MIDDLE EAST TECHNICAL UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT

\d

CEYLAN®
AJAX SOFTWARE DEVELOPMENT STUDIO

FINAL DESIGN REPORT

Group Members:
Saliha ALTUNSOQOY

Candan CEYLAN
Canan ESKIi
Yavuz GOKIRMAK
Duygu GORGUN

Table of Contents

1.O INTRODUCTION ...ttt ettt ettt b ettt 4
L1 PrOJECt THIE. ..coiiiiiieiieeeteee ettt ettt s e et e e e e e 4
1.2 Problem DefInition.ccc.eeiiiiiiiiiiiiiieeiieeece ettt ettt e saree e 4
1.3 Statement Of SCOPE....cuviiiriiiiiiiieeitee ettt e et eesiaeeeabeeesenee 6
1.4 Application Areas of Our SOftWaTrE..........coevuiiiriiiiiiiiiiiieeciee e 7

2.0 PROJECT REQUIREMENTS. ...ttt 7
2.1 Functional REQUITEMENLS.ceervieiiiieeiiieeieeeteeeeieeesteeeeteeestaeeeeseeesreeseseeesnseeeens 7

2.1.1 Widgets such as tree view, toolbars and tabs.............cccceevviiiriniiieenniieeenniieeeee, 7
2.1.2 SETVET CONMECTIVITY ...uuvviieriiieeiitieeiiieesiiee ettt e steeestteeesabeeesatbeessbteessbaeeenaaeeesnanee 8
2.1.3 QUETY EXCCULION.ciiiuiiiiiiiieeiieeeiiee et et eetee ettt stt e et essabee e sabaeesnseeeennaeeennseeenns 8
2.1.4 Editing, and Debugging............cc.cevruiiiiiiiieiiiieeiee et 8
2.1.5 WOTK SPACE.....coiiiiiiiiiicieeee ettt e 9
2.1.6 HEIP MENU......iiiiiiiiiiieeeeeeee et e 9
2.1.7 Menu COMPONECILS.......eeeerurieeririeeriieerrteesitteestieeesiteeesssteessaeesnseeessseessseessseesnnes 9
2.1.8 INtEZTAtEA DIOWSET....cuvviieiiiieeiiieeeiie ettt ettt et e e e e st e e sataeesnaneesanbeeenes 10
2.1.9 Code and deSIZN VIEW........coouiiiiiiiiiiiiiieiieeeie sttt 10
2.1.10 Predefined cOde ENETAtioN..........cceiuueiiiieiieeniiieiieesiee ettt st 10
2.1.11 FTP OPETAtIONS.ceiiuiiieriieeiiieestieeeiteeeiiteesiteeesiteessiteesiieeesabeeesabaeessneesanneesnnnes 10
2.1.12 CVS OPETALIONS. ..cccuevieeiiieeiiteeitteesiite ettt e sttt e steeessibeessstteessbaeesabbeessseesnseesnnnes 10
2.2 Non-Functional REqQUITEMENTS.ccceeeriiiiiiieeiieeiieecieeesieeesieeesveeeiaeeesveeeseree e 11
2.2.1 USEr-friendIINEsS.eeveeiiiiiieeieeiceiee ettt ettt 11
2.2.2 MOAUIATIEY ..ottt ettt e et e e et e e e it e e e sabeeeenee 11
2.2.3 Platform Independency...........ccocueeeieriiiiiienieniieeieeeeeeesee e 11
2.2.4 COMNSISLEIICY .eeuvvierutreerieeerieeeniteeeseteestteestreesseeesaseeesssseessseesssseeensseesnsseesnsseesnnses 11
2.3 SyStem REQUITEIMENLS.cceiuviieiiiieeiiieeriiieeeiieeeieeesteeesreeeeiaeeesabeeesbeeeensseeessseeesnnnes 12
2.3.1 Software ReqUIrEMENtS:.........coovuiiiiiiiiiiiiiiiiee ettt 12
2.3.2 Hardware ReqUITEMENLS:ccccuutiiiiiiiiiiiieeniiee ettt ettt 12

3.0 ARCHITECTURAL DESIGN.....ccutiiitiitiniieeenteeieeste ettt 13
3.1 Ceylan Use Case Diagram for AJAX Development............ccoecveeeviieenniiieeeniieeennnen. 13
3.2 Interaction Models of OUr SYStEIM........coiuiiiiiiiiiiiiiieiie et 14

3.2.1 Sequence Diagram of GUI Applications............coccueevueeniiienieieiiienicenieeneeeae 14
3.2.2 Sequence Diagram of FTP Manager..........ccccceevuieriieinicenieeniicieeceeeecee e 15
3.2.2.1. Activity Diagram of FTP Connection...........cceccceevueenieeiieniieniieeniennieneenee 16
3.2.3 Sequence Diagram of CVS Manager...........ccceeevuieeriieeniiieeniieeeieeenieeesinee e 17
3.2.3.1. Activity Diagram of CVS CONNECtioN..........cccuueeeruieeeriiieeeiieeeniieeeniieeeeennes 18
3.2.4 Sequence Diagram of Database Manager...........ccocceevvveevieeniienieineenieeneeeneeee 19
3.2.4.1 Activity Diagram of Database COnnection.........c...cceceeevueerveeiuieneeeneennieenneens 20
3.2.4.2. Activity Diagram of Operation Request...........ccccoevuiieeriiienniiiieniiieeeiiee e, 21
3.2.5 Sequence Diagram of Error Handler............occoevviiiiniiiiiniiiiiieeeeeee e 21
3.2.6 Sequence Diagram of DebUZEET........cccuviiiiiiiiiiiiiiieiieeee e 22
3.3 Classes of CEYLAN and Their Relationships..........cccccoviiiiiiiiiiiiiiniiiiieeieee 23
3.3.1 LOCAl ENEINE......eiiiiiiiiiiieiiieeeite ettt ettt e et saee e 23
3311 GUIce ettt et 24
3312 Error HandIer:.....cc.oooiiiiiiiieieeee ettt 26
3.3.1.3 COTe EN@INE:...ccciiiiiiiiieeiiie et eeiee et e it e et e e etre e e e e e e eaaeeesbaaeenebeeeenneeenns 26
3.3.2 APPLICALION SEIVICE.eiiiiiiiieiiieiie ettt ettt ettt st et esneeeas 27

3.3.2.3 CVS MANAZET: .. .eeoiiiieiieeeteete ettt ettt ettt ettt saneesaneeas 30

4. MODELLING. ...ttt ettt ettt ettt et e et e st e et e e e bt e sateenbeeenbeesseeeeseesaseesnseas 31
4.1 Functional MOAEIING.eeiiiiiiiiiiie ettt ettt e e sve e e e ee e eabaeeenneee s 31
4.1.1 Data Flow Diagrams (DFD).......ccccoviiiiiiiiiiiiiiieeeieeeeiececeee ettt 31
A.1.1.1 DFED LEVEL 0.ttt ettt sttt 31
4112 DED LEVel L.ttt sttt e 32
4.1.1.3 DFD Level 2: Local ENGINE........ccccuvtiiiiiiiiiiiieeiiie ettt 33
4.1.1.4 DFD Level 2: Application SEIVICE.......cuutiriuuieriiieeriieeiiieeerieeeeieeeesireeesieeeens 34

4.1.2 Process Specifications (PSPEC).........ccooiiiiiiiiiiiiecieeeeee et 34

4.1.3 Data DICHONATYeeiiiiiiiiiiiieeiie ettt ettt et e e b e eas 38

S.0 BAZ PICTUTE. ...ttt ettt ettt e st e et e e e e e e aees 44
ST LOCAL ENGINE... ..ottt st 44
ST GULL ettt ettt et 45

S5.1.2 COre ENZINE.....coiiiiiieiiie ettt ettt e ste e et e e e saae e e saeeeseseeeennneeenns 45

S.L3 Error HANAIEToooiiiiiiee ettt ettt e e e e s eeere e e e 46

5.2 APPLICATION SERVICE........cooiiiiiiiiee ettt 46
5.2.1 Database ManQ@eT............ueeeruiiieriiieeeiieeeeitee et e esiteeestteeesbeeesbeeesabeeessaneeens 46

S22 FTP MANAZET...cccutiieiiieeiieeeite ettt ettt e ettt et e st e st e e entaeeeaneeesaveeas 47

S5.2.3 CVS MANAZET...cceutiieiiieeeiiteeeee ettt ettt et e ettt e e esaaee s 47

6.0 User INterface DESIZN.........oiiuiiiiiiiiiiiieiie ettt ettt 48
6.1 GUI Design PrinCiPles.........eeeeiieiiriiieiiiieeiteeeiee ettt ettt e s 48
6.2 Screenshots and ACHIONS.c..uieriieriieiiieeiieenee ettt sttt sineesnee e 52
6.2.1 EILOT VIBW ...ttt sttt ettt st e e e 53

6.2.2 MENUBAT.......ooiiiiiiiiii ettt ettt e 54
6.2.2.1 FII& MENU..cciiiiiiiiieiiiie ettt e et e e et e e e e ae e e e enaaaee e e nnseaaaens 54
6.2.2.2 EIt MENU......ooiiiiiiiieiieie ettt sttt ettt st st e saaeesneeeas 56
6.2.2.3 QUETY MENU....cuuiiiiiiiieiiiieeiie ettt et e et e e tte e et e e st e e s beeesasaeensbeeeaseesaneeas 57
6.2.2.4 PrOJECE MIENU.....ceiiiiieiiiiieesieeeeitte ettt ettt et este e et e e e sibe e e s beeesnebeeesnneeenns 60
6.2.2.5 WINAOW MENU....ciiiiiiiiiiiiiiiiiiie et eetee et te e e e e e e e s saraeee e sssnseaeeseennns 61
6.2.2.60 HEIP MENU.....coiiiiiiiiiiiiiee ettt et et 61

