MIDDLE EAST TECHNICAL UNIVERSITY

o

DEPARTMENT OF COMPUTER ENGINEERING
Jr

SENIOR PROJECT
FALL 2006

INITIAL DESIGN REPORT

03.12.2006

®
K@ DADI
YAZILIM

TABLE OF CONTENTS

1. INTRODUCTION ...oooiiiieieiieie e sie ettt staese e saeeneesreenees 4
1.1 Purpose Of the DOCUMENT........ccviiiiiecie e 4
S Tol0] oL OO PE T OU PR PPPPRTT 4
1.3 PrOJECT OVEIVIEWvieeiieiieiiee sttt sttt nae e sbe e snaesnneanee s 6
1.4 DESIGN GOAIS.....ccuviiiieiieciie ettt 7

1.4.1 EXEENSIDIITYoooieee e 7
1.4.2 RODUSTNESS: ...ttt 7
1.4.3 RelIADIIITY: .oovveiieice s 7
1.4.4 FUNCLIONAIIEYooiiciec e 7
145 USADIHILY: oo 7

2. CONSTRAINTS ..ottt ettt sbeeneas 8
2.1 Experience & Skills of Members Constraintsccccocevviinnienicennenie, 8
2.2 TIME CONSIIAINTSeiuiieiieitie sttt 8
2.3 FUNAING CONSLIAINTSvveiieiieiie et 9
2.4 RESOUICE CONSEIAINTSeevieieieiieeieesieesieesiie et sree et nee s 9
2.5 PeITOIMANCEviiieie ittt naeens 9

T O o | =11 1 SR 9

4. SYSTEM MODULES........ocoi ettt 10
A1 TEXEEAITON .ottt 10
4.2 WYSIWY G EQITOr ..ot 13
4.3 Database EQITOrccccviiiiiieie e 16
4.4 Debugger & DOM INSPECIONcccvieiiieiie e 20

4.4.1 JavaScCript DEDUQGQET........ooiieiie et 20
4.4.2 DOM INSPECLION TOO!ooiieiiiiieceeee e 21
A5 FTP IMANAGET ...ttt n e e 23
4.6 CVS MANAGETottt bb e e e neeas 23
4.7 SYSTEM ARCHITECTUREcocoi it 25
o R =LY = [5 SR 25
A Y= 1 5 SR 26
4.7.3 Data DICLIONAIY ...ccvveiieiiecciec et 26

5. SYSTEM DESIGNc.oiiiiiice ettt 31

5.1 Use Case Diagrams and SCENAIIOScccueivriiueeieeseeieesiesieeseesree e, 31
o T0 00 = B =L [(o TS OR 31
512 WYISWY G EQION ..c.viiiiiiiiiiecieecee st 33
5.1.3 Database EQITOrcccooeiiiiiiieie e 35
5.1.4 DEDUGQET ..ottt 36
5.1.5 CVS MANAGET ...ttt 38

5.1.6 FTP MaNAGET ...ttt b 38

5.2 SEQUENCE DIAGIAMS.....citiiiieitieiiie et stee ettt e e e sreesnee s 39

5.2. 1 TeXt EQION.....iiiiiiieiece s 39
522 WYSIWYG EQION ..ot 41
5.2.3 Database EQITOrccooviiiiiieeecie et 43
.24 FTP MAANAGET ...ttt 45
5.2.5 CVS MANAGETeiiiieiieieiiie ettt ettt bb et e snnre e 46

5.3 ClasS DIAQIAIMSciviiiieiee e sie e eie et re et e e beesreesree e 47
5.3 L TeXE EQITON ...ciiiiiiie i 47
5.3.2WYSIWY G EQITOFooiiiiiiiiiiieicciesiesie s s 52
5.3.3 Database Editor, CVS Manager and FTP Managercccccoveveenne. 55
5.3.4 DEDUGUET ... s 58
5.3.5 GUI ..o s 58

B. GUI DESIGN... oottt nne e 67
6.1. OVErVIEW OF GUI ...ocveiiiiiiie e 67
6.2 GUI REQUITEMENTSeeiiiieiie ettt st s 67
6.3 SCreenshots Of GUI ..o 73
6.3.1 “Code”, “Design” and “Browser” VIEWS..........ccccccvevieeiieesseeesneennnes 73
6.3.2 “Project” and “WOorkspace” VIEWS.........cccccuerueiiueerieennesnesneenenenes 74
6.3.3 “DOM INSPECIOI” VIBW......ieiieiieiiiisie e sieesiee e et snee e 74
6.3.4 MPalBE” VIBWoiiiiiiieie e s 75
6.3.5 “Properties” and “EVeNtS” VIEWS.........cccceveriiueiiueeieesiee e sveenieenns 75
6.3.6 “DebUGUEr” VIBWcoieeiiieieeciee ettt 76
6.3.7 “Menu Bar” & “Tool Bar”........cccccovviiiiiniieie e 76
6.3.8 FiNal VIEW OF GUI......ociiiiiiiiicccee e 77

