
1. Introduction ... 2
1.1 Problem Definition.. 2
1.2 Project Scope and Goals.. 3
1.3 Usage Areas .. 3
1.4 Design Constraints .. 4
1.5 Design Objectives ... 5

2. Data Design ... 7
2.1 Data Objects .. 7
2.2 ER Diagrams ... 10
2.3 Data Dictionary ... 11
2.4 Database Description .. 13

3. Architectural and Component-level Design .. 14
3.1 Structure Chart .. 14
3.2 Data Flow Diagrams ... 16

3.2.1 DFD Level 0 .. 16
3.2.2 DFD Level 1 .. 17
3.2.3 DFDs Level 2... 18
3.2.4 Data Dictionary.. 22

3.3 State Transition Diagrams... 26
3.3.1 State Diagram Adding a Rule: ... 26
3.3.2 Checking Logs State Diagram: .. 27
3.3.3 Request – Response Diagram .. 28

3.4 Description of Components... 29
3.4.1 Plugin Architecture .. 29
3.4.2 Default Plugins .. 33
3.4.3 Capabilities of Default Plugins .. 37
3.4.4 Authentication.. 38
3.4.5 Logging.. 39

3.5 Use Case Diagram... 41
3.6 Activity Diagrams ... 42
3.7 Collaboration Diagrams .. 47
3.8 Sequence Diagrams... 51
3.9 Class Diagram... 56

4 User Interface Design ... 57
4.1 Screenshots.. 57

4.1.1 Summary View .. 57
4.1.2 User and Group.. 58
4.1.3 Plugin and Rule Management.. 58
4.1.4 Settings .. 59

4.2 In Action ... 59
5 Requirements.. 61

5.1 Minimal Hardware Requirements ... 61
5.2 Minimal Software Requirements .. 61

6 Project Schedule ... 62
6.1 Project Task Set .. 62
6.2 Gantt Chart .. 64

7. Testing ... 65
7.1 Unit Testing... 65
7.2 Integration Testing .. 65
7.3 Alpha Testing.. 65

 1

1. Introduction

During the analysis phase of our project, we investigated the possible problems about web, its

usage, and its control within restricted zones. We tried to identify and define those problems, and

come out with creative solutions to those that are within our project’s scope. We provided

comprehensive information about those problems and our proposed solutions in our analysis

report. After our delivery of the analysis report, we continued working on the problem set and our

solutions. We came to conclusions on our project’s technical aspects and infrastructure.

1.1 Problem Definition

In recent years, Internet has seen a great rise in its popularity and usage areas. People of all

occupations and ages are on the internet, industries depend on it heavily, and there are completely

new businesses that exist primarily in the internet. Companies depend heavily on internet usage,

as a result most of the employees have access to the internet. Other than big companies, many

other organizations are open to internet. Some examples are governmental bodies, schools and

universities, non-profit organizations, hospitals, small offices. Examples are not limited to these,

and the most common internet user is the home user.

The giant structure and variety of the internet makes it a valuable information source and

communication medium. But any useful thing has some drawbacks, and internet is no exception.

In fact ease of access and abundance of uncontrolled traffic makes the internet a difficult place to

stay safe. And a large organization is not only concerned with outside threats, but also inside

threats which stem from workers or members. The workers or members of the organizations may

visit sites or download files that may bring harm to the whole network of the organization. Some

sensitive information may leak from the network to the outside world, either by a careless worker

or one with a malicious intent.

Companies and organizations mostly used traditional firewalls, which does packet filtering by

looking at easily extractable data, like IP address or port of the communicating parties. This

would be useful if the intent was to block and control some servers/protocols only. But the

internet traffic around the world consists of web traffic mostly, distributed to a large number of

servers in many different locations throughout the world. Traditional firewalls are not able to

tackle with difficulties presented by such a gigantic network, especially in a corporate

environment defined above. It is the content of the traffic, not the source/destination that should

be checked to provide comprehensive control over the information flow. In a present day

 2

environment, where nearly the whole internet traffic is web traffic, blocking ports have little

influence on the information security.

Our project aims to solve the most important problems of the modern day corporate and

organizational network, by providing an application layer gateway; which will enable the network

manager to control web traffic of the network in many different ways. Name of our project is

IronCurtain and it will not only solve problems of big corporations and organizations, but also

home users and small networks. IronCurtain will provide flexible control over the whole web

traffic, user and group based control, extensive logging capabilities, and a configuration interface

that is accessible from web. We plan to design and build IronCurtain so flexible, strong and easy

to use, such that it will answer most of the modern day internet-based concerns.

1.2 Project Scope and Goals

Our project, named IronCurtain, will implement an application level gateway for web filtering

and access control. Our project's goals are as follows:

● Complete HTTP/1.1 support

● HTTPS support

● Decomposition of Entire Communication

● Plugin architecture for rules and actions

● Complete configuration over Web

● Secure User Authentication

● Logging and Accounting

● Multi-threaded (thread-pool) implementation

● Alerts (via plugins)

● Content identification (via plugins)

1.3 Usage Areas

IronCurtain will be flexible enough to satisfy needs of a great variety of entities. From large

enterprises to home users, IronCurtain will have an answer to all of these entities' problems,

thanks to the flexible and extendable plugin mechanism.

● Companies: Modern day companies use internet access extensively to maintain their

 3

operations and profitability. It is essential for companies to access internet. If the access is

uncontrolled, many adverse effects of the internet give harm to the company overall. Some of

these are: Productivity loss associated to worker distraction caused by uncontrolled web site

access, maliciously designed web sites, leakage of sensitive company information, etc. By

using IronCurtain, companies can enable appropriate filters to take precautions about these

problems. Also IronCurtain would be a security layer between company servers and the

internet, checking for possible security violations and attacks and preventing according to the

rules. This would require no modification of the system, only writing the appropriate rules will

be sufficient. Also sensitive information about the company network may be blocked using

IronCurtain. IP address of the computers can be replaced by the address of the proxy.

● Universities: A university environment is usually more relaxed than a corporate one. But still

administration of a university would need firm control on the network. Students and

academics in the university might use up all the bandwidth of the university. Or they might

cause legal trouble by downloading illegal files. It would be possible to control bandwidth of

the users and their internet activities using IronCurtain.