6.2.3 Project WOTKSPACE.......coviuiiiiiiiiiiiee ettt et s 62

6.2.4 OULINE.eoneiiiitieieeeeee ettt ettt et ettt sae e e ne e eneenaeeeas 63

0.2.5 BITOT....itiieeiiee ettt ettt e et e e e et e et e e e staeeeabaeeenaseeeennseeeansseeesnseenns 63

6.2.60 DIag & DIOP....coiuiiiiiieeiie ettt ettt e 64

7.0 TESUIIZ. ...ttt ettt ettt ettt ettt e ettt e ettt e e et e e e eab e e e sabt e e sabbeeeanb e e e nabbeeeaabee e anaes 64
7.1 UNTE TESHINZ. ..eeeeiitieeiiiee ettt ettt e ettt e et e st e e et e e e s st e e e saabeeesabbeesensbaeeas 64

B0 GANE CRATT. ettt e ettt e e e e e e te e eee e e e e taaa e aeeeeeaaanaaeseeeaannaaseeeeannnas 66

1.0 INTRODUCTION

This document aims to provide detailed information about the design
process of the problem. During the analysis phase of our project, we investigated
the possible problems and then in the initial design report we had come up with
solutions. In this final design report we refined our architectural design and add

some new modules to our project.

Firstly, problem definition and the scope of the project can be found in this
document. Detailed version of the revised Data Flow Diagrams and data dictionary
are also included. Moreover, to describe the processes, we used use case
diagrams, sequence diagrams for each use case, and activity diagrams when
necessary. Class diagrams are also added to describe the relationships between
classes and modules. In addition to these, detailed description of our GUI design
and actions are told. Our test strategy and preliminary test case specifications are

described. Finally, a revised version of our projects Gantt Chart is included.

1.1 Project Title

Our development studio is called CEYLAN Ajax Development Studio.

1.2 Problem Definition

These days, web applications are being used in a wide range of areas; from

banking applications, search engines, e-government applications, online-library
applications, etc. to non-institutional web pages. In most of these areas, response
time is a very important issue. To illustrate, for a search engine the application
must retrieve the result and display it in a short time period. Or in a banking
application, the purpose is to allow the customer to transact instead of going to the
bank branch and waiting for other people to complete their operations. If the user
waits too long for response in front of the screen, using the web application will be
meaningless. AJAX offers a different approach to make these web applications

respond faster.

In the traditional approach application model works like this: most user
actions in the interface trigger an HTTP request sent to the web server, the server
does the processing — retrieving data, crunching numbers, etc. — and then returns
an HTML page to the client. Even if there is a very little change in the interface, the
whole page is reloaded again. And the user waits until the server responds.
Instead, AJAX offers an approach which eliminates the start-stop-start-stop nature
of interaction on the web. That is; instead of loading the entire page again and
again, only the changed parts are loaded and the user can interact with the
application asynchronously, independent of communication with the server.

Actually, AJAX is shorthand for Asynchronous JavaScript and XML.

Due to the advantages offered by Ajax, most of the developers use this
approach. During development stage, the development environment is a very
important issue and some utilities are expected from IDEs to make the job of
developers easier. The developers of Ajax need a user-friendly and platform
independent IDE and in the market, there is not many products working as desktop

applications to satisfy the developers’ needs.

1.3 Statement Of Scope

Our project, CEYLAN, is an integrated development environment for
developing web pages with Ajax. Our aim is to offer a user friendly and functional
IDE which will additionally include database connection and configuration wizard
for the developers from different backgrounds; professionals or amateurs. We will
develop a desktop application which doesn’t need an internet connection to run.
Our development environment will be developed regarding the following four basic
design principles;

* User friendliness

* Modularity

» Platform Independency

» Consistency

Our IDE’s interface will be graphical and user friendly. It will work regardless
of operating system and the code developed using it will run in different browsers.
It will be consistent; will not surprise the user presenting unexpected behaviors.
Concerning these design parameters, our product will include the following

features;

» Widgets such as tree view, tool bars and tabs

e Server connectivity

« Extensive tools for development and debugging
e Syntax highlighting

e Syntax checking

e Auto completion

e Error handling

e Code indentation

e Help menu

e Integrated browser

e Code and design view

* Predefined code generation
e Customizable user interface
e Database connection wizard
* Views of database tables

» Displays of SQL queries

e File Transfer (FTP)

e CVS support

1.4 Application Areas of Our Software

Our software will be used in most of the areas where web application
development is the issue; by companies, individual developers, students in
educational concepts, etc. Our target user profile consists of the whole software
developers using Ajax technologies. Our product will be able to serve more than
enough functionality for users having different amount of knowledge and

experience.

2.0 PROJECT REQUIREMENTS

2.1 Functional Requirements

2.1.1 Widgets such as tree view, toolbars and tabs

User will be provided with widgets such as tree view, database view,

toolbars and tabs. With these tools it'll be easier for the developer to follow and

manage her/his work.

2.1.2 Server connectivity

Connection Wizard: Connection operation is done via a wizard. User
chooses appropriate options step by step. Options are database address,

connection engine, connection name, etc

2.1.3 Query Execution

® SQL Command Screen: Executes SQL queries and returns results in dos
like command screen.
® SQL Executer Interface: Similar SQL operations “SQL Command Screen”
supplied in more user-friendly interface. And some sub operations are
provided which are as follows:
o Save SQL
o Load SQL
o Execute SQL
o Prepared SQL

2.1.4 Editing, and Debugging

There are some features provided with for editing and debugging. These
are;

» Syntax Highlighting: The code will be highlighted according to specified

types, keywords and functions.

» Code indentation: User can indent the file or some part of the file.

» Auto-completion: While the developer is writing the code, upon her/his

request s/he will be provided with auto-completion. This completion can
be done using libraries or user code.

» Error-handling: When the user interprets the code, errors are detected

and the user will be provided with the appropriate error message.

* Run: Invokes interpretation via GUI.

» Debug: Starts debug mode. User can set breakpoints or do step in step

out etc.

2.1.5 Work Space

The user is provided a workspace with the features below:

Hotkeys: Hotkeys of editor functions is provided. Simply as: ctrl+c copy

ctrl+v paste.

 Auto Completion: Auto completion of code. Appropriate code is
generated according to the table that the parser generated..

» Split View: Partitioned design screen is available. Design screen is
divided as Code&Design.

» File Tree: Organization of files represented as tree view.

» Database Tree: Gives the tree view of the databases connected, and the
tables, functions, triggers etc. corresponding to these databases.

» Drag&Drop: By simply dragging and dropping an item into design

screen, users can generate code.

2.1.6 Help menu

Help menu will contain:

® Search: User can make search by entering the word to be searched.
@ Tutorial: Usage of program is explained step by step.

® FAQ: Some frequently asked questions and answers.
®

Online Help: Link to internet site.

2.1.7 Menu Components

Menu components will be explained in details in the User Interface part.

2.1.8 Integrated browser

There will be an integrated browser which pops up after the code is
interpreted and ready for display. So the user can see what s/he does on a web

page view.

2.1.9 Code and design view

While the user is editing her/his codes/he will be able to see her/his code as

code view, design view or split view.

2.1.10 Predefined code generation

When the user is in design or split view and buts a figure on design part, the

corresponding predefined code will be automatically put exact place in code file.

2.1.11 FTP Operations

User connects to the server through connection wizards. After the
connection is established, user will be able to transfer files from local machine to

server or from server to local machine.

2.1.12 CVS Operations

User connects to the server through connection wizards. After the
connection is established, user will be able to lock or release files. Moreover, the
user will be able to check in files from local machine to server or check out files

from server to local machine.

2.2 Non-Functional Requirements

2.2.1 User-friendliness

Our aim is to provide a user-friendly program to user. In our project we can
accomplish this goal with two components; an User Friendly Interface and Easy
Coding Features. GUI provides easy-to-understand and easy-to-use interface.
User won'’t lose within menus. Functions which are similar are grouped. Our
program provides Drag&Drop operations. With the help of this user can create

applications very easy.

2.2.2 Modularity

Modularity is important in our design because with the help of it we can add
and remove components easily. We designed system as modules, this modules
work together but one module don’t need to know internal design and internal

processes of another module.

2.2.3 Platform Independency

We chose Java as programming language. Java choice is actually related
Java Virtual Machine (JVM). We need machine independent software and JVM
provides us a virtual layer between software and machine. Thus we can write
machine independent code. Our software will be used on every system which has
JVM.

2.2.4 Consistency

Our system will behave in a predetermined manner. We will lessen the

unexpected states or behaviors of system as much as possible.

2.3 System Requirements

2.3.1 Software Requirements:

Development Phase

Project CEYLAN will be developed in Java, since Java allows us to develop
a platform independent code. Moreover, Java offers a wide range of functions to
develop a high-quality graphical user interface. Thus Java Runtime Environment
and Java SDK are the essential tools to be used in this project. Moreover, for
reporting and preparing help menus we will use design tools such as MS Visio,
Borland Together.

