rules/. Our rule would look like this:

32

<Rule pluginiD=""1" ID=""1"" active=""true”’>
<Title type="string">
Replace 'User-Agent’
<[Title>
<Description type="string">
Replaces 'User-Agent' header to 'Protoxy/0.0.1
</Description>
<MatchURLSs type="array" size="2">
<element type="string">
http://*.de
</element>
<element type="string">
http://*.fr
</element>
</MatchURLs>
<Actions type="string">
Replace
</Actions>
<HeaderName type="string">
User-Agent
</HeaderName>
<HeaderValue type="string">
Protoxy/0.0.1
</HeaderValue>
</Rule>

3.4.2 Default Plugins

IronCurtain's flexible plugin architecture allows easy addition of new capabilities. This way,
IronCurtain will have the flexibility of having new functions, but there will be some plugins that
will be shipped along the IronCurtain package by default.

The plugins themselves will have default fields that will be present in every plugin. These fields
are as follows:

"Title" : The title of the created rule.

"Description” : The description of the created rule, in plain text. This can be empty.

"URLs to Apply" : The list of the URLSs to which the rule will be applied. If this field is
empty; any URL not specified by “URLs not to Apply” field will be matched. This
behaviour may be replicated by putting a “*” in the field.

"URLSs not to Apply" : The rule will not apply to the URLS in this list.

33

Only one of these two fields can be active in a rule. Either the rule is applied to specific web
sites and no other; or the rule is applied to all web sites, excluding those in the list.

e “Tags to Apply” : When defining a rule, the administrator can select a number of tags
from this list. Then the rule will apply to sites having all of those tags, thus we define an
‘and' relation between selected tags.

e “Tags not to Apply” : By selecting a number of tags, the administrator may choose not to
apply a rule to sites having one or more of the selected tags, thus we define an ‘or' relation
between selected tags.

Like URLs, only one of these tag related fields can be active.

o “UserIDs” : The user ids that this rule will apply to. The field will be a list to choose user
Ids from, and there will be an “invert” button to invert the selected users of the list.

e “GrouplDs” : The group ids that this rule will apply to. Its behaviour will be like
“UserIDs” field.

If there are both GrouplDs and UserlDs present in the rule, there will be an ‘or’ operation
between them. The rule will apply to members of given groups, also it will apply to given
users.

o “Alert”: This will be a checkbox and if it is checked, actions of the plugin will be sent to
the administrator by e-mail. The administrator e-mail address can be changed from web
configuration interface.

The followings are the default plugins in our proxy.

3.4.2.1 Tagging(Categorization)

This plugin will allow human-guided categorization of web sites. Using this plugin the

administrator will be able to add any number of tags to any site.(For example, an administrator

can tag www.ntvmsnbc.com as “news”, and www.trgamer.com as “games” and “news”.) Tagging

is part of the core proxy, and every rule may use tagging facility, this plugin provides an easy to

use interface to the tagging facility.

3.4.2.2 Modify Header

This plugin is used to change HTTP request/response headers. This plugin may be used to

instantiate rules that add a new header, remove an existing header or change the content of a

34

http://www.ntvmsnbc.com/
http://www.trgamer.com/

header. Its fields are:
e “Header Name”: This is the name of the header to act on.
e “Action”: There are three possible actions:

0 “Add/Change”: This is used to add a new header to the request/response. If the
given header is present, then its content is changed to the string specified in
“Header Value”.

0 “Remove”: This is used to remove an existing header.

o “Block”: If the header name and the header value matches, deny access to this
site.

o “Header Value”: This is the value of the header to add or change. This field is not used if
the “Remove” action is selected.

3.4.2.3 Modify Content

This plugin is used to change the body of the HTTP request/response(The body of a request is
generally only useful for the HTTP POST method. It is used to send things like login data. The
body of a HTTP response is generally the HTML web page). Its fields are:

e “Tag Name” : The HTML tag
o “Attribute Name” : The attribute of the HTML tag
e “Attribute Value” : The value of the attribute
o “Enclosing Block” : The tag name of the block that encloses the given tag
e “Action” : There are three possible actions.
0 “Remove” : Removes the field completely.
0 “Replace” : Changes the field with the new given value.