● Other Areas: Flexible plugin architecture of IronCurtain will enable its usage in a variety of

networks, even a single computer network. Appropriate rules and plugins for the area of

application will be chosen and IronCurtain will protect the network from inside or outside

malicious traffic, and it will enforce other principles determined by the network's owners.

1.4 Design Constraints

Our main design constraints are as follows:

• Time

Our fixed schedule is determined by our course syllabus. We have approximately six

months remaining to finish the project completely. The design should be finished in one

month. During the design we will also work on the prototype and it will be finished in

one and a half months from the delivery of initial design report.

• Language constraints

We decided to use the Python language as implementation language. It allows easy usage

of plugin. In fact, python is used as a scripting language inside many applications. Most

of the time we will be using Python's integrated libraries.

• Performance and Network Latency

 4

IronCurtain application level gateway aims to introduce lowest levels of latency to the

network communication speed. The software will use threads to be more performant than

a forking implementation. Also the software will reuse existing connections and will not

try to open a new connection which takes CPU time and introduces latency. GZIP

compression and chunked encoding feature of HTTP 1.1 standard will be used to reduce

latency.

• Maintenance

The IronCurtain will require minimal maintenance. After the administrator defines the

plugin, rules, general settings, per user and per group settings; there will be no need to

check the operation of the gateway, other than the cases of; adding of a new rule and

querying for statistics.

• User Interface

IronCurtain is not a user interface intensive application. Most of its operation happens

behind the communication of the members of the network. The user interface is accessed

when settings are to be changed, or statistics are to be displayed. Other than these

conditions, no user interface is required for normal operation. The user interface of the

settings and statistics parts of the software will be easy and intuitive to use. The statistics

should be displayed in a variety of easy to understand approaches.

1.5 Design Objectives

Our project’s design objectives are as follows:

• Portability

Our usage of Python language makes IronCurtain easily portable to any operating system

that has the necessary Python run-time components; Linux, BSD, Mac OS X, Microsoft

Windows, AIX, Amiga, AROS, AS/400, BeOS, OS/2, OS/390, Irix, Palm OS, Plan 9,

PlayStation 2, Psion, QNX, RISC OS, Sharp Zaurus, Solaris, Symbian OS, VMS,

VxWorks, Windows CE/Pocket PC, Xbox.

Because of this portability, users with any specified OS should be able to use IronCurtain.

• Extendibility

 5

The plugin architecture of IronCurtain will enable very extendible and flexible operation.

If there is a need for a new limitation/control/statistics options, there may be possible

affordable solutions using IronCurtain. The easiest one is the usage of existing plugin and

writing of new rules that satisfy the requirements. Or a new plugin can be written using

the python programming language. Using plugins any kind of behavior can be added to

IronCurtain.

• Maintainability

Maintainability is an important objective for IronCurtain. The plugin system is very

modularly designed, plugin are independent of each other. Also functionality of

IronCurtain is upon plugin. Because of this modular design, we could change the

internals of any plugin without causing problems for the other untouched plugins and

general operation of IronCurtain. This makes IronCurtain easy to maintain, because

changes to one plugin/functionality do not require the rewriting of other plugin.

• Reliability

The system should be as bug free as possible. All sub components should work

asynchronously, so that any delay caused by one of the components should not block

other components’ work flow.

• Security

There are two aspects of security. First, the internal network which clients connect to our

software may not be secure. User authentication should be handled over a secure

connection using SSL. Secondly, the Internet is, unfortunately, filled with people with

malicious intents. IronCurtain must be safe from malicious code attacks like buffer

overruns(which, we think that coding in a high-level language like Python will help

enormously) itself, and also it must provide methods that allow administrators to define

rules to block such known attacks.

 6

2. Data Design
The plugins and rules will be kept in separate files on the file system. The data of users, groups

and rules will be stored in the database. The logs of users and rule actions will be written to

database as well. In order to store the data in a structured form, the data objects will be used. In

this section, we will look at the data objects, their relationships, the ER-diagram and the data

dictionary to describe the data.

2.1 Data Objects

User

The User entity will store data associated with the users of the system. When they register with

the system the data they enter will be stored as an instance of the User object and they can change

the information at any time. The attributes of the entity will be:

 User_ID

 Real_Name

 Passwd

 Email

 Group_ID

The User_ID will be a string that will be used as the primary key as it will be unique to each user

in the network. The User_ID and password will be used to log on during authentication. Passwd

is the MD5 hash of the user password. Group_ID will be the reference to Group entity, which the

user is associated with. The user does not have to be assigned to a Group. Email will be the user’s

e-mail address. The user will be notified by e-mail if necessary.

Admin

Admin entity is just a User entity, but it will be used to identify the administrators. Admin entity

will keep the User_ID’s of the users who has administrative rights. The users in this entity will be

able to log in to administrative page of the system with their passwords.

Group

Group entity is the generalization of User entity. It will be used to group users to ease applying

same rules to many users. The attributes of the entity will be:

 7

 Group_ID

 Description

The Group_ID will be a string that will be used as the primary key as it will be unique to each

Group. Description will be just an info string.

UserLog
UserLog entity will store the logs of the user actions.

 User_ID

 Site

 Domain

 Bandwidth

 Open_Time

 Close_Time

User_ID and the Open_Time together will be the primary key. User_ID is the foreign key and

reference to User entity. Site is the string to hold the site URL that is visited. Domain is a string

and it is the domain name of the visited site. Bandwidth is an integer that is the size of the data

transfer. Open_Time and Close_Time are the action times. Site, Domain, Bandwidth will be stored

associated with the user.

Plugin

The Plugin entity will store the identifiers of the plugins in the system. The plugin schemas will

be saved as xml files so we will just keep the ids of the plugins to relate them with the rules. The

attributes of this entity will be:

 Plugin_ID

 Plug_File

 Schema_File

 Plug_Hash

 Schema_Hash

 Description

The Plugin_ID will be a string that will be used as the primary key as it will be unique to each

Plugin. This key will be read from the xml file. The Plug_File and Schema_File attributes will

 8

keep the paths of the Plugin file and schema file of the Plugin, respectively. The MD5 hashes of

the files will be stored in Plug_Hash and Schema_Hash, accordingly. If any change occurs in

these files, it will be checked from hashes. Description will be just an info string.

Rule

The Rule entity will store the identifiers of the rules that are generated from Plugins. Every rule

derives from a Plugin template. The attributes of the entity will be:

 Rule_ID

 Plugin_ID

 File

 File_Hash

 Description

Rule_ID is a string and primary key. Rule_ID is the identifier of the rule that is generated from a

plugin schema and written to an xml file. The File attribute will keep the path of the xml file.