To develop our application, we will work in Windows XP and Linux

platforms.

For the End User

Since our application will be developed in Java and will be platform
independent, the end user will only need a compatible operating system and a
Java Runtime Environment. And since we are using web service in the

development phase, the user can choose whichever database he/she wants.

2.3.2 Hardware Requirements:

» 512 MB disk space
* 512 MB RAM (1024 preferable)

* Intel 500 MHz Processor (or above)

3.0 ARCHITECTURAL DESIGN

3.1 Ceylan Use Case Diagram for AJAX Development

CEYLAN Use Case Diagram for AJAX
Development

2.0_ FTP Manager 3.0_CVS Manager
<<exignd>> <<extend>> 5.0_Query Execution

</<gx&ena;;

4.0_Database Manager

§\\Eaa)euendzz\
7 N 6.0_Displaying Database
<;€Mnd>> <<e\>lt\§nd>>
8.0_Debugging
7.0_Error Handling

Ajax developer does necessary operations through GUI. Actually, besides

AJAX Developer

GUI applications, there are basically five operations that can be done by using
GUI:

» FTP operations: These are done by our FTP Manager which gives
user the opportunity that is file transfers. More detailed information
about FTP Manager is at our class diagrams.

» CVS operations: These are done by our CVS Manager which gives
user the opportunity that is also file transfers but in controlled way.
More detailed information about CVS Manager is at our class
diagrams.

» Database operations: These are done by our Database Manager
which gives user the two basic opportunities those are executing
queries and displaying tables. More detailed information about

Database Manager is at our class diagrams.

 Error Handling: Tokenizing and parsing code, sending the
information about errors and parts to be highlighted and constructing
the language data table are done by Error Handler. More detailed

information about Error Handling is at our class diagrams.

» Debugging: The debugging operations done by debugger.

3.2 Interaction Models of Our System

3.2.1 Sequence Diagram of GUI Applications

1.0.1_GUI Applications

c
o)
=

GUl Application Service Error Handler Core Engine

1: Give input

| Send Request[Data Requesi e

2: Send Req pst[Code Stream]

2: Send Re| (est[Function Call]

3: Data Response

3: Function Return

3: Notification

4: Display L

This diagram shows operations' sequence which are done only through

GUL.
Step 1: User (AJAX Developer) gives his/her input to GUI in order to start
operation.

Step 2: GUI does the operation according to the input which was got in first

step. The operations may be data request sending or code steam sending or
function call request.

Step 3: According to the operation done in step 2, related answer returns in
this step. If the operation was data request, then the answer would be data
response, if the operation was code stream, then the answer would be notification
and lastly if the operation was function call, then the answer would be function
return.

Step 4: GUI displays relevant result to user.

3.2.2 Sequence Diagram of FTP Manager

2.0.1_FTP Manager

GUI ETP Manager Servers

1: Make Connection

Send user name and password

2.0.1.1.FT
Connection

Response

2: Connection Response

3: Send File Transfer Reduest
| = -

4: Send Transfer request

5: Return transfer response

6: File Transfer Response

This diagram shows the operations’ sequence which are done by FTP

Manager

Step 1: In order to use FTP manager, firstly it must be activated through
GUI. The operation is making connection. Then FTP manager send user name

and password to server in order to check the correctness and send a result

whether connection is established or not. This operation is shown detailed in
activity diagram named 2.0.1.1_FTP Connection at part 3.2.2.1.

Step 2: According to the response of server, FTP manager returns

response.

Step 3: From GUI, the request is sent to FTP manager. Request is file

transfer.
Step 4: File transfer request is sent to from FTP manager to server.
Step 5: File transfer response is sent from server to FTP manager.

Step 6: According to the result come from server, FTP manager returns the

result of file transfer request.

3.2.2.1. Activity Diagram of FTP Connection

2.0.1.1.FTP Connection

FTP MANAGER

l

(Connection request is senD

Are Server Name and Password both True

Accept Connection Deny Connection

:

0>>

3.2.3 Sequence Diagram of CVS Manager

3.0.1_CVS Manager

[0}
=

CVS Manager Servers

1: Make Connection

i

Send user name and password

3.0.1.1. CVSH
Connection

Response

2: Connection Response

3: Send Action

4: Send action request

5: return action response

6: Action response

This diagram shows the operations’ sequence of CVS manager.

Step 1: In order to use CVS manager, firstly it must be activated through
GUI. The operation is making connection. Then CVS manager send user name
and password to server in order to check the correctness and send a result
whether connection is established or not. This operation is shown detailed in
activity diagram named 3.0.1.1_ CVS Connection at part 3.2.3.1

Step 2: According to the response of server, CVS manager returns
response.

Step 3: From GUI, the request is sent to CVS manager. Request is CVS
related operations.

Step 4: CVS related operation’s request is sent to from CVS manager to
server.

Step 5: CVS related operation’s response is sent from server to CVS
manager.

Step 6: According to the result come from server, CVS manager returns the

result of CVS related operation’s request.

3.2.3.1. Activity Diagram of CVS Connection

3.0.1.1. CVS Connection

CVS MANAGER

Accept connection

(Conneciton request is serD

Are servername and password both true?

Y

(Deny connection)

:

3.2.4 Sequence Diagram of Database Manager

4.0.1_Database Manager

(@)
<

Database Manager Servers

1: Send Connection Request

Send password and username
-

4.0.1.1.Database
Connection

2: Connection Result Response

3: Send Operation Requeét

4.0.1.2. Operation
Request

4: Operaiton Response

Send data request

Return Data

This diagram shows the operations’ sequence of Database manager.

Step 1: In order to use Database manager, firstly it must be activated
through GUI. The operation is making connection. Then Database manager send
user name and password to server in order to check the correctness and send a
result whether connection is established or not. This operation is shown detailed in
activity diagram named 4.0.1.1_Database Connection at part 3.2.4.1

Step 2: According to the response of server, Database manager returns
response.

Step 3: From GUI, the request is sent to Database manager. Requests are

query executing or displaying tables. More detailed information about these

requests is shown at activity diagram named 4.0.1.2_Operation Request at part
3.2.4.2. Then the request is sent to server in order to get relevant data.
Step 4: According to the e result come from server, Database manager

returns the result of the request.

3.2.4.1 Activity Diagram of Database Connection

4.0.1.1.Database Connection

DATABASE MANAGER

|

(Conneciton request is serD

Are servername and password both true?
<<no>>
<<yes>>

(Deny connecting to Databa@
CAccept Connecting to databasD

: :

3.2.4.2. Activity Diagram of Operation Request

4.0.1.2. Operation Request

DATABASE MANAGER

!

(Operation request is accepteD

Isit about query organization?
(Open query organization wizarcD (Ope” display tables learD

:

3.2.5 Sequence Diagram of Error Handler

7.0.1_Error Handler

0]
c
—
©
<
@)
S

Parser Language Data Table

1: Send code

2: Send Tokens

3: Send Tokenized Code Stream

—
o

4: Send Autocompletion Info

5: Send Parse error

This diagram describes how to handle the errors.

Step 1: The user writes code and it is sent to Lexer through GUI.

Step 2: The Lexer builds up the tokens and send them to language data
table in order to make them usable later errors.

Step 3: Lexer sends tokenized data to parser in order to check the errors.

Step 4: The parser sends auto completion information to Language data
table in order to make it usable later on.

Step 5: The errors are sent to GUI.

3.2.6 Sequence Diagram of Debugger

8.0.1_Debugging

[0}
<

Function Distributor Debugger Service Language Data Table

1: Call Function\
/L 2: Call Debugger

3: Request Language Inch

4: Respond Language Info J

5: Return result

This diagram shows the basic operations done for debugging.

Step 1: A function call is made and the debugger is activated, if the function
call is for debugger.

Step 2: After function distributor decides the function is debugger call, it
calls debugger.

Step 3: The debugger sends request to language data table in order to
check the code.

Step 4: Language data table returns relevant data information.

Step 5: The result is sent to GUI.

3.3 Classes of CEYLAN and Their Relationships

In design of CEYLAN Ajax Developers’ Studio, we decided to have two main
modules. These are Local Engine and Application Service. Local Engine and
Application Service modules are shown as packages in the following class
diagrams, which introduce our classes, relationships between them and other
packages. Both Local Engine and Application Service packages are consisting of
classes which are responsible from constructing CEYLAN. These classes are in
communication with each other and this communication is achieved by function
calls. The data flows between these classes are handled according to the
interfaces provided by these classes as functions. As a result, data flows in Ceylan

are well formed.

3.3.1 Local Engine

Local Engine is the main module of Ceylan. Most of the job is done here.
GUI sub module is included in this module which is responsible from the
interactivity between user and our internal system. GUI takes the requests from
user and forwards them to relevant classes if necessary. Second sub module
included in this module is Error Handler. Error Handler is responsible from lexical
analysis and construction of the parse tree from the code. The third sub module is
Core Engine. Core Engine is responsible from file operations, auto completion and
debugging applications. The class diagram for Local Engine and explanations can

be found below.

