

MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

SENIOR PROJECT
FALL 2006

INITIAL DESIGN REPORT

03.12.2006

TABLE OF CONTENTS

1. INTRODUCTION .. 4

1.1 Purpose of the Document... 4
1.2 Scope.. 4
1.3 Project Overview ... 6
1.4 Design Goals.. 7

1.4.1 Extensibility:.. 7
1.4.2 Robustness:.. 7
1.4.3 Reliability: ... 7
1.4.4 Functionality:... 7
1.4.5 Usability: ... 7

2. CONSTRAINTS ... 8
2.1 Experience & Skills of Members Constraints ... 8
2.2 Time Constraints.. 8
2.3 Funding Constraints ... 9
2.4 Resource Constraints ... 9
2.5 Performance ... 9

3. SCHEDULE ... 9
4. SYSTEM MODULES... 10

4.1 Text Editor ... 10
4.2 WYSIWYG Editor... 13
4.3 Database Editor.. 16
4.4 Debugger & DOM Inspector ... 20

4.4.1 JavaScript Debugger.. 20
4.4.2 DOM Inspection Tool ... 21

4.5 FTP Manager ... 23
4.6 CVS Manager... 23
4.7 SYSTEM ARCHITECTURE .. 25

4.7.1 Level0 DFD... 25
4.7.2 Level1 DFD... 26
4.7.3 Data Dictionary ... 26

5. SYSTEM DESIGN ... 31
5.1 Use Case Diagrams and Scenarios .. 31

5.1.1 Text Editor... 31
5.1.2 WYISWYG Editor .. 33
5.1.3 Database Editor ... 35
5.1.4 Debugger ... 36
5.1.5 CVS Manager .. 38
5.1.6 FTP Manager ... 38

5.2 Sequence Diagrams.. 39
5.2.1 Text Editor... 39
5.2.2 WYSIWYG Editor .. 41
5.2.3 Database Editor ... 43
5.2.4 FTP Manager ... 45
5.2.5 CVS Manager .. 46

5.3 Class Diagrams .. 47
5.3.1 Text Editor... 47
5.3.2 WYSIWYG Editor .. 52
5.3.3 Database Editor, CVS Manager and FTP Manager 55
5.3.4 Debugger ... 58
5.3.5 GUI .. 58

6. GUI DESIGN.. 67
6.1. Overview of GUI ... 67
6.2 GUI Requirements ... 67
6.3 Screenshots of GUI .. 73

6.3.1 “Code”, “Design” and “Browser” views... 73
6.3.2 “Project” and “Workspace” views.. 74
6.3.3 “DOM Inspector” view... 74
6.3.4 “Palette” view ... 75
6.3.5 “Properties” and “Events” views.. 75
6.3.6 “Debugger” view .. 76
6.3.7 “Menu Bar” & “Tool Bar”.. 76
6.3.8 Final view of GUI.. 77

7. SYNTAX SPECIFICATION.. 78
8. TESTING ISSUES ... 81

8.1 Testing Plan and Strategy.. 81
8.1.1 Unit Testing .. 82
8.1.2 Integration Testing .. 83
8.1.3 Validation Testing ... 83

9. CONCLUSION... 84
10. APPENDIX... 84

1. INTRODUCTION

1.1 Purpose of the Document

This is an initial design report for our project “kodadı: AJAXDEV”. The purpose of this

document is to express the initial design decisions resulted from the detailed functional

requirements and show the way of the development of our project. Firstly, our scope is

presented in a detailed way and an overview of the project is added. Secondly, we have

explained our design constraints which are people, time, hardware and software requirements

for developer side. Then, modules of the system are declared separately with enhanced

requirements. After that, we have shown use case diagrams which are partially updated from

the analysis report. Besides, sequence and class diagrams are provided for better decide on

every component of our modules. Next, we have demonstrated our GUI with all of its

functionality in the GUI Design part. Syntax specification part is also added in order to

provide a consistency and integrity between modules while writing code. Finally we have

added a schedule part and gannt chart to the report to show the progress of our project.

1.2 Scope

AJAXDEV project consists of mainly 5 components which are HTML Text editor,

WYSIWYG (What You See Is What You Get) Editor, parser and debugger, GUI Design and

Database process handler. Moreover we will provide a CVS and FTP support. Embedded

browser will also be supported to test developed application.

HTML Text Editor

An HTML editor is a software application for creating web pages. Although the HTML

markup of a web page can be written with any text editor, specialized HTML editors can offer

convenience and added functionality. For example, many HTML editors work not only with

HTML, but also with related technologies such as CSS, XML and JavaScript. In some cases

they also manage version control systems such as CVS or Subversion. We are planning to

write a text editor with extra functionality for manipulating and previewing of typical

programming languages used for web development. Standard features such as syntax

highlighting and automatic completion will be supported. HTML, XML and Java Script are

supported by this editor.

WYSIWYG (What You See Is What You Get) Editor

WYSIWYG HTML editors provide an editing interface which resembles how the page

will be displayed in a web browser. Most WYSIWYG editors also have a mode to edit

HTML directly as described above. Because using a WYSIWYG editor does not require

any HTML knowledge, they are easier for an average computer user to get started with.

The WYSIWYG view is achieved by embedding a layout engine based upon that used in

a web browser. The layout engine will have been considerably enhanced by the editor's

developers to allow for typing, pasting, deleting and moving the content. The goal is that,

at all times during editing, the rendered result should represent what will be seen later in

a typical web browser. Our WYSIWYG Editor will support standard HTML features such as

buttons, forms etc. that users will be able to drag and drop. In addition to this, some simple

AJAX components will be presented in labor of the user. These components are also available

with drag and drop option.

Parser and Debugger

The parser that we plan to write will support XML, HTML and DOM files. Debugger

supports only JavaScript because user will create AJAX components with JavaScript. Since it

is impossible to develop a debugger for this project due to time constraints, we are planning to

find, adapt and use an open source debugger component.

GUI Design

We designed a Graphical User Interface which is similar to the existing Development

Environments. “Tibco”, “Aptana” and “Eclipse” are being used as a layout of our design. We

are trying to develop a GUI design which shows our functionalities a user friendly and

costless way.

Database Process Handler

This component is planed to manage a database connection. User will use this functionality to

reach his/her database with a user friendly environment. Standard database functions like

connection, table operations and SQL query evaluation are provided with this component.

Embedded Browser Support

Embedded browser will be provided to user to test and see existing file. With the help of

design view, user is able to see the HTML view however, since AJAX components are not

static, this feature will provide the realistic preview of the application.

CVS Support – Ftp Publishing

We will provide a version control system to the user and ftp support for publishing.

1.3 Project Overview

At the beginning, AJAX was a new technology for nearly all of us. Therefore, we have spent

a considerable time for research about this new technique. We tried to divide the project into

modules to perform a better research activity. As a result this challenging activity we have

specified the requirements which were expressed in analysis report. These were not so

detailed but enough to explain what we our product will be like. After releasing analysis

report, we have concentrated on deciding design issues. With the help of our requirements and

technical research we have done, following principals are decided:

• The most important part of the project is WYSIWYG editor. It should provide the

usability of creating and showing an AJAX application with user friendly way. We

will implement this module by hand with existing JAVA packages.

• Text editor is the second important part of the project. It should provide all the

standard features of a text editor. We will implement this module by hand with

existing JAVA packages.

• User will be provided a JavaScript debugger, which is already mentioned. Because of

the time constraints and our preferential features (text and drag-and-drop editor), we

have decided to find an open source debugger which can be adapted to our project.

• Since the database applications play a big role in AJAX actions, we have decided to

give importance to database connection tool.

1.4 Design Goals

1.4.1 Extensibility:

We will design our product considering that an improvement or plug in will be

supported later. So, we can provide an update mechanism to ensure that our product is

always up-to-date. Since AJAX is a developing technique, this feature will be really

important.