File_Hash will be the MD5 hash of the file and make it possible to check whether any change

occurs in the file. Plugin_ID is the foreign key and reference to Plugin entity. Description is just

an info string.

RuleLog
RuleLog entity will store the logs of rule actions. It has a similar schema to UserLog entity.

 Rule_ID

 Site

 Domain

 Action_Time

 Action_Desc

Rule_ID and the Action_Time together will form the primary key. Rule_ID is the foreign key and

reference to Rule entity. Site is the string to hold the site address that is visited. Domain is a string

and it is the domain name of the visited site. Action_Time is the time of the action taken.

Information about the action will be kept inside the Action_Desc attribute.

 9

2.2 ER Diagrams

Data Objects

 10

ER-Diagram

2.3 Data Dictionary

User
Name User
Alias -
Where / How used The people that will use the system
Description Every actor using the system is defined to be a user.

 11

User_ID
Name User_ID
Alias -
Where / How used The users will enter their User_ID together with their passwords to log

into the system. Administrators will have permission to access to control
panel page with their passwords.

Description Every user has a unique User_ID.

Passwd
Name Passwd
Alias -
Where / How used While logging into the system
Description The password is to secure the system. Unauthorized users cannot access

the control panel page. The user’s password is converted to MD5 hash and
checked with the one in the database.

Admin
Name Admin
Alias Administrator
Where / How used -
Description Admin is a special type of user who has all privileges. He/she will be able

to access the control panel page. Then he/she will:
- add/remove users
- change users’ and groups’ logging and filtering rules
- check logs
- add/remove rules

Group
Name Group
Alias -
Where / How used Create Groups and add users to groups.
Description Groups will be created by the ‘Admin’ and they will be used to assign

specific rules to many people at once. It will make the user management
easier.

 12

Plugin
Name Plugin
Alias -
Where / How used While creating new rules.
Description After a Plugin is written, it defines a schema and a proper template will be

generated in order to create new rules from this Plugin.

Rule
Name Rule
Alias -
Where / How used They are defined using an existing Plugin and assigned to users and

groups.
Description Admin defines the rule on the web control page and assign the rule to any

user or group.

UserLog
Name UserLog
Alias -
Where / How used While logging users actions
Description UserLog contains log items: site as visited site’s name; domain as site

domain; bandwidth as data transfer size.

RuleLog
Name RuleLog
Alias -
Where / How used When rules take action
Description Rules will write their actions to database as ‘RuleLog’s. Visited site, site

domain, action time, action description will be saved.

2.4 Database Description

The database management system we are using for IronCurtain is SQLite. Tables will be created

and be filled using Python’s SQLite library. Database will store all of the information of the

user’s actions as logs. Also, user and rule relation are stored in the database. When the system

needs retrieving data, SQL queries are used to get the necessary records.

 13

3. Architectural and Component-level Design

This section gives details about program structure, components, and software interface.

3.1 Structure Chart

Our project has mainly into two modules which are named as input controller and output

controller. Our system is also responsible of the appropriate coordination of these main parts and

the system’s maintainability with the ultimate updates.

The followings are the modules in our application.

• Accept/Reject

This module determines whether our proxy accept or reject the content. The parser can accept

or reject the HTML according to the rules applied.

• Parse Request/Response

 14

Every HTTP Request and Response will be parsed in this module. Parser will first check the

user and then it will get the rules for this user. Then it will parse the content by using the

selected rules.

• Create Template

This module is for creating a template of plugins so that we can easily create rules over

plugins. It writes the template to an XML file. The template creation operation is only done

once when we created a new plugin.

• Add new plugin

This module is for adding a new plugin to our proxy. A new plugin is a python code. In our

parser we will import that code when we are using a user defined rule. After adding a new

plugin also Create Template module creates a template for that plugin.

• Associate Rules

This module is used for determining which rules are applied to which users. A rule can be

applied more than one user or group. This information are stored and changed in this module.

• Add new Rule

This module is for creating a new rule from a plugin. First the user selects a plugin from the

menu. Then a template is shown on the screen and the user fills the variables and functions

that he will use. Then the rule is created.

• Admin/User login

This module is authentication. We will use an SSL encrypted web-based authentication

system. User will simply provide a username and a password, then it will be checked whether

that user is an administrator.

• Check user actions

Admin can check user actions in this module. He can get statistical info about users. He can

search for specific information in logs.

• Admin monitoring

This module is used for monitoring admin actions. All admin actions are recorded as logs.

 15

• User monitoring

This module is used for monitoring user actions. All user actions are recorded as logs.

3.2 Data Flow Diagrams

In this section, the functional model of IronCurtain is presented. It is composed of process

specifications and DFD of the three levels (Level0, Level1 and Level2) of the system.

3.2.1 DFD Level 0

As seen from the diagram, we have three users: server, client and administrator. The main

functionalities of the users are shown on the diagram. According to the requests IronCurtain

writes some information to the database or process it and give a response to the users.

 16

3.2.2 DFD Level 1

This is a more detailed diagram of IronCurtain. The main parts of IronCurtain are filtering,

control mechanism, configuration and logging process. These parts communicate with users and

each other.

 17

3.2.3 DFDs Level 2

Filtering

This is a more detailed diagram of the filtering part in IronCurtain. This is the most important part

because all the requests and responses are processed here. First the requests and responses are

parsed and then it is analyzed. In analyze part the validity of the request and response is checked

by the control mechanism. After analyzing the processed request or response are sent by

dispatcher to the users.

 18

Control Mechanism

Control mechanism briefly checks the access rights and user authentication. It is connected to all

the other modules. It gets the info from the other parts and checks whether this user has the right

to do that action or not. According to that it sends an answer of approval/disapproval.

 19

Configuration

Configuration part is used for changing the properties of users, rules and main configuration of

the proxy. It checks the access rights of the user by using control mechanism. It writes the

information to the database. Only administrator user can use that part of the IronCurtain.

 20

Logging

Logging process is used for logging all the activities of the user and also alerting if there is a

violation of a predefined condition. All the request and response info is provided to logging

process by filtering part. The logging process sends log and statistical info to the database and

administrator user.