[

Application Service

Local Engine

Error Handler
- codeStream : String
GUl - tokens : java.lang.Object
- paths : String - rules 5 Ui
- code : String + getCode () : String
+ setPaths () : boolean + setCode () - boolean
+ getPaths () : String + setTo_kens() :bo_olean
+ createToolbar () - boolean 1 - tokenize () void
+ createMenubar () - boolean + setRules () : boolean
+ createTextArea () - boolean 1 + sendErrorinfo () void
+ createFileTree () : boolean + constructDataTable () : void
+ createErrorConsole () :boolean + sendHiglightinfo) : void
+ createOutline () : boolean - parse () : void
+ createDragDrop () :boolean
+ setCode () : boolean
+ getCode () : String 1
+ sendCode () :boolean 1
+ getNotification () : String .
+ getActionRequest () :java.lang.Object Core Engine
+ forwardAction () : boolean - filePath : String
+ callBrowser () : boolean - previousState :java.lang.Object
+ sendServerRequest () : String - debuglnfo : String
+ getServerResponse () : String - actionType sint
+ display () : void - codeStream : String
+ getRequestedAction () : void
+ setActionType () :boolean
+ setFilePath () :boolean
+ setPreviousState () : boolean
+ setCodeStream () :boolean
- debugCode () : void
+ sendDebuggerReport () : void
+ openFile () : String
+ saveFile () :boolean
processState () :void
+ sendAutoCompletioninfo () :java.lang.Object
+ closeFile () :boolean

3.3.1.1 GUI:

This class is responsible from the interaction between user and our internal
system. It gets the requests from user, and according to the request type takes the
necessary action. It either does the job itself or forwards to other classes. However,
whatever the request is, displaying the result is performed by this class. GUIl is in
communication with two other classes and Application Service package. It sends
requests about syntax highlighting or syntax checking to Error Handler class. And
the requests about debugging, auto completion and file operations are sent to

Core Engine class. In addition to these, the requests about database, CVS and

FTP operations are sent to the Application Service package. The functions in this

class are listed below:

setPaths(): Paths are used to reach to some necessary files that will be
used in the startup and this function is used to set this paths property.
getPaths(): Returns the stored value of paths property.

createToolbar(): Creates the customizable toolbar.

createMenubar(): Creates the menubar with sub menus.
createTextArea(): Creates the text area where the user will enter his/her
code.

createFileTree(): Creates the tree view of workspace files.
createErrorConsole(): Creates the error console where the errors and
warnings will be shown.

createOutline(): Creates the outline frame where the HTML tags will be
shown to the user in tree view.

createDragDrop(): Creates the drag and drop frame where the user can
find predefined codes for visual elements like combo boxes, radio
buttons etc.

setCode(): Sets the code property of the GUI class.

getCode(): Returns the code property.

sendCode(): Sends the string stored in the code property to Error
Handler.

getNotification(): Gets the errors, warnings and associated syntax
highlight information from Error Handler.

getActionRequest(): Gets the action request from user by listening
actions.

forwardAction(): Forwards the requested actions to the relevant classes
with information needed to take action.

callBrowser(): Calls the browser to display the design view of the code
supplied by user.

sendServerRequest(): Sends the server related requests to Application
Service package.

getServerResponse(): Gets the response of the server for requested

server related actions.

display(): Combines all the graphical view and displays to the user.

3.3.1.2 Error Handler:

This class is responsible from -as the name implies- error handling. By its

internal functions, tokenizes and parses the code, sends the information about

errors and parts to be highlighted and constructs the language data table. The

functions of this class are listed below:

getCode(): Returns the codeStream property of the class.

setCode(): Sets the codeStream property with the specified value.
setTokens(): Sets the tokens property of the class with the tokens after
tokenization process.

tokenize(): Does the lexical analysis of the code and tokenizes it
according to the rules specified in the rules property.

setRules(): Sets the rules property of the class with the rules necessary
for generating parse trees.

sendErrorinfo(): Sends information about erroneous parts found in the
code.

constructDataTable(): Constructs information to be stored in language
data table using the information got from parsing process.
sendHighlightinfo(): Sends information about which parts will be
highlighted in the code.

parse(): Parses the code after tokenization process.

3.3.1.3 Core Engine:

This class is responsible from file operations such as open, save, close etc.

Moreover, debugging process is performed here. Auto completion is also handled

in this class. The functions included in this class are listed below:

o getRequestedAction(): Gets the requested action from GUI class.

o setActionType(): Sets the actionType property of this class according to

the action type requested by the user.

o setFilePath(): Sets the filePath property which will be used in file
operations.

e setPreviousState(): Sets the previousState property which will be used
if the requested action is auto completion.

e setCodeStream(): Sets the codeStream property to be used in
debugging process.

e debugCode(): The function used for debugging the code.

e sendDebuggerReport(): Sends result to be shown to user constructed
during debugging process.

e openFile(): Opens the file specified by filePath property of the class.

e saveFile(): Saves the file specified by filePath property of the class.

e closeFile(): Closes the file specified by filePath property of the class.

e processState(): Processes the previousState property with the help of
language data table in order to generate a list of possible suggestions
for auto completion.

e sendAutoCompletioninfo(): Sends the information generated by

processState function to be displayed to user.

3.3.2 Application Service

Application Service is the second module of Ceylan which actually is the
bridge between Local Engine and Servers. GUI class gets the server related
requests from user. It consists of three sub modules. These are Database
Manager, FTP Manager and CVS Manager modules which are shown as classes
of Application Service package. The first class Database Manager handles
requested database operations such as connection to the database and query
execution. The second class, FTP Manager’s job is to handle file transfer related
requests. And lastly, CVS Manager is responsible from performing necessary
actions for requested CVS related operations. The class diagram for Application

Service and explanations can be found below.

[S

Local Engine
Application
Service
Database Manager FTP Manager
- connection :java.lang.Object - connection :java.lang.Object
- query : String - fileName : String
- queryResult : String - filePath : String
+ setConnection () : boolean + connectToServer () : boolean
+ connectToDB () : boolean + disconnectFromServer () : boolean
+ disconnectFromDB () : boolean + setFileName () - void
+ sendQuery () : void + setFilePath () : void
- setQueryResult () : void + getFile () : String
+ setQuery () : void + transferFile () : void
+ getQueryResult () : String + setConnection () : boolean
CVS Manager
ation Service
- connection :java.lang.Object
- requestType :int
- fileName : String
- filePath : String
+ setConnection () :boolean
+ setFileName () :boolean
+ setFilePath () : boolean
+ setRequestType () : boolean
+ connectToServer () :boolean
+ disconnectFromServer () :boolean
+ lockFile () : boolean
+ releaseFile () : boolean
+ checkFileln () : boolean
+ checkFileOut () : String

3.3.2.1 Database Manager:

This class is responsible from database related operations such as
connection, query execution etc. It is the job of this class to establish the
connection to the database, disconnect from the database, and send queries
entered by user or queries used to get information about database items for the
graphical interface to the database server. The functions that are defined in this

class are listed below:

» setConnection(): Sets the connection object of this class which will be
used to establish connection.

» connectToDB(): Establishes the connection to the database using the
username, password and target database related information stored in the
connection object.

» disconnectFromDB(): Disconnects from database.

+ sendQuery(): Sends the query to be executed to the database.

+ sendQueryResult(): Sends the query result returned from database to
Local Engine package to be displayed in GUI.

« setQuery(): Sets the query property of the class with the requested query.

« getQueryResult(): Gets the query result from database.

3.3.2.2 FTP Managetr:

This class is responsible from file transfer related operations such as
connection, transferring files to or from server etc. It is the job of this class to
establish the connection to the server, disconnect from the server and transfer

operations. The functions that are defined in this class are listed below:

« connectToServer(): Connects to server where the file transfer operations
will be according to the information stored in the connection object.

» disconnectFromServer(): Disconnects from server after the file transfer
operations finish.

« setFileName(): Sets the file name property of the class which specifies the
file name to be transferred from server or to server.

» setFilePath(): Sets the file path property of the class which specifies the
file path to be transferred from server or to server.

» getFile(): Gets the file specified by file path and file name from the server.

» transferFile(): Transfers the file specified by file path and file name from
local machine to server.

+ setConnection(): Sets the connection object belonging to this class.

3.3.2.3 CVS Manager:
This class is responsible from CVS related operations such as connection,
locking or releasing files and checking in or out files etc. The functions defined in

this class are listed below:

o setFileName(): Sets the file name property of the class which specifies the
file name to be checked in or out.

o setFilePath(): Sets the file path property of the class which specifies the file
path to be checked in or out.

e setConnection(): Sets the connection object belonging to this class.

o setRequestType(): Sets the requestType property according to the user
request. This request type can specify following; locking, releasing, check-in
operation or check-out operation.

e connectToServer(): Establishes the connection to server.

e disconnectFromServer(): Closes the server connection.

e lockFile(): Sends the request to lock the file so that nobody can make
changes on that file.

e releaseFile(): Sends the request to release the file so that other people can
lock it.

e checkFileln(): Sends the request to check the file in, in other words to send
the file contents in the local machine to server to be stored.

e checkFileOut(): Sends the request to check the file out, in other words to

get the file contents from the server to be stored in the local machine.