1.4.2 Robustness:

The product should be able to manage invalid user inputs or inconsistent conditions. It

provides error checking to ensure the right input format and returns errors and

warnings to the user.

1.4.3 Reliability:

The product should produce the expected output for a valid input at all times.

1.4.4 Functionality:

The system should function according to the requirements specified in Requirements

Analysis Report.

1.4.5 Usability:

The GUI should be user friendly. The goal is to provide the user an easy- to- use

interface. The design of the GUI is based on that of Java based applications. This

design is chosen due to the familiarity of most users with this kind of interface. It

consists of a menu bar, which is further decomposed into sub menus. Text boxes,

scrollbars and pop-up menus are used to enhance user/system interaction. The user is

placed in a familiar environment, which eases the general use of the application.

2. CONSTRAINTS

2.1 Experience & Skills of Members Constraints

As developers, our programming and design skills and experiences is also one of the

restrictions. Although we have made software projects before, it was simpler than our current

project and we do not have experience about creating development environments. Thus, this

restricts our opinions of what we are able to make. In addition, It is very difficult for us to

manage unexpected problems about this field but we may consult experienced people to get

help about solving problems.

2.2 Time Constraints

We have to finish our project by June and also we should provide a prototype at the end of

this semester. Therefore, especially for a software project, this is the most important

constraints. Being able to use our time efficiently is very important for us to follow our

program regularly. In case of schedule problem, to compensate lost time we should focus on

the project instead of other responsibilities and spend more time on it. As a result, although

we thought lots of features and special properties for development environment, for timing

reasons, we may not able to do some exciting features because we should provide expected

functionalities and basics firstly.

2.3 Funding Constraints

Since we will not need any additional hardware and software that have a cost for us to

implement our project, we do not have a cost for them. In addition our team members are

students and we will not pay anyone to during the project. Therefore, there is not any funding

constraint.

2.4 Resource Constraints

While we are doing our project we need different hardware and software resources. We

generally get easily these resources; as software requirements, we need web server, databases

servers and some of development tools. Many of these are freeware, and we can get others in

our department freely. We can also deal with hardware requirements for our project by the

help of our personal resources temporarily so we do not think that the resources will be a

problem for us to complete the project.

2.5 Performance

We are building our application for easy to understand and efficient to use. In addition there

will be excessive user interaction, so performance is a very important constraint for our team.

We consider the performance issue in during each steps of our project process.

3. SCHEDULE

Gannt Chart can be found in Appendix.

4. SYSTEM MODULES

4.1 Text Editor

We are planning to write an HTML text editor for our development kit. HTML editors are

basic text editors with extra functionality for the manipulation and previewing of code,

typically of programming languages used for web development. According to the research we

have done, we have specified following functional requirements for the text editor of our IDE:

• It will have the ability of reading and writing large files.

o Open/read/save/load/close/new file operations will be supported by GUI

module.

o Large file reading is available.

• It will provide syntax highlighting for XML, HTML, JavaScript and CSS files.

o Our system will read the syntax highlighting content when a new word is

written.

o When the user has written a separate word, it will be checked from the syntax

highlighting content.

o If it is matched, the related color will be applied.

o This procedure will be supported for HTML, XML, JavaScript and CSS files.

• Unlimited undo/redo will be provided.

o Undo

 Save the modifications the user has done, in a stack.

 Delete the last modification that has been done and if it is undoable in

the editor.

 Put the deleted item into a stack.

o Redo

 Read the last member on the stack.

 Apply that item in the editor if it is redouable.

 Remove it from the stack.

• "Markers" for remembering positions in files to return to later will be supported.

o Store the position of the cursor for every file.

o Restore the position of the cursor in a file when the file is selected.

o Kill the marker when the file is closed.

• Any number of editor windows may be opened.

o Open multiple files with a tab control in GUI.

o Allow user to change the file he/she is modifying with a keyboard shortcut or

tab select.

o Assign a marker to the old file to remember the position.

o Chose the marker of the new file and start from there.

• We will provide an auto-completion that does the followings:

o If you are typing the name of an object (e.g. "document"), when you type the

period (".") to call either a method or access a property for that object, it pops

up a small window displaying the available methods and properties for that

object. You can also type ‘ctrl + space’ to access this help at any time.

 This type of automatic completion will be provided for only user

defined classes.

 Specify the class of the object which is at the left of the point.

 Show all the attributes and classes of that class.

 Allow user to select an attribute or method from the list described

above, put the selected item to the right of the list.

 Place the cursor.

o If you are calling a method on that object, when you type the first open

parenthesis ("({<["), our editor will automatically create the closing

parenthesis ("]>})") for you, and it will pop up a small window with the

parameters that the method takes.

 When the user writes one of the ("({<[") put the suitable ("]>})") and

place the cursor between them.

• It will provide intelligent bracket matching, skips quoted literals and comments.

o () ---- If the user has pressed to ‘%’ when he/she is on a ‘(’ or ‘)’, the cursor

will automatically go to the matched parenthesis.

o {} ---- If the user has pressed to ‘%’ when he/she is on a ‘{’ or ‘}’, the cursor

will automatically go to the matched parenthesis.

o [] ----- If the user has pressed to ‘%’ when he/she is on a ‘[’ or ‘]’, the cursor

will automatically go to the matched parenthesis.

o <> ----- If the user has pressed to ‘%’ when he/she is on a ‘<‘ or ‘>’, the cursor

will automatically go to the matched parenthesis.

o For all of parenthesis above, if there isn’t a matched parenthesis user will be

provided an error message and cursor will not move.

o A stack control mechanism will be used.

• It will provide automatic indentation.

o If the user has written a ‘<’ and hasn’t closed it, put a ’tab’ space when the user

entered a new line.

o If the user has written a ‘{‘and pressed ‘enter’, move the cursor to the next line

and one ‘tab’ space right.

o If the user has written an ‘if’ or ‘else’ clause, didn’t put a ‘{’and pressed

‘enter’, move the cursor next line and one ‘tab’ space right.

o If the user has written a ‘for’ or ‘while’ clause, didn’t put a ‘{’and pressed

enter, move the cursor to the next line and one ‘tab’ space right.

• It will provide commands for commenting and commenting out code.

o Enable user to select multiple rows.

o Understand what language the selected code belongs to.

o Comment the unselected code by putting the related comment item to it.

o Comment out the selected commented code by removing the comment items

on it.

• Search and replace supported.

o Show a dialog box for search and replace to the user.

o Search a word, letter, expression when user has pressed on search.

o If the user didn’t enter an item (i.e. if it is blank) give a warning to the user and

don’t do a search.

o If the wanted item is found, show it to the user in a highlighted way and move

the cursor to the end of this found result.

o Replace the found letter, word, expression with the specified item if the user

presses replace button on the dialog box.

o Search again if the user presses next or previous.

o Backward and forward search is allowed.

o Continuous search is allowed.

• There will be a relation with WYSIWYG editor to support code generation while user.

o Editor will take cursor position, related code and operation type from

WYSIWYG editor.

o If the operation type is insertion, the related code will be added to the cursor

position.

o If the operation type is deletion, the related code will be deleted from the

cursor position.

o If the operation type is update, the code that will be deleted will be deleted and

the code that will be inserted will be added to the cursor position.

• Automatic save is provided to prevent user from loosing data.

o Count the modifications the user has made.

o When this count is 3 save the current entry to the temporary file.

4.2 WYSIWYG Editor

• Unlimited undo/redo will be provided.

o Undo

 Save the modifications the user has made.

 Delete the last modification that has been done in the editor.

 Put the deleted item into a stack.

o Redo

 Read the last member on the stack.

 Apply the read item.

 Remove it from the stack.