 21

3.2.4 Data Dictionary

Name Authentication Info

Aliases Authentication Info2
User name/Password

Where used/
How used

Control Mechanism - Authentication 2.1 (input/output)
Client (output)
Administrator (output)
Database (input/output)

Description This data is the username and the password.
Format An aggregate object consisting of User_ID and Passwd of type string.

Name Authentication Response

Aliases None

Where used/
How used

Control Mechanism - Authentication 2.1 (output)
Configuration – Check Validity 3.2 (input)

Description Result of the username, password and administrative rights checking
Format An aggregate object consisting of User_ID and Passwd of type string and

isAdmin of type boolean.

Name HTTP Request

Aliases Raw HTTP Request

Where used/
How used

Filtering – Parse 1.1 (input/output)
Filtering – Plugin Engine 1.2 (input)
Client (output)

Description Request coming from users is sent to Parser and Plugin Engine to be
filtered.

Format An HTTP request object consisting of Line, Header and Body

Name Processed HTTP Request

Aliases None

Where used/
How used

Filtering – Dispatcher 1.3 (output)
Server (input)

Description Filtered HTTP Request
Format An HTTP request object consisting of Line, Header and Body

Name HTTP Response

Aliases Raw HTTP Response

Where used/
How used

Filtering – Parse 1.1 (input/output)
Filtering – Plugin Engine 1.2 (input)
Server (output)

Description Response coming from server is sent to parser and plugins to be filtered.
Format An HTTP response object consisting of Line, Header and Body

Name Processed HTTP Response

Aliases None

 22

Where used/
How used

Filtering – Dispatcher 1.3 (output)
Client (input)

Description Filtered HTTP Response is sent to client.
Format An HTTP response object consisting of Line, Header and Body.

Name Request/Response Info

Aliases None

Where used/
How used

Filtering – Plugin Engine 1.2 (output)
Logging – Get Connection Information 4.1 (input)

Description Information to be logged after the analysis
Format Request or Response object

Name IP Info

Aliases None

Where used/
How used

Filtering – Plugin Engine 1.2 (output)
Control Mechanism – Authentication 2.1 (input)

Description To check User filtering rules Plugin sends the user IP to Control
Mechanism.

Format IP is composed of 4 integers.

Name User Info

Aliases User Profile Info

Where used/
How used

Filtering – Plugin Engine 1.2 (input)
Control Mechanism – Decision 2.2 (input/output)
Control Mechanism – Authentication 2.1 (output)
Control Mechanism – Rule Process 2.3 (input)
Configuration – Send information 3.3 (input/output)
Configuration – Get information 3.1 (input)
Logging – Check Validity 4.2 (input)
Database (input/output)

Description User’s information will be passed through the modules
Format User Object consisting of User_ID, Group_ID of type string.

Name Rule Info

Aliases None

Where used/
How used

Filtering – Plugin Engine 1.2 (input)
Control Mechanism – Decision 2.2 (input/output)
Control Mechanism – Rule Process 2.3 (output)
Configuration – Send information 3.3 (input/output)
Configuration – Get information 3.1 (input)
Database (input/output)

Description A new rule is added to the system over the web interface by the
Administrator. Rules are stored in the DB and they are sent to
‘Configuration Module’ to get into action.

Format An object containing the Rule attributes. The object may vary depending on
the plugin that the rule is created from.

 23

Name Decision and Packet Info

Aliases None

Where used/
How used

Filtering – Plugin Engine 1.2 (output)
Filtering – Dispatcher 2.2 (input)

Description Actions and filtered HTTP packets are sent to Dispatcher in order to deliver
related client and server.

Format HTTP Request/Response Object

Name Change Notification

Aliases None

Where used/
How used

Control Mechanism – Rule Process 2.3 (input)
Configuration – Send Information 3.3 (output)

Description When a new rule is added to the system, its information will be sent to the
Rule Process to use the rule immediately.

Format An object containing Rule identifier.

Name Configuration Info

Aliases None

Where used/
How used

Configuration – Get Information 3.1 (input)
Configuration – Send Information 3.3 (output)
Administrator (output)
Database (input/output)

Description Administrator makes changes to the system configuration. Admin can
change group, user and rule interrelations over the web. The changes are
written to DB.

Format Configuration change object

Name Log and Statistical Info

Aliases None

Where used/
How used

Logging Process – Send Information 4 (input/output)
Administrator (input)
Database (input/output)

Description The logs and statistical information from these logs will be stored in the
database and showed to Administrator.

Format A Log object containing the User_ID/Rule_ID, Site, Domain, Bandwidth
and Action_Time (Open_Time, Close_Time), Action_Desc attributes.
These are explained in Data Objects part.

Name Alert

Aliases None

Where used/
How used

Logging Process – Send Information 4.3 (output)
Administrator (input)

 24

Description On predefined conditions depending on the actions and the logs, the
Logging Process module will send a notification e-mail to Administrator.

Format A text that describes the action or situation briefly.

Name Action

Aliases None

Where used/
How used

Filtering – Plugin Engine 1.2 (output)
Logging Process – Get Connection Information 4.1 (output)

Description One of the 4 predefined actions is returned by the Plugin according to the
action performed.

Format Enumerated value corresponds to the action taken: ACTION_BLOCK,
ACTION_ANSWER, ACTION_REDIRECT, ACTION_FORWARD

Name Analyzed Info

Aliases None

Where used/
How used

Configuration – Get Information 3.1(output)
Configuration – Check Validity 3.2(input)

Description After the incoming information is analyzed, it is sent to be validated with
the authentication info.

Format One of the Configuration, User, Rule objects

Name Validated Info

Aliases None

Where used/
How used

Configuration – Send Information 3.3(input)
Configuration – Check Validity 3.2(output)

Description After the information is validated, it is transferred to Send Information
module.

Format One of the Configuration, User, Rule objects

Name Connection Info

Aliases None

Where used/
How used

Logging – Get Connection Information 4.1(output)
Logging – Check Validity 4.2(input)

Description Connection Information is sent to Check Validity 4.2 module
Format Request or Response Object and User identifier.

Name Info

Aliases None

Where used/
How used

Logging – Send Information 4.3(input)
Logging – Check Validity 4.2(output)

Description After the information is validated, it is transferred to Send Information
module.

Format Request or Response Object and User identifier.

 25

3.3 State Transition Diagrams

3.3.1 State Diagram Adding a Rule:

The figure given below explains how a rule is added to the system by the administrator by using

web interface. Adding a plugin is represented below, too.