0 “Block™: If the selected field (Tag Name, Attribute Name, Attribute Value,
Enclosing Block) matches it will deny access.

e “Action on Part” : Plugin will act on one of the Tag, Attribute Name, Attribute Value,
Enclosing Block fields.

o “Replace Value” : New value to modify the selected field.

35

3.4.2.4 Bandwidth Limiter

This plugin is used to adjust per-user guotas. Looking at the Content-Length in HTTP Header and

the Header data size, the bandwidth usage will be calculated. A tag based or a global quota can be

set for users and groups. Its fields will be:

e “Quota” : The total web traffic quota in MBs.

e “Period”: This is used to set the period of the quota usage, in days.

3.4.2.5 Image

This plugin is used as a general image blocker and modifier. It can block animated gifs or images

according to user defined size.

Plugin's fields:

e "Image size" : The plug-in will block/replace images of given size. If present the size will

be extracted from "img" tag, otherwise the image will be downloaded and its size will be

taken from the file.

e "Image URL" : URL of the image.

o “Actions” : There are different actions that can be performed on the image.

(0]

(0]

3.4.2.6 Blocker

Block: The image will be replaced by a 1x1 transparent image.

Hide: The image will be replaced with another image of same size stating that
there is a blocked image. This image will be a link and when clicked the page
will be reloaded, with that image being shown.

BlockAnimation: Only the first frame of animated gif image will be displayed.

Optimize: The image file size is reduced by compressing the image.

This plugin allows general purpose blocking of web sites, based on URL or tags. It will

have no additional field besides those already provided as default. This plugin always
returns ACTION_ BLOCK.

3.4.2.7 JavaScript Filtering

This plugin is used for filtering the JavaScript code that is present in the web pages. It will be

possible to remove certain functions and calls to those functions. This plugin will not parse the

36

JavaScript code in a web page. Instead, this plugin will use a pattern matching technique to
remove or alter parts of the JavaScript code. Its fields are:

e “Pattern to Match”: This is a regular expression to match in the JavaScript code.

o “Replacement Text”: This is the text to replace the matched pattern.

3.4.2.8 Keyword Filtering

It is similar to the Modify Content plugin. It will modify all leaves under the “body” tag except
the ones under the “script” tag in the HTML DOM tree. Its fields are:

e “Pattern to Match” : This is a regular expression to match in the text of the HTML page.
o “Replacement Text” : This is the text to replace the matched pattern.
e “Action” : There are two possible actions.

o “Replace” : It will replace the matching pattern with the replacement text.

o “Block” : If there is a matching pattern, it will deny the access.

3.4.3 Capabilities of Default Plugins

These set of default plugins provide IronCurtain with the following capabilities.

3.4.3.1 Ad Blocking

There are three main kinds of ads on the internet; image ads, text ads and flash ads. Image ads
usually consist of images of jpg, gif or png format of a fixed size (120x120, 125x125, 234x60,
468x60, 600x120) IronCurtain's “Image” plugin can be used to block images of these sizes. This

will eliminate many of the image ads.

Also, URL based filtering will be applied by regular expressions of previously discovered URLS
that the ads com from. Links that point to those URLs will be removed from the page using
“Modify Content” plugin. This will prevent both text and Image ads from displaying. Flash ads
will be blocked similarly, flash files coming from URLSs that match the regular expression will
not be shown. Also the administrator may choose to display a “Blocked” image instead and show
the flash file upon clicking on this image.

3.4.3.2 Pop-up Blocking

Pop-ups sometimes may be annoying, especially the ads. These are generally displayed using

37

JavaScript(window.open(url, ...) function). Using our JavaScript filtering plugin, IronCurtain can
catch and remove these kinds of pop-ups.

3.4.3.3 Blacklisting

Blacklisting can be done easily using the Blocker plugin. Simply choose the tags or URLS you
want to block.

3.4.3.4 Java Blocking

Modify Content can be instantiated to block Java applets. The technique that we will use is; if
there is class file in the “object” or “embed” tags, it will delete that tag from HTML code,
effectively blocking the Java applet from executing.

