

MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT of COMPUTER ENGINEERING

CENG 491-COMPUTER ENGINEERING DESIGN 1

‘BluePost’

INITIAL DESIGN REPORT

by

Duygu CEYLAN – e1394782 Seda ÇAKIROĞLU - e1394816

Ertay KAYA – e1356948 Hüseyin ÖĞÜNÇLÜ - e1395318

Gözde ÖZBAL – e1395326

 2

TABLE OF CONTENTS
TABLE OF CONTENTS...2

1. INTRODUCTION..4

1.1 PROJECT TITLE ...4
1.2 PROBLEM DEFINITION..4
1.3 PROJECT SCOPE..4

2. USER INTERFACE DESIGN ..6

3. ARCHITECTURAL DESIGN..9

3.1. SYSTEM MODULES ...9
3.1.1. Format Conversion Module ...10
3.1.2. Sending Data to the Board via Bluetooth Module ...11
3.1.2.2. Application Programming...12
3.1.3 Register Process Module (RPModule)..16
3.1.4. Port Conversion Modules...17
3.1.5. Retrieving Data from Users via Bluetooth Evaluation Kit Module18
3.1.6. Sending Data to Users via Bluetooth Evaluation Kit Module (SENDDATAModule)..19
3.1.7. VGA Process Module ...20

3.2. STRUCTURE CHART ...23
3.3. FUNCTIONAL DESIGN ..24

3.3.1. Data Flow Diagrams..24
3.3.2. DATA DICTIONARY..34
3.4. BEHAVIORAL DESIGN..41

3.4.1. State Transition Diagram...41

4. SYSTEM DESIGN ...43

4.1. USE CASES & USE CASE DIAGRAM ...43
4.1.1. Use Cases ...43
4.1.2. Use Case Diagram ...45

4.2. CLASS DIAGRAMS...46
4.2.1 Format Conversion Module Class Diagrams ...46
4.2.2 Sending Data to the Board via Bluetooth Module Class Diagrams47

4.3. SEQUENCE DIAGRAMS ..48
4.3.1 Format Conversion Module Sequence Diagram...48
4.3.2 Sending Data to the Board via Bluetooth Module Sequence Diagram.........................49

4.4. ACTIVITY DIAGRAMS ..50
4.4.1 Format Conversion Module Activity Diagram..50
4.4.2. Sending Data to the Board via Bluetooth Module Activity Diagram...........................51
4.4.3. Register Processing Module Activity Diagram..52

 3

4.4.4. Serial to Parallel Conversion Module Activity Diagram...54
4.4.5. Parallel to Serial Conversion Module Activity Diagram...55
4.4.6. Retrieving Data from Users via Bluetooth Evaluation Kit Activity Diagram..............56
4.4.7. Sending Data to Users via Bluetooth Evaluation Kit Activity Diagram57
4.4.8. VGA Module Activity Diagrams...58

5. HARDWARE AND SOFTWARE SPECIFICATIONS ...61

5.1 HARDWARE REQUIREMENTS ...61
5.1.1 XESS XSA-3S1000...61
5.1.2 BLUERADIOS BR-EVAL2.0 CLIENT EVALUATION KIT ..63
5.1.4 OTHER HARDWARE REQUIREMENTS ...64

5.2 SOFTWARE REQUIREMENTS:..65
5.2.1 XILINX ISE WEBPACK:...65
5.2.3 OTHER SOFTWARE REQUIREMENTS:...65

5. SYNTAX SPECIFICATIONS ..66

6. GANNT CHART..67

REFERENCES...68

 4

1. INTRODUCTION

1.1 PROJECT TITLE
Our project title is “BluePost”.

1.2 PROBLEM DEFINITION
As you all know, paper posters are very common in daily life because of the fact that they are

inexpensive and easy to install. However, they lead to some disadvantages as well. Most

important of all, they do not provide the opportunity to make a change in the content of the poster

once it is installed. In addition, it is possible for a person to forget about the details of the event

unless the information is noted. Besides, it is not easy to inform other people about the event

when paper posters are used. Furthermore, paper posters are easy to damage. To illustrate, when a

person rips the poster, the information is lost and it is costly to bring it back. So the thought of

using digital posters for everyday use arises.

1.3 PROJECT SCOPE
We defined the functionalities of our system by internet search and a questionairre about the

desires and needs of the users as we have already discussed in the earlier documents.

Because user-friendliness of a system is an important issue, we will develop a computet-based

user interface which will give many opportunities to the user such as configuring the images to be

displayed and the time duration of each image. The user will also specify the content of the

message that will be sent to the bluetooth devices.

As for the technical details about the project, we will design and implement the hardware and

software required to make a monitor or television into a digital poster with bluetooth capabilities.

Our system will be connected to a bluetooth converter card and a monitor via VGA. We will

develop the necessary software for tasks like uploading poster images and event data. By the

means of this software package each costumer will be the administrator of his/her own system.

The user will be able to upload several images to display them as a slide-show. S/he will be able

to specify the time each image will be displayed. When the user wants to make a change in the

content, s/he will not need to re-upload all the images. Instead, s/he will upload a new image in

 5

place of the image s/he wants to change. The time duration may also be changed. The user must

enter a pin number in order to complete the image uploading process, which is specific for every

Bluetooth converter card. The software will do the uploading of the images via Bluetooth

automatically.

Once the digital poster is ready, people will be able to see the poster on the monitor and follow a

procedure on their Bluetooth devices in order to get poster event data as a calendar event (iCal

VEVENT).

The project that we will develop may easily be used in places where all kinds of social and

cultural activities are held including cinemas, concerts, theaters etc. Also, this project can be used

for educational purposes. As an illustration, there are a lot of student clubs that give seminars and

meetings. With the help of our project, it will be much easier for the sudents to become aware of

these activities and share the information with each other. The project may also be used for

commercial purposes. For example, when there is a campaign in some product, the comsumers

will easily be informed about it. Another important area where this product can be used is charity

campaigns. In that case, information like bank account numbers should be sent to the bluetooth

devices. We believe that as the project evolves, it will be much more widely used in different

areas.

 6

2. USER INTERFACE DESIGN

The user interface we designed can be used by the computer users in order to upload the images
for the slide show that is reachable by the bluetooth device users.

Below, we will explain the user interface while uploading the images and sending the overall
slide show to the bluetooth device.

When a user enters our system, he will first face a page as below.

Here, the user can add the files from his computer and while doing that, he should also state the

slide number of the image to be uploaded as all the images will be presented in a slide show after

all the process ends. The other input requested from the user is the time duration of the image

during the slide show, in seconds as a unit.

 7

When the user adds an image, the second page that the user sees is like that:

If the user wants to add another image to the slideshow, he can press the “ADD” button and then

return to the first page of our user interface to repeat the same process. If he wants to make any

changes in the show, he can press the “CHANGE” button. Also the user can enter the text

information that will be sent to the bluetooth device users, to the text area. When CHANGE

button is pressed, the user will view a page like below:

 8

Here, all the images with their names which the user has uploaded so far are viewable and ready

to be changed. Each of them can be removed or changed by the user with the help of the

REMOVE and CHANGE buttons. The suration of the view of each image can also be changed.

Besides, a new image can be added to the slide show with the help of the “ADD ANOTHER

IMAGE” button. When all the changing process is finished, the used can continue the main

process by pressing the “DONE, CONTINUE” button.

When this button is pressed, the user returns to the second page we explained, and here the user

should press “SEND VIA BLUETOOTH” button for the bluetooth process to take place(sending

the images and the text).

 9

3. ARCHITECTURAL DESIGN

3.1. SYSTEM MODULES

Our system consists of mainly two parts, getting the necessary data from the user and processing

this data. Through the user interface, the user will specify the images that are to be displayed. The

images selected by the user will be moved to a directory. Then each image will be processed to

extract the pixel information. This pixel information will be combined by the user input

specifying the time duration and the order of each image in the slide show. The combined

information will be used to create a hex formatted file in the “Format Conversion Module”.

 Additionally, the user will enter the message about the event details that will be sent to the

bluetooth devices. This message will be written to a .txt formatted file.

The txt formatted and the hex formatted file will be sent to the board via bluetooth when the user

clicks on the “Send via Bluetooth” button in the user interface. To complete the uploading

process the user must enter a pin number, which is specific to the bluetooth evaluation kit

attached to the board. This pin number will be stored in the Flash Memory of the XSA Board and

will be determined before the product release during the programming of the FPGA. Sending

Data to the Board via Bluetooth Module is responsible for this process.