4. MODELLING

4.1 Functional Modeling

4.1.1 Data Flow Diagrams (DFD)

4.1.1.1 DFD Level 0

DFD Level0 CEYLAN Ajax Development Studio

INPUT

0.0
CEYLAN
AdaX Development Studio

DATA ATA REQUEST
RESPOMSE

SERVER

4.1.1.2 DFD Level 1

DFD Level 1

SERVER
DATA DATA
INPUT DISPLAY EQUEST ESPONSE
SERVER OPERATION
1.0 Local
Engine
SERVER OFERATION
RESPONSE
DATA DATA OPERATION
RESPONSH REQUEST

Intemal Data

4.1.1.3 DFD Level 2: Local Engine

DFD Level2 Local Engine

DISPLAY

UZER BROWSER

2.0

DISPLAY
SERVER OPERATION
BROWZER REQUEST Application
PUT CA Service
o EERVER OPERATION

FUNCTION CLL

FUNCTION RETURN

NOTIFICATION
1.3 Core
Engine

CODE STREAM

GUAGE INFO e Q:...!\
RESPONIRGUAGE INF
Loz LIBRARY
IBRARY GCALL &
ETURN
Language
Data Table

LIBRARIES

4.1.1.4 DFD Level 2: Application Service

DFD Level2 Application Service

EH OPERATION
REQUEST

OB OFERATION
RESULT

DATABASE REQUEST

BASE RESPONSE

FTP OPERATIO
REGUEST

TP OPERATION FILE REQUEST

FILE RETURN

WPERATION REQUEST

SERVER

CV3 OFERATR)M
REQUEST

WS OPERATION
RESULT

SERVER RESPOMSE

4.1.2 Process Specifications (PSPEC)

0.0 CEYLAN Ajax Development Studio

CEYLAN Ajax Development Studio is our whole project. It is in
communication with user and server. It has two main components; 1.0 Local

Engine and 2.0 Application Server.

1.0 Local Engine

Local Engine is the part where most of the basic properties that our

development studio have are handled. Local Engine is in communication with user
and Application Service. Moreover, it is responsible from constructing the internal
data which is kept for auto completion. It is consisting of three sub modules; 1.1
GUI, 1.2 Error Handler, 1.3 Core Engine.

1.1 GUI (Graphical User Interface)

Our graphics-based user interface incorporates movable frames,
icons and mouse actions. The ability to resize or hide application frames
and customizable style and font properties are significant advantages of our
Graphical User Interface compared to a character-based interface. This
process includes all the graphical views provided by our development studio
such as menu bar, tool bar, file explorer, tree view for the tags of the
documents, area for error reporting, drag & drop components and text editor
which includes code, design and split views. Moreover, the interfaces for
database, FTP and CVS applications are parts of this sub module. GUI
provides interaction between user and system. That is, all requests coming
from user are captured by GUI and these requests are either forwarded to
the responsible modules or handled in this module. The responses to the

requests are displayed via GUI.

GUI collaborates with other modules in order to return response to the
user. It sends the code stream to the Error Handler, and gets the information
about errors to be reported and also about auto completion. It forwards the
file operations requests to the Core Engine and gets the response for
display. Moreover, it forwards the server oriented requests to the Application

Service and displays the response.

1.2 Error Handler
Error handler takes the written code and makes necessary operation
on it. First, it does the lexical analysis of the code and tokenizes the code
stream, then parses the code. If there exist errors, it sends notification to

GUI in two ways: it may return an error message or it may show the error on

screen by underlining the erroneous parts. The information for highlighting
the code also comes from this module. While examining the code, error
handler stores some important information to LANGUAGE DATA TABLE
which will be used by auto completion process and other processes that

need language specified information.

1.3 Core Engine
Core Engine controls operations on local machines such as saving
file, opening file, creating workspace etc. In addition to these trivial tasks it
is responsible for “auto completion” which is invoked via pressing
ctrl+space. Debugging operations are also included in this module. This sub
module is in communication with GUI, Language Data Table, Libraries and
the File System. It gets the request coming from GUI, takes the requested

action and returns the response to GUI module.

2.0 Application Service

CEYLAN allows users to make several database connections and monitor
them. Moreover, it incorporates CVS and FTP support. This module is in
communication with Local Engine and Server. Mainly, it gets the request from
Local Engine, processes the request and forwards to the Server. The response
coming from the server is again processed by Local Engine and sent to Local
Engine for display. Application Service is consisting of three sub modules; 2.1
Database Manager, 2.2 FTP Manager and 2.3 CVS Manager.

2.1 Database Manager
Database Manager is responsible from database operations. User
will enter the information needed to establish the connection via a
connection wizard. When the connection is established, the user will be able
to see database items and make changes on them via console or user
interface. This sub module is the bridge between Local Engine and

Database Server.

2.2 FTP Manager
FTP Manager is responsible from file transfer operations. Like
Database Manager, it gets the information needed to establish the
connection from user via a form. And with the advantage of having graphical
interface support for file transfer, FTP manager saves the user from dealing

with commands in a non-graphical console.

2.3 CVS Manager
CVS Manager is responsible from CVS operations. It will ease the job
of the programmer working in a group. User enters the information
necessary for server connection via a form. After the connection is
established, user will be able to see the file and version information of them.

S/he requests the action to be performed through a graphical interface.

4.1.3 Data Dictionary

Name INPUT

Description This user provided data establishes one part of the interaction. It
consists of code or action request or information entered through
forms.

Output from User

Input to GUI 1.1

Format [keyboard action | mouse action]

Name DISPLAY

Description This is the graphical user interface provided to user by GUI and
browser. Actually, it is the response of the action requests returned
to user.

Output from GUI 1.1
Browser

Input to User

Format [java swing objects]

Name CODE STREAM

Description User code written in text area.

Output from GUI 1.1

Input to ERROR HANDLER 1.2

Format [HTML | JAVASCRIPT | CSS | PHP]

Name NOTIFICATION

Description [LEXER ERROR | PARSER ERROR | HIGHLIGHT
INFORMATION]

Output from ERROR HANDLER 1.2

Input to GUI 1.1

Format Formatted [String]

Name DATA

Description Data produced in lexical analysis and parser stages

Output from ERROR HANDLER 1.2

Input to LANGUAGE DATA TABLE

Format Formatted [String]

Name BROWSER CALL

Description The action request (coming from user through GUI) which is
forwarded to Browser

Output from GUI 1.1

Input to Browser

Format Action

Name DATA REQUEST

Description Database, FTP or CVS related operation invoke

Output from GUI 1.1

Input to APPLICATION SERVICE 2.0

Format [Formatted [String] | Action]

Name DATA RESPONSE

Description Database, FTP or CVS operation result

Output from APPLICATION SERVICE 2.0

Input to GUI 1.1

Format Formatted [String]

Name FUNCTION CALL

Description Function call from user related to file request or auto completion
request

Output from GUI 1.1

Input to CORE ENGINE 1.3

Format Formatted [String]

Name FUNCTION RETURN
Description Function return from system
Output from CORE ENGINE 1.3

Input to GUI 1.1

Format Formatted [String]

Name FILE OPERATION

Description File operation (open /save /load) attempt on local machine
Output from CORE ENGINE 1.3

Input to FILE SYSTEM

Format Formatted [String]

Name FILE RETURN

Description File operation return

Output from FILE SYSTEM

Input to CORE ENGINE 1.3

Format Formatted [String]

Name LIBRARY CALL

Description Library function and file request
Output from CORE ENGINE 1.3

Input to LIBRARIES

Format Formatted [String]

Name LIBRARY RETURN
Description Library function and file call return
Output from LIBRARIES

Input to CORE ENGINE 1.3

Format Formatted [String]

Name LANGUAGE INFO REQUEST
Description Language related data request
Output from CORE ENGINE 1.3

Input to LANGUAGE DATA TABLE
Format Formatted [String]

Name LANGUAGE INFO RESPONSE

Description Language related data response

Output from LANGUAGE DATA TABLE

Input to CORE ENGINE 1.3

Format Formatted [String]

Name SERVER OPERATION REQUEST

Description Server related (Database, FTP or CVS) operation request

Output from GUI 1.1

Input to APPLICATION SERVICE 2.0

Format Formatted [String]

Name SERVER OPERATION RESPONSE

Description Server related (Database, FTP or CVS) operation response

Output from APPLICATION SERVICE 2.0

Input to GUI 1.1

Format Formatted [String]

Name DB OPERATION REQUEST

Description Queries that will executed on database (either for database
connection or operations on database items)

Output from LOCAL ENGINE 1.0

Input to DATABASE MANAGER 2.1

Format Formatted [SQL Query]

Name DB OPERATION RESULT

Description Query results returned from database

Output from DATABASE MANAGER 2.1

Input to LOCAL ENGINE 1.0

Format Formatted [String]

Name DATABASE REQUEST

Description Queries that are sent to database (either for database connection or
operations on database items)

Output from DATABASE MANAGER 2.1

Input to SERVER

Format Formatted [SQL Query]

Name DATABASE RESPONSE

Description Query results returned from database

Output from SERVER

Input to DATABASE MANAGER 2.1

Format Formatted [String]

Name FTP OPERATION REQUEST

Description File transfer operation request & information entered by user for
connection

Output from LOCAL ENGINE 1.0

Input to FTP MANAGER 2.2

Format Formatted [String]

Name FTP OPERATION RESULT

Description File transfer operation results processed by FTP Manager

Output from FTP MANAGER 2.2

Input to LOCAL ENGINE 1.0

Format Formatted [String]

Name FILE REQUEST

Description File request and requested file information sent to Server

Output from FTP MANAGER 2.2

Input to SERVER

Format Formatted [SQL Query]

Name

FILE RETURN

Description Results returned from server, either requested file or failure report

Output from SERVER

Input to FTP MANAGER 2.2

Format Formatted [String]

Name CVS OPERATION REQUEST

Description CVS operation request & information entered by user for
connection

Output from LOCAL ENGINE 1.0

Input to CVS MANAGER 2.3

Format Formatted [String]

Name CVS OPERATION RESULT

Description CVS operation results processed by CVS Manager

Output from CVS MANAGER 2.2

Input to LOCAL ENGINE 1.0

Format Formatted [String]

Name OPERATION REQUEST

Description CVS operation request and information related to requested
operation information sent to Server

Output from CVS MANAGER 2.2

Input to SERVER

Format Formatted [String]

Name SERVER RESPONSE

Description Results returned from server (file and file owner information)

Output from SERVER

Input to CVS MANAGER 2.2

Format Formatted [String]

5.0 Big Picture

We have designed our software Ceylan AJAX Development Studio as two
main modules: Application Service and Local Engine. This choice is made in order
seperate client side related and server side related activities to be able to
implement them modulary. This modularity will also provide us with the opportunity
of plugging updates, new features to the software. Data passing between these will
be established via API’s provided by each one.