7. SYNTAX SPECIFICATION.....ociii ittt 78
8. TESTING ISSUESociiii ettt 81
8.1 Testing Plan and Strategycccveereerieiieiiesiieee e 81
8.1.1 UNIETESHING weeevvieiieiiie ettt e 82
8.1.2 Integration TeSTINGcccvviieeieee et 83
8.1.3 Validation TeSHING ...c.ccveeiieeieeee et 83

9. CONCLUSION ...ttt sttt st ste e nne e 84

10. APPENDIIX ... 84

1. INTRODUCTION

1.1 Purpose of the Document

This is an initial design report for our project “kodadi: AJAXDEV™. The purpose of this
document is to express the initial design decisions resulted from the detailed functional
requirements and show the way of the development of our project. Firstly, our scope is
presented in a detailed way and an overview of the project is added. Secondly, we have
explained our design constraints which are people, time, hardware and software requirements
for developer side. Then, modules of the system are declared separately with enhanced
requirements. After that, we have shown use case diagrams which are partially updated from
the analysis report. Besides, sequence and class diagrams are provided for better decide on
every component of our modules. Next, we have demonstrated our GUI with all of its
functionality in the GUI Design part. Syntax specification part is also added in order to
provide a consistency and integrity between modules while writing code. Finally we have

added a schedule part and gannt chart to the report to show the progress of our project.

1.2 Scope

AJAXDEV project consists of mainly 5 components which are HTML Text editor,
WYSIWYG (What You See Is What You Get) Editor, parser and debugger, GUI Design and
Database process handler. Moreover we will provide a CVS and FTP support. Embedded

browser will also be supported to test developed application.

HTML Text Editor

An HTML editor is a software application for creating web pages. Although the HTML
markup of a web page can be written with any text editor, specialized HTML editors can offer
convenience and added functionality. For example, many HTML editors work not only with
HTML, but also with related technologies such as CSS, XML and JavaScript. In some cases

they also manage version control systems such as CVS or Subversion. We are planning to

write a text editor with extra functionality for manipulating and previewing of typical
programming languages used for web development. Standard features such as syntax
highlighting and automatic completion will be supported. HTML, XML and Java Script are
supported by this editor.

WYSIWYG (What You See Is What You Get) Editor

WYSIWYG HTML editors provide an editing interface which resembles how the page

will be displayed in a web browser. Most WY SIWY G editors also have a mode to edit

HTML directly as described above. Because using a WY SIWYG editor does not require

any HTML knowledge, they are easier for an average computer user to get started with.

The WYSIWYG view is achieved by embedding a layout engine based upon that used in

a web browser. The layout engine will have been considerably enhanced by the editor's
developers to allow for typing, pasting, deleting and moving the content. The goal is that,

at all times during editing, the rendered result should represent what will be seen later in

a typical web browser. Our WYSIWYG Editor will support standard HTML features such as
buttons, forms etc. that users will be able to drag and drop. In addition to this, some simple
AJAX components will be presented in labor of the user. These components are also available

with drag and drop option.

Parser and Debugger

The parser that we plan to write will support XML, HTML and DOM files. Debugger
supports only JavaScript because user will create AJAX components with JavaScript. Since it
is impossible to develop a debugger for this project due to time constraints, we are planning to
find, adapt and use an open source debugger component.

GUI Design

We designed a Graphical User Interface which is similar to the existing Development
Environments. “Tibco”, “Aptana” and “Eclipse” are being used as a layout of our design. We
are trying to develop a GUI design which shows our functionalities a user friendly and

costless way.

Database Process Handler

This component is planed to manage a database connection. User will use this functionality to
reach his/her database with a user friendly environment. Standard database functions like

connection, table operations and SQL query evaluation are provided with this component.

Embedded Browser Support

Embedded browser will be provided to user to test and see existing file. With the help of
design view, user is able to see the HTML view however, since AJAX components are not

static, this feature will provide the realistic preview of the application.

CVS Support — Ftp Publishing

We will provide a version control system to the user and ftp support for publishing.