When the data arrives to the bluetooth evaluation kit, the process of the Retrieving Data from

User via Bluetooth Evaluation Kit Module will retrieve it. This process involves converting

serial data to parallel data. Once the data is retrieved, it is written to the SDRAM of the board via

the Register Process Module.

The pixel information will then be used by the VGA Process Module to display images on a

monitor in a slide show manner.

Meanwhile, the txt file stored in the SDRAM will be used to send messages about the details of

the event to bluetooth devices. For this purpose, Sending Data to User via Bluetooth

Evaluation Kit Module will be used which in turn converts parallel data to serial data.

Each module will now be described in detail:

 10

3.1.1. Format Conversion Module

When the user selects the images to be displayed and specifies the details of the slide show, we

will create a file whose contents will include the pixel data for each image and the slide show

configuration details. Format conversion module is responsible for the creation of this file.

This module will create a hex file, which when sent to the board, will be capable of telling the

board the user preferences via our interface. By uploading this file to the board, as described in

the Bluetooth Module, data in it can be processed easily.

As we have described in the “User Interface Design”, our system allows the user to upload

several images, their appearance order and time durations for each image. Moreover, system also

lets the user make modifications about time duration and order of an image and new image

uploading instead of an existing image in the slide show.

The hex format file that will be created contains structured data that specifies the process of the

user. The basic structure of the hex file is like below;

• First line specifies the number of images that the user has uploaded,

• Next line specifies the order of the images,

• Third line specifies the time durations of the images in the order of the second line,

• Fourth line specifies the beginning and ending writing addresses of the images on the

board in the order of the second line,

• After fourth line, if the number of images is different than 0, file continues with the image

order and a hex stream that is identical to its canvas for every image.

For creating this file, we decided to use object-oriented classes that are implemented by Java. At

the beginning of our process, the header of the image files will be read and the basic data about

them like their dimensions, resolutions and types will be obtained.

For the easy implementation, we decided to convert the image files to .PPM format. However, the

conversion process will support only .JPEG .GIF and .BMP formats. Therefore, we only allow

the user to upload an image in one of these formats.

In the process of forming the identical hex streams of image files, converted images in .PPM

format will be resized first. The reason of resizing process is obtaining an 800*600 pixel*pixel

image for our VGA port. By this way, we can centralize the scene of the image regardless of its

 11

own dimensions. One of the other advantages of this process is giving the user the chance of

exchanging an image with another one even it has different dimensions.

The next step of format changing process is reading every pixel of the image files and assigning a

value between 0-512 for its color. According to our research, we found that we should use 16-bit

RGB value whose 3 bits will be used for red, 3 bits for green and 3 bits for blue components for a

pixel for a considerable resolution on the monitor. Because of our limited memory on the board,

we decided to use 9 bits (2 bytes) for color identification.

According to our scaling specifications, we concluded that the hex format file that includes one

image would have a size of approximately 960 KB (2*800*600 Byte). So we let the user upload

at most 10 images on board.

By this module design, we aim to obtain a more flexible system for the user.

3.1.2. Sending Data to the Board via Bluetooth Module

This module is responsible for sending the hex file created in the “Format Conversion” module

and the txt file containing the message about the details of the event that will be sent to Bluetooth

devices created by the “User Interface” to the XSA board. The details of sending files to the

board via Bluetooth by the user interface are discussed below.

3.1.2.1. The Java APIs for Bluetooth Wireless Technology:

The Java APIs for Bluetooth target devices with the following characteristics:

• 512K minimum of total memory available (ROM and RAM) (application memory

requirements are additional)

• Bluetooth wireless network connection

• Compliant implementation of the J2ME Connected Limited Device Configuration

(CLDC)

Bluetooth System Requirements

The underlying Bluetooth system upon which the Java APIs will be built must also meet certain

requirements:

 12

• The underlying system must be "qualified," in accordance with the Bluetooth

Qualification Program, for at least the Generic Access Profile, Service Discovery

Application Profile, and Serial Port Profile.

• The system must support three communication layers or protocols as defined in the 1.1

Bluetooth Specifications, and the implementation of this API must have access to them:

Service Discovery Protocol (SDP), Radio Frequency Communications Protocol

(RFCOMM), and Logical Link Control and Adaptation Protocol (L2CAP).

• The system must provide a Bluetooth Control Center (BCC), a control panel much like the

application that allows a user or OEM to define specific values for certain configuration

parameters in a stack.

Packages

The Java APIs for Bluetooth define two packages that depend on the CLDC javax.microedition.io

package:

• javax.bluetooth: core Bluetooth API

• javax.obex: APIs for the Object Exchange (OBEX) protocol

3.1.2.2. Application Programming

The anatomy of a Bluetooth application has five parts: stack initialization, device management,

device discovery, service discovery, and communication.

1. Stack Initialization

The Bluetooth stack is responsible for controlling the Bluetooth device, so we need to initialize

the Bluetooth stack before we can do anything else. The initialization process comprises a

number of steps whose purpose is to get the device ready for wireless communication.

Unfortunately, the Bluetooth specification leaves implementation of the BCC to vendors, and

different vendors handle stack initialization differently. On one device, it may be an application

with a GUI interface, and on another it may be a series of settings that cannot be changed by the

user.

 13

2. Device Management

The Java Bluetooth APIs contain the classes LocalDevice and RemoteDevice, which

provide the device-management capabilities defined in the Generic Access Profile.

LocalDevice depends on the javax.bluetooth.DeviceClass class to retrieve the

device's type and the kinds of services it offers. The RemoteDevice class represents a remote

device (a device within a range of reach) and provides methods to retrieve information about the

device, including its Bluetooth address and name. The following code snippet retrieves that

information for the local device:

...

// retrieve the local Bluetooth device object

LocalDevice local = LocalDevice.getLocalDevice();

// retrieve the Bluetooth address of the local device

String address = local.getBluetoothAddress();

// retrieve the name of the local Bluetooth device

String name = local.getFriendlyName();

...

The same information about a remote device can be obtained as below:

...

// retrieve the device that is at the other end of

// the Bluetooth Serial Port Profile connection,

// L2CAP connection, or OBEX over RFCOMM connection

RemoteDevice remote =

 RemoteDevice.getRemoteDevice(

 javax.microedition.io.Connection c);

// retrieve the Bluetooth address of the remote device

String remoteAddress = remote.getBluetoothAddress();

// retrieve the name of the remote Bluetooth device

String remoteName = local.getFriendlyName(true);

...

The RemoteDevice class also provides methods to authenticate, authorize, or encrypt data

transferred between local and remote devices.

 14

3. Device Discovery

Because wireless devices are mobile they need a mechanism that allows them to find other

devices and gain access to their capabilities. The core Bluetooth API's DiscoveryAgent class

and DiscoveryListener interface provide the necessary discovery services.

A Bluetooth device can use a DiscoveryAgent object to obtain a list of accessible devices, in

any of three ways:

The DiscoveryAgent.startInquiry method places the device into an inquiry mode. To

take advantage of this mode, the application must specify an event listener that will respond to

inquiry-related events. DiscoveryListener.deviceDiscovered is called each time an

inquiry finds a device. When the inquiry is completed or canceled,

DiscoveryListener.inquiryCompleted is invoked.

If the device doesn't wish to wait for devices to be discovered, it can use the

DiscoveryAgent.retrieveDevices method to retrieve an existing list. Depending on

the parameter passed, this method will return either a list of devices that were found in a previous

inquiry, or a list of pre-known devices that the local device has told the Bluetooth Control Center

it will contact often.

4. Service Discovery

Once the local device has discovered at least one remote device, it can begin to search for

available services - Bluetooth applications it can use to accomplish useful tasks. Because service

discovery is much like device discovery, DiscoveryAgent also provides methods to discover

services on a Bluetooth server device, and to initiate service-discovery transactions. Note that the

API provides mechanisms to search for services on remote devices, but not for services on the

local device.