Details of the modules will be explained below.

Database
Manager

Core Engine

Error
Handler

CV5
Manager

5.1 LOCAL ENGINE

Local engine is resposible from all the client side related actions. Desktop

application properties of our program are provided by this module. Some of these
are file and 1/O operations, debugging, display, etc. It has three modules to carry

out these actions.

5.1.1 GUI

This module is designed in order to take all the graphical display related
actions out from the functionality of our software and can be tought of as a layer
between the system functionalities and the user. This module is the graphical
bridge between user and the system. User interacts with system via this sub-
module. It includes editor and all the other graphical display such as menu bar, tree

view, error messages, etc.

5.1.2 Core Engine

Core engine is the central of our program that manages the overall system
activities. Our program has many seperate components. There is an editor waiting
for input from user, error handler working upon request at any time, standart file
oprations performed by both users and system functions, database manager, FTP
manager, CVS manager invoked by user at any time. All those actions have to
work synchronously and without crashing with each other. Sometimes they are
affected or changed by other ones. Core engine is responsible from this
synchronization. It establishes the link and information pass between modules.

Apart from that, core engine performs main operations in the system such

as file system actions, auto completion functions, debugging, etc.

5.1.3 Error Handler

This submodule is mainly responsible from lexing and parsing. It provides

editor with highlight info. Error recovery policies are also specified by it.

5.2 APPLICATION SERVICE

Application service is designed in order to perform all connection related
actions. User can invoke three main connection related functionalities using this
submodule. During her/his code development s/he may want to connect her/his
database. S/he may view or update her/his tables, execute a query and see the
results. Or s/he may want to make file transfer from a remote machine. Additionally
s/he may want to use CVS within the system. Our application service module
mainly provides these features.

Application Service module does not have to be invoked unless the user

makes operations concerning file transfer, database or CVS.

5.2.1 Database Manager

This sub-module takes data request either from user code or query
execution tool. It executes query on database and returns the results accordingly
either to query execution tool or user code. If the request is coming from code the
results are back embedded into code. Or if the request is coming from query
execution tool the result is dispalyed back in query execution tool in a prespecified

format.

5.2.2 FTP Manager

This submodule is responsible from all file transfer operations. It makes

connection to remote machines for transfer.

5.2.3 CVS Manager

According to the information taken from user, this submodule makes the

settings needed for CVS operations.

H5ER Server1 | Server n
BROWSER <::> . <I:> AFFLILATIURN
FILE SYSTEM % %
LANGUAGE
DATA TABLES REoil

This figure shows data flow between our modules and external entities.Local
Engine module establishes the information link between application service,

browser, file system, language data tables, libraries and users.

Application side takes data from client side makes the necessary operations

on them and passes it to server/s. The information returned from server/s are sent

to client side after application server operates them.

6.0 User Interface Design

6.1 GUI Design Principles

We have designed our GUI, according to the following 7 basic principles;
e Don't be different
e Keep it simple
e Look professional
e Be direct
e Be consistent
e Give cues and feedback

e Forgive mistakes

1) Don’t be different

Humans can remember 7 different items independent from each other
during short intervals. So a GUI should reduce memorization as much as possible.
If one user is accustomed to one of the operating systems such as Windows or
Linux or to one of the applications such as Eclipse or MS Visual Studio, the system
should be suitable for the user to adapt to easily. The system should not perform
unexpected behaviour. For instance, a user expects a file menu at the bottom-left
corner and sub menus such as New, Open, Save, Save As. Otherwise it would be
too complicated for the user since s/he has to memorize a lot of items.

For instance we tried to make our application look similar to a common IDE
like Eclipse so that user does not have to take training or spend additional effort to

be able to use our IDE.

2) Keep it simple

A user should be able perform his/her actions by simple acts such as one
click or two selects. S/he should also be able to understand what is going behind
and feel that s/he is in the control.

Windows for different actions should be separated from each other. For
example preferences and working elements should not be in the same window. It
would be too cluttered to use.

According to the Principle of Progressive Disclosure until it is needed,
complexity should be hidden. When a user opens “Preferences...” menu which is
almost applicable in most of the IDEs, s/he does not see everything every thing
once. They are grouped according to what the user is probably trying to do-
change the appearance, set security level etc.[1]. We consider this principle while
designing menus that are routing to complicated actions.

For instance, when s/he wants to open a file from a project it is enough to

click on the file form project tree-just one click.

3) Look professional

Appearance has a considerable importance for the system. Before every
thing that can be done via GUI, user first sees the GUI and makes an idea of the
system. Suppose s/he is planning to do an action about debugging. If s/he got the
idea that the system is unprofessional, even if your system works properly, s/he will
think that it won’t be able to perform the work you are intended to do.

Deciding on the elements such as size, alignment, fonts and colour is very
important. For instance using capital letters annoys people.

In our project, we have chosen a professional look and feel option to give a

professional view to the user.

4) Be direct

Buttons or menu icons should have small and descriptive words. The user
should be able to understand by just looking at the keyword assigned to a button or
menu.

We also avoid using technical terms like key, transaction, record as much as
possible since all of the users are not professionals having knowledge about every
technical term.

In our project, we kept our descriptive names for menus as much as short

and understandable.

5) Be consistent

Your representations (which are usually icons) should be consistent with
real world. For example when s/he sees a question mark icon Bl s/he should know
that upon pressing the icon s/he will be directed to a state where s/he will get
information about his/her needs.

GUI should also be consistent internally. If there are two text areas which
look almost exactly the same, one of them should not be editable while the other is
not. This would be very confusing for the user.

All of our icons are consistent with real world objects according to the action

they perform upon clicking.
6) Give cues and feedback

The user should get a feedback for every action s/he performs to be sure
whether s/he had succeeded or not. A progress bar at the bottom while the action
you invoked is being processed is a good example to such kind of a feedback.
Passive items during an interval should be invisible or actionless to imply that user
can not activate a function using that item.

GUI should also provide users with cues. For example when s/he moves the

mouse over an icon and wait for a while, there should appear a small descriptive
text near the mouse to give an idea to the user what the icon is about.
For instance, when a user establishes a connection to a database, s/he will

be provided with a message that the connection succeeded.

7) Forgive mistakes

There three ways to handle user errors:

e Prevent users from making mistakes.

e Let the user do what s/he wants while providing him/her with error
messages. But also help them to recover from errors.

e Let the user to do what s/he wants and show him/her the results. But give
them opportunity to undo what s/he had done.
In our system when a user tries to exit IDE without saving his/her file, there

will appear a message asking him to save his/her file.

6.2 Screenshots and Actions

ey

| ajosuny @ swiRjqoid [X]

| s | ubisag | apo)

 manp o3 [

uonng o|pey

x0d paud]

unnng

HE
151 B SUBILOY |33 i) <Pl
EHTE
EAITES
s
2a)gE) >
ST
<pyfFg<pie
R TS T s 1Y
<dyF
ST
SR gLp
<Pl Fraple
<)
£, 1., =18pi0g Bjge) >
BGEY B SURIIOY |33 S <Pl
FYsITEs
<df = ydrabeied Jau0uE S8y < d
<l =ydesbeied B g sy <d>
<P
EHTE
< L= l2puo0 3|ae >

<fApog >
<y

mapy, doag pue beig [

—

LRI ﬂ_
Wrn@Anp ﬂ_
HYURPUED ﬂ_
PO UBED ﬂ_
Rl Ao olomolEH [
ied 4

wefe -4

unyxnupssaga] | eaelwooyssainig (X | eaefoaiaodn (X | vauvepue) | pateues [x)

anedsiom Y

matg ampng [

wath oup3 ["

AR

olpnis ualide[aaag xely NETATD

djay mopuiyy vafold Aeant upl apd

6.2.1 Editor View

_ .___nm/_ :Emun_/_ uE...UJ

==

mmumumﬂ]
so1dde w

15T B SUeIOD o0 S L

Il ol | uderfered topote s1s]]

qJ) % uderfered e s1suy]
‘BCE} B SUIBILOD [[20 ST

L NN NN P

TPy EELpE
<Ay
<, T.,=490100 3|geL>
JB|OBLE SUBLIUOD 2D S <Pl
<Py
<df =ydesfesed Jaywoue s sy <ds
<dfzydesbesed e 5 syl <d=
Equ)bes
<A1
<, T,=43p0400 3|qel=

<Apog s

(WY =Nul[Ssajalimm _M__ EAR[LIDOYSSad00g _M__ eArlalqO A _M__ T UBRPUED _M__ PaueUeR) [¥]

malp oup3 [

Our general view of Ceylan Ajax Development Studio is a modern GUI with
a professional look and feel option. Since it has been designed according to the
principles stated above in 4.1 it is highly user friendly.