1.3 Project Overview

At the beginning, AJAX was a new technology for nearly all of us. Therefore, we have spent
a considerable time for research about this new technique. We tried to divide the project into
modules to perform a better research activity. As a result this challenging activity we have
specified the requirements which were expressed in analysis report. These were not so
detailed but enough to explain what we our product will be like. After releasing analysis
report, we have concentrated on deciding design issues. With the help of our requirements and
technical research we have done, following principals are decided:

e The most important part of the project is WYSIWYG editor. It should provide the
usability of creating and showing an AJAX application with user friendly way. We
will implement this module by hand with existing JAVA packages.

e Text editor is the second important part of the project. It should provide all the
standard features of a text editor. We will implement this module by hand with

existing JAVA packages.

e User will be provided a JavaScript debugger, which is already mentioned. Because of
the time constraints and our preferential features (text and drag-and-drop editor), we
have decided to find an open source debugger which can be adapted to our project.

e Since the database applications play a big role in AJAX actions, we have decided to

give importance to database connection tool.

1.4 Design Goals

1.4.1 Extensibility:

We will design our product considering that an improvement or plug in will be
supported later. So, we can provide an update mechanism to ensure that our product is
always up-to-date. Since AJAX is a developing technique, this feature will be really

important.

1.4.2 Robustness:

The product should be able to manage invalid user inputs or inconsistent conditions. It
provides error checking to ensure the right input format and returns errors and

warnings to the user.

1.4.3 Reliability:

The product should produce the expected output for a valid input at all times.

1.4.4 Functionality:

The system should function according to the requirements specified in Requirements

Analysis Report.

1.4.5 Usability:

The GUI should be user friendly. The goal is to provide the user an easy- to- use

interface. The design of the GUI is based on that of Java based applications. This

design is chosen due to the familiarity of most users with this kind of interface. It
consists of a menu bar, which is further decomposed into sub menus. Text boxes,
scrollbars and pop-up menus are used to enhance user/system interaction. The user is

placed in a familiar environment, which eases the general use of the application.

2. CONSTRAINTS

2.1 Experience & Skills of Members Constraints

As developers, our programming and design skills and experiences is also one of the
restrictions. Although we have made software projects before, it was simpler than our current
project and we do not have experience about creating development environments. Thus, this
restricts our opinions of what we are able to make. In addition, It is very difficult for us to
manage unexpected problems about this field but we may consult experienced people to get

help about solving problems.

2.2 Time Constraints

We have to finish our project by June and also we should provide a prototype at the end of
this semester. Therefore, especially for a software project, this is the most important
constraints. Being able to use our time efficiently is very important for us to follow our
program regularly. In case of schedule problem, to compensate lost time we should focus on
the project instead of other responsibilities and spend more time on it. As a result, although
we thought lots of features and special properties for development environment, for timing
reasons, we may not able to do some exciting features because we should provide expected

functionalities and basics firstly.

2.3 Funding Constraints

Since we will not need any additional hardware and software that have a cost for us to
implement our project, we do not have a cost for them. In addition our team members are
students and we will not pay anyone to during the project. Therefore, there is not any funding

constraint.

2.4 Resource Constraints

While we are doing our project we need different hardware and software resources. We
generally get easily these resources; as software requirements, we need web server, databases
servers and some of development tools. Many of these are freeware, and we can get others in
our department freely. We can also deal with hardware requirements for our project by the
help of our personal resources temporarily so we do not think that the resources will be a
problem for us to complete the project.

2.5 Performance

We are building our application for easy to understand and efficient to use. In addition there
will be excessive user interaction, so performance is a very important constraint for our team.

We consider the performance issue in during each steps of our project process.

3. SCHEDULE

Gannt Chart can be found in Appendix.

4. SYSTEM MODULES

4.1 Text Editor

We are planning to write an HTML text editor for our development kit. HTML editors are
basic text editors with extra functionality for the manipulation and previewing of code,
typically of programming languages used for web development. According to the research we

have done, we have specified following functional requirements for the text editor of our IDE:

e It will have the ability of reading and writing large files.
0 Open/read/save/load/close/new file operations will be supported by GUI
module.
o Large file reading is available.
e It will provide syntax highlighting for XML, HTML, JavaScript and CSS files.
o0 Our system will read the syntax highlighting content when a new word is
written.
0 When the user has written a separate word, it will be checked from the syntax
highlighting content.
o Ifitis matched, the related color will be applied.
0 This procedure will be supported for HTML, XML, JavaScript and CSS files.

e Unlimited undo/redo will be provided.
o Undo
= Save the modifications the user has done, in a stack.
= Delete the last modification that has been done and if it is undoable in
the editor.

= Put the deleted item into a stack.

= Read the last member on the stack.
= Apply that item in the editor if it is redouable.

= Remove it from the stack.

"Markers" for remembering positions in files to return to later will be supported.
0 Store the position of the cursor for every file.
0 Restore the position of the cursor in a file when the file is selected.
o Kill the marker when the file is closed.