• A Palette for displaying built-in Ajax actions and HTML elements which can be added

by dragging and dropping.

o For Palette, a window will be shown which consists of drag-able Ajax actions

buttons and HTML elements buttons.

o User can drag a button from palette.

o Drop it in to the Design View area.

o Call code generation.

o Open properties window if object is an HTML object.

o In the palette we will provide built-in Ajax Actions other than HTML objects

such as:

 AJAX Dynamic Table

 AJAX Photo Gallery

 Drag and drop

 Accordion

 Tabset

 Collapsible region

 Suggest text field

 Dialog box

 Rating widget

 Edit in place

• User will be able to insert text in Design view.

o Get the written text.

o Call code generation.

• An added table object can be selected. If it is selected:

o User can modify its size and size of its rows and columns.

o After a modification generate code is called.

• Create and modify added objects through properties window.

o All objects will be selectable.

o If an object is selected, relevant properties window will be shown with its

current properties.

o User can use properties window for modifications.

o After a modification call generate code

• User can drag & drop CSS into his design.

o If user inserts a CSS item open dialog box.

o Prompt user to enter a site for CSS.

o Generate code

• Permits files or entire folders to be dragged directly into the editor

o If the input is a folder, zip the input folder.

o Generate code is called.

• Drag & drop of image files directly into the editor, as well as file browsing

o Check the image size and type.

o If there is any violation show user an error message.

o If input is suitable after dropping it show the properties window with

parameters related with the type of button.

o Call generate code

• If the dragged object is an Ajax action open event window

o According to the type of Ajax Action an Event Window will be opened.

o User will enter the required input for actions.

o Call generate code

• Code generation will be done after using properties or event windows, dragging &

dropping an object from palette or dragging & dropping a file from outside.

o Appropriate code will be read from file or generated.

 Take id and type of button from GUI.

 Generate code.

 Send the cursor position to Text Editor to add codes the right position.

 Send the codes to Text Editor.

 Generate design view function is called to refresh the design view

according to the changes in code view.

4.3 Database Editor

The user will be able to connect to a database server if s/he has access rights on it.

• After connecting to a database a GUI window will be provided to user for database

operations.

o Show input dialog box.

 Ask user account name, password, location of database and type of

database (MySQL or Oracle)

 Get user account information.

 Try to connect to the database and get result from DBMS.

 If result is true show user the database.

• Show user available and selectable schemas.

 If result is false show an error message and request account information

again.

• User will be able to execute queries on the database.

o Show a query window with execute button to the user for entering queries.

o Query window will be shown on top.

o If execute button is pressed get the query.

o Check the query if it is empty or not.

o If query is empty show user a message to enter a query.

o If query is not empty send it to DBMS and get the result.

o If result is true show the result to user.

 If it is a SELECT, UPDATE or CREATE TABLE query show the

result otherwise show a message saying “query has been successfully

executed”.

 If result is false show user the error message returned from DBMS.

• The user interface will provide user the ability to execute queries (table, column or

row creation, modification, deletion) without the need to know the proper syntax by

just clicking on the appropriate action.

o An attribute of a tuple will be selectable.

o When an attribute is selected its background color will change and user will be

able to enter a new value for that attribute.

 If the new value is empty NULL will be used.

 After user enters a new value for an attribute, an UPDATE query will

be generated. Update query is generated when update row is clicked.

 Generated update query will be sent to DBMS and the DBMS will be

listened for a result.

 If result is true the new value of the tuple will be shown to user

otherwise the error returned from DBMS will be shown.

o User can select a row. If user selects a row, its background color will change.

o After selecting a row user can delete it by a delete icon.

 If the delete icon is pressed, a delete query will be generated.

 Generated query will be sent to DBMS and the result will be listened.

 If result is true updated table will be shown to user otherwise the error

returned from DBMS will be shown.

o There will be a create table button.

o If the button is pressed a dialog box will be shown with ‘Create’ and ‘Cancel’

buttons.

 User will be listened for name of table and columns of table and

properties of columns (primary key, foreign key, auto increment, data

type, NULL or NOT NULL and unique).

 If ‘Cancel’ is pressed no change is done and the dialog box is closed.

 If ‘Create’ is pressed name of table and names of columns will be

checked for emptiness.

 If at least one of them is empty user will be prompted to enter a name

for it.

 If none is empty a query will be generated.

 Generated query will be sent to DBMS and DBMS will be listened for

a result.

 If result is false error returned from DBMS will be shown.

 If result is true newly created table will be shown.

o User can insert a new row with an icon.

 After the icon is pressed, a dialog box will open asking user values for

NOT NULL attributes with ‘Insert’ and ‘Cancel’ buttons.

 After ‘Cancel’ is pressed no change will be done and dialog box will

close.

 After ‘Insert’ is pressed a query will be generated.

 Generated query will be sent to DBMS and DBMS will be listened for

a result.

 If result is false error returned from DBMS will be shown to user.

 If result is true updated table be shown to user.

o User can change the columns of a table by selecting them.

 When a column is selected, its background color will change.

 User can drop a column by selecting the delete icon.

 User can change the name of a column by entering it a new name.

 User can insert a new column by clicking insert icon.

 After an operation a query is generated.

 Generated query will be sent to DBMS and DBMS will be listened for

a result.

 If result is false error returned from DBMS will be shown to user.

 If result is true updated table will be shown to user.

• Schema selection will be provided.

o After user connects to a database, schemas in that database will be shown to

user.

o User can select a schema. Schemas will be shown as rollouts (can change).

• All the tables of a selected schema will be shown.

o After a schema is selected its tables will be shown as selectable items.

• User will be able to select a table to view or modify.

o After a table is selected its rows and columns will be shown.

o There will be icons for manipulating rows and columns. (Discussed above)

• Detailed information of the selected table (columns, rows) will be shown.

o There will be an option to pass from these views to table view.

o In the detailed table view the columns of the table will be shown and all rows

of the table will be listed.

o User will be able to select to view detailed information about columns of a

table and modify it.

 All columns’ attributes (primary key, foreign key, auto increment, data

type, NULL or NOT NULL and unique) will be shown.

 NULL or NOT NULL, foreign key and unique attributes can be

changeable others not.

 After an attribute is modified, a query is generated.

 Generated query is sent to DBMS and DBMS is listened for a result.

 If result is not true, error returned from DBMS is shown.

 If result is true, updated table columns are shown.

o Data types of a table’s columns will be shown when selected.

o User will be able to manipulate rows.

• If the user tries to execute an illegal query or does not have the necessary privileges to

execute a query, an error message will be shown.

o If DBMS returns an error message, it will be shown to user and user will be

asked to try again.

• When the user makes a change on database, the result will be shown immediately.

• The user will be prompted if s/he looses his/her connection.

o If database connection is lost, a message will be shown to user saying

“Connection lost”.

• The connection information will be provided as an include file to the user.

o If entered account information is correct, an include file will be generated in

PHP format.

o User can select to include this file to his/her source code.

 If user selects to include the file, necessary code statement will be

generated and sent to text editor.

4.4 Debugger & DOM Inspector

4.4.1 JavaScript Debugger

We will provide the following facilities for user in the JavaScript debugger in our

product to control the execution of scripts that users are debugging:

• Instant-on JavaScript debugger will be provided.

• Debug any web page containing JavaScript source or included JavaScript files,

or standalone JavaScript files.

o Debug button is pressed.

 If web page contains javascript sources between

<script></script> tags

 Code block(s) is/are highlighted.

 If web page includes .js file

 .js file is opened in new editor view tab.

 If the file has already .js file

 .js file is opened in new editor view tab.

 User will able to stop debugging by pressing stop debugging

button.

• Pause, Resume, step in/over/out, break operations will be provided for

debugging.

o User will able to control debugging operations by buttons provided on

the toolbar.

o Currently executed code is highlighted on the editor view.