3.4.3.5 Flash Blocking

Flash files need to have “swf” extension to run on the browser. If there is swf file in the “object”
or “embed” tags, Modify content will delete that tag from the HTML code, thus the flash objects
present in the page will be blocked.

3.4.4 Authentication

IronCurtain will allow rules to be applied for some users/groups only. This brings the requirement
that there should be a mechanism to identify which user's web traffic is being analyzed. Our plans
consisted of using NTLM authentication, which Internet Explorer and Firefox browsers support.
But our research revealed that it would not be an appropriate way of authenticating users, because
NTLM support of Firefox is not geared towards proxy authentication use, and we would need an
Active Directory server.

We may use standard proxy authentication scheme of HTTP (*“Authorization” header) to get user
name and password or we would get authentication info from the user by using a secure web
page. The first method required the user to enter information every time they reopened the
browser, also password is transmitted in clear text, which is insecure. So we decided to take the
second approach, presenting the user with a login screen and associating the user by his/her IP
address.

Upon a connection attempt, IronCurtain will check the source IP address of the connection. If the
address is already associated with a user, rules that apply to that user will be activated and the
logs will recorded on that user. If the address is not associated with any user, we will redirect the
user to the login screen, where they would be able to enter their user name and passwords. This

38

page will be an SSL enabled page, to prevent clear text transmission of passwords. The password
entered into the page will be hashed, and the hash value will be compared to the stored password
of the user in the database. If two hashes match, the user has successfully logged into the system.
After a successful login, the IP address will be associated with that user for a fixed period of time;
its default value will be 8 hours, and it can be changed via configuration interface. The associated
IP-user information will be held in memory, using a python dictionary. If the user enters a wrong
user name or password, he/she will be requested to enter both the username and the password
again. This will prevent a malicious person from discovering a valid user name and conducting a

brute force attack on the proxy.

3.4.5 Logging
Logging is the part of the core proxy, and every plugin will have the logging capability.
The administrator will have extensive choices what to show from the logs. It will be
possible to use the logs to track user activities and plugin actions for technical reviews.
Different log viewing schemas will be used per user and group. In the Logging
configuration panel, administrator will select what to show for specified users' and
groups' logs.
The followings will be selectable to be displayed from user logs:

o Site: This is the full address of the visited web page.

e Site domain: This is the domain of the visited web page.

e UserID: The user name

e Open_Time/Close_Time: These are the action begin and end times.

o DataSize: The data transfer size during the action time.

The followings will be stored for rules themselves:
e RulelD: The identifier of the rule.
o Site: This is the full address of the site that the rule acts on.
e Domain: This is the domain of the Site.
e Action_Time: This is the time of the action.

e Action_Desc: Information about the action taken.

39

How Logging Works:

Upon arrival of the request and the response the core proxy will set the following fields in
the logs:

e UserlD: By looking at the request's source IP address and consulting the IP user
table that is kept in the memory shared between all threads, IronCurtain will be
able to extract user name and log it.

e Site: Request header contains the whole URL of the page to be retrieved. It will
be logged along the user name and open time.

e Site Domain: The domain part of the URL will be recorded for easy statistic
analysis.

e Open_Time/Close_Time: These are the arrival time of the request to the proxy
and the time when the client closes the connection. By using this information, the
administrator can get a rough estimate of the duration of the user's visit to a
particular site.

e DataSize: The total size of the document(headers and content) which is calculated
in a similar way like the bandwidth limiter will be recorded.

The rule will have access to a log function, which will take the description of the action

as parameter. The other information that will be logged (RulelD, Site, Domain,

Action_Time) is available to the core proxy and will be recorded to the log database.

40

3.5 Use Case Diagram

Use Case Diagram

AddiBetmowe
User

AddBemove
Groups

41

3.6 Activity Diagrams

Connection Request-Response

UML Activity Di : ion R I

LSER | ROMCLRTAIN COMFIGLRATION SERNWER

Get User

Get Request I

Check
Cond guration

Apply Fules Send Result

Open a
Conne ction
Get Request

Get Response

Apply Rules

Adding a Rule

ADMIN STRATOR PLUG-IM RULE

Select Plug-in

Send
Template

Change ‘“arables
in Template

Create a new Rule
fom Template

Rule with
Groups

Get Statistical info

UML Activity Di o

[STRATOR

Receiwe Data

Get User no

Get Lkar L|:|!;| =

Generate
Statistical nfo

44

Write Statistical Info

UML Activity Di Store Statistical Iuf .