Any number of editor windows may be opened.

0 Open multiple files with a tab control in GUI.

o Allow user to change the file he/she is modifying with a keyboard shortcut or

tab select.
0 Assign a marker to the old file to remember the position.
0 Chose the marker of the new file and start from there.

We will provide an auto-completion that does the followings:

o If you are typing the name of an object (e.g. "document™), when you type the

period (".") to call either a method or access a property for that object, it pops

up a small window displaying the available methods and properties for that

object. You can also type “ctrl + space’ to access this help at any time.

= This type of automatic completion will be provided for only user

defined classes.
= Specify the class of the object which is at the left of the point.
= Show all the attributes and classes of that class.

= Allow user to select an attribute or method from the list described

above, put the selected item to the right of the list.

= Place the cursor.

o If you are calling a method on that object, when you type the first open

parenthesis ("({<["), our editor will automatically create the closing

parenthesis (*]>})") for you, and it will pop up a small window with the

parameters that the method takes.

= When the user writes one of the ("({<[") put the suitable (*]>})") and

place the cursor between them.

It will provide intelligent bracket matching, skips quoted literals and comments.

0 () ---- If the user has pressed to ‘%’ when he/she is on a “(’ or *)’, the cursor

will automatically go to the matched parenthesis.

{} ---- If the user has pressed to ‘%’ when he/she is on a *{’ or ‘}’, the cursor
will automatically go to the matched parenthesis.

[]---- If the user has pressed to ‘%’ when he/she is on a ‘[’ or ‘]’, the cursor
will automatically go to the matched parenthesis.

<> ----- If the user has pressed to ‘%’ when he/she is on a ‘<* or “>’, the cursor
will automatically go to the matched parenthesis.

For all of parenthesis above, if there isn’t a matched parenthesis user will be
provided an error message and cursor will not move.

A stack control mechanism will be used.

e It will provide automatic indentation.

(o]

If the user has written a ‘<’ and hasn’t closed it, put a tab’ space when the user
entered a new line.

If the user has written a “{*and pressed ‘enter’, move the cursor to the next line
and one ‘tab’ space right.

If the user has written an ‘if” or ‘else’ clause, didn’t put a ‘{’and pressed
‘enter’, move the cursor next line and one ‘tab’ space right.

If the user has written a “for’ or ‘while’ clause, didn’t put a ‘{’and pressed
enter, move the cursor to the next line and one ‘tab’ space right.

e It will provide commands for commenting and commenting out code.

(o]

(o]
(o]
o]

Enable user to select multiple rows.

Understand what language the selected code belongs to.

Comment the unselected code by putting the related comment item to it.
Comment out the selected commented code by removing the comment items

on it.

e Search and replace supported.

(o]

(0]

(0]

Show a dialog box for search and replace to the user.

Search a word, letter, expression when user has pressed on search.

If the user didn’t enter an item (i.e. if it is blank) give a warning to the user and
don’t do a search.

If the wanted item is found, show it to the user in a highlighted way and move

the cursor to the end of this found result.

Replace the found letter, word, expression with the specified item if the user
presses replace button on the dialog box.

Search again if the user presses next or previous.

Backward and forward search is allowed.

Continuous search is allowed.

e There will be a relation with WYSIWYG editor to support code generation while user.

(o]

Editor will take cursor position, related code and operation type from
WYSIWYG editor.

If the operation type is insertion, the related code will be added to the cursor
position.

If the operation type is deletion, the related code will be deleted from the
cursor position.

If the operation type is update, the code that will be deleted will be deleted and
the code that will be inserted will be added to the cursor position.

e Automatic save is provided to prevent user from loosing data.

o Count the modifications the user has made.

0 When this count is 3 save the current entry to the temporary file.

4.2 WYSIWYG Editor

e Unlimited undo/redo will be provided.

o Undo

= Save the modifications the user has made.
= Delete the last modification that has been done in the editor.

= Put the deleted item into a stack.

= Read the last member on the stack.
= Apply the read item.
= Remove it from the stack.

e A Palette for displaying built-in Ajax actions and HTML elements which can be added
by dragging and dropping.
o For Palette, a window will be shown which consists of drag-able Ajax actions
buttons and HTML elements buttons.
User can drag a button from palette.
Drop it in to the Design View area.
Call code generation.

Open properties window if object is an HTML object.

O O O o o

In the palette we will provide built-in Ajax Actions other than HTML objects
such as:
= AJAX Dynamic Table
= AJAX Photo Gallery
= Drag and drop
= Accordion
= Tabset
= Collapsible region
= Suggest text field
= Dialog box
= Rating widget
= Editin place

e User will be able to insert text in Design view.
0 Get the written text.

o Call code generation.

e An added table object can be selected. If it is selected:
0 User can modify its size and size of its rows and columns.