• Some views will be shown to user:

o Call Stack View

 Currently executed code/function will be showed with its name

and value.

o Watch View

 User enters variable name s/he wants to trace in to the variable

name field.

 Check whether the variable name is matched.

 If it is matched.

 Current value of it is displayed in value field.

 If it is not matched.

 Error message is shown to the user.

• User will be able to set and clear JavaScript breakpoints in:

o JavaScript files

o HTML with embedded JavaScript and linked JavaScript files

• User will be able to set a breakpoint by:

o Simply single-clicking on the line number of the line at which s/he

wants to set a breakpoint.

o If the selected line contains executable code a red dot will appear next

to the line number and a breakpoint will be set at that location.

• User will be able to clear breakpoint by:

o Place the cursor on the line at which you want to clear a breakpoint

o Simply single-click on the red dot or the line number of the line at

which you want to clear a breakpoint.

4.4.2 DOM Inspection Tool

Its main purpose is to inspect the Document Object Model (DOM) tree of HTML and

XML-based documents by using dom parser. The initial HTML for an Ajax

Application is often minimal, and in any event likely to change over time due to DOM

Manipulation. All of this is very useful for checking assumptions and diagnosing

problems, since many Ajax bugs arise because the programmer misunderstood the

DOM state at a particular time.

• Showing the DOM-Tree with nodes.

o Get the file type of the current file in the editor view.

o Check whether the file extension is .html or .xml

o If the result is true

 Parse the file.

 Show the nodes on the tree view.

o Else do not show anything on the Dom inspection.

• Drill down the hierarchy, search for keywords.

o User will be collapse/expand tree view of a document.

o User enters the keyword s/he wants to search in the document

o Check whether the keyword is in document.

o If it is found

 The node is highlighted.

o If it is not found

 Error message is shown to the user.

• Current element highlighted in page.

o If user will press the node on the tree view of the document.

o Send a request to WYSIWYG.

o The html component which the selected node contained will be

highlighted.

• Node name, type and value are shown.

o If user will press the node on the tree view of the document.

o Name, type and value of this node on the tree view of the document

will

be showed in the name, type and value field of the DOM Inspector

module.

4.5 FTP Manager

• User will enter required connection information like host, user, password and clicks

"Connect" button.

o If connection cannot be acquired an error is shown to user.

o If connection can be acquired FTP Window is opened.

• User selects a file and clicks to "Get File".

o User retrieves a copy of the file at the FTP Server into a local workspace.

• User selects a file and clicks "Send File"

o After user clicks send file the file is sent to FTP server.

• User presses disconnect button.

o A close connection signal is sent to FTP server.

o User is prompted that s/he is disconnected.

4.6 CVS Manager

• User will enter required connection information like host, repository path, user,

password, connection type, and clicks "Finish" button.

o If connection cannot be acquired an error will be shown to user.

o If connection is acquired a CVS repository window, which includes list of files,

will be open for user to perform versioning actions like "CVS Check-out" and

"CVS Commit".

• User selects a file and clicks "CVS Commit".

o If request can be done user will be able to create a new revision of the file,

containing his/her changes, into the repository.

o If a file commit is not allowed by server, an error is shown to user.

• User selects a file and clicks to "CVS Check-out", s/he will be able to retrieve a copy

of the entire repository or a portion of the directory tree in the repository into a local

workspace.

o Selected file is requested from server.

o If file is not available an error is shown else user acquires the file.

• User can close connection by pressing a button.

o If user requests a connection close, a close signal is sent to server.

4.7 SYSTEM ARCHITECTURE

4.7.1 Level0 DFD

4.7.2 Level1 DFD

4.7.3 Data Dictionary

name: User commands

where used / how used: GUI(1.0) input

description: Every external input that user enters

name: Displayed Response

where used / how used: GUI(1.0) output

description: Every output provided by system

name: Database Information

where used / how used: Database Editor (5.0) input

description: Information Stored in user’s database

name: Connection Information

where used / how used: Database Editor (5.0) output

description: Connection information and Queries entered by user

name: Request

where used / how used: Main Process (2.0) output

description: Signal to publish application in browser

name: Interpreter Results

where used / how used: Main Process (2.0) intput

description: Returned result from JavaScripts Errors

name: Check-in Files

where used / how used: Main Process (2.0) output

description: Sending files to CVS server

name: Import Files

where used / how used: Main Process (2.0) input

description: Receiving Files from CVS server

name: User Files

where used / how used: Main Process (2.0) input

description: Sending files to FTP server

name: Publishing Files

where used / how used: Main Process (2.0) output

description: Receiving files from FTP server

name: Debug Operations

where used / how used: Main Process (2.0) output

JavaScript Debugger (6.0) input

description: Debugger related inputs

name: Debug Result

where used / how used: Main Process (2.0) input

JavaScript Debugger (6.0) output

description: Outputs of debug operation

name: Source Code

where used / how used: WYSIWYG Editor (3.0) input
Text Editor (4.0) output
JavaScript Debugger (6.0) input

description: Source Code of Application

name: Cursor Position

where used / how used: WYSIWYG Editor (3.0) output
Text Editor (4.0) input

description: Inputs from design view to determine the position of cursor in code view

name: Generated Code

where used / how used: WYSIWYG Editor (3.0) output
Text Editor (4.0) input

description: Inputs from design view to add generated codes to code view.

name: User Request

where used / how used: GUI(1.0) output

Main Process (2.0) input

description: User inputs

name: System Response

where used / how used: GUI(1.0) input

Main Process (2.0) output

description: System output

name: Display Info

where used / how used: WYSIWYG Editor (3.0) output
Main Process(2.0) input

description: Design View output for display

name: Visual Operations

where used / how used: WYSIWYG Editor (3.0) output
Main Process(2.0) output

description: User inputs related with WYSIWYG editor

name: Output

where used / how used: Main Process(2.0) input

Text Editor (4.0) output

description: Output from Text editor to display

name: Input

where used / how used: Main Process(2.0) output

Text Editor (4.0) input

description: User inputs related with Text editor

name: Database Operations

where used / how used: Database Editor (5.0) input

Main Process (2.0) output

description: User requests on database

name: Desired Information

where used / how used: Database Editor (5.0) output

Main Process (2.0) input

description: Information of user database for display

5. SYSTEM DESIGN

5.1 Use Case Diagrams and Scenarios

5.1.1 Text Editor

Undo/Redo Code: User will press undo or redo to disable or enable changes he/she

made on his/her file.

Comment/ Comment out code: User will select a part from the file and comment in

or out this part.

Search & Replace code: User will find an expression, word or sentence and replace it

with another.

Use keyboard shortcuts: User will use keyboard shortcuts to manage the tasks easily.

Select rectangle: User will select a part in a rectangle and change it according to

his/her needs.

Bracket Matching: When user comes to a bracket, cursor will automatically shoe the

match of that bracket.

Customize toolbar: User will customize the toolbar according to his/her needs.

Use palette: User will use the palette to add the source codes of the built-in

components.

Write Code: User will write source code.

Syntax Highlighting: When the user writes his/her code syntax highlighting will

automatically highlight the built-in functions or expressions of the related language.

Automatic Completion: When user is typing the name of an object (e.g. "document"),

when you type the period (".") to call either a method or access a property for that

object, it pops up a small window displaying the available methods and properties for

that object. User can also type ctrl + space to access this help at any time. When user

is calling a method on that object, when you type the first open parenthesis ("("), our

editor will automatically create the closing parenthesis (")") for him/her, and it will

pop up a small window with the parameters that the method takes.

Automatic Indentation: When the user is writing a code, automatic indentation will

indent his/her code according to the related programming language.

HTML code cleanup/formatting: After user writes the code, editor will check

HTML validity and clean the code to make a correct HTML file.

Link Checking: When the user has entered a link, editor will automatically highlight

it as a link.

HTML Validation: While user is writing the code, editor will check if he/she is

writing HTML code validly.