PARSER

45

Web Interface Activity Diagram

Enable

Interface

Checlk User Action

b 4

Check Statistical Data

¥

Activity Diagram

AddiRemose Plug-in

46

3.7 Collaboration Diagrams

Request / Response Collaboration Diagram
O 1 8end Reguest
Nl
User

I"'-..j-

| 2 Check Validity
Parser

3 Apply Rules

:Configuration

4: open a connection
‘ -Connection Table ‘

S5 Bend to server

Wy

Q

A

Serve"tl'
I".I f: Send Response
9: Bend Response to User""-_.] T:.Check Validity
: ‘ Parser

:Configuration
a: Apply Rules

47

Login Collaboration Diagram

ﬁ- 1 Showr Imgih pagze

Aeblntedace

5; Biterthe page

Add New Group Collaboration Diagram

o
-

"3 Check Validiy

:C onfiguration

4: Che ch s emame & pa s

Colflzbovation Digdranm.
Ading Mew Grougn
@
0 — |
} Jilieh_interface
/ 2-shaw_Add Growp Pager] [
M

. Zroreate Grody)
AT 5ce oot Ruies)

Jrcreate_a New Groug)
Grassigh Rufes to Growga)

: Groups

L6t Rues)

: Rules

48

Add New User Collaboration Diagram
Cofataration Diagrarm:
Aciing New User

—_ — | | . |
| | Sen bk | | e
/_ 1:show Add Liser Page () - Siet Rukes()
2oregE Userm_@_Growp)
Admi ris rakor
4.1:kect Grosp()
i:selec £ Fwes()
Jcreg E_a New Lser()
. Tassgn_Rules & Lsarf
408t Growps()
42 355n User o Gromp()
R =8 L Ugmrs

Add Rule Collaboration Diagram
Collaboration Diagran
Adding a new Rule for Hiterng

)_ 1:show_Admin Interface) |
2:ahow_Pluging Page()

4:show_Selected Fluging Page()
Gl New Rule for Pluging Page()

Jieb Inteface

JAdminis trator

3get Plugins(]
Sget_Selected Pluging)

Fracd Mew Rule for Pluging)

: Rules | : Plugins
-—

49

Check Logs Group Collaboration Diagram
Colgbaration Diagrarm:
Checking Lags For 2 Speckied Group

)
I — |
D PeErEeE
_ 1 :showy Admin_ i Erface [) '
: 2:show Logs Pager)
Admirks rEkor
3:showe Growps Fage()
Sshow Seleced Growp()
4get Groups)

6 get Growp Logs ()

7t Glogs()
-‘_
Check Logs One User Collaboration Diagram
Cafigborgtion Diggram:
Checking Logs For Single iser
e
o |
| SMish hterfce
)\ 1-show Admin_leracer] |

Zrahbow_Logs Page’)
sAdministrator

Fshow User List Panef)

T show Selected Lsex)

doet Uasrs)
Giget User Logs(,

Biget Logs()
logs | LlEers

50

Web Interface Collaboration Diagram

4-initialize
10:fetchEwvent
0

Sivebinterface
Loop

2:initialize
——— 3 WeblnterfaceLoop
1:BaseProxyServer a1
girun m ek
e —
:BaseProxyServer
(—
e 6:WebInterfaceEventManager
15:programUs agﬂ

7 initipli

13:getSelection

Myehinterface

MYepinterface

Event Manager -
14:zelection

Object

5:WeblInterfaceObject

<110
Collaboration Diagram
3.8 Sequence Diagrams
Request / Response Sequence Diagram
Parser - Configurstion Fules {Connection Table
User ot
I I I
Send Bequest

L Check Wilidiy I I I
B | |
Spply Funks J I I
I I I
I I I
| | openacormection |

I I I Fend to € ervrer
I I I
o l l Send Pesporse l
I I I
Check Walidiy | | | |
Apply Fiks I I I
I I I
I I I
-t f f I