0 After a modification generate code is called.

e Create and modify added objects through properties window.
o All objects will be selectable.
o If an object is selected, relevant properties window will be shown with its

current properties.

0 User can use properties window for modifications.

o0 After a modification call generate code

User can drag & drop CSS into his design.

o If user inserts a CSS item open dialog box.

0 Prompt user to enter a site for CSS.

o Generate code

Permits files or entire folders to be dragged directly into the editor

o If the input is a folder, zip the input folder.

o Generate code is called.

Drag & drop of image files directly into the editor, as well as file browsing

0 Check the image size and type.

o If there is any violation show user an error message.

o |If input is suitable after dropping it show the properties window with

parameters related with the type of button.

o Call generate code

If the dragged object is an Ajax action open event window

0 According to the type of Ajax Action an Event Window will be opened.

o0 User will enter the required input for actions.

o Call generate code

Code generation will be done after using properties or event windows, dragging &

dropping an object from palette or dragging & dropping a file from outside.

o Appropriate code will be read from file or generated.

Take id and type of button from GUI.

Generate code.

Send the cursor position to Text Editor to add codes the right position.
Send the codes to Text Editor.

Generate design view function is called to refresh the design view

according to the changes in code view.

4.3 Database Editor

The user will be able to connect to a database server if s/he has access rights on it.

e After connecting to a database a GUI window will be provided to user for database

operations.

o Show input dialog box.

Ask user account name, password, location of database and type of
database (MySQL or Oracle)
Get user account information.
Try to connect to the database and get result from DBMS.
If result is true show user the database.
e Show user available and selectable schemas.
If result is false show an error message and request account information

again.

e User will be able to execute queries on the database.

(0]

O O o o o o

Show a query window with execute button to the user for entering queries.

Query window will be shown on top.

If execute button is pressed get the query.

Check the query if it is empty or not.

If query is empty show user a message to enter a query.

If query is not empty send it to DBMS and get the result.

If result is true show the result to user.

If it is a SELECT, UPDATE or CREATE TABLE query show the
result otherwise show a message saying “query has been successfully
executed”.

If result is false show user the error message returned from DBMS.

e The user interface will provide user the ability to execute queries (table, column or

row creation, modification, deletion) without the need to know the proper syntax by

just clicking on the appropriate action.

0 An attribute of a tuple will be selectable.
0 When an attribute is selected its background color will change and user will be
able to enter a new value for that attribute.
= |f the new value is empty NULL will be used.
= After user enters a new value for an attribute, an UPDATE query will
be generated. Update query is generated when update row is clicked.
= Generated update query will be sent to DBMS and the DBMS will be
listened for a result.
= |f result is true the new value of the tuple will be shown to user
otherwise the error returned from DBMS will be shown.
0 User can select a row. If user selects a row, its background color will change.
0 After selecting a row user can delete it by a delete icon.
= If the delete icon is pressed, a delete query will be generated.
= Generated query will be sent to DBMS and the result will be listened.
= |f result is true updated table will be shown to user otherwise the error
returned from DBMS will be shown.
0 There will be a create table button.
o If the button is pressed a dialog box will be shown with *Create’ and *Cancel’
buttons.
= User will be listened for name of table and columns of table and
properties of columns (primary key, foreign key, auto increment, data
type, NULL or NOT NULL and unique).
= |f “‘Cancel’ is pressed no change is done and the dialog box is closed.
= |f ‘Create’ is pressed name of table and names of columns will be
checked for emptiness.
= |f at least one of them is empty user will be prompted to enter a name
for it.
= |f none is empty a query will be generated.
= Generated query will be sent to DBMS and DBMS will be listened for
a result.
= Ifresult is false error returned from DBMS will be shown.

= |fresult is true newly created table will be shown.

o User can insert a new row with an icon.

After the icon is pressed, a dialog box will open asking user values for
NOT NULL attributes with “Insert” and ‘Cancel’ buttons.

After “‘Cancel’ is pressed no change will be done and dialog box will
close.

After ‘Insert’ is pressed a query will be generated.

Generated query will be sent to DBMS and DBMS will be listened for
a result.

If result is false error returned from DBMS will be shown to user.

If result is true updated table be shown to user.

0 User can change the columns of a table by selecting them.

When a column is selected, its background color will change.

User can drop a column by selecting the delete icon.

User can change the name of a column by entering it a new name.

User can insert a new column by clicking insert icon.

After an operation a query is generated.