In “Editor” view, user can see the files that he/she opened. Each file comes
with its own tab including its three different view options.

Code View : In code view, user can write his/her code and see his/her code
indented and highlighted according to the type of his/her file.

Design View : In design view, user can view his code evaluated as it is in
external browser.

Split View : In split view, user can see his/her file both as code and design.

6.2.2 MenuBar

6.2.2.1 File Menu

FiIE|Edit Query Project Window He

o 18 DD

Open File

Close
Close All

T

S5ave
Save As
Save All
Print

orldapp. java

Import Project
Export Project

Recent Files F ProcessRoom.java
Exit Cahdan.txt
wirelesslinuxhtml
duy gu.txt
Cahan.txt

New : By clicking on the “New” menu item, user can create a new project, or
a new file in CSS/PHP/HTML format. The file is opened in a new tab with its code,
design and split views.

Open File : By clicking on the “Open File” menu item, there comes a file
chooser pop-up menu. User can choose one of his/her existing files. If the file is
already open, it will be focused. Otherwise the file is opened in a new tab with its
code, design and split views.

Close : By clicking on the “Close” menu item, user can close the file which
he/she is working on. If there has been a change in the file from its last save, a
popup comes out for asking to save the changes on that file.

Close All : By clicking on the “Close All” menu item, user can close all the
files that are open. If there has been changes in the files from their last saves, a
popup comes out for asking to save the changes on that files.

Save : By clicking on the “Save” menu item, user can save the file that
he/she created or changed. Default save directory is the workspace of the related
project. If the file doesn't belong to a project, it will be saved to workspace
directory.

Save As : By clicking on the “Save As” menu item, user can save the file
that he/she created or changed with a different name, extension. Default save
directory is the workspace of the related project. If the file doesn't belong to a
project, it will be saved to workspace directory.

Save All : By clicking on the “Save All” menu item, user can save all the
files that he/she created or changed. Default save directories are the workspaces
of the related projects. Files which don't belong to a project will be saved to
workspace directory.

Print : By clicking on the “Print” menu item, user can print the file he/she is
working via printer currently attached to the computer.

Import Project : By clicking on the “Import Project” menu item, there comes
a project chooser popup menu. User can choose one of his/her existing projects or
other external projects and can import them to his/her workspace.

Export Project : By clicking on the “Export Project” menu item, there

comes a project chooser popup menu. User can choose and export one of his/her
existing projects to another workspace on the computer.

Recent Files : By clicking on the “Recent Files” menu item, user can see
the last 5 opened files. User can open the file which he/she wants to. If the file is
already open, it will be focused. Otherwise the file is opened in a new tab with its
code, design and split views.

Exit : By clicking on the “Exit” menu item, user can exit from Ceylan Ajax
Development Studio. If there are files which aren't saved, user will be warned to

save those files.

6.2.2.2 Edit Menu

File Edit|Quenf Project Window Help

[hDm[2
s : A E

{1 Cut
Copy
Paste

E

wr

{ Delete
Select All

[| Find
|_ Find & Replace

[cuygu.txt
.

.

M

Undo : By clicking on the “Undo” menu item, user can take reverse action
on what s/he had done.

Redo : By clicking on the “Redo” menu item, user can take forward action
on what s/he had done.

Cut : By clicking on the “Cut” menu item, user can cut the selected item.

Copy : By clicking on the “Copy” menu item, user can copy the selected
item.

Paste : By clicking on the “Paste” menu item, user can paste the item that is
in the buffer to the cursor position.

Delete : By clicking on the “Delete” menu item, user can delete the selected

item.

Select All : By clicking on the “Select All” menu item, user can select all the
items on the current container.

Find : By clicking on the “Find” menu item, there comes out a popup
window. In this window, user can enter the keyword s/he is searching for in the
current document. The current document is parsed and the keyword is shown to
user as highlighted.

Find & Replace : By clicking on the “Find & Replace” menu item, there
comes out popup window. In this window user can enter the keyword s/he is
searching for and the keyword s/he wants to put instead in the current document.
The current document is parsed and the keyword is replaced with the one which

user wants to.

6.2.2.3 Query Menu

File Edit Quenr| Project Window Help
@ E Mew Database Connection
i FTP Connection

Open Query Window
(] Tree pen Query

Wk space
¢ [ajax

Connection Name: |

Hostname; IP address: |f/localhost

Port: 206

DatabaseMame: [cancian

Username: froat

Password: Pk

Driver: mysql v

|I Connect]

New Database Connection : By clicking on the “New Database
Connection” menu item, there comes out popup window. In this window, in order to
connect a database, user should enter the related fields which are “Connection
Name”, “Hostname/IP Address”, “Port’, “Database Name”, “Username”,

“Password”, and “Driver”.

CEYLAN Ajax Development Studio

1ery Project Window Help

®RHH 2GS P

==
i

| Connect H Disconnect | | | '] ProcessRoom.java | g v
=
14
o [HE.project = | &
. .classpath = . |)

gui . classpat

%1 |5 applicationService L project

(= buttons | ITabbedPaneWithCloselcon:

images = My Litils.class

gui.rar I folder.gif

= shared G| jdepend.sl

= fup B | potice.hunl

| up.gif
Host |oratikoss.com)
Username; ﬁz@pratiknss.com
Password : F**““

-
[
B 4] 1 [Tl
]

FTP Connection : By clicking on the “FTP Connection” menu item, there
comes out a popup window. In this window, user can create FTP connection and

upload and download files.

o 3 rel_membertest | | |SELECT * FROM thtests | | Send |
o= [thanswerarch
o= 7 thanswertermp testld moduleRef | testName | testType [(estSubject.. Duration |cre
o T theity i 1 1 TﬁRIH BILI... |Konu Q0:20:00 200[=
& 9 todocuments 2 1 !LKQ.&G" ME.. |Konu Q0:20:00 200
o 7 trnaillist 3 1 !SLAM ON.._. Kionu Q0:20:00 200
4 1 1SLAM TARIL. |Konu Q0:20:00 200
o [tamember 5 1 iLK MOSLO.. [Konu 00:20:00 |200
o [thmermtesthist fi 1 Kionu Q0:20:00 200
o= [thmodules 7 1 QBMALL- K. |Konu Q0:20:00 200
o] thmtesthistsub 8 1 OSMANLI - . [Konu 00:20:00 200
o 9 topallanswers] 1 OSMANLI - __|Konu 0020:00 |200
o [thpalls 10 1 QSMAMNL - . |Konu 0:25:00 200
o O thgueraot = 11 1 QSMAMNL - . |Konu 0:145:00 200
K 12 1 QSMAMNL - . |Konu Q0:20:00 200
o [thauestions 13 1 OEMANLI - |Konu 00Z0:00 [200
o= [Jthschoollist 14 1 19,77 BASL.|Konu 00:00:00 [200
o [thschooltypes 14 1 BIRINGI D... |Kaonu 0:00:00 2000
o [thzessions 16 1 | DUMYA S, [Kanu 00:00:00 200
o= [thsubjects 17 1 KOMGREL... |Konu 0:00:00 200
o [thtestimgs 18 1 KONGREL .. [Konu Oo:00:00 |00
o 14 1 . MECLIS ¥.. |Konu 0:00:00 200
o gatistics 20 1 SEVR AML... |Kaonu Q0:00.00 EDD_
) - 21 1 KURTULLL.. |Kanu Q0:00.00 200 -
o=] thtestsubjects - <] M | O

atabase Tool

b T tomodules = ||SELECT testiame FROM thtests | sena |
o=] thmtesthistsub tostl

e ame
& (& tpollanswers TARIH BILIMINE GIRIS B

o tapolis ILKGAD MEDENIYETLERI

o= [thoueroot

o=] thguestions
o= thechoallist
o=] thschaoltypes
o= Jthsessions
o= I thsubjects

o=] thtestimas

9 [Jthtests

[testid

[modulerer
q
D testTyvpe
[testSubjectRef
D Dwiration
D createTime

o= [thteststatistics

o= [thtestsubjects

1]

ISLAN SMCES TURK TARIHI

ISLAM TARIHI

ILK MOSLOMAR TURK DEVLETLERI

OSMALL - KURULUS DORER

OSMANLI - YUKSELME DiONEMI

OSMARLI - KULTUR YE MEDENIYET-DO

OSMANLI - DURAKLAMA DEVRI

OSMARLI - GERILEME DEVRI -¥AKING

OSMANLI - DAGILMA DEVRI ve 20, Y

OSMARLI - DAGILMA DEVRI ISLAHATL

19,7 BASI OSMANLI IMPARATORLUG

BIRINCT DURYA SAVAS]

. DUNYA SAVASI SORL

KONGRELER DORNERI

KOMGRELER DOMNEMI-2

. MECLIS VE AvAKLANMALAR

BEWR ANLASMAS] VE KUWAT MILLIYE

KLURTULLIS SAYASI

KURTULLIS SAVAZT

4

Open Query Window : By clicking on the “Open Query Window”, menu

item, there comes out popup window. In this window, user can see the databases
which he/she connected to and he/she write queries and see the results of these

queries.