Service Registration

 Before a service can be discovered, it must first be registered - advertised on a Bluetooth

server device. The server is responsible for:

• Creating a service record that describes the service offered

• Adding the service record to the server's Service Discovery DataBase (SDDB), so

it's visible and available to potential clients

 15

• Registering the Bluetooth security measures associated with the service (enforced

for connections with clients)

• Accepting connections from clients

• Updating the service record in the SDDB whenever the service's attributes change

• Removing or disabling the service record in the SDDB when the service is no

longer available

5. Communication

For a local device to use a service on a remote device, the two devices must share a common

communications protocol. So that applications can access a wide variety of Bluetooth services,

the Java APIs for Bluetooth provide mechanisms that allow connections to any service that uses

RFCOMM, L2CAP, or OBEX as its protocol. If a service uses another protocol (such as TCP/IP)

layered above one of these protocols, the application can access the service, but only if it

implements the additional protocol in the application, using the CLDC Generic Connection

Framework.

Because the OBEX protocol can be used over several different transmission media - wired,

infrared, Bluetooth radio, and others - JSR 82 implements the OBEX API (javax.obex)

independently of the core Bluetooth API (javax.bluetooth). The OBEX API is a separate

optional package you can use either with the core Bluetooth package or independently.

Serial Port Profile

The RFCOMM protocol, which is layered over the L2CAP protocol, emulates an RS-232

serial connection. The Serial Port Profile (SPP) eases communication between Bluetooth

devices by providing a stream-based interface to the RFCOMM protocol. Some capabilities

and limitations to note:

• Two devices can share only one RFCOMM session at a time.

• Up to 60 logical serial connections can be multiplexed over this session.

• A single Bluetooth device can have at most 30 active RFCOMM services.

• A device can support only one client connection to any given service at a time.

For a server and client to communicate using the Serial Port Profile, each must perform a few

simple steps.

 16

The server must:

1. Construct a URL that indicates how to connect to the service, and store it in the service

record

2. Make the service record available to the client

3. Accept a connection from the client

4. Send and receive data to and from the client

At the other end, to set up an RFCOMM connection to a server the client must:

1. Initiate a service discovery to retrieve the service record

2. Construct a connection URL using the service record

3. Open a connection to the server

4. Send and receive data to and from the server

3.1.3 Register Process Module (RPModule)

The Memory Process Module will deal with sending the information that will come from the

parallel port of the board to the SDRAM of the board and vice versa. In XSA-3S1000 Board,

most of the Parallel Port inputs and outputs are directly connected to the CPLD Part of the board.

Thus the following steps will be held while sending the information from Parallel Port to FPGA:

1. The CPLD will be programmed so that it acts as an interface between the Parallel Port

and the FPGA so it can pass bit streams from the Parallel Port to the FPGA and vice versa.

2. The information from the Parallel Port will be sent to the FPGA through the CPLD.

3. The FPGA will store the retrieved information from the CPLD to one of its registers

that we call Parallel Port Register (i.e. the register that we will store the information gathered

from Parallel Port).

Usage Note: After these steps are completed Parallel Port Register content can be sent and stored

in the SDRAM.

While sending information from the FPGA to the Parallel Port, the module will follow the

following steps:

1. The information from SDRAM will be retrieved by FPGA in order to be sent to the

Parallel Port.

2. The CPLD will be programmed so that it acts as an interface between the Parallel Port

and the FPGA so it can pass bit streams from the FPGA to the Parallel Port and vice versa.

 17

3. The information from the FPGA will be sent to the Parallel Port throurgh CPLD.

3.1.4. Port Conversion Modules

The XESS XSA-3S1000 evaluation board we will be using to develop the project does not have a

serial port on it, it has a parallel port. But the BlueRadios BR-EC40A bluetooth board has only

serial port on it for the connection to other devices which will use its bluetooth abilities. To

connect these devices we will develop two modules named Serial to Parallel Port Conversion

Module and Parallel to Serial Conversion Module:

3.1.4.1. SERIAL TO PARALLEL CONVERSION MODULE (S2PMODULE)

This module converts serial data(bit by bit data) to paralel data(8bit groups or bytes) so that this

data can be written to the SDRAM as described in the “Register Process Module.” It will do this

like this:

1. Initialize the bluetooth device’s baud rate and according to this initialization, initialize the

FPGA’s data receiving rate with respect to bluetooth device’s baud rate.

2. Send serial data from bluetooth board’s RS232 serial port to evaluation board’s parallel

port.

3. Get the 1 bit data from the parallel port into a register by using RPModule at a constant

rate with respect to initialized receiving rate. When we get a bit we will append this bit to

the previously gathered bits to form an 8 bit data.

4. Get the remaining 7 bit data into the same register one by one in same way.

5. After getting the 7th bit we have the byte data, from now on we will be able to process the

data.

6. Process steps 1.- 6. will loop until there exists no more serial data to convert.

3.1.4.2. PARALLEL TO SERIAL CONVERSION MODULE (P2SMODULE)

This module converts parallel data (8 bit groups or bytes) to serial data (bit by bit data).The

conversion steps are as follows:

 18

1. Initialize the bluetooth device’s baud rate and according to this initialize the FPGA’s data

sending rate with respect to bluetooth device’s baud rate.

2. Put the bytes to be converted to the parallel port register.

3. Read the first bit of 8 bit data from parallel port register then send it to Parallel Port by

using RPModule and to RS232 serial port of bluetooth board afterwards.

4. Read and send the remaining bits of the parallel port register at a constant rate with

respect to initialized sending rate. Read in an increasing order from 1st bit to 7th bit.

5. After sending each bit from parallel port of our board, receive each bit on the RS232 port.

3.1.5. Retrieving Data from Users via Bluetooth Evaluation Kit Module
(GETDATAModule)

This module will be used for retrieving a .hex file from Bluetooth Evaluation Kit via the

Parallel Port of XSA-3S1000 Board and storing the file into the SDRAM of the board. Since the

Bluetooth Evaluation Kit sends the information via serial port, this module will use the Serial to

Parallel Conversion Module (S2PModule) as a submodule. This module will follow the

following steps while operating:

 1. Bluetooth board will be put into master mode.

2. After putting the bluetooth board into master mode it becomes discoverable by other

bluetooth devices. The file uploader interface will connect to bluetooth board by its

unique id number.

3. After the connection between the uploader computer and the bluetooth board is

established, bluetooth board will get into data mode and send the data coming from the

uploader computer to its serial port.

4. S2PModule will be used in order to store information (address + image data + event

data) as bytes from Parallel Port into Parallel Port Registers. The first information

retrieved in the parallel port register will be the memory address information of the image

retrieved from the .hex file.

5. After reading the memory address information, the data information of the image from

the .hex file will be read from the parallel port register in bytes.

6. The read data information from the parallel port registers will be stored in the SDRAM

in the address that is read from the registers in step 1.

 19

7. After storing the images on the SDRAM, the event data will be retrieved into Parallel

Port registers and sent to SDRAM.

3.1.6. Sending Data to Users via Bluetooth Evaluation Kit Module
(SENDDATAModule)

This module will be used while sending the information about the event to the bluetooth device

users. Since our XSA-3S1000 board have parallel port but the information is sent to the bluetooth

device users serially, while sending the event information from SDRAM to Bluetooth Evaluation

Kit this module will use Parallel to Serial Conversion Module (P2SModule) as a submodule.

This module will operate as follows:

1. Bluetooth board will be put into master mode.

2. After putting the bluetooth board into master mode it will search for other bluetooth

devices. The unique device ids(MAC adresses) and class of device(CoD) of the blueooth

devices which are found will be returned to bluetooth board.

3. From the class of device of the found devices we will identify the bluetooth devices

which are supporting file transfer.

4. Then bluetooth board will try to connect in file transfer mode to the devices which

support file transfer.

5. If the connection is established bluetooth board will get into data mode and will be able

send the data coming from its serial port to the device it is connected. If it can’t connect to

the device it will try to connect to another device it has found. If it can’t connect all of the

devices it will search and try again to connect the bluetooth devices.

6. After establishing the connection to another bluetooth device the event data will be read

from SDRAM and stored into the Parallel Port Registers by the FPGA.

7. P2SModule will be used for converting the bytes of event info in the Parallel Port

Registers into serial data.

8. The converted data will be sent to the Bluetooth Evaluation Kit via the Parallel Port on

the board again using PS2Module.

 9. Bluetooth board will be already in data mode with the connected device so data will be

 send directly to the other device.

 20

3.1.7. VGA Process Module

The VGA module provides the functionality of displaying images on a monitor. This module

consists of the following basic parts:

 Generating vertical and horizontal sync signals which indicate the end of a frame and line

respectively.