Generated query will be sent to DBMS and DBMS will be listened for
a result.

If result is false error returned from DBMS will be shown to user.

If result is true updated table will be shown to user.

e Schema selection will be provided.

o After user connects to a database, schemas in that database will be shown to

user.

0 User can select a schema. Schemas will be shown as rollouts (can change).

e All the tables of a selected schema will be shown.

o After aschema is selected its tables will be shown as selectable items.

e User will be able to select a table to view or modify.

o After atable is selected its rows and columns will be shown.

o0 There will be icons for manipulating rows and columns. (Discussed above)

Detailed information of the selected table (columns, rows) will be shown.
0 There will be an option to pass from these views to table view.
0 In the detailed table view the columns of the table will be shown and all rows
of the table will be listed.
o User will be able to select to view detailed information about columns of a
table and modify it.
= All columns’ attributes (primary key, foreign key, auto increment, data
type, NULL or NOT NULL and unique) will be shown.
= NULL or NOT NULL, foreign key and unique attributes can be
changeable others not.
= After an attribute is modified, a query is generated.
= Generated query is sent to DBMS and DBMS is listened for a result.
= If result is not true, error returned from DBMS is shown.

= If result is true, updated table columns are shown.

o Data types of a table’s columns will be shown when selected.

o0 User will be able to manipulate rows.

If the user tries to execute an illegal query or does not have the necessary privileges to
execute a query, an error message will be shown.
o If DBMS returns an error message, it will be shown to user and user will be
asked to try again.
When the user makes a change on database, the result will be shown immediately.
The user will be prompted if s/he looses his/her connection.
o If database connection is lost, a message will be shown to user saying

“Connection lost”.

The connection information will be provided as an include file to the user.
o If entered account information is correct, an include file will be generated in
PHP format.
0 User can select to include this file to his/her source code.
= |f user selects to include the file, necessary code statement will be

generated and sent to text editor.

4.4 Debugger & DOM Inspector

4.4.1 JavaScript Debugger

We will provide the following facilities for user in the JavaScript debugger in our

product to control the execution of scripts that users are debugging:

e Instant-on JavaScript debugger will be provided.
e Debug any web page containing JavaScript source or included JavaScript files,
or standalone JavaScript files.
0 Debug button is pressed.
= |f web page contains javascript sources between
<script></script> tags
» Code block(s) is/are highlighted.
= If web page includes .js file
» s file is opened in new editor view tab.
= |f the file has already .js file
» Js file is opened in new editor view tab.
= User will able to stop debugging by pressing stop debugging

button.

e Pause, Resume, step in/over/out, break operations will be provided for
debugging.
o0 User will able to control debugging operations by buttons provided on
the toolbar.

o0 Currently executed code is highlighted on the editor view.

e Some views will be shown to user:
o Call Stack View
= Currently executed code/function will be showed with its name
and value.
o Watch View

= User enters variable name s/he wants to trace in to the variable
name field.
= Check whether the variable name is matched.
= |fitis matched.
» Current value of it is displayed in value field.
= Ifitis not matched.

» Error message is shown to the user.

e User will be able to set and clear JavaScript breakpoints in:
o JavasScript files
0 HTML with embedded JavaScript and linked JavaScript files

e User will be able to set a breakpoint by:
o Simply single-clicking on the line number of the line at which s/he
wants to set a breakpoint.
o If the selected line contains executable code a red dot will appear next

to the line number and a breakpoint will be set at that location.

e User will be able to clear breakpoint by:
0 Place the cursor on the line at which you want to clear a breakpoint
o Simply single-click on the red dot or the line number of the line at

which you want to clear a breakpoint.

4.4.2 DOM Inspection Tool

Its main purpose is to inspect the Document Object Model (DOM) tree of HTML and
XML-based documents by using dom parser. The initial HTML for an Ajax
Application is often minimal, and in any event likely to change over time due to DOM
Manipulation. All of this is very useful for checking assumptions and diagnosing
problems, since many Ajax bugs arise because the programmer misunderstood the

DOM state at a particular time.

Showing the DOM-Tree with nodes.
0 Get the file type of the current file in the editor view.
0 Check whether the file extension is .html or .xml
o Ifthe result is true
= Parse the file.
= Show the nodes on the tree view.

o0 Else do not show anything on the Dom inspection.

Drill down the hierarchy, search for keywords.
o0 User will be collapse/expand tree view of a document.
0 User enters the keyword s/he wants to search in the document
0 Check whether the keyword is in document.
o Ifitis found
= The node is highlighted.
o Ifitisnot found
= Error message is shown to the user.

Current element highlighted in page.
o If user will press the node on the tree view of the document.
o0 Send arequest to WYSIWYG.
0 The html component which the selected node contained will be
highlighted.