A rule is a particular instantiation of a plugin

 26

3.3.2 Checking Logs State Diagram:

The diagram below gives the state diagram for checking logs, starting from the administrator web

interface.

 27

3.3.3 Request – Response Diagram

 28

• When a new Request comes, IronCurtain will create a new thread to our thread pool.

• Then it will send request to our parser.

• Parser will get information from configuration module. Information is about which rules

to apply for this user? The bandwidth limit of the user. The time limit of the user.

• After getting information about user parser sends these to Rules. In rules module it will

select the proper rules and apply them to the request in parallel.

• Then Rules will send the updated request to the connection table.

• There, the connection will be checked if it is opened before, it will use the previous

connection. (HTTP 1.1 persistent connection property) If not it will create a new

connection.

• Then the request will be sent to the server.

• Server will send the response.

• The response will be taken by Parser. It gets the information from configuration module.

• Then it will send the response to Rules.

• Rules will apply the proper operations to the response and then send the new response to

the user.

3.4 Description of Components

3.4.1 Plugin Architecture

3.4.1.1 Structure of a Plugin

A plugin is a Python file with a few quirks. In the file, there will be one class with the same name

as the file (case-sensitive), which defines at least one function act_on with no arguments, and a

static variable called Args. Also, the constructor of the class must take one argument, a dictionary

(also known as, associative array).

act_on: is the function that is called when the rule works. It can optionally return a constant value

or a tuple to indicate the course of action for IronCurtain.

The constants are:

ACTION_BLOCK: A blocked request is rejected; the browser's connection is closed and the

proxy returns an error page or a "broken image" icon.

 29

ACTION_ANSWER: An answered request is handled directly by the plugin. In a sense, the

proxy acts as a web server, and sends the web page that it created to the client by itself. If the

action is ACTION_ANSWER, web page is returned as the second argument of a tuple.

ACTION_REDIRECT: A redirected request is sent to a location other than for what location it

was originally intended. In this case, the second argument of the tuple will be the new location to

be redirected.

ACTION_FORWARD: A forwarded request is sent to the web server for which it was originally

intended.

If act_on function does not return a value, the action taken is ACTION_FORWARD.

Args: should be declared as a list of tuples that lists the arguments to the rule.

Args is a mapping between argument names and their types. An element in the list is a 3-tuple or

a 4-tuple.

The first is the actual name of the argument.

The second is the text as it will look on the HTML Page.

The 3rd and 4th are indicators of data types. Only 4 structures are allowed: int, string, enum, and

array. The first two (int and string) are obvious.

The third, enum, is an n-tuple of strings. It represents a group of choices of which only one can be

selected.

Last, array is a list of strings. Two numbers follow array declaration to indicate its size. The first

is the minimum size of array, the second is the maximum. If the second is omitted, it is assumed

that maximum is infinity.

The constructor of the class: The constructor should be written to expect only one argument: a

dictionary. It will contain the instances of arguments defined by Args.

3.4.1.2 Activating the Plugin

After the coding is completed, we upload the plugin over IronCurtain's web interface. This

creates a new directory under plugins/ directory with the name of the plugin. Under that directory,

 30

IronCurtain will put the plugin file and a hidden XML file with the name

<plugin_name>_$schema$.xml. The schema file is generated from the Args variable.

Once this is done, the new plugin will be available in the web interface. The administrator will be

able to instantiate new rules from this plugin. All rules are stored under the rules/ directory. Rule

is stored as a XML file. The name of the XML file will be “<plugin_id>_<rule_id>.xml”. At the

next startup, IronCurtain will scan the rules/ directory and start all active rules.

3.4.1.3 An Example Plugin and Rule

Let's go over the process of creating a new rule.

We want to write a rule that changes the value of the “User-Agent” header in an HTTP request to

“Protoxy/0.0.1” if the site is in a German or French domain. Let's assume that no plugin has the

necessary infrastructure for such a task (of course, in Protoxy there will be such an

infrastructure), so we will also write a plugin.

Args = [(“MatchURLs”, “Match URLs”, “array”, 1), (“Actions”, “Actions”, “enum”, (“Add”,
“Replace”, “Delete”)), (“HeaderName”, “Header Name”, “string”), (“HeaderValue”, “Header
Value”, “string”)]

(Assuming such a declaration) def __init__(self, Params):

Params["Actions"] -> "Replace"
Params["HeaderName"] -> "User-Agent"
Params["HeaderValue"] -> "Protoxy/0.0.1"
len(Params["MatchURLs"]) -> 2
Params["MatchURLs"][0] -> "http://*.de"
Params["MatchURLs"][1] -> "http://*.fr"

Once we are happy with our code, we upload it as a new plugin over IronCurtain's web interface.

This creates a new directory under plugins/ directory with the name of the plugin. Let's assume

we named it HeaderPlugin. Under that directory

it puts the file HeaderPlugin.py and a hidden xml file with the name

HeaderPlugin_$schema$.xml. The schema file is an explicit from the Args variable. In our case,

it would look like this;

<Plugin ID="1">
 <MatchURLs displayname="Match urls" type="array" minsize="1"/>
 <Actions displayname="Actions" type="enum" choices="3">
 <choice>

 31

 Add
 </choice>
 <choice>
 Replace
 </choice>
 <choice>
 Delete
 </choice>
 <HeaderName displayname="Header Name" type=string/>
 <HeaderValue displayname="Header Value" type=string/>
</Plugin>

Once this file is generated, the web interface will show the new plugin immediately. To add the

rule we select the ‘Add New Rule’ tab and click on our previously defined plugin as the template.

When we click the apply button, the web interface generates an XML document to store the

relevant data. The document is put in under rules/. Our rule would look like this:

 32

<Rule pluginID=”1” ID=”1” active=”true”>
 <Title type="string">
 Replace 'User-Agent'
 </Title>
 <Description type="string">
 Replaces 'User-Agent' header to 'Protoxy/0.0.1
 </Description>
 <MatchURLs type="array" size="2">
 <element type="string">
 http://*.de
 </element>
 <element type="string">
 http://*.fr
 </element>
 </MatchURLs>
 <Actions type="string">
 Replace
 </Actions>
 <HeaderName type="string">
 User-Agent
 </HeaderName>
 <HeaderValue type="string">
 Protoxy/0.0.1
 </HeaderValue>
</Rule>

3.4.2 Default Plugins

IronCurtain's flexible plugin architecture allows easy addition of new capabilities. This way,

IronCurtain will have the flexibility of having new functions, but there will be some plugins that

will be shipped along the IronCurtain package by default.