Sand Fespomee to Ueer I
maguence Liagram

51

Login Sequence Diagram

User

Bhow log_in page

Get Username and pass

T

|

Lo |
EEEEE— |
|

|

Check Validity

Enter the Page

Add New Group Sequence Diagram

Check usemams & pass
=

Sequence Diagram

WMeblterface Oooup Fales
st ator
1 T T T
showr_Add_ Eto'up_hgelt_]_ | | |
-
Teate_Croupl) - | |
-
| |
create_a Memr Croupl) | |
get_Fukes()
select Fuksi) o~
assign Fnlks to_ Gooupl)
-
T
S L

Seguence Diagram

52

Add New User Sequence Diagram

Mehterface AEers Croups. Fuke
JAdmindetr stor
1 T T T T
chow_add_TEer_Fage() | | | |
meate_Tser_in_a_Croup E | | |
| | |
create_a_Hewr TEwm) | I
|
get_Croupe() |
celect o) L
o ascig TEer_to_Groupl) l
get_Fukes() ~
| cebc Rukes] “1
ascigh Fules to Teer L |
|
I | |
1]
Seguence Diagram		
Add Rule Sequence Diagram		
Mebhdedface Pligine Fales		
Admmindstrator		
1 T		
showr_bdmi, Bterface()		
how_Phugns_Pagel)		
get_Plgims() |
howr_Se ke cte d_Phagh_Pagdl)
- |
get Sekcted Phzme() |
pdd Hewr Fuk for
Plugzin Page »
ndd_Hewr_Fnk _for_Phizi
L | = T
|
|
B T |
| |
| |
| |
Seguience Diagram

53

Check Logs Group Sequence Diagram

IMebBiterface HE oL Logs
idminictrator
1 T T I
show_fdmi_Tderface() | | |
=
hor_Logs_Pagel) - | |
-
how_Croups_Fagel) | |
L get_troups() : |
Yooy ke cted Crowpl)
L |
|
get_Coup_Logs()
-
get_CLogs()
!
I Lt
|
|
|
|
|
|

Seguernce Diagram
Check Logs One User Sequence Diagram
Wb Bterface Tkers Loge
Administrator
1 I I I
show_ddmi_Ftefacel) | | |
hom Logs Pogel] | |
how_User_List Page() | |
Ll Zet_Uzers() : |
howr_Selected Ucem)
- |
|
get_Tlzer_Logs()
get_Logs() -
— = T
| |
| |
| | | |
| | | |
| | | |
Segresrre Diagram

54

Web Interface Sequence Diagram

Weblnterface Méehinterface Wehlnterface
% BiasePronBRNED Loog Ohject Event Manager
User |:]
[T BaseProxy3erver initialize ‘ ! !
-t | | |
: ebInterfaceLoop ! : :
| | | initialize | |
[E4__' I I
I ‘WebInterfaceObject) |
| |
I [| |
! I WebInterfaceEventManager | initialize
I [| il
run - I | |
I | |
I loop I | |
| | ﬁd{veﬂt | |
‘ ‘ addbvent !
I I i |
[[I o
I | |
T | dispatchEvents |
L ‘ Ij getSelection il
|
I D_ selection
................... b
programUsage
[.

Seguence Diagram

55

3.9 Class Diagram

Plugins

wector information;

+zet_Plugins()
+zet_Selected Pluging)

bt e

Users

string Username;
map Users,

+HheckUsermamepassword))
+eoreate_a Mew [Tser)
+aszsign Fules to Tser)
+get Uzers()

+zet Uzer Logs()

int servertype

map users_to_rules
wector server_properties

Groups
Logs X\ string Groupnatme,
‘\Kuses = tmap Groups,
string logtype +create_a Mew CGroupn)
map logs LEUSEEF WehInterface cazEsE +assign Rules_to Croup()
+zet_Logs +get_Croups()
+get (Logs() +get Group Logs()
+agsign User to Group()
+3how login page()
HChe ckV alidity)
+show_Admin Interface)
+show_Plugins Page()
+show_Logs_Page()
+show Zelected Plugin Page)
+show_Groups Page()
+show_Zelected Group()
+show_Add_Group()
+show_Add_User Page()
+show User List Pagel)
+show_Selected Usen)
+ereate Group()
Parser +zelect_Rules()
+ereate Tser in a Group)
+zelect Group() Riks
+add MNew Rule for Plugi vector information;
+ ZendRequest() = e TR) int plugin_type; :
+iendResponsel) =
+ApplyRules))
+HiendResponseTolser))
“EUSEEF > +get Rules()
Sl +add MNew Rule for Plaging)
CPSESEE
Configuration Connection Table

map connectinns;