 Reading data from the memory to the pixel buffer

 Putting data from the pixel buffer to the pixel register and shifting the pixel register

content so that the current pixel is in the least significant position

 Color mapping of the current pixel

The image(s) uploaded by the user will be stored in the SDRAM of the board. The screen width

(We will use w=800 pixels per line.) and the screen height (We will use h=600 lines per frame.)

will be constant variables assigned by us. For images which have less pixels per line or less lines

per frame, extra pixels will be blanked. Images with more pixels will be resized. Since the screen

width and height will be constant, for each image we will show the same number of pixels per

line and same number of frames per line, either blanked or not. In other words, for each image we

will store information of equal number of pixels. The pixel width of our system will be 16 bits

and we will use 3 of these bits for the red color component, 3 for the green color component , and

3 for the blue color component. Knowing the number of pixels and the width of a pixel, we will

be able to determine how many memory words each image will occupy in the SDRAM. We will

begin storing the images in the SDRAM, from an address again specified by us. Since we will

know the starting address and the size of each image, we will be able to determine the starting

and ending addresses of each image stored in the memory. We will use this information for the

transitions between the images in a slide show manner.

A horizontal sync signal indicates the end of a line. The period of horizontal scan line is

calculated by the formula:

horizontal scanline period = (number of pixels per line * CLK_DIV)/frequency + 6µs

CLK_DIV in this formula is a clock divisor used to adjust the frequency. Our board has a fixed

frequency of 100 MHz and we will use a CLK_DIV of 2 to obtain a frequency of 50 MHz.

Putting the values of the variable in the formula for our system, we obtain a horizontal scanline

period of 22 µs. Of this time interval 16 µs is active, meaning a line of pixels is shown. The

remaining 6 µs consists of the front porch (1 µs), inserted before the sync signal, back porch (1

 21

µs) inserted after the sync signal and the sync signal (4 µs) itself. Since the screen height (h), in

other words lines per frame, is known we can calculate the time period of a frame from the

formula:

 frame-period = (number of lines per frame * CLK_DIV) / horizontal frequency + 1424

µs

Inserting the values of the variables for our system we get a frame period of 14.624 ms. Front

porch occupies 0.34 ms of this period, back porch occupies 1.02 ms, and the sync pulse occupies

0.64 ms.

For the horizontal and the vertical scanlines, the pixels should be blanked when the horizontal

and vertical sync signals are generated to indicate the end of a line or a frame. For this purpose

we will have a counter and increment it every clock cycle. The period of the scanlines can be

calculated in terms of clock cycles by just multiplying the values found above with the system

frequency, 50 MHz. For example, a horizontal scanline is active for 16 µs, which is equal to 800

clock cycles. When the counter value reaches 800, we should start generating the horizontal sync

signal for 50 MHz * 4 µs = 200 clock cycles. Meanwhile we should blank the pixels for the time

period when the scanline is not active, which is 22-16 = 6 µs (front porch + signal + back porch).

Thus when the counter reaches 800 we should start blanking the pixels until the counter reaches

800 + 6*50 = 1100. After that the counter is reset to zero. Similarly, the vertical scanline is active

for 13.2 ms, which is equal to 660000 clock cycles. Thus we should have another counter and

when the value of this counter reaches 660000 we should start generating the vertical sync signal.

The vertical scanline is not active for 14.624-13.2 = 1.424 ms, which is equal to 71200 clock

cycles. Thus we should start blanking the pixels when the counter reaches 660000 and continue

blanking until the counter becomes 731200, then the counter is reset to zero.

The user will specify the time interval for which each image will be displayed. This information

will arrive to the board together with the images via bluetooth and we will store this information

in registers. Let’s assume that the first image will be shown for t seconds. This means that we

will show the first frame for count = t / frame-period times. Thus, we will keep another counter

and increment the value of the counter every time we start a new frame of the same image. While

showing the same image, the value in the counter will be smaller than count. Meanwhile, at the

end of a frame the memory address of the pixels will be set back to the starting address of the

same image. Once the counter reaches the value count, we will reset the counter to zero and begin

 22

showing the next image, which also means that the memory address will now point to the starting

address of this next image. We will repeat this process for all the images. When the last image in

the slide show is displayed for the specified amount of time, we will begin showing the slide

show again.

When displaying an image, we will read the pixel data from the memory to a pixel buffer. This

buffer will generate two signals, full and empty, indicating whether the buffer is full or empty.

When the buffer becomes empty, new data is read from the memory. The pixel data in the buffer

is put into a pixel register. A memory word is 16 bits and we will store pixels as 8 bits. This

means that the pixel register will contain two registers at a time. The content of the pixel register

is shifted so that the current pixel is in the least significant position. Once the current pixel is at

the correct position, the r , g, and b components are read and sent to the digital-to-analog-

converter of the vga port where the color information is extracted and the pixel is shown.

 23

3.2. STRUCTURE CHART

The following chart is the structure chart of our architecture and illustrates the modules and their
relations with each other.

BluePost
Architecture

Format
 Conversion

Sending Data to
Board via
Bluetooth

Register Process

Serial to Parallel
Port Conversion

Parallel to Serial
Port Conversion

Retrieving Data
from Users via

BEK

Sending Data to
users via BEK VGA Process

 24

3.3. FUNCTIONAL DESIGN

3.3.1. Data Flow Diagrams

LEVEL 0:

BLUEPOST image on
monitor

Computer User

Bluetooth Device
User

configuration input

information

txt m
ess

age in
 th

e

blueto
oth device

Monitor

image_n

pin number

 25

LEVEL 1:

1.0

User
Interface

3.0

Memory
Process

5.0

Sending to
Bluetooth

Device

4.0

Synchronization
Process via

VGA

7.0

Sending via
Bluetooth

8.0

Retrieving
the Bluetooth

Message

6.0

Processing
Bluetooth

Data

Computer User

Bluetooth Device
User

configuration
input

inform
ation

txt form
atted

inform
ation fil e

im
ag

e
fi

le
_n tim

e

inform
ation

infor
mati

on

bits
tre

am

tx
t b

lu
et

oo
th

fi
le

txt message in the

bluetooth device

im
ag

e
bl

ue
to

ot
h

da
ta

in
fo

rm
at

io
n

bl
ue

to
ot

h
da

ta

image hex data

Monitor

im
ag

e
on

m
on

it
or

im
age_n

im
age

bitstream

2.0

Format
Conversion

HEX formatted
file

information
data

pin num
ber

pin num
ber

co
nf

ig
ur

at
io

n
in

pu
t

co
nf

ig
ur

at
io

n
bl

ue
to

ot
h

da
ta

configuration

data

 26

Level 2 for User Interface:

1.2

image
directory
formation

1.1

txt File
Formation

Computer User

image_n

information

2.0

Format
Conversion

image file_n

configuration
input

7.0

Sending via
Bluetooth

txt formattedinformation file

1.4

Authentication

pin number

verification
signal

 27

Level 2 for Format Conversion:

1.0

User
Interface

2.1

File Format
Change

2.2

r-g-b values
extraction

7.0

Sending via
Bluetooth

im
ag

e
fil

e_
n

PPM file

HEX form
atted

f ile

2.3

HEX
formatted file

formation

configuration
input

pixel data

 28

Level 2 for Memory Process:

6.0

Processing
Bluetooth

Data

3.1

SDRAM
Controller

3.2

Clock
Operations

3.3

Write
Operation

3.4

Read
Operation

4.0

Synchronization
Process via VGA

5.0

Sending to
Bluetooth

Socket

im
age hex data

write
 co

ntrol

sig
nal

read control

signal

clock
signal

read done signalclock signal

data

write done

signal

image

bitstream

inform
atio

n

bitst
ream

 inform
ation

data

configuration data

time
information

ad
dr

es
s

address

 29

Level 2 for Synchronization Process via VGA

3.0

Memory
Process

4.1

Pixel Buffer
Operations

4.2

Color
Mapping

4.3

Vertical
Sync

Generator

4.4

Horizontal
Sync

Generator

4.5

Blank Signal
Processing

4.6

Connection
with the
Monitor

image
bitstream

pixel register
content

end of fr
ame

signal

gate

signal

hsync_n

vsync_n

read

signal

r

g

b

blanksignal

blank

signal

global

blank signal

im
age on

m
onitor

Monitor

time
information

 30

Level 2 for Sending to Bluetooth Device:

3.0

Memory
Process

5.1

Changing to
txt File Data

5.2

Parallel to
Serial

Converter

5.3

Serial to
Bluetooth
Converter

8.0

Retrieving the
Bluetooth
Message

inform
ation

bitst
ream

parallel

data serial
data

txt bluetooth
file

 31

Level 2 for Processing Bluetooth Data:

7.0

Sending via
Bluetooth

6.1

Bluetooth to
Serial

Converter

6.2

Serial to
Parallel

Converter

3.0

Memory
Process

image bluetooth
data

information
bluetooth data im

age

serial data

inage hex data

configuration
bluetooth

data

configuration

serial data

inform
ation

serial data

configuration data

information data

 32

Level 2 for Sending via Bluetooth:

7.1

Activating the
"push object"
Function for
Image data

7.2

Activating the
"push object"

Function for txt
File

7.3

Sending
File

6.0

Processing
Bluetooth Data

HEX

formatted

file

txt form
atted

inform
ation

file

activation
signal

ac
tiv

at
io

n
si

gn
al

image bluetooth
data

inform
ation

blueto
oth data

1.0

User
Interface

2.0

Format
Conversion verification

s ignal

condifguration

bluetooth

data

ve
ri

fic
at

io
n

sig
na

l

 33

Level 2 for Retrieving the Bluetooth Message:

5.0

Sending to
Bluetooth

Socket

8.1

Selection
of File

8.2

Activating the
"pull object"

Function

8.3

Retrieving
the File

Bluetooth Device User

txt bluetooth file selected file

activation
signal

se
le

cte
d

fil
e

txt m
essage

in the bluetooth

device

 34

3.3.2. Data Dictionary

Name activation signal

Input to 8.3 Retrieving the File
7.3 Sending File

Output from

 8.2 Activating the “pull object” function
7.2 Activating the “push object” function for txt file

7.1 Activating the “push object” function for Image data
Description The signals indicating that the “pull object” or “push object”

functions are activated in order to send or a retrieve a file via
bluetooth.

Name address

Input to 3.3 Write Operation
3.4 Read Operation

Output from 3.1 SDRAM Controller
Description The address of the data to be read or the address to which data

will be written.

Name blank signal
Input to 4.5 Blank Signal Processing

Output from 4.3 Vertical Sync Generator
4.4 Horizontal Sync Generator

Description The blanking signals produced by the vertical and the
horizontal sync generators are combined to produce a global

blank signal and the read signal.

Name r
Input to 4.6 Connection with the Monitor

Output from 4.2 Color Mapping
Description The red color signal.

Name g
Input to 4.6 Connection with the Monitor

Output from 4.2 Color Mapping
Description The green color signal.

Name b
Input to 4.6 Connection with the Monitor

Output from 4.2 Color Mapping
Description The blue color signal.

 35

Name clock signal
Input to 3.3 Write Operation

3.4 Read Operation
Output from 3.2 Clock operations
Description The signals that start the reading and the writing operations of

memory once a read or a write request is received.

Name configuration bluetooh data
Input to 6.0 Processing Bluetooth Data

6.1 Bluetooth to Serial Converter
Output from 7.0 Sending via Bluetooth

7.3 Sending File
Description The data that arrives to the bluetooth converter connected to

the parellel port of the board containing the configuration file.

Name configuration data
Input to 3.0 Memory Process

3.1 SDRAM Controller
Output from 6.0 Processing Bluetooth Data

6.2 Serial to Parallel Converter
Description The data that arrives that is to be sent to the SDRAM from the

parallel port which contains the configuration file.

Name configuration input
Input to 1.0 User Interface

2.0 Format Conversion
Output from This is an input to the system.
Description This is the input entered by the user about the time intervals

for which each image will be displayed in a slide show.

Name configuration serial data
Input to 6.1 Bluetooth to Serial Converter

Output from 6.2 Serial to parallel converter
Description The serial data obtained from the bluetooth converter attached

to the parallel port of the board containing the configuration
file.

Name data

Input to 3.3 Write Operation
Output from 3.1 SDRAM Controller
Description The data to be stored in the SDRAM.

Name end of frame signal

Input to 4.1 Pixel Buffer Operations

 36

Output from 4.3 Vertical Sync Generator
Description The signal indicating the end of a frame.

Name gate signal

Input to 4.3 Vertical Sync Generator
Output from 4.4 Horizontal Sync Generator
Description The signal which is used to update the counter of the vertical

sync generator correctly.

Name global blank signal
Input to 4.6 Connection with the Monitor

Output from 4.5 Blank Signal Processing
Description The signal indicates when the red, green, or blue video signals

are blanked.

Name image_n

Input to 1.0 User Interface
1.2 Image Directory Formation

Output from It is an input to the system.
Description The images stored in the PC, available for selection to be

displayed on the monitor.

Name image bitstream
Input to 4.0 Synchronization Process via VGA

4.1 Pixel Buffer Operations
Output from 3.0 Memory Process

3.4 Read Operation
Description The image bitstream read from the SDRAM to the VGA port.

Name image bluetooth data
Input to 6.0 Processing Bluetooth Data

Name HEX formatted file
Input to 7.0 Sending via Bluetooth

7.1 Activating the “push object” function for Image data
 Output from 2.0 Format Conversion

2.3 HEX formatted file formation
Description This file contains information about the configuration input

entered by the user and the pixel data for the images uploaded
in HEX format.

Name hsync_n
Input to 4.6 Connection with the Monitor

Output from 4.4 Horizontal Sync Generator
Description Horizontal sync indicating the end of a scan line.

 37

6.1 Bluetooth to Serial Converter
Output from 7.0 Sending via Bluetooth

7.3 Sending File
Description The bluetooth data received from the bluetooth device that

contains the image to be displayed on the monitor.

Name image file_n
Input to 3.0 Format Conversion

2.1 File Format Change
Output from 1.0 User Interface

1.2 Image Directory Formation
Description The image files uploaded by the user which will go through

the format conversion process.

Name image hex data
Input to 3.0 Memory Process

3.1 SDRAM Controller
Output from 6.0 Processing Bluetooth Data

6.2 Serial to Parallel Converter
Description The image data ready to be stored in the SDRAM sent from

the parallel port.

Name image on monitor
Input to It is an output of the system.

Output from 4.0 Synchronization Process via VGA
4.6 Connection with the monitor

Description The image displayed on the monitor

Name image serial data
Input to 6.2 Serial to Parallel Converter

Output from 6.1 Bluetooth to Serial Converter
Description The image data that arrives to the bluetooth converter device .

Name information
Input to 1.0 User Interface

 1.1 Txt file formation
Output from It is an input to the system.
Description The information entered by the user related to the event date

and time.

 38

Name information bluetooth data

Input to 6.0 Processing Bluetooth Data
6.1 Bluetooth to Serial Converter

Output from 7.0 Sending via Bluetooth
7.3 Sending File

Description The bluetooth data recieved from the bluetooth device
containing the information about the event.

Name information data

Input to 4.0 Memory Process
3.1 SDRAM Controller

Output from 6.0 Processing Bluetooth Data
6.2 Serial to Parallel Converter

Description The time and place information of the event sent from the
parallel port of the board to the SDRAM.

Name information serial data

Input to 6.2 Serial to Parallel Converter
Output from 6.1 Bluetooth to Serial Converter
Description The time and place information of the event that arrives to the

bluetooth converter.

Name parallel data
Input to 5.2 Parallel to Serial Converter

Output from 5.1 Changing to txt File Data
Description The serial data obtained from the bluetooth data received or

the data produced by the board that needs to be converted to
serial data before being sent to the bluetooth devices.

Name pin number

Input to 1.0 User Interface
1.4 Authentication

Output from This is an input to the system.
Description The pin number, which is specific to the bluetooth converter

card, the user must enter in order to send images to the board.

Name information bitstream
Input to 5.0 Sending to Bluetooth Socket

5.1 Changing to txt File Data
Output from 3.0 Memory Process

3.4 Read Operation
Description The bitstream read from the SDRAM, ready to be processed

by the bluetooth functionalities of the system.

 39

Name pixel register content
Input to 4.2 Color Mapping

Output from 4.1 Pixel Buffer Operations

Description
The data in the pixel buffer is shifted to the pixel register and

the contents of this register are processed to produce color
signals.

Name PPM file

Input to 2.2 r-g-b values extraction
Output from 2.1 File Format Change
Description Before the pixel information of the images are written into a

HEX format, the image files are converted to the “ppm”
format so that latter process becomes easier.