The plugins themselves will have default fields that will be present in every plugin. These fields

are as follows:

• "Title" : The title of the created rule.

• "Description" : The description of the created rule, in plain text. This can be empty.

• "URLs to Apply" : The list of the URLs to which the rule will be applied. If this field is

empty; any URL not specified by “URLs not to Apply” field will be matched. This

behaviour may be replicated by putting a “*” in the field.

• "URLs not to Apply" : The rule will not apply to the URLs in this list.

 33

Only one of these two fields can be active in a rule. Either the rule is applied to specific web

sites and no other; or the rule is applied to all web sites, excluding those in the list.

• “Tags to Apply” : When defining a rule, the administrator can select a number of tags

from this list. Then the rule will apply to sites having all of those tags, thus we define an

'and' relation between selected tags.

• “Tags not to Apply” : By selecting a number of tags, the administrator may choose not to

apply a rule to sites having one or more of the selected tags, thus we define an 'or' relation

between selected tags.

Like URLs, only one of these tag related fields can be active.

• “UserIDs” : The user ids that this rule will apply to. The field will be a list to choose user

Ids from, and there will be an “invert” button to invert the selected users of the list.

• “GroupIDs” : The group ids that this rule will apply to. Its behaviour will be like

“UserIDs” field.

If there are both GroupIDs and UserIDs present in the rule, there will be an ‘or’ operation

between them. The rule will apply to members of given groups, also it will apply to given

users.

• “Alert”: This will be a checkbox and if it is checked, actions of the plugin will be sent to

the administrator by e-mail. The administrator e-mail address can be changed from web

configuration interface.

The followings are the default plugins in our proxy.

3.4.2.1 Tagging(Categorization)

This plugin will allow human-guided categorization of web sites. Using this plugin the

administrator will be able to add any number of tags to any site.(For example, an administrator

can tag www.ntvmsnbc.com as “news”, and www.trgamer.com as “games” and “news”.) Tagging

is part of the core proxy, and every rule may use tagging facility, this plugin provides an easy to

use interface to the tagging facility.

3.4.2.2 Modify Header

This plugin is used to change HTTP request/response headers. This plugin may be used to

instantiate rules that add a new header, remove an existing header or change the content of a

 34

http://www.ntvmsnbc.com/
http://www.trgamer.com/

header. Its fields are:

• “Header Name”: This is the name of the header to act on.

• “Action”: There are three possible actions:

o “Add/Change”: This is used to add a new header to the request/response. If the

given header is present, then its content is changed to the string specified in

“Header Value”.

o “Remove”: This is used to remove an existing header.

o “Block”: If the header name and the header value matches, deny access to this

site.

• “Header Value”: This is the value of the header to add or change. This field is not used if

the “Remove” action is selected.

3.4.2.3 Modify Content

This plugin is used to change the body of the HTTP request/response(The body of a request is

generally only useful for the HTTP POST method. It is used to send things like login data. The

body of a HTTP response is generally the HTML web page). Its fields are:

• “Tag Name” : The HTML tag

• “Attribute Name” : The attribute of the HTML tag

• “Attribute Value” : The value of the attribute

• “Enclosing Block” : The tag name of the block that encloses the given tag

• “Action” : There are three possible actions.

o “Remove” : Removes the field completely.

o “Replace” : Changes the field with the new given value.

o “Block”: If the selected field (Tag Name, Attribute Name, Attribute Value,

Enclosing Block) matches it will deny access.

• “Action on Part” : Plugin will act on one of the Tag, Attribute Name, Attribute Value,

Enclosing Block fields.

• “Replace Value” : New value to modify the selected field.

 35

3.4.2.4 Bandwidth Limiter

This plugin is used to adjust per-user quotas. Looking at the Content-Length in HTTP Header and

the Header data size, the bandwidth usage will be calculated. A tag based or a global quota can be

set for users and groups. Its fields will be:

• “Quota” : The total web traffic quota in MBs.

• “Period”: This is used to set the period of the quota usage, in days.

3.4.2.5 Image

This plugin is used as a general image blocker and modifier. It can block animated gifs or images

according to user defined size.

Plugin's fields:

• "Image size" : The plug-in will block/replace images of given size. If present the size will

be extracted from "img" tag, otherwise the image will be downloaded and its size will be

taken from the file.

• "Image URL" : URL of the image.

• “Actions” : There are different actions that can be performed on the image.

o Block: The image will be replaced by a 1x1 transparent image.

o Hide: The image will be replaced with another image of same size stating that

there is a blocked image. This image will be a link and when clicked the page

will be reloaded, with that image being shown.

o BlockAnimation: Only the first frame of animated gif image will be displayed.

o Optimize: The image file size is reduced by compressing the image.

3.4.2.6 Blocker

This plugin allows general purpose blocking of web sites, based on URL or tags. It will

have no additional field besides those already provided as default. This plugin always

returns ACTION_BLOCK.

3.4.2.7 JavaScript Filtering

This plugin is used for filtering the JavaScript code that is present in the web pages. It will be

possible to remove certain functions and calls to those functions. This plugin will not parse the

 36

JavaScript code in a web page. Instead, this plugin will use a pattern matching technique to

remove or alter parts of the JavaScript code. Its fields are:

• “Pattern to Match”: This is a regular expression to match in the JavaScript code.

• “Replacement Text”: This is the text to replace the matched pattern.

3.4.2.8 Keyword Filtering

It is similar to the Modify Content plugin. It will modify all leaves under the “body” tag except

the ones under the “script” tag in the HTML DOM tree. Its fields are:

• “Pattern to Match” : This is a regular expression to match in the text of the HTML page.

• “Replacement Text” : This is the text to replace the matched pattern.

• “Action” : There are two possible actions.

o “Replace” : It will replace the matching pattern with the replacement text.

o “Block” : If there is a matching pattern, it will deny the access.

3.4.3 Capabilities of Default Plugins

These set of default plugins provide IronCurtain with the following capabilities.

3.4.3.1 Ad Blocking

There are three main kinds of ads on the internet; image ads, text ads and flash ads. Image ads

usually consist of images of jpg, gif or png format of a fixed size (120x120, 125x125, 234x60,

468x60, 600x120) IronCurtain's “Image” plugin can be used to block images of these sizes. This

will eliminate many of the image ads.