HoheckValidits)

+openacottiection)

56

4 User Interface Design

IronCurtain’s user interface will only be visible to the administrator. The interface will allow the
administrator to change many aspects of IronCurtain, install new plugins and create new rules,
view statistics and logs. The clients of IronCurtain will only use the user authentication interface.

4.1 Screenshots

Our interface mockups are as follows.

4.1.1 Summary View

IronCurtain
| Plugins II Rules || UserstrouEs| |Statistics| |Settings |
| Welcome to IronCurtain 04.12.2005 Sundav. 23:57:48 |

Uptime: 23 days, 13 hours, 23 minutes, 38 seconds
Total Bandwidth: 500GiB upstream, 1256GiB downstream
Active Users: Current 23, Maximum 78
— Plugin Summary —— —5 Last Applied Rules

Active: 12
Inactive: 27

Raised Alarms: 8
= Go to alarms

Deactivate IronCurtain

57

4.1.2 User and Group

IronCurtain
[Plugins & Rules][Users/Groups] [Statistics]|[Settings |
| Manage Users & Groups 04.12.2005 Sundav. 23:57:48 |
— Users
Nurettin Yilmaz Group

Thomas Anderson ‘ |v|

Nurettin Kahraman

Assign to Group

Group Name

Add New Group

Add New User

4.1.3 Plugin and Rule Management

IronCurtain
| Plugins & Rules ||| Users/Groups]|[Statistics]|[Settings]
| Manage Plugins & Rules 04.12.2005 Sundav. 23:57:48 |
Select User Or Group | |v|
Active Rules —— —Inactive Rules
Add New Rule
Add New Plugin

4.1.4 Settings

IronCurtain
| Plugins & Rules MUserSp‘Gruupsl |Stat|5tics|
| Manage General Settings 04.12.2005 Sunday. 23:57:48 ‘
General Gateway Settings —Administrators
Port Nurettin Yiimaz
| | Thomas Anderson
Hostname Nurettin Kahraman

Deactivate IronCurtain

4.2 In Action

When IronCurtain is working, the results will be as follows:

The original page:

Benim 5ayfa... - Mozilla Firefox

File Edit Wiew Go Bookmarks Tools Help
@-5 -8 0 |é http:fwww.cclub.metu.edu.tr/~gokdeniz/ E] ® Go

[Clelub - Google'da Ara | & Benim sayfa... | ¥ Benim Sayfa... I B

Sade tasarimil sayfama hos geldiniz :-)

Blog da tutuyorum

Dans eden robotlarim(Turkee) || My dancing robots(English)
garip dosvyalar || Unix/Linux || Badlantilarim{Glncel Dedil]

lava: Free But Shackled - The |ava Trap

LN
&

%,

. ODTU Bilgisayar Toplulugu
METU Computer Club

¥ \ ODTU Okguluk Kulib
E METU Archery Club

Bu sayfa Gékdeniz Karada§ tarafindan hazirlanmgtir,
gokdeniz@cclub.metu.edu.tr

- Adil'in
~ "TML} g Thunderbird
o % GetFirefox Q underbir be Stes

Done

he same page with “Club” word replaced with stars, colored for emphasizing:

Benim Sayfa... - Mozilla Firefox

Eile Edit Wiew Go Bookmarks Tools Help

@-2-3 0 R | http /fwww cclub metu.edu tr/~ gokdeniz/ E] © Go |va‘Ub ‘
l club - Google'da Ara & Benim Sayfa... |@ Benim Sayfa... I %]

Sade tasariml sayfarma hos geldiniz :-)