Name read control signal

Input to 3.2 Clock Operations
Output from 3.1 SDRAM Controller
Description The signal indicating a read request from the memory.

Name read done signal

Input to 3.1 SDRAM controller
Output from 3.4 Read Operation
Description The signal shows that the current read operation is completed.

Name read signal

Input to 4.1 Pixel Buffer Operations
Output from 4.5 Blank Signal Processing
Description The signal which indicates when to read more data from the

pixel buffer.

Name selected file
Input to 8.2 Activating the “pull object” function

Output from 8.1 Selection of File
8.3 Retrieving the File

Description The file ready to be sent from the board to the bluetooth
device.

Name serial data

Input to 5.3 Serial to Bluetooth Converter
Output from 5.2 Parallel to Serial Converter
Description The parallel data is converted to serial data so that it can be

sent to the bluetooth devices.

Name time information

 40

Input to 5.0 Synchronization Process via VGA
4.1 Pixel Buffer Operations

Output from 3.0Memory Process
3.4 Read Operation

Description The time information stored in the SDRAM which is obtained
from the configuration file and which is used to determine

which image should be displayed at a specific moment.

Name txt bluetooth file
Input to 8.0 Retrieving the Bluetooth Message

8.1 Selection of File
Output from 5.0 Sending to Bluetooth Socket

5.3 Serial to Bluetooth Converter
Description The txt file ready to be sent to the bluetooth devices containing

information about the event.

Name txt formatted information file
Input to 7.0 Sending via Bluetooth

7.2 Activating the “push object” function for the txt file
Output from 1.0 User Interface

1.1 Txt File Formation
Description The file created by the information entered by the user about

the details of the event.

Name txt message in the bluetooth device
Input to It is an output of the system.

Output from 8.0 Retrieving the Bluetooth Message
8.3 Retrieving the File

Description The txt message received by the bluetooth devices containing
details about the event.

Name verification signal

Input to 7.0 Sending via Bluetooh
7.1 Activating the “push object” function for image data

7.2 Activating the “push object” function for txt file
Output from 1.0 User Interface

1.4 Authentication
Description A verification signal indicating that the user has entered the

correct pin number.
Name vsync_c

Input to 4.6 Connection with the Monitor
Output from 4.3 Vertical Sync Generator
Description Vertical sync indicating the end of a frame.

Name write control signal

 41

Input to 3.2 Clock Operations
Output from 3.1 SDRAM Controller
Description The signal indicating the write request to the memory.

Name write done signal

Input to 3.1 SDRAM Controller
Output from 3.3 Write Operation
Description The signal indicating that the current write operation is

completed.

3.4. BEHAVIORAL DESIGN

3.4.1. State Transition Diagram

 42

Input Taken
via Computer

State

Invalid Data Form
Display System Message

Format
Conversation

State

Successful Images Upload
Invoke ChangeFormat()

Valid Hex Format Images
Turn to User Interface

Request of Sending Data
Invoke CheckUser()

Bluetooth
Authentication

State
Wrong PIN is entered

Display System Message

Data
Transformation

to Board
via

Bluetooth
State

Valid PIN is entered
Invoke TransformData()

Preservation
Data in

SDRAM
State

Saving of Hex Format Images
Invoke SaveImages()

Saving of Message Data
Invoke SaveMessage()

Synchronization
for VGA

State

 Valid Hex Images in SDRAM
 Invoke Synchronize()

Sending of
Message

via
Bluetooth

State

 Valid Message in SDRAM
Invoke BluetoothTransferMessage()

Message Sending
Invoke TransferMessage() Message

 Preparation
State

Identification of a bluetooth device
 Invoke SendMessage()

 43

4. SYSTEM DESIGN

4.1. USE CASES & USE CASE DIAGRAM
4.1.1. Use Cases

Use Case 1: Uploading Poster and Information

This use case is for uploading the poster and event information via a computer or a bluetooth

device.

Actors: File Uploader

Pre-Condition: The user should have the right to upload files about the event.

Post Conditions: The poster and information is uploaded successfully to BLUEPOST SYSTEM.

Basic Flow:

1. File Uploader runs the file uploading software of BLUEPOST SYSTEM on his/her computer

in order to browse and upload the event image and information files.

2. After browsing the files people uploads the file to be stored in BLUEPOST SYSTEM via

interactive bluetooth.

Alternative Flow:

If the file formats that the File Uploader intends to send are not compatible or the files do not

contain any information or the File Uploader do not have the right to upload a file (pin error)

uploading is simply rejected.

Use Case 2: Store Poster and Information into the System

This use case is for storing poster images and information into the system.

Actors: BLUEPOST SYSTEM

 44

Pre Condition: Poster images and event information have to be already uploaded by the File

Uploader correctly.

Post Conditions: The images and information is stored into the system and the images are ready

to

be displayed and the information is ready to be sent to Information Recievers.

Basic Flow:

1. The images and information that File Uploader wants to upload come to the system to be

stored.

2. The system stores the images and the information.

3. The poster and information is ready to be displayed and sent to the Information Recievers.

Use Case 3: Observing the Digital Poster from the Monitor

Actors: Information Reciever

Pre Condition: The user wonders about the event.

Post Condition: The user gets the information about the event and decides to participate in the

event.

Basic Flow:

The user observes the poster and information on the poster.

Use Case 4: Broadcasting Event Information from BLUEPOST SYSTEM to Information

Recievers

Actors: BLUEPOST SYSTEM and Information Reciever

Pre Conditions: An event information should already be stored in the BLUEPOST

SYSTEM, and a bluetooth connection should already be established between BLUEPOST

SYSTEM and Information Reciever.

Post Conditions: The event information has successfully transferred to Information Recievers.

 45

Basic Flow:

1. Information Reciever establish a connection with BLUEPOST SYSTEM that is already ready

to establish a connection.

2. File transfer operation occurs.

3. Connection closes after successful completion of File Transfer.

Alternative Flows:

1. If connection is not established, file transfer request is simply rejected.

2. If connection is lost during file transfer operation, file transfer request is not completed

successfully.

4.1.2. Use Case Diagram

 File Uploader

 BLUEPOST SYSTEM

 Information Reciever

Store Poster and
Information into

the System

Observing the
Digital Poster

from the Monitor

Broadcasting Event
Information from

BLUEPOST SYSTEM
to Information

Recie vers

: Uploading Image
and Information by

BLUEPOST SYSTEM
File Uploading

Software

 46

4.2. CLASS DIAGRAMS

4.2.1 Format Conversion Module Class Diagrams

FormatConverter
 height : Integer
 width : Integer
nImages : Integer

 order[nImages] : Integer
 time[nImages] : Integer
 address[nImages*2] : Integer
imagePpmList[nImages] :
ImagePpmFile

ImageFolder
nImages : Integer
imageList[nImages] : Image

getImgHeader(i : Integer) return String

Image

data : FILE

ImagePpmFile

chFormatResize(i : Image) return FILE
getPixel(x : Integer, y : Integer) return String

HexDataFile

data : FILE

signBegin() return boolean
signEnd() return boolean
writeData(s : String) return boolean
writeGenData(time[] : Integer , i:
Integer , address:[]) return boolean

PixelData
 r : Integer
 g: Integer
 b : Integer
 value : String

setValues(i :Integer, x : Integer, y:
Integer) return String

Contains

1 1...10

Deals

1

1 Forms

1 1...10

Writes

1

1

Creates1

800*600

Writes
800*600 1

 47

4.2.2 Sending Data to the Board via Bluetooth Module Class Diagrams

StackInitialize

setPortNumber
setBaudRate
setConnectable
setDiscoverable

LocalDevice

getLocalDevice
getBluetoothAddress
getFriendlyName

RemoteDevice

getRemoteDevice
getBluetoothAddress
getFriendlyName
authenticate
authorize
encrypt
isAuthenticated
isAuthorized
isEncrypted
isTrustedDevice

DiscoveryAgent

getDiscoveryAgent
startInquiry
cancelServiceSearch
searchServices
selectService
deviceDiscovered
inquiryCompleted

Server

createService
addServiceToDatabase
registerBluetoothSecurity
acceptConnectionFromClient
updateServiceRecord
removeService
disableService
constructUrl
makeServiceRecordAvailable
acceptConnectionFromClient
sendData
receiveData