6.2.2.4 Project Menu

File Edit Query Pruject|Wim:luw Help

Qaech b o

Tree View 55 RURn * Mozilla Firefox :
workspace Debug Internet Explorer @
-] ajax Opera
¢ [paket N <htmi>
M. o e . 9 < by

Open Project : By clicking on the “Open Project” menu item, there comes
out a popup window which shows the existing projects of the user. User can select
one of his saved projects.

Close Project : By clicking on the “Close Project” menu item, user can
close the project which he/she is currently working on.

Run : By clicking on the “Run” menu item, the code will be
evaluated(parsed, interpreted), and will be shown on the browser. User can invoke
“‘Run” operation with different browsers which are “Mozilla Firefox”, “Internet
Explorer”, and “Opera”.

Debug : By clicking on the “Debug” menu item, Mozilla add-on debugger

Firebug will be opened, until we implement our own debugger.

6.2.2.5 Window Menu

FIIE Edit Query Project Wmduw|HeIp

Mew Window L
New Editor £

Tree View : : Preferences.. Editor View i
waorkspace (%] canan.ba | [X] ca
o [ajax : |
L —= , S |¢h'rr'n|=>

New Window : By clicking on the “New Window” menu item, a new window
just like the whole frame will be opened.

New Editor : By clicking on the “New Editor” menu item, a new window just
like the editor frame will be opened in the same split area.

Preferences : By clicking on the “Preferences” menu item, there comes out

a popup window where user can setup the window properties.

6.2.2.6 Help Menu

File Edit Query Project Window Help|

EETTIES Lo
= Help Contents

Ahuut Ceylan ADS

@ canah.txt | (

Tree View ©
workspace

Search : By clicking on the “Search” menu item, there comes out a popup
window which contains the help topics will be opened.

Help Contents : By clicking on the “Help Contents” menu item , there
comes out a popup window (the same one stated above) which includes the
search indexes near help topics will be opened.

About Ceylan ADS : By clicking on the “About Ceylan ADS” menu item,

general information about Ceylan Ajax Development Studio will be displayed on a

small display window.

6.2.3 Project Workspace

Tree View ©
wiorkspace
o CJajax
o] paket
[y HelloworldApp. java

E| canan.txt
E| candan. 1yt
E| o txt
E| Cendan

In “Project Workspace” view, user can view his/her all files in his/her
workspace as tree view. When s/he clicks on one of his/her files on the tree, it is
opened in editor frame with its own tab including code, design and split views

unless it is already open. Otherwise, desired file will be focused on the editor view.

6.2.4 Outline

Outline View
BT javax swing
‘¥ ¢ [Functions
|j| changeTimelone(String
|j| getDatad
|j| setDate(String argd)
o] Tads
e [farms
|j| send
|j| input

In “Outline” view, the tags of the file that the user is currently working on is
displayed on outline frame. For each file that is in workspace, its tags can be

displayed on different tabs.

6.2.5 Error

The errors or warnings in user's project will be displayed in problems tab. In

console tab, the fields printed by the user will be viewed.

6.2.6 Drag & Drop

il P

[7] Drag and Drop Yiew 0500 B

ButLon
| | Check Box

' Radio Butuon

|5elect ah aption |...

In “Drag & Drop” view, there will be auto-generated components such as,
list-box, button, text field. User can drag these components and drop them to
“Design” view of the related file. Code of these components will be automatically

generated in the “Code” view.

7.0 Testing

7.1 Unit Testing

GUI:

User mostly interacts with GUI, so we have to be careful about the issues
about the GUI. Even a small error at GUI might cause fatal errors. Besides these,
GUI is very important for the user to choose our program, find it powerful, friendly
user and stable. So GUI has very big importance. To reduce the probability of
failure, we should apply as much as we can. We will do tests for each of the
operations which are done through GUI. In addition to these, we will test every

menu with its sub menus. We also have some keyboard events so we try them as

well. To test these, we try different cases for them.

Error Handler:

The important problems of error handler would be those: it may not give true
errors, it may not found some errors and it may produce wrong data table and then
cause different errors for different modules. So in order to test this module, we will
try different cases. For example, we wrote syntactically wrong codes and test it to

see whether it gives true errors on true lines.

Local Engine:
In order to understand whether our project makes file operations true, we
should test this part. We try the basic operations as saving, opening ...etc, then

we could see the result.

Application Service:
At this part, we would test our operations about database or connecting to
other servers. We try some queries in order to see it works or not. Besides these,

we try to see the tables after connect to a database.

8.0 Gantt Chart

¥] 307 Govez S0z S0 G20 BOUTE] POVEz | wival bOveo] P20 ez E6 G0z B 201 206 7

izl

aunp |

e |

ey |

e |

E

£I03E309034

A0/90/90 B AVB0IE0 PR A |

L0r90¢50 #nL
L0750 | WO
LO/S08E WON
LS00 | oW
L0000 BNL
L0022 1

L00VE | AL
L0005 | ML
L0700 W

LOMEVLE ANt

L0ISHIZ o (SAEp)
L0Y50H) Lo dep |

L0/S0GH AN | isAep O}
P TR
L0p0H0L B dep |

AP0V P, Shep)
AENOE NS shep)
AENGH YL dep |

LSS YL (sAEpT)
LOVZOHEE Pk SAep 0

LOPE0AD PAKA ADVECYIO ANL , isAEn T

LEDra0 =N,
L00E005 | UL
L0007 L0 AL

A0UECi0 AL Aep |
LOVECIS0 oW | jshep
A EC

JUVEIL0 R AZOIGL L Gshep)

L0005 | UL

L5

AOIZGL YL A)

Jels uoReang

azeaEy [eu
uoleliawna0g

Ly

fgsal

Jafifincag

A

ooy

dloag pue Ao

B

Jafieuey SAD

sjaaload uo sayneazay

Jafieuep 41 4 2pelfidn
iy

saNjeUANAUN ajaiuny o) LS

AL RRUAS
JapBIgE $eis
ey

Al yse]

= E EH E E EEE

E B E B E EE

Lo L - N o S o o R ot v o R = ¢)

™

=

=
=

	1.0 INTRODUCTION
	1.1 Project Title
	1.2 Problem Definition
	1.3 Statement Of Scope
	1.4 Application Areas of Our Software

	2.0 PROJECT REQUIREMENTS
	2.1 Functional Requirements
	2.1.1 Widgets such as tree view, toolbars and tabs
	2.1.2 Server connectivity

	2.1.3 Query Execution
	2.1.4 Editing, and Debugging
	2.1.5 Work Space
	2.1.6 Help menu
	2.1.7 Menu Components
	2.1.8 Integrated browser
	2.1.9 Code and design view
	2.1.10 Predefined code generation
	2.1.11 FTP Operations
	2.1.12 CVS Operations

	2.2 Non-Functional Requirements
	2.2.1 User-friendliness
	2.2.2 Modularity
	2.2.3 Platform Independency
	2.2.4 Consistency

	2.3 System Requirements
	2.3.1 Software Requirements:
	2.3.2 Hardware Requirements:

	3.0 ARCHITECTURAL DESIGN
	3.1 Ceylan Use Case Diagram for AJAX Development
	3.2 Interaction Models of Our System
	3.2.1 Sequence Diagram of GUI Applications
	3.2.2 Sequence Diagram of FTP Manager
	3.2.2.1. Activity Diagram of FTP Connection
	3.2.3 Sequence Diagram of CVS Manager
	3.2.3.1. Activity Diagram of CVS Connection
	3.2.4 Sequence Diagram of Database Manager
	3.2.4.1 Activity Diagram of Database Connection
	3.2.4.2. Activity Diagram of Operation Request
	3.2.5 Sequence Diagram of Error Handler
	3.2.6 Sequence Diagram of Debugger

	3.3 Classes of CEYLAN and Their Relationships
	3.3.1 Local Engine
	3.3.1.1 GUI:
	3.3.1.2 Error Handler:
	3.3.1.3 Core Engine:
	3.3.2 Application Service
	3.3.2.1 Database Manager:
	3.3.2.2 FTP Manager:
	3.3.2.3 CVS Manager:

	4. MODELLING
	4.1 Functional Modeling
	4.1.1 Data Flow Diagrams (DFD)
	4.1.1.1 DFD Level 0
	4.1.1.2 DFD Level 1
	4.1.1.3 DFD Level 2: Local Engine
	4.1.1.4 DFD Level 2: Application Service
	4.1.2 Process Specifications (PSPEC)
	4.1.3 Data Dictionary

	5.0 Big Picture
	5.1 LOCAL ENGINE
	5.1.1 GUI
	5.1.2 Core Engine
	5.1.3 Error Handler

	5.2 APPLICATION SERVICE
	5.2.1 Database Manager
	5.2.2 FTP Manager
	5.2.3 CVS Manager

	6.0 User Interface Design
	6.1 GUI Design Principles
	6.2 Screenshots and Actions
	6.2.1 Editor View
	6.2.2 MenuBar
	6.2.2.1 File Menu
	6.2.2.2 Edit Menu
	6.2.2.3 Query Menu
	6.2.2.4 Project Menu
	6.2.2.5 Window Menu
	6.2.2.6 Help Menu
	6.2.3 Project Workspace
	6.2.4 Outline
	6.2.5 Error
	6.2.6 Drag & Drop

	7.0 Testing
	7.1 Unit Testing

	8.0 Gantt Chart