Code Generation: When the user uses the palette, editor will automatically generate

the related code of the component.

Provide Marker: When the user opens another file, "markers" for remembering

positions in files to return to later will be supported.

5.1.2 WYISWYG Editor

Undo/Redo operation: User will press undo or redo to disable or enable changes s/he

made on his/her file.

Keyboard Shortcuts: User will use keyboard shortcuts to manage tasks easily.

Using Palette: User will use drag & drop option to add built-in component to his/her

design view.

Insert Text: User will enter text input to his/her design view.

Modifying Object: User will modify components that are previously added.

Customizing the properties of element on properties editor: User will arrange the

desired properties of elements.

File Operations from desktop: User will add images and files to his/her design view

with drag and drop directly from desktop.

Image Operations: User will add, delete, resize etc. images.

Code Generation: When the user use palette/insert text/modify objects/customize

properties of elements/make file operations /make image operations.

5.1.3 Database Editor

Connect to Database: User will press connect button. Then user interface will bring

up connection dialog and waits for the user to enter connection info. After user enters

connection info, user interface will send it to DBMS. If the connection info is correct,

DBMS will return database info and user interface will show the result to user and also

will prepare an include file.

Select Database Schema: User will select to view a schema. User interface will

generate query and send it to DBMS. DBMS will execute the query and send the result

to UI. UI will show the result to user. If the query is invalid, UI will show an error

message to user.

View, Modify Table: User will select an operation on a table. User interface will

generate query and send it to DBMS. DBMS will execute the query and send the result

to UI. UI will show the result to user. If the query is invalid, UI will show an error

message to user.

Enter SQL Query: User will write a query. UI will send it to DBMS. DBMS will

execute the query and send the result to UI. UI will show the result to user. If the

query is invalid, UI will show an error message to user.

5.1.4 Debugger

Keyboard shortcuts: User will use the keyboard shortcuts to manage the debugger

operations which are: Pause/Resume, Step in/over/out.

Pause/Resume: User will press the Pause/Resume button. The debugging engine will

stop or continue to control the execution of scripts. Call stack view and variables view

are updated according to these operations.

Step in/over/out: User will press the Step in/over/out button. The debugging engine

will go in/over/out the execution step of the scripts its debugging.

Set/clear breakpoints: User will click the the line number at which he/she wants to

set/clear breakpoints on the editor window. Breakpoint set/clear at this line. The

debugging engine will stop/continue at breakpoints. Call stack view and variables

view are updated according to these operations and the user will see the values of the

variables at that breakpoints.

Call Stack view: When the debugger is stopped, the Call Stack view displays the list

of active functions.

Variables view: When the debugger is stopped, the variables view displays values for

the current function.

5.1.5 CVS Manager

5.1.6 FTP Manager

5.2 Sequence Diagrams

5.2.1 Text Editor

5.2.2 WYSIWYG Editor

5.2.3 Database Editor

5.2.4 FTP Manager

5.2.5 CVS Manager

5.3 Class Diagrams

5.3.1 Text Editor

• fileList[] : fileInfo : Stores the
information about the file and also
the information needed to
manipulate them.

• currentFile : Stores the identity of
current file.

• threadList[] : FileThread : Stores
the current list of the threads that
work for functionalities of every
file.

• xmlHtmlHighlighter : It is the
instance of the
XMLHTMLSyntaxHighlight class.
It provides syntax highlighting for
XML and HTML.

• javaScriptHighlighter : It is the
instance of the
javaScriptSyntaxHighlight class. It
provides syntax highlighting for
JavaScript.

• cssHighlighter : It is the instance
of the cssSyntaxHighlight class. It
provides syntax highlighting for
css.

• fileOperator: FileOperator : It
manages the file operations which
will be discussed later.

• sourceManager :
SourceManipulation : It manages
the code writing operation which
will be discussed later.

• autoCompleter : AutoComplete :
It manages auto completion.

• addFile() : It receives input from
GUI and adds a new file to the
filelist.

• removeFile() : It receives input
from GUI and removes a file from
the filelist.

• incrementIndentCount() :
Increments the indent number of the
current file.

• decrementIndentCount() :
Decrements the indent number of
the current file.

• insertComment() : Inserts
comment line to the beginning of

every selected line.
• deleteComment() : Deletes

comment lines from the beginning
of every selected line.

• replace() : It replaces a selected
word with the given word.

• matchBracket() : It find the match
bracket of a selected bracket.

• deleteAllThreadFiles() : Removes
all the threads.

This is an interface which Java already has.
• canUndo() : Checks whether it is an undoable action.
• canRedo() : Checks whether it is a redouble action.
• undo() : Performs undo action.
• redo() : Performs redo action.

• insertCode() : Takes the code sent from WYSIWYG
editor and inserts it to the correct position.

• deleteCode() : Takes the code position sent from
WYSIWYG editor and deletes it from the correct
position.

• modifyCode() : Takes the code and code position sent
from WYSIWYG editor and inserts it to the correct
position.

• convertPosition() : Converts the cursor position of
WYSIWYG editor to the cursor position of text editor.

• openFile() : It opens the file specified with GUI command.
• createFile() : It creates the file specified with GUI command.
• saveFile() : It saves the current file.
• closeFile() : It closes the current file.
• search() : It searches the user specified word or phrase.

• fileName : It stores the name of the file.
• columnNumber : It stores the column number of the cursor

position.
• lineNumber : It stores the row number of the cursor

position.
• file : It stores a file pointer.
• indentCount : It stores the indent count number of the file.

• run() : It starts the thread.
• autosave() : It saves the user changes to the temporary file

created by the system.
• wait() : It tells the thread to wait.
• delete() : It removes the temporary file.

• xmlReader : It reads the XML

files for auto completion.
• jsReader : It reads the

JavaScript files for auto
completion.

• moveCursor() : It moves the
cursor after inserting an attribute
and a command for a JavaScript
Class.

• getMethodsAndAttributes() :
It gets the methods and
attributes which belong to the
class user is currently dealing
with.

• readJSFile() : It reads the javascript file the user has
created.

• createCMLFile() : It creates an XML file for storing the
class, method and attribute information of a user defined
JavaScript class.

• readXMLFile() : It reads the XML files that
are created by a JavaScriptParser object.

• findMethodsAndAttributes() : It find the
methods and attributes of a JavaScript
function.

This class is a base class for
JavaScriptSyntaxHighlight,
XMLHTMLSyntaxHighlight,
CSSSyntaxHighlight classes.

• hasTable : It is the hash table of a

programming language which stores the
keywords and their predefined colors.

• xmlFile : It reads the XML files to insert the
keywords to the hash table.

• isKeyword() : It checks whether the written
word is a keyword or not.

• getColor() : It gets the color of the keyword
which the user has entered from the hash table.

• readXMLFile() : It reads the XML file to find
the keywords of the current file type.

5.3.2 WYSIWYG Editor

• CanvasCorecursorPosition : Stores

the current position of cursor.
• objectList[]: The List of

GraphicalObject class instances.
• eventList[]:The List of EventObject

class instances.
• suggestField[]:The List of

AjaxSuggestTextField class instances.
• generateDesignView() : Read the

source code and generate Design
view.

• readText(): get the text input from
user.

• objectType : Stores the type of object
• objectName: Stores the name of object
• startPoint: Stores the start point coordinates

of object
• endPoint: Stores the end point coordinates

object
• code: Stores related code for generating the

Design view of object
• eventObject: if object is an ajax action

stores the eventObject of ajax action
• eventRole: if object is an ajax action stores

the role of ajax action
• getProperties(): return the properties of

Graphical Object
• virtual generateCode(): virtual function for

creating code according to the properties.