ServiceDiscovery

discoverService
initiateServiceDiscoveryTransaction

ServiceRegistration

createNewServiceRecord
obtainServiceRecord
indicateServiceReady
closeConnection

Client

initiateServiceDiscovery
constructUrl
openConnectionToServer
SendData
ReceiveData

Device

0..1

*

0..1

*

*0..1

1

1

*

1..*

*

* *

0..1

*

1 1

0..1

 48

4.3. SEQUENCE DIAGRAMS
4.3.1 Format Conversion Module Sequence Diagram

fc : FormatConverter if :ImageFolder

: PixelData

hdf : HexDataFile

getPixel(x,y)

<<create>>

setValues(pixel(x,y))

pixel(x,y)

getImgHeader()

image header data

<<destroy>> X

<<create>>

writeGenData(time[nImages],nImages,address[nImages*2])

loop n
[width]

writeData(hex_data)

loop n
[height]

:ImagePpmFile
<<create>>

X<<destroy>>

loop n
[nImages]

chFormatResize(Image_n)

signBegin();

signEnd()

 49

4.3.2 Sending Data to the Board via Bluetooth Module Sequence Diagram

:Local Device :Remote Device :Server :Client

Discover Remote
Devices

Discover Remote Devices

remote device found

discover service add service record
to database

accept connection

send data

receive data

 50

4.4. ACTIVITY DIAGRAMS

4.4.1 Format Conversion Module Activity Diagram

Manage Image
Data

[update] [initial upload]

Update Data Upload Data

Upload Image

Specify
Order&Time

[one more image]

[no more upload]

Update
Order/Time Update Image

Process Datafc : Format_converter
[in progress]

Write
time&address

hex data

hd : Hex_Data_File
[created]

[image upload/update]

[order/time update]

[update order/date] [update image]

Resize &
Format Change

Process Pixels

Write Hex
Pixels' Data

[one more image]

[no more image]

Hex Data
is Formed

hd : Hex_Data_File
[filled]

 51

4.4.2. Sending Data to the Board via Bluetooth Module Activity Diagram

Stack Initialization

Discover
Remote Devices

Discover Service on Remote Devices

Add
Service

Record To
Service

Discovery
Database

Accept
Connection

LOCAL DEVICE

discovered

CLIENTREMOTE DEVICE SERVER

Send Data Receive Data

 52

4.4.3. Register Processing Module Activity Diagram

Programming CPLD

Sending Info from
Parallel Port to CPLD

Sending Info from
CPLD to FPGA

[unsuccess ful
sending]

Info stored in FPGA
Parallel Port Register

[successful
sending]

 53

Retrieving Info from
SDRAM to FPGA

Programming CPLD

Sending Info from
FPGA to CPLD

Sending Info from
CPLD to Parallel Port

[unsuccess ful
sending]

[success ful
sending]

 54

4.4.4. Serial to Parallel Conversion Module Activity Diagram

Bluet ooth Boud Rate
Initialization

FPGA Recieving Rate
Initialization

1 Bit Dat a Retrieval from Serial t o
Parallel Port

Storing t he bit in the Parallel
Port Regis ter by RPModule

1 Byte(8 bit) Data Retrieved

[8 Bit s Read]

[else]

[no more bytes
to read]

[else]

 55

4.4.5. Parallel to Serial Conversion Module Activity Diagram

Bluet ooth Boud Rate
Initialization

FPGA Recieving Rate
Initialization

Retrieval of t he byte to Parallel
Port Regis ter

Sending 1 Bit data to RS232 serial
port by RPModule

1 Byte (8 bits) Data Sent

[8 Bit s Sent]

[else]

[no more bytes
to send]

[else]

 56

4.4.6. Retrieving Data from Users via Bluetooth Evaluation Kit Activity
Diagram

S2PModule Activity
for Address Info

Retrieving Address Info
from Parallel Port Regist er

Retrieving Data Info from
Parallel Port Regis t er

Storing Data Info in the
SDRAM according to

Address Info

S2PModule Activit y
for Dat a Info

Es tablishing connect ion
wit h file uploader

Sending Uploader
Data to Serial Port

 57

4.4.7. Sending Data to Users via Bluetooth Evaluation Kit Activity Diagram

Retrieval of Event info
from SDRAM to FPGA

Converting and Sending data
to BTEK via P2SModule

Finding the Bluetooth
Devices to send event

data

Establishing
Connection with

Devices

[there exist found devices
that are not connected yet]

[else]

[connect ion
es tablished]

[there exis t found but
not connected devices]

[no more found
device to connect]

[else]

 58

4.4.8. VGA Module Activity Diagrams

Activity Diagram for Address Generation

setting address to
the starting address
of the current image

setting counter
to zero

incrementing
address

eof
[counter == count] setting address to

the starting address
of the next image

setting counter
to zero

setting address to
the starting address
of the current image

incrementing
counter

[no system error]

[system error]

finish
operating

[counter != count]

 59

Activity Diagram for Vertical and Horizontal Sync Generation and Blanking Signal

setting blank,
horizontal and vertical

counters to zero

incrementing
horizontal counter

setting blank_h
to one

generating
horizontal sync

[no system error]

[system error]

finish
operating

[800<counter<1000]

[800<counter<1100]

incrementing
vertical counter

horizontal counter
reaches 1100

setting blank_v
to one

generating
horizontal sync

[660000<counter<731200]

[660000<counter<663200]

vertical counter
reaches 1100

 60

Activity Diagram for the Complete VGA Process

Address
Generation

Reading data from
memory to pixel buffer

pixel count = 0

Reading data from
buffer to pixel

register

[pixel count=1] Shift pixel register
pixel count = 0

Horizontal and vertical
sync generation and

blanking

[! horizontal blank and !vertical blank]

Showing
current pixel

[horizontal blank or vertical blank]

Blanking pixel

[buffer empty]

[system error]

[no system error]

 61

5. HARDWARE AND SOFTWARE
SPECIFICATIONS

5.1 HARDWARE REQUIREMENTS

5.1.1 XESS XSA-3S1000
 In our project, the main device we are going to use is the XSA-3S1000 board. This

board has many features which makes it very suitable for the purpose of our project.

Features:

XILINX Spartan-3 XC3S1000 FPGA:

The main repository of programmable logic on the board which contains 1,000,000 gates.

This FPGA is suitable for high volume, I/O optimized programmable logic solutions. It

supports 24 diferent single-ended and differential I/O standards. The memory architecture

enables implementation of of pipeline registers and buffers for video and wireless

applications. The multipliers included in the FPGA enable simple arithmetic and math

functions as well as advanced digital signal processing functions.

XILINX XC9572XL CPLD:

This is the other programmable chip the XSA board contains. It manages the interface

between the PC parallel port and the rest of the board. The CPLD also configures the FPGA

with a bitstream from the Flash RAM.

Oscillator:

A fixed-frequency oscillator generates the master clock for the board. This is a 100 MHz

oscillator. The CPLD generates two clock signals, CLKA and CLKB. This allows CPLD to

control the FPGA clocks. The CLKB signal also exists through a pin on the prototyping

header. This way, it can be used as a clock to an external system connected to the board.

32 MB SDRAM:

SDRAM provides volatile data storage which is accessible by the FPGA. The contents of the

SDRAM can be downloaded and uploaded. The data can be downloaded to SDRAM in files

 62

whose format can be .MCS, .EXO, .HEX, or .XES. The data in the RAM can be uploaded to a

computer again in the same file formats.

This is a 16 M * 16 RAM. The SDRAM controller receives read and write requests and

generates waveforms to perform these requests on the SDRAM. The controller is also

responsible for refresh operations which ara necessacary to keep the SDRAM data valid. With

pipelining enabled, read and write operations can be processed almost every clock cycle.

SDRAM is controlled by bus commands. The primary commands used to access SDRAM are

read and write. With the write command, the initial address line and the data word are

registered. With the read command, the initial address line is registered.

2 MB Flash:

The Flash provides non-volatile storage for data and FPGA confıguration bitstreams.

The board stores its configuration in the SRAM chip, however its contents are erased each

time power is removed. If a bitstream is stored in the Flash, the FPGA is reprogrammed every

time power is applied.

The Flash is divided into four quadrants and each of these quadrants can hold a bitstream.

However, before downloading a bitstream to the Flash, the .BIT file should be converted to a

.EXO or a .MCS format by using certain commands Multiple bitstreams can be downloaded

to the flash, and switches can be used to select which one to be loaded when power is applied.