Also, URL based filtering will be applied by regular expressions of previously discovered URLs

that the ads com from. Links that point to those URLs will be removed from the page using

“Modify Content” plugin. This will prevent both text and Image ads from displaying. Flash ads

will be blocked similarly, flash files coming from URLs that match the regular expression will

not be shown. Also the administrator may choose to display a “Blocked” image instead and show

the flash file upon clicking on this image.

3.4.3.2 Pop-up Blocking

Pop-ups sometimes may be annoying, especially the ads. These are generally displayed using

 37

JavaScript(window.open(url, ...) function). Using our JavaScript filtering plugin, IronCurtain can

catch and remove these kinds of pop-ups.

3.4.3.3 Blacklisting

Blacklisting can be done easily using the Blocker plugin. Simply choose the tags or URLs you

want to block.

3.4.3.4 Java Blocking

Modify Content can be instantiated to block Java applets. The technique that we will use is; if

there is class file in the “object” or “embed” tags, it will delete that tag from HTML code,

effectively blocking the Java applet from executing.

3.4.3.5 Flash Blocking

Flash files need to have “swf” extension to run on the browser. If there is swf file in the “object”

or “embed” tags, Modify content will delete that tag from the HTML code, thus the flash objects

present in the page will be blocked.

3.4.4 Authentication

IronCurtain will allow rules to be applied for some users/groups only. This brings the requirement

that there should be a mechanism to identify which user's web traffic is being analyzed. Our plans

consisted of using NTLM authentication, which Internet Explorer and Firefox browsers support.

But our research revealed that it would not be an appropriate way of authenticating users, because

NTLM support of Firefox is not geared towards proxy authentication use, and we would need an

Active Directory server.

We may use standard proxy authentication scheme of HTTP (“Authorization” header) to get user

name and password or we would get authentication info from the user by using a secure web

page. The first method required the user to enter information every time they reopened the

browser, also password is transmitted in clear text, which is insecure. So we decided to take the

second approach, presenting the user with a login screen and associating the user by his/her IP

address.

Upon a connection attempt, IronCurtain will check the source IP address of the connection. If the

address is already associated with a user, rules that apply to that user will be activated and the

logs will recorded on that user. If the address is not associated with any user, we will redirect the

user to the login screen, where they would be able to enter their user name and passwords. This

 38

page will be an SSL enabled page, to prevent clear text transmission of passwords. The password

entered into the page will be hashed, and the hash value will be compared to the stored password

of the user in the database. If two hashes match, the user has successfully logged into the system.

After a successful login, the IP address will be associated with that user for a fixed period of time;

its default value will be 8 hours, and it can be changed via configuration interface. The associated

IP-user information will be held in memory, using a python dictionary. If the user enters a wrong

user name or password, he/she will be requested to enter both the username and the password

again. This will prevent a malicious person from discovering a valid user name and conducting a

brute force attack on the proxy.

3.4.5 Logging

Logging is the part of the core proxy, and every plugin will have the logging capability.

The administrator will have extensive choices what to show from the logs. It will be

possible to use the logs to track user activities and plugin actions for technical reviews.

Different log viewing schemas will be used per user and group. In the Logging

configuration panel, administrator will select what to show for specified users' and

groups' logs.

The followings will be selectable to be displayed from user logs:

● Site: This is the full address of the visited web page.

● Site domain: This is the domain of the visited web page.

● UserID: The user name

● Open_Time/Close_Time: These are the action begin and end times.

● DataSize: The data transfer size during the action time.

The followings will be stored for rules themselves:

● RuleID: The identifier of the rule.

● Site: This is the full address of the site that the rule acts on.

● Domain: This is the domain of the Site.

● Action_Time: This is the time of the action.

● Action_Desc: Information about the action taken.

 39

How Logging Works:

Upon arrival of the request and the response the core proxy will set the following fields in

the logs:

• UserID: By looking at the request's source IP address and consulting the IP user

table that is kept in the memory shared between all threads, IronCurtain will be

able to extract user name and log it.

• Site: Request header contains the whole URL of the page to be retrieved. It will

be logged along the user name and open time.

• Site Domain: The domain part of the URL will be recorded for easy statistic

analysis.

• Open_Time/Close_Time: These are the arrival time of the request to the proxy

and the time when the client closes the connection. By using this information, the

administrator can get a rough estimate of the duration of the user's visit to a

particular site.

• DataSize: The total size of the document(headers and content) which is calculated

in a similar way like the bandwidth limiter will be recorded.

The rule will have access to a log function, which will take the description of the action

as parameter. The other information that will be logged (RuleID, Site, Domain,

Action_Time) is available to the core proxy and will be recorded to the log database.

 40

3.5 Use Case Diagram

 41

3.6 Activity Diagrams

Connection Request-Response

 42

Adding a Rule

 43

Get Statistical info

 44

Write Statistical Info

 45

Web Interface Activity Diagram

 46

3.7 Collaboration Diagrams

Request / Response Collaboration Diagram

 47

Login Collaboration Diagram

Add New Group Collaboration Diagram

 48

Add New User Collaboration Diagram

Add Rule Collaboration Diagram

 49

Check Logs Group Collaboration Diagram

Check Logs One User Collaboration Diagram

 50

Web Interface Collaboration Diagram

3.8 Sequence Diagrams

Request / Response Sequence Diagram

 51

Login Sequence Diagram

Add New Group Sequence Diagram

 52

Add New User Sequence Diagram

Add Rule Sequence Diagram

 53

Check Logs Group Sequence Diagram

Check Logs One User Sequence Diagram

 54

Web Interface Sequence Diagram

 55

3.9 Class Diagram

 56

4 User Interface Design
IronCurtain’s user interface will only be visible to the administrator. The interface will allow the

administrator to change many aspects of IronCurtain, install new plugins and create new rules,

view statistics and logs. The clients of IronCurtain will only use the user authentication interface.

4.1 Screenshots

Our interface mockups are as follows.

4.1.1 Summary View

 57

4.1.2 User and Group

4.1.3 Plugin and Rule Management

 58

4.1.4 Settings

4.2 In Action

When IronCurtain is working, the results will be as follows:

The original page:

 59

The same page with “Club” word replaced with stars, colored for emphasizing:

The same page’s view when it is blocked by a rule:

 60

5 Requirements

This section gives details about and minimal software / hardware requirements.