• form1Action: Stores the action type for ajax action
• form1: Stores the info of first related form
• form2: Stores the info of second related form
• query: Stores desired query for custom ajax action
• code: Stores code for custom ajax action
• generateCode(): generates code for required for that

custom ajax action.
• writeToXml(): writes the required information of custom

ajax action for reuse.

• rowNumber: Stores the row number of

html table
• columnNumber: Stores the column

number of html table
• width: Stores the row number of html

table
• height: Stores the row number of html

table
• alignCaption: Stores the align info of

html table
• backgroundColor: Stores the bg color

info of html table
• borderThickness: Stores the border

thickness info of html table
• cellSpacing: Stores the cell spacing info

of html table
• cellPadding: Stores the cell padding info

of html table
• tableContents[][]:Stores the contents of

rows and column

• xPosition: stores the line number information as x point
• yPosition: stores the character information as x point
• getXpositon(): returns the xPosition
• getYposition():returns the yPosition

• query : It stores the sql query which the user has

entered to use the AJAX application.
• form1 : It stores the information of which

element the suggestion will show.
• numberOfSuggestions : It stores the number of

suggestions.
• code : It stores the JavaScript code related to the

AJAX action.
• generateCode() : It generates the necessary code

for the action.

• createTempFile(): creates a temporary file for sending

codes to Text Editor
• writeToFile(): writes the codes
• deleteFile(): delete the temporary file after Text Editor

gets the codes.

5.3.3 Database Editor, CVS Manager and FTP Manager

• userName : Stores username for connection.
• password : Stores password for connection.
• serverLocation : Stores the location of the server.

• databaseName : Stores the name of the database that
is connected to.

• databaseType : Stores the type of the database
(MySQL or Oracle) that is connected to.

• respositoryPath: Stores the path of the reprository in the
CVS server.

• errorMessage : Stores the error
message that is shown to user.

• schemaInfo : Stores the schema
info of the database that is
connected to.

• tableInfo : Stores the table info of a
selected schema.

• userAccount :
DatabaseAccountInfo : Stores the
account information for a database.

• queryGenerator : GenerateQuery :
Instance of QueryGenerator class
which is responsible for generating
queries.

• getTableInfo : Returns tableInfo.
• getSchemaInfo : Returns

schemaInfo.
• connect : Connects to a database

specified by userAccount.
• closeConnection : Disconnects

from database.
• getErrorMessage : Returns error.
• executeQuery : Sends a query to

DBMS.
• createFile : Prepares an include file

with database account information.

• query : Stores the query generated.
• getQuery : Returns the query.
• generateUpdateQuery : Generates an

update query.
• generateDeleteQuery : Generates a delete

query.
• generateSelectQuery : Generates a select

query.
• generateCreateTableQuery : Generates a

create table query.
• generateAlterTableQuery : Generates an

alter table query.
• generateDropTableQuery : Generates a

drop table query.

• errorMessage : Stores the error message that
is shown to user.

• userAccount : Stores the user account
information to connect to CVS server.

• getErrorMessage : Returns the error
message.

• connect : Connects to CVS server.
• disconnect : Disconnects to CVS server.
• commitFile : Commits a specified file to

CVS server.
• checkOutFile : Requests the specified file

from CVS server.

• errorMessage : Stores the error
message that is shown the user.

• userAccount : Stores the account
information to connect to an FTP
server.

• connect : Connects to an FTP
server.

• disconnect : Disconnects from an
FTP server.

• getErrorMessage : Returns an
error message.

• sendFile : Sends a file via ftp.
• requestFile : Requests a file via

ftp.
• requestServerFileInfo : Gets the

file information of server.

5.3.4 Debugger

• breakPointList = It stores breakpoints locations in
a list.

• variableList = It stores variables in a list

• setBreakpoint() = sets the breakpoint location.
• getBreakpoint() = gets the breakpoint location.
• startDebug() = it starts debugging.
• stopDebug() = it stops debugging.
• setVariable() = sets the variable that user wants to

trace.
• getVariableValue() = gets current value of the

variable.
• stepOver() = steps over the breakpoint while

debugging.
• stepInto() = step into the breakpoint while

debugging.
• stepOut() = step out the breakpoint while

debugging.
• getCallStack() = gets current call stack of the

debugging program.
• pauseDebugging() = it pauses debugging.
• resumeDebugging() = it resumes debugging.

5.3.5 GUI

• newFile() : Creates a new file and invokes TextEditorCore.
• openFile() : Invokes TextEditorCore to open a file.
• closeFile() : Invokes TextEditorCore to close a file.
• saveFile() : Invokes TextEditorCore to save a file.
• exit() : Invoke exit function of system.

• undo() : Invokes Text Editor’s related function.
• redo() : Invokes Text Editor’s related function.
• cut() : Invokes Text Editor’s related function.
• copy() : Invokes Text Editor’s related function.
• paste() : Invokes Text Editor’s related function.
• delete() : Invokes Text Editor’s related function.
• find() : Invokes Text Editor’s related function.

• newProject() : Creates a new project, invokes related

function.
• openProject () : Invokes related function to open a project.
• runProject () : Invokes related function to run project.
• debugProject() : Invokes DebuggerInterface to debug.
• stepOver() : Invokes DebuggerInterface to step over.
• stepInto() : Invokes DebuggerInterface to step over.
• stepOut() : Invokes DebuggerInterface to step over.

• databaseConnector() : Shows Database

connection console and invoke DatabaseCore
• FTPConnector() : Shows FTP connection

console and invoke FTPManager

• showWorkspace() : Shows Workspace view of

GUI.
• showProject () : Shows Project view of GUI.
• showDomInspector () : Shows DomInspector

view of GUI.
• showPalette () : Shows Palette view of GUI.
• showDebugger () : Shows Debugger view of

GUI.

• isConnected : Stores connection information.
• openCvsManager() : Invokes CVS Manager to

open CVS window
• commit() : Invokes CVS Manager to commit a file.
• checkOut() : Invokes CVS Manager to check out a

file.
• disconnect() : Invokes CVS Manager to close CVS

connection.

• helpContents() : Shows help contents.
• about() : Shows information about IDE.

• newFile() : Creates a new file and invokes

TextEditorCore.
• openFile() : Invokes TextEditorCore to open a file.
• newProject() : Creates a new project and invokes

related function.
• saveFile() : Invokes TextEditorCore to save a file.
• undo() : Invokes Text Editor’s related function.
• redo() : Invokes Text Editor’s related function.
• find() : Invokes Text Editor’s related function.
• cut() : Invokes Text Editor’s related function.
• copy() : Invokes Text Editor’s related function.
• paste() : Invokes Text Editor’s related function.
• delete() : Invokes Text Editor’s related function.
• run() : Invokes related function to run project.
• startDebugging() : Invokes DebuggerInterface to

start debugging.
• pauseDebugging() : Invokes DebuggerInterface to

pause debugging.
• resumeDebugging() : Invokes DebuggerInterface

to resume debugging.
• stopDebugging() : Invokes DebuggerInterface to

stop debugging.

• getSelectedComponent() : send selected

component to CanvasCore.
• deleteComponent() : Invokes CanvasCore to

delete a component.
• copyComponent() : Invokes CanvasCore to

copy a component.
• pasteComponent() : Invokes CanvasCore to

paste a component.
• updateComponent() : Invokes CanvasCore to

update a component.

• getSelectedText() : send selected text to

TextEditorCore.
• deleteText () : Invokes TextEditorCore to delete text.
• copyText () : Invokes TextEditorCore to copy text.
• pasteText () : Invokes TextEditorCore to paste text.
• goToNumber() : Invokes TextEditorCore to go

selected line.
• showBreakPoint() : shows breakpoints of Debugger.

• getSelectedComponent() : send selected

component to CanvasCore.
• showProperties() : show properties of

component.
• readInput() : gets input from user.
• changeProperties() : update properties of

selected component.