The contents of the Flash can also be uploaded to a computer. The uploaded data can be

stored in several file formats like MCS, HEX, or EXO.

The Flash RAM of the board can operate in byte mode, 2M * 8, or word mode, 1M * 16. The

FPGA can read or write to any location of the Flash where as the CPLD can only access a

quadrant of the Flash.

VGA Port:

The board can send signals to display 512-color graphics on a VGA monitor through this

port.

Parallel Port:

Parallel port is the main interface for passing configuration bitstreams and data to and from

the board. It is the main interface for the bidirectional connection between the XSA-3S1000

board and the computer.

 63

CPLD can be programmed to act as an interface between the FPGA and the parallel port. The

CPLD is connected to the FPGA configuration pins so that it can pass bitstreams from the

parallel port to the FPGA.

After the FPGA is configured with a bitstream, the CPLD switches into a mode in which the

parallel port data and the status bits are connected to the FPGA. This way, the PC can send

data to the FPGA over the parallel port data lines and receive data from the FPGA over the

status lines. The FPGA sends data to the PC by driving logic level on certain Flash address

lines which also pass through the CPLD and to the status lines of the parallel port.

Prototyping Header:

Most of the FPGA I/O pins are connected to the 84 pins located on the bottom of the board

that enable connection with solderless breadboards. Specifically, a subset of the FPGA pins

are connected only to the prototyping header of the board and they are free to be used in I/O

operations with external systems.

Above all, the VGA port of the board plays an importan role for our project. The FPGA

outputs three bits, containing red, green, and blue color information, to a resistor-ladder DCA.

This produces 23 * 23 *23 = 512 colors. The outputs of the DCA are then sent to a VGA

monitor. The horizontal and vertical sync pulses are also generated by the FPGA.

5.1.2 BLUERADIOS BR-EVAL2.0 CLIENT EVALUATION KIT

 • Wireless data and voice communications board conforming to Bluetooth® v1.2

 • Audio CODEC, head jack, head phones, MIC volume control.

 • Conforms to FCC, CE, and the EMI standards of each country.

 • Conforms to ISM 2.4GHz band Bluetooth®.

 • RS-232 (DB-9), and 0-3.3Vdc logic levels

 • Includes integrated software stack, profiles, and AT modem like commands.

 • Embedded Bluetooth Stack Profiles Included (requires no host MCU stack):

SPP, DUN, LAN, Headset, Audio Gateway, GAP SDP, RFCOMM, and L2CAP protocols.

 • Evaluation Board Accommodates both Class1 and Class2 (BR-EC29A) radio

modules

 64

Features:

 • The BlueRadios serial radio modems can be configured, commanded, and

controlled through simple ASCII strings over the Bluetooth RF link or directly

through the hardware serial UART.

 • Dedicated PCM voice audio channel

 • UART baud rate data speeds: 1200bps up to 921.6Kbps, and customized

 • +100 meter (330 feet) distance

 • Software adjustable transmitter power from short to long range applications

 • Includes AC/DC power supply

 • 13 bit linear mono CODEC

 • Programmable Input Output (PIO’s)

 • Reset push button

 • LED status: Power, Bluetooth Connection, Slave status, etc.

 • 2.5mm audio jack

 • Low power consumption (120mA TX, 40mA RX, 2mA idle mode, and 90uA

deep sleep) radio only

 • RS-232 and 3.3Vdc TTL inputs

 • Self-discovery and network equipped multi-points

 • Operating temperature range: -40~+70ºC.

 • Secure and robust communication link

 • FHSS (Frequency Hopping Spread Spectrum)

 • Encryption, and 16 alphanumeric Personal Identification Number (PIN)

• Error correction schemes for guaranteed packet delivery

5.1.4 OTHER HARDWARE REQUIREMENTS

• A PC with at least 512 MB RAM and 2 GHz Processor

• A monitor

• A mobile device with bluetooth technology

• Parallel to serial port converter

 65

5.2 SOFTWARE REQUIREMENTS:

Implementing a logic design with FPGA consists of some main steps. You can enter a

description of your logic design by using a hardware design language (HDL) or a schematic

editor. Then a “logical sythesizer program” transforms the HDL or the schematic diagram into

a netlist which is a description of the gates in your design and how they are connected to each

other. The “implementation tools” are used to map the logic gates and the interconnections to

the FPGA. After this step, a program generates a bitstream which can be downloaded to a

physical FPGA chip.

There are software tools which can be used to generate the bitstream for a logic design. We

did research about two of these tools to learn their features.

5.2.1 XILINX ISE WEBPACK:

ISE Webpack is the only free product that can be used to program FPGA and CPLD. It offers

HDL synthesis and simulation, implementation, device fitting, and JTAG programming. The

latest version of ISE Webpack provides tools and features like those in ISE Foundation.

Moreover it is easily upgraded to ISE Foundation. Lastly, this tool works on Linux and

Windows.

Comparing the two products, we decided to use ISE Webpack since it contains similar

features as ISE Foundation and provides these features at no cost. Moreover, it is easy to

upgrade from ISE Webpack to ISE Foundation.

After generating the bitstream, it should be loaded to the FPGA. We are going to use

XSTOOLs for this purpose. Once the bitstream is generated, a connection between the board

and the computer is enabled via the parallel port of the board. Then, XSTOOLs downloads the

.BIT file to the FPGA.

5.2.3 OTHER SOFTWARE REQUIREMENTS:

• Windows XP Operating System

• Java Virtual Machine installed

 66

5. SYNTAX SPECIFICATIONS

According to conversations between our group members, we decided not to limit our

members with strict syntax specifications. We only declared some basic rules for the

understandability of our code and easy analyzing.

The most important point of our specifications is using comments efficiently. For every new

item in the code (except local variables), we decided to force members to include comments

about the process in a detailed way. Moreover we expect the members to include a text file

that tells the capabilities and constraints of their code, for every new created package.

Near this, because we will use only two programming languages in our project, which are

Java and VHDL, we decided to use the syntax conventions of these languages for a more

considerable code-design.

For Java, the names of the classes will be mixed-case, starting with a capital letter. If the

name is composed of a phrase, each word in the phrase will start with a capital letter. (ex.

ClassName) The constant names will be all upper case. Words in phrases will be separated by

underscores. (ex: CONSTANT_NAME) Finally function and variable names will start with a

lower-case word and if the name contains other names, then those words will start with a

capital letter. (ex: functionName)

For VHDL, the names of the generic variables will be all in upper case, words in a phrase

being separated by underscores. (ex: LINES_PER_FRAME) The variable names assigned to

the ports will be lower case and words will be again separated by underscores. (ex:

pixel_data_in) Constant names will be similar to generic variable names. They will be upper

case and the words will be separated by underscores. (ex: HSYNC_START) Component,

architecture, and entity names will be lower case where words are distinguished again by

underscores. (ex: component, component_arc, sync) Procedure names will be defined

similarly. (ex: map_pixel)

 67

6. GANNT CHART

 68

REFERENCES

[1] XSA-3S1000 Board User Manual

 http://www.xess.com/manuals/xsa-3S-manual-v1_0.pdf

[2] VGA Generator for the XSA Boards

 http://www.xess.com/appnotes/an-101204-vgagen.pdf

[3] Spartan-3 Capabilities

 http://www.xilinx.com/products/silicon_solutions/fpgas/spartan_series/spartan3_fpgas

[4] Xilinx : Logic Design

 http://www.xilinx.com/ise/logic_design_prod/index.htm

[5] XSA Board SDRAM Controller

 http://www.xess.com/appnotes/an-071205-xsasdramcntl.html

[6] VGA Generator Test Application with an Embedded Parallel Port Interface

 http://www.xess.com/appnotes/an-103005-vgagen.html

[7] Bluetooth Radios, A Wireless World

 http://www.blueradios.com/evaluationkit.htm

[8] Getting Started with Java and Bluetooth

 http://today.java.net/pub/a/today/2004/07/27/bluetooth.html

[9] The Java APIs for Bluetooth Wireless Technology

 http://developers.sun.com/techtopics/mobility/midp/articles/bluetooth2/

[10] Sundar Rajan, “Essential VHDL : RTL Synthesis Done Right”, USA:Sundar Rajan,
 1998.

[11] Downloading XESS FPGA and CPLD Software Tools : img2xes.zip

 http://www.xess.com/ho07000.html