Node name, type and value are shown.
o If user will press the node on the tree view of the document.
o0 Name, type and value of this node on the tree view of the document
will
be showed in the name, type and value field of the DOM Inspector

module.

4.5 FTP Manager

e User will enter required connection information like host, user, password and clicks
"Connect" button.
o0 If connection cannot be acquired an error is shown to user.

o If connection can be acquired FTP Window is opened.

e User selects a file and clicks to "Get File".

0 User retrieves a copy of the file at the FTP Server into a local workspace.

e User selects a file and clicks "Send File"
o After user clicks send file the file is sent to FTP server.

e User presses disconnect button.
0 A close connection signal is sent to FTP server.

0 User is prompted that s/he is disconnected.

4.6 CVS Manager

e User will enter required connection information like host, repository path, user,
password, connection type, and clicks "Finish" button.
o0 If connection cannot be acquired an error will be shown to user.
o If connection is acquired a CVS repository window, which includes list of files,
will be open for user to perform versioning actions like "CVS Check-out™ and
"CVS Commit",

User selects a file and clicks "CVS Commit".
o0 If request can be done user will be able to create a new revision of the file,
containing his/her changes, into the repository.

o If afile commit is not allowed by server, an error is shown to user.

User selects a file and clicks to "CVS Check-out", s/he will be able to retrieve a copy
of the entire repository or a portion of the directory tree in the repository into a local
workspace.

0 Selected file is requested from server.

o |If file is not available an error is shown else user acquires the file.

User can close connection by pressing a button.
o If user requests a connection close, a close signal is sent to server.

4.7 SYSTEM ARCHITECTURE

4.7.1 LevelO DFD

DBEMS

N
]

UONEULIOJU] UBLIAUUG)

User Commands

Tker

/4‘

Displayed Response

fl‘H[Hu-r F“l'i;

l’uhlixhin;{ Files

rel
\\‘ sl 4980

FTF Server

Browser

O E L Inju] ASeguIe(

CVS Server

4.7.2 Levell DFD

DBMS

A
1

soyu Aseaned

noeu

WOTIEILADRU] UOHIUT00),

/_,55

User

ser
CF Conm Mangy

Browser

L —

CVS Server

FTP Server

4.7.3 Data Dictionary

name: User commands

where used / how used: |GUI(1.0) input

description: Every external input that user enters
name: Displayed Response

where used / how used: |GUI(1.0) output

description:

Every output provided by system

name:

Database Information

where used / how used:

Database Editor (5.0) input

description:

Information Stored in user’s database

name.

Connection Information

where used / how used:

Database Editor (5.0) output

description:

Connection information and Queries entered by user

name.

Request

where used / how used:

Main Process (2.0) output

description:

Signal to publish application in browser

name:

Interpreter Results

where used / how used:

Main Process (2.0) intput

description:

Returned result from JavaScripts Errors

name:

Check-in Files

where used / how used:

Main Process (2.0) output

description:

Sending files to CVS server

name:

Import Files

where used / how used:

Main Process (2.0) input

description:

Receiving Files from CVS server

name:

User Files

where used / how used:

Main Process (2.0) input

description:

Sending files to FTP server

name:

Publishing Files

where used / how used:

Main Process (2.0) output

description:

Receiving files from FTP server

name:

Debug Operations

where used / how used:

Main Process (2.0) output
JavaScript Debugger (6.0) input

description:

Debugger related inputs

name:

Debug Result

where used / how used:

Main Process (2.0) input
JavaScript Debugger (6.0) output

description:

Outputs of debug operation

name:

Source Code

where used / how used:

WY SIWYG Editor (3.0) input
Text Editor (4.0) output
JavaScript Debugger (6.0) input

description:

Source Code of Application

name:

Cursor Position

where used / how used:

WY SIWYG Editor (3.0) output
Text Editor (4.0) input

description:

Inputs from design view to determine the position of cursor in code view

name:

Generated Code

where used / how used:

WY SIWYG Editor (3.0) output
Text Editor (4.0) input

description:

Inputs from design view to add generated codes to code view.

name:

User Request

where used / how used:

GUI(1.0) output
Main Process (2.0) input

description:

User inputs

name:

System Response

where used / how used:

GUI(1.0) input
Main Process (2.0) output

description:

System output

name:

Display Info

where used / how used:

WY SIWYG Editor (3.0) output
Main Process(2.0) input

description:

Design View output for display

name:

Visual Operations

where used / how used:

WYSIWYG Editor (3.0) output
Main Process(2.0) output

description:

User inputs related with WYSIWYG editor

name:

Output

where used / how used:

Main Process(2.0) input
Text Editor (4.0) output

description:

Output from Text editor to display

name:

Input

where used / how used:

Main Process(2.0) output
Text Editor (4.0) input

description:

User inputs related with Text editor

name.