• getSelectedComponent() : send selected

component to CanvasCore.
• showEvents() : show events of selected

component.
• readInput() : gets input from user.
• changeEvents() : update events of selected

component.

• showForm1() : shows the form to insert object1.
• showForm2() : shows the form to insert object2.
• showEvents() : shows events of inserted objects.

• showGraphicObjects() : shows the list of objects.
• showEvents() : shows events of inserted objects.
• readSqlQuery() : gets the SQL query input of

user.
• addAjaxAction() : invokes system to add new

AJAX object.

• openProject () : Invokes related function to open a

project.
• closeProject () : Invokes related function to close a

project.
• newProject() : Creates a new project and invokes

related function.
• deleteProject () : Invokes related function to delete

project.

• openFile() : Invokes TextEditorCore to open a file.
• deleteFile() : Invokes TextEditorCore to delete a file.
• closeFile() : Invokes TextEditorCore to close a file.
• copyFile() : Invokes TextEditorCore to copy a file.
• pasteFile() : Invokes TextEditorCore to paste a file.
• newFile() : Creates a new file and invokes

TextEditorCore.

• getVariable() : gets the entered varible information
• showVariable() : shows information of variable.
• updateStackView() : Invoke DebuggerInterface to

update program stack.

• getSelectedNode() : gets the node information
• showVariable() : shows information of selected

node.

• getAccountInfo() : gets input of connection

information from user.
• connect() : Invokes CVSManager to connect.

• getAccountInfo() : gets input of connection

information from user.
• getDatabaseOperation() : gets input of

operation from user.
• connect() : Invokes DatabaseCore to connect.
• disconnect() : Invokes DatabaseCore to

disconnect.

• getAccountInfo() : gets input of connection information

from user.
• getFile() : gets file information from user and invokes

FtpManager to get file.
• sendFile() : gets file information from user and invokes

FtpManager to send file..
• connect() : Invokes FtpManager to connect.
• disconnect() : Invokes FtpManager to disconnect.

6. GUI DESIGN

6.1. Overview of GUI

AJAXDEV project has to provide developers a user-friendly environment which

they can create interactive and rich web applications especially using AJAX actions.

“GUI Design” module of our project is one of the most important parts because it

provides the permanent interaction of user with Development Environment. We will

design a GUI that supports all features of our IDE in a user-friendly way and also

view of our IDE should be nice-looking. We have investigated existing Development

Environments such as “Aptana”, “Tibco” and “JSE8” to be able to identify our design

as an applicable combination of these well-designed tools. As stated before, we have

already determined our GUI functional requirements mainly in “Requirement Analysis

Report”. We revised and made some changes about our GUI to provide users more

usability.

Consequently, we have started to design and implement GUI of our development

environment. As we decided to implement our project by using JAVA, we have used

“JAVA Swing” package while implementing GUI.

6.2 GUI Requirements

• User will be able to see “Code”, “Design” and “Browser” views in the middle of

main window, each one will be placed in a different tab. S/he will be able to

switch between these tabs.

• When user chooses “Code” tab, s/he will be able to write his/her source code with

the help of a featured text editor.

o If user right clicks in the “Code” view, s/he will be able to perform “Cut”,

“Copy”, “Paste”, “Delete”, “Select All” actions.

• When user chooses “Design” tab, s/he will create graphical design of his/her

project by using a WYSIWYG editor.

o If user right clicks in the “Design” view, s/he will be able to perform

“Cut”, “Copy”, “Paste”, “Delete” and “Select All” actions.

• When user chooses “Browser” tab, s/he will be able to see his/her application in

an embedded browser.

• User will able to see “Project” and “Workspace” view at the left of

“Code/Design” view, in tabbed structure.

• When user chooses “Project” tab, s/he will see all projects of development

environment and select by double clicking any of them. If user selects one of

these projects, that project will be set as current project and appears in

“Workspace” view.

o If user right clicks in the “Project” view, s/he will be able to perform

“New”, “Open”, “Edit” and “Delete” actions.

o User will be able to expand and enclose the hierarchical tree structure of

projects.

• When user chooses “Workspace” tab, s/he will see current project and its files that

s/he creates and will probably run. If user selects one of these files by double

clicking on it, that file will be ready for editing or running and appears in “Code”

view. User will also be able to see JavaScript variables and functions of classes of

files.

o If user right clicks in the “Workspace” view, s/he will be able to perform

“New”, “Open”, “Edit” and “Delete” actions for current project’s files.

• User will be able to see “DOM Inspector” view (Outline) just below the “Project /

Workspace” view.

o When user chooses “DOM Inspector” view, s/he will see and reach all

nodes which are tags of HTML/XML document of current project. If user

chooses one of components by double clicking on it, that component's

appearances will be highlighted in editor.

• User will be able to see “Palette” view at the right of the “Code/Design” view.

There are HTML and JavaScript components and AJAX Actions that are created

before for the ease of user in this view.

o If user selects one of these components by clicking the icon of component

and put it on the “Design” view (drag and drop), that component will be

added to design and also its source code will be added to the file in

“Code” view.

o If user wants to add a new AJAX action to the palette (the one that s/he

creates or benefits from another source), s/he will click “Add New AJAX

Action” button, and a window will be open for user to write the source

code of action to be added.

o After making required connection and configurations about action, user

will clicks “Add” button on window and new AJAX component will be

added to palette.

• User will be able to see “Properties” and “Events” views that are in table structure

just below the “Palette” view in tabbed structure.

o User will define his/her component’s properties (name, type, width, height,

action etc.) by using “Properties” table.

o If user will click any cell of “Properties” table, that cell will be ready to

edit or update, entered text can be the name of component or column

number of a table.

o User will define his/her component’s events (handlers, actions) by using

“Events” table.

o If user will click any cell of “Events” table, that cell will be ready to edit

or update.

• User will be able to see “Debugger” view at the bottom of main window, with two

tabs which are “Stack” and “Watch” views.

o In “Stack” view, user will be able to see variables and functions currently

placed in program stack.

o In “Watch” view, user will be click a cell, write name of the variable that

s/he want to trace, and s/he will be able to see value of it during program

flow.

o User will be able to add breakpoints at the line which is just left of “Code”

view.

• User will be able to see “Database” view if s/he clicks to “Connect Database”

button and connects his/her database without any problem.

o When user clicks “Connect Database” button, an input dialog will open

and will get information of user’s account name, password, location of

database and type of database (MySQL or Oracle).

o If request is accepted by DBMS, “Database” view will be shown to user to

interact with his/her database.

o If request is denied system will show an error message and request

account information again.

o After user connects to a database, schemas in that database will be shown

to user. User can select a schema among the list.

o After a schema is selected its tables will be shown as selectable items.

User will be able to select a table to view or modify.

o After a table is selected its rows and columns will be shown.

o User will be able to execute queries (table, column or row creation,

modification, deletion) without the need to know the proper syntax by just

clicking on the appropriate action.

o User will select any row or column (attributes) in the tables by clicking on.

o If cell is empty user can write new value for that attribute, if it has a value,

s/he can change it by using “Update” icon, or delete it by clicking

“Delete” icon.

o User will be able to switch between different views.

o If user wants to execute his/her query by using the query window on the

top of “Database” view, s/he will write queries and click execute button to

get the result of query.