Blog da tutuyorum

Dans eden robotlanim(Tarkee) || My dancing robots(English)
garip dosvalar || Unix/Linux || Badlantilanm([Guncel Degil]

lava: Free But Shackled - The |ava Trap

. ODTU Bilgisayar Toplulugu
METU Computer ##is

| ODTU Okegulule Kultibt
5/ METU Archery #ber

Bu sayfa Gokdeniz Karadag tarafindan hazirlanmigtir.
gokdeniz@cclub.metu.edu.tr

W3C :_T'_"‘:l* @ M @mmdmm 66 ALE(!Q

| Done

The same page’s view when it is blocked by a rule:

Error response - Mozilla Firefox

Eile Edit Vew Go Bookmarks Tools Help

@--82 06 |@ http:ffwww cclub metu.edu tr/~gokdeniz/ [vl ® Go ‘}Jv

Error response

Error code 400.

Message: http:/fiwww.cclub.metu.edu tr/~gokdeniz/ is blocked.

Error code explanation: 400 = Bad request syntax or unsupported method.

Done

60

5 Requirements

This section gives details about and minimal software / hardware requirements.

5.1 Minimal Hardware Requirements

Minimal hardware requirements for our project are:

Development

e Intel Pentium IV 2 GHz or AMD Athlon 2000+
e 512 MB DDR RAM

e 40GB Hard Disk Space

e Internet Connection

End User

e Intel Pentium IV 2 GHz
e 1GB DDR RAM

e 100MB Hard Disk Space

e Local or Wide Area Network

5.2 Minimal Software Requirements

Software requirements for the project are divided into categories:

Development
e Recent Linux Distribution such as Ubuntu 5.10, or Windows XP or newer
e Full Installation of Python 2.4
e SPE Python IDE or Eclipse Installation with PyDev Plugin

End user
e Recent Linux Distribution such as Ubuntu 5.10, or Windows XP or newer
e Full Installation of Python 2.4
e SQLite Client

o Web Browser (Mozilla Firefox, Microsoft Internet Explorer)

61

6 Project Schedule

For our project IronCurtain, scheduling activities and tasks are given below.

6.1 Project Task Set

Framework Activities
e Customer Communication

e |Initial Design
e Design
e Programming
e Testing

Task Set

Requirements specification
Learning the languages and tools
Prototype construction

Database construction

Plugin & Rule construction
Logging construction

Interface construction

Testing

List of deliverables

Documentation

Prototype

Project Proposal
Analysis Report

Initial Design Report
Detailed Design Report

Actual Implementation

Functional Decomposition of these tasks

Requirements Specification

Interviews with some software companies

Internet Search

2 2 2

<L 2 =2 2

62

Learning the languages and tools

Determining the proper language \

Determining the tutorials and manuals S

Studying the tutorials \/
Prototype

Simple decomposition of communication
Initial plugin engine

Sample plugins and rules

Initial web interface

Parts of Actual Implementation
Plugin & Rule Construction
Plugin & Rule design V
Plugin Engine
Default Plugins
Tagging
Modify Header
Modify Content
Bandwidth Limiter
Image
Blocker
JavaScript Filtering
Keyword Filtering

Logging
Logging and reporting engine
Logging interface to plugins
Statistics generation

Interface Construction

Administrator web interface
User authentication interface

63

Testing
Web Interface testing
Proxy testing
Database testing
Full package testing

6.2 Gantt Chart

KEY
@ Mile=stone marker - start
GANTT CHART - 5 MONTH TIME LINE
@ Mdileston e marker - end

Gantt bar
. Deliverable

Detailed Cesign Report 5

First Pass of HTTP Proxy
Prototype Oemo Q
Creating Database Tables =

Wiarking out Table Intermelation= = !
Revizing Database mplementation

More Robust mplementation

o N

First dratt | 11
hitial Plug-ins c—
itial Rulz Imp. —=
Secure Authe ntication = T
HTTP S Support T 1
Logging and Rep orting ! ! " - - !
Plug-ins L N .
Completed Rule imp. | IZ'IZI'ZIZI
Rules for Rewerse Proxy '—|—|—|—'
hitial ifeb Site Design 5 |
Administratar Console Design =
ek Interfaice Design ! 5 J
Testing [

Proxy Testing Phase I

Database Testing E
reb Interfce Testing
Full Package Testing

64

7. Testing

7.1 Unit Testing

Plugin engine and default plugins: Processing rules synchronously in threads may be

problematic, we are going to point at this while testing. We will test the plugins one by one,
to ensure proper and stable operation of each.