5.1 Minimal Hardware Requirements

Minimal hardware requirements for our project are:

Development

• Intel Pentium IV 2 GHz or AMD Athlon 2000+

• 512 MB DDR RAM

• 40GB Hard Disk Space

• Internet Connection

End User

• Intel Pentium IV 2 GHz

• 1GB DDR RAM

• 100MB Hard Disk Space

• Local or Wide Area Network

5.2 Minimal Software Requirements

Software requirements for the project are divided into categories:

Development

• Recent Linux Distribution such as Ubuntu 5.10, or Windows XP or newer

• Full Installation of Python 2.4

• SPE Python IDE or Eclipse Installation with PyDev Plugin

End user

• Recent Linux Distribution such as Ubuntu 5.10, or Windows XP or newer

• Full Installation of Python 2.4

• SQLite Client

• Web Browser (Mozilla Firefox, Microsoft Internet Explorer)

 61

6 Project Schedule
For our project IronCurtain, scheduling activities and tasks are given below.

6.1 Project Task Set

Framework Activities

• Customer Communication √
• Initial Design √
• Design √
• Programming
• Testing

Task Set

• Requirements specification √

• Learning the languages and tools √

• Prototype construction √

• Database construction

• Plugin & Rule construction

• Logging construction

• Interface construction

• Testing

List of deliverables

Documentation

• Project Proposal √

• Analysis Report √

• Initial Design Report √

• Detailed Design Report √

Prototype

Actual Implementation

Functional Decomposition of these tasks

Requirements Specification

Interviews with some software companies √

Internet Search √

 62

Learning the languages and tools

Determining the proper language √

Determining the tutorials and manuals √

Studying the tutorials √

Prototype

 Simple decomposition of communication

 Initial plugin engine

 Sample plugins and rules

 Initial web interface

Parts of Actual Implementation

Plugin & Rule Construction

Plugin & Rule design √

Plugin Engine

Default Plugins

 Tagging

 Modify Header

Modify Content

Bandwidth Limiter

Image

Blocker

JavaScript Filtering

Keyword Filtering

Logging

Logging and reporting engine

Logging interface to plugins

Statistics generation

Interface Construction

Administrator web interface

User authentication interface

 63

Testing

Web Interface testing

Proxy testing

Database testing

Full package testing

6.2 Gantt Chart

 64

7. Testing

7.1 Unit Testing

• Plugin engine and default plugins: Processing rules synchronously in threads may be

problematic, we are going to point at this while testing. We will test the plugins one by one,

to ensure proper and stable operation of each.

• Database: We will use database mostly for accessing user information and reaching

statistical information. Database structure is very important for our project since fast

responding system is necessary for users to access internet. Testing for performance issues

will be mostly related to the database.

• Web interface: Security issues will be important since web interface is will be a common use

environment, securing user information will be important.

• Log module: Statistical data will be gathered by this module. Database testing will be

an important issue because we will record information on the database and also, get

statistical information from the database.

7.2 Integration Testing

We are going to test the system as whole after combining different plugins with the plugin engine

in IronCurtain. We will ensure synchronized processing of plugins is correct, and stability is not

hampered by the plugin engine’s actions.

7.3 Alpha Testing

After producing code that works with a satisfactory performance and reliability, and after

finishing unit tests and integration tests, we will conduct our alpha test. In the alpha test, we will

install IronCurtain to our computers, then we will define some rules that we need in our daily web

activities. Then we will measure how effective is IronCurtain’s actions.

 65

	 1. Introduction
	1.1 Problem Definition
	1.2 Project Scope and Goals
	1.3 Usage Areas
	1.4 Design Constraints
	1.5 Design Objectives
	 2. Data Design
	2.1 Data Objects
	User
	Admin
	Group
	UserLog
	Plugin
	Rule
	RuleLog

	2.2 ER Diagrams
	2.3 Data Dictionary
	User
	User_ID
	Passwd
	Admin
	Group
	
	 Plugin
	Rule
	UserLog
	RuleLog

	
	2.4 Database Description

	3. Architectural and Component-level Design
	3.1 Structure Chart
	3.2 Data Flow Diagrams
	3.2.1 DFD Level 0
	 3.2.2 DFD Level 1
	 3.2.3 DFDs Level 2
	3.2.4 Data Dictionary

	3.3 State Transition Diagrams
	3.3.1 State Diagram Adding a Rule:
	3.3.2 Checking Logs State Diagram:
	3.3.3 Request – Response Diagram

	3.4 Description of Components
	3.4.1 Plugin Architecture
	3.4.1.1 Structure of a Plugin
	3.4.1.2 Activating the Plugin
	Once this is done, the new plugin will be available in the web interface. The administrator will be able to instantiate new rules from this plugin. All rules are stored under the rules/ directory. Rule is stored as a XML file. The name of the XML file will be “<plugin_id>_<rule_id>.xml”. At the next startup, IronCurtain will scan the rules/ directory and start all active rules.
	3.4.1.3 An Example Plugin and Rule

	3.4.2 Default Plugins
	3.4.2.1 Tagging(Categorization)
	3.4.2.2 Modify Header
	3.4.2.3 Modify Content
	3.4.2.4 Bandwidth Limiter
	3.4.2.5 Image
	3.4.2.6 Blocker
	3.4.2.7 JavaScript Filtering
	3.4.2.8 Keyword Filtering

	3.4.3 Capabilities of Default Plugins
	3.4.3.1 Ad Blocking
	3.4.3.2 Pop-up Blocking
	3.4.3.3 Blacklisting
	3.4.3.4 Java Blocking
	3.4.3.5 Flash Blocking

	3.4.4 Authentication
	3.4.5 Logging

	3.5 Use Case Diagram
	 3.6 Activity Diagrams
	3.7 Collaboration Diagrams
	3.8 Sequence Diagrams
	3.9 Class Diagram

	4 User Interface Design
	4.1 Screenshots
	4.1.1 Summary View
	 4.1.2 User and Group
	4.1.3 Plugin and Rule Management
	4.1.4 Settings

	4.2 In Action
	5.1 Minimal Hardware Requirements
	5.2 Minimal Software Requirements

	6 Project Schedule
	6.1 Project Task Set
	6.2 Gantt Chart

	 7. Testing
	7.1 Unit Testing
	7.2 Integration Testing
	7.3 Alpha Testing