• User will be able to see “Menu Bar” on the top of the main window.

o If user selects “File” submenu of “Menu Bar”, s/he will be able to perform

“New File”, “Open File”, “Close File”, “Save File”, “Save File As” and

“Exit”.

o If user selects “Edit” submenu of “Menu Bar”, s/he will be able to perform

“Undo”, “Redo”, “Cut”, “Copy”, “Paste”, “Delete” and “Find” actions.

o If user selects “Project” submenu of “Menu Bar”, s/he will be able to

perform “New Project”, “Open Project”, “Close Project”, “Run Project”,

“Debug Project” and “Step Over”, “Step Into”, “Step Out” actions.

o If user selects “Tools” submenu of “Menu Bar”, s/he will be able use

“Database Connection Manager” to connect database or send his/her files

by using “Publish via FTP” option.

o If user selects “Window” submenu of “Menu Bar”, s/he will be able to

show or hide “Workspace View”, “Project View”, “Outline View”,

“Palette View” and “Debugger View”.

o If user selects “Versioning” submenu of “Menu Bar”, s/he will be able use

“CVS Manager”. User can easily “Import” or “Check-out” his/her files.

o If user selects “Help” submenu of “Menu Bar”, s/he will be able to choose

“Help Contents” or “About”.

• User will be able to see “Toolbar” on the top of the main window, just below the

Menu Bar.

o If user clicks any icon on the toolbar, s/he will be able to perform the

action of that icon.

o Possible icons that will be shown on the toolbar are, “New File”, “Open

File”, “New Project”, “Save File”, “Undo”, “Redo”, “Search”, “Cut”,

“Copy”, “Paste”, “Run”, “Debug” and “Stop”.

o User will be able to customize the toolbar, by clicking arrow at the right of

toolbar and selecting an icon to be shown on the seen part.

• If user runs his/her application or chooses “Preview in selected browser” option,

s/he will also be able to see application in an external browser.

• Efficient keyboard shortcuts will be provided for user.

o New (CTRL + N)

o Save (CTRL + S)

o Load (CTRL + L)

o Find (CTRL + F)

o Find & Replace (CTRL + H)

o Cut (CTRL + X)

o Copy (CTRL + C)

o Paste (CTRL + V)

o Select all (CTRL + A)

o Undo (CTRL + U)

o Redo (CTRL + R)

o Switch to design view (CTRL + D)

o Switch between tabs (CTRL + T)

• Keyboard shortcuts for pause, resume, step in/over/out, break will be provided.

o Break (Pause)

o Go (F5)

o Step into (F11)

o Step over (F7)

o Step out (F8)

• Powerful keyboard navigation in the file system browser is allowed.

o User will press 'ALT' and the file menu fill be opened.

o User will use arrow keys to navigate on the menu.

6.3 Screenshots of GUI
In this part, screenshots of all GUI modules are shown.

6.3.1 “Code”, “Design” and “Browser” views

6.3.2 “Project” and “Workspace” views

6.3.3 “DOM Inspector” view

6.3.4 “Palette” view

6.3.5 “Properties” and “Events” views

6.3.6 “Debugger” view

6.3.7 “Menu Bar” & “Tool Bar”

6.3.8 Final view of GUI

7. SYNTAX SPECIFICATION

Variable names: If a variable name consists of more than one word, first letter of each

word except the first one will be capitalized: control, requestReturnData

Function names: Functions will be named with the same rule as variables: getControl,

check

Class names: The first letter of every word in a class name will be capitalized:

HomeIndoorArea, Student

Class members and methods will be written in the following order:

1. Private members

2. Protected members

3. Public members

4. Private methods

5. Protected methods

6. Public methods

There will be one empty line between function bodies. Only one member can be written

on a line. There will be two empty lines after member declarations. Members in a same

visibility will be grouped according to their data types. Example:

public class Student {

 private String name;

 private String surname;

 private int studentNumber;

 public char studentType;

 Student() {

 //body

}

protected int getStudentNumber() {

 //body

}

public String getName() {

 //body

}

}

Functions: When writing a function the opening and closing brackets of functions will be

on individual lines. Local variables in a function will be declared on top and local

variables with the same data type will be grouped. Only one local variable can be

declared on a line. After the declaration of local variables there will be two empty lines

before starting to code. Example:

Bool checkDoorCollision(void) {

 int control;

 int index;

 float distance;

 Position cameraPos;

 //code starts here.

}

Conditionals and loops: Opening and closing brackets of conditional and loops will be

on individual lines. Example:

if() {

 // condition body

}

Comments:

• At the beginning of every file, the author of it, the date file is created and the date

file was last modified will be written in a comment with the following syntax.

/**

 @author: Fulya Oktay

 Created 01.12.2006

 Modified 01.12.2006

 */

• Before the ‘if’ and ‘for’ expressions, the purpose of them will be stated in a

comment.

• Before every class definition, the component which the class specifies will be

stated in a comment.

• Before every function definition, the functionality will be stated in a comment.

• For every attribute of the class, an explanation will be provided in a comment.

Syntax for comments is

/**

 Comment

*/

8. TESTING ISSUES

8.1 Testing Plan and Strategy

In order to present an error-free and defect-free product we need to make some tests. For

this purpose, we have decided on some testing strategies and built a testing plan during

our design interval. Since we will have very little time for testing, we tried to simplify our

strategy and concentrate on an efficient strategy rather than trying to do all real software

test methods.

To see how easily our software can be tested we check our project with according to

several characteristics:

Operability: From the beginning we will try to work carefully and eliminate errors.

This will help us to test our product easily. Several modules and tasks will be prepared in

order to perform efficient tests and obtain better results.

Observability: We will prepare distinct error and warning messages.

Controllability: We decomposed a job into several units in order to control the actions

easily.

Decomposability: Several modules and tasks will help to uncover errors.

Simplicity: We’ll also try to code as efficiently as possible.

Stability: Separate modules will help us for the stability. Past tests won’t be invalid.

Function and module dependencies, architecture are all understood clearly by group

members and this will help in testing. Also our large document archive will help this

process.

 We will test

• User interaction

• Data manipulation

• Display processing and generation

 Below are the methods we will use.

8.1.1 Unit Testing

In the unit test case we will test each module separately. White box testing will be

used to both detect the errors and correct them. We will test the components by

passing data through it and we will be monitoring data to find the errors.

We will make sure that all the components work correctly and efficiently. The test

will be done primarily by the programmer who designed and implemented the

module. If necessary, the other programmer will do the second testing for the

same module.

All the important paths will be tested with a white box method. Rather than the

complete program, all of the modules will be tested individually. Below are the

modules:

• GUI Testing

• Text Editor

• Database Editor

• WYSIWYSG Editor

• JavaScript Debugger

• CVS Support

• FTP Support

8.1.2 Integration Testing

Although we can find errors in modules by unit test, we must also make an

integration test in order to find errors due to integration of the modules. We will

examine the product from the user’s perspective for making integration test. We

are planning to use an incremental integration for this manner. Smoke testing may

be the most suitable because of the time interval however we won’t have time to

test or product daily. This is unrealistic. We will probably use bottom-up

integration.

We will be looking whether all the modules work correctly, i.e. is data correctly

managed, are interface features easy to understand and use, does the product

really do the job we want, is there any confusion where more than one person uses

the product, etc. All of these tests will be implemented from the perspective of a

user. However it will not be possible to see all the errors, and there may probably

be defects. Some other tests are still needed.

8.1.3 Validation Testing

Validation asks: “Are we building the right product”. And the answer specifies

whether our program will be preferred by the web developers or not. Therefore

validation is important.

We will perform a black box testing too. Use cases will be used in order to

specify all the needed requirements and obtain possible errors.

Beta Testing: It is virtually impossible for us to foresee how the customer will

use our program. We are especially interested in alpha testing. Therefore we will

release an alpha version of the product before the demo deadline. Since our

customers are web developers, we believe we will obtain some error reports from

our friends who have experience in web developments and Ajax actions. In

addition, we are planning to put our product on web site and do advertisement in

some communities and forums related with Ajax applications.

9. CONCLUSION

This is the Initial Design Report of kodadı: AJAXDEV project. During preparing this

report, we have tried to decide on the way we will implement our product. We have made

several discussions when deciding on class attributes and operations however this still

needs more review which will be done until Final Design Report. Up to Final Design

Report we plan to improve our design procedure and provide some functionality on GUI.

10. APPENDIX