Database: We will use database mostly for accessing user information and reaching
statistical information. Database structure is very important for our project since fast
responding system is necessary for users to access internet. Testing for performance issues
will be mostly related to the database.

Web interface: Security issues will be important since web interface is will be a common use
environment, securing user information will be important.

Log module: Statistical data will be gathered by this module. Database testing will be
an important issue because we will record information on the database and also, get
statistical information from the database.

7.2 Integration Testing

We are going to test the system as whole after combining different plugins with the plugin engine

in IronCurtain. We will ensure synchronized processing of plugins is correct, and stability is not

hampered by the plugin engine’s actions.

7.3 Alpha Testing

After producing code that works with a satisfactory performance and reliability, and after

finishing unit tests and integration tests, we will conduct our alpha test. In the alpha test, we will

install IronCurtain to our computers, then we will define some rules that we need in our daily web

activities. Then we will measure how effective is lronCurtain’s actions.

65

	 1. Introduction
	1.1 Problem Definition
	1.2 Project Scope and Goals
	1.3 Usage Areas
	1.4 Design Constraints
	1.5 Design Objectives
	 2. Data Design
	2.1 Data Objects
	User
	Admin
	Group
	UserLog
	Plugin
	Rule
	RuleLog

	2.2 ER Diagrams
	2.3 Data Dictionary
	User
	User_ID
	Passwd
	Admin
	Group
	
	 Plugin
	Rule
	UserLog
	RuleLog

	
	2.4 Database Description

	3. Architectural and Component-level Design
	3.1 Structure Chart
	3.2 Data Flow Diagrams
	3.2.1 DFD Level 0
	 3.2.2 DFD Level 1
	 3.2.3 DFDs Level 2
	3.2.4 Data Dictionary

	3.3 State Transition Diagrams
	3.3.1 State Diagram Adding a Rule:
	3.3.2 Checking Logs State Diagram:
	3.3.3 Request – Response Diagram

	3.4 Description of Components
	3.4.1 Plugin Architecture
	3.4.1.1 Structure of a Plugin
	3.4.1.2 Activating the Plugin
	Once this is done, the new plugin will be available in the web interface. The administrator will be able to instantiate new rules from this plugin. All rules are stored under the rules/ directory. Rule is stored as a XML file. The name of the XML file will be “<plugin_id>_<rule_id>.xml”. At the next startup, IronCurtain will scan the rules/ directory and start all active rules.
	3.4.1.3 An Example Plugin and Rule

	3.4.2 Default Plugins
	3.4.2.1 Tagging(Categorization)
	3.4.2.2 Modify Header
	3.4.2.3 Modify Content
	3.4.2.4 Bandwidth Limiter
	3.4.2.5 Image
	3.4.2.6 Blocker
	3.4.2.7 JavaScript Filtering
	3.4.2.8 Keyword Filtering

	3.4.3 Capabilities of Default Plugins
	3.4.3.1 Ad Blocking
	3.4.3.2 Pop-up Blocking
	3.4.3.3 Blacklisting
	3.4.3.4 Java Blocking
	3.4.3.5 Flash Blocking

	3.4.4 Authentication
	3.4.5 Logging

	3.5 Use Case Diagram
	 3.6 Activity Diagrams
	3.7 Collaboration Diagrams
	3.8 Sequence Diagrams
	3.9 Class Diagram

	4 User Interface Design
	4.1 Screenshots
	4.1.1 Summary View
	 4.1.2 User and Group
	4.1.3 Plugin and Rule Management
	4.1.4 Settings

	4.2 In Action
	5.1 Minimal Hardware Requirements
	5.2 Minimal Software Requirements

	6 Project Schedule
	6.1 Project Task Set
	6.2 Gantt Chart

	 7. Testing
	7.1 Unit Testing
	7.2 Integration Testing
	7.3 Alpha Testing