Database Operations

where used / how used:

Database Editor (5.0) input

Main Process (2.0) output

description:

User requests on database

name:

Desired Information

where used / how used:

Database Editor (5.0) output

Main Process (2.0) input

description:

Information of user database for display

5. SYSTEM DESIGN

5.1 Use Case Diagrams and Scenarios

5.1.1 Text Editor

Remember Marker Position
(from Text Editor Use Cases)

- —~7 (Out) Comment Code .

— ’ {from Text Editor Use Cases) e

<User=
(from Global Ac‘?els] Search & Replace Code

Tom Text Editer Use Cases)

<Text Editor
! Bracket Matching Module>
(from Global Actors)

% {from Text Editer Use Cases)

Auto-Completion ;"

/
{from Text Editer Use Casep”}

Write Code ~~
(from Text Editor Use Cases) T

e
<<include>> "

Auto-indentation

{from Text Editor Use Cases)

Undo/Redo Code: User will press undo or redo to disable or enable changes he/she
made on his/her file.

Comment/ Comment out code: User will select a part from the file and comment in
or out this part.

Search & Replace code: User will find an expression, word or sentence and replace it
with another.

Use keyboard shortcuts: User will use keyboard shortcuts to manage the tasks easily.
Select rectangle: User will select a part in a rectangle and change it according to
his/her needs.

Bracket Matching: When user comes to a bracket, cursor will automatically shoe the
match of that bracket.

Customize toolbar: User will customize the toolbar according to his/her needs.

Use palette: User will use the palette to add the source codes of the built-in
components.

Write Code: User will write source code.

Syntax Highlighting: When the user writes his/her code syntax highlighting will
automatically highlight the built-in functions or expressions of the related language.
Automatic Completion: When user is typing the name of an object (e.g. "document”),
when you type the period (".") to call either a method or access a property for that
object, it pops up a small window displaying the available methods and properties for
that object. User can also type ctrl + space to access this help at any time. When user
is calling a method on that object, when you type the first open parenthesis ("(*"), our
editor will automatically create the closing parenthesis (*)") for him/her, and it will
pop up a small window with the parameters that the method takes.

Automatic Indentation: When the user is writing a code, automatic indentation will
indent his/her code according to the related programming language.

HTML code cleanup/formatting: After user writes the code, editor will check
HTML validity and clean the code to make a correct HTML file.

Link Checking: When the user has entered a link, editor will automatically highlight
itasa link.

HTML Validation: While user is writing the code, editor will check if he/she is
writing HTML code validly.

Code Generation: When the user uses the palette, editor will automatically generate

the related code of the component.

Provide Marker: When the user opens another file,

positions in files to return to later will be supported.

"markers" for remembering
5.1.2 WYISWYG Editor

.
e

Undo/Redo

{from WY SIWYGE Use Cases)

) WYSIWYGE
| ™ Madule
-=-=ir|c|ude=i i ;:_’"\~-._ A {from WY SIWYGE Act.)
Ve — - Event Window
— (from WYSIWYGE Use Cases)
Using Palette
T— ({from WY SIWYGE Use Cases)
. ®
T - -,
<User= {) \
ifmmGobaI?,:c‘.E:rs I - I:t-T x‘t’ﬁ \\
nsert Te:
\ . \
i i{from WY SIVWYGE Use Cases) ”\\
Vo \\«e:den}?*
\ \‘x ~ \
1 \
'-.II ’;'\? <<gxtend>z N
\ odify HTML table ~— ™.
\ \ <=zgxtend=>— \\\\
11 Y {from WY SIWYGE Use Cases) e
I'. ‘\\\ - \ B o _=, ‘\4_1’
\ \ / e — —— — —— - —_ J =
\ Ry <<gytend=> T
I'. \" o .
I". Modiw\‘gbject via properties window . - - /Code generation <Text Editar
I". (From W YSIWYGE Use Casss) e / {from WY SIWYGE Use Cases) . I'\-Eiu :i}m)
\ \\\ o ~=<gxtend== e Hrem iiobal Actars!
N
III| .\‘._ oy g /
".II Insert CSS £z entend=>
[fronl".l:.l"f‘fSI'J‘{‘fGE Use Cases) /
' s
"u, e _
\, 7 P
N ‘é}" e —— _E'\ __/':
g <eincludes=:= Drag & Drop Image
Drag & Drop File
(from WY SIWYGE Use Casss)

(from WYSIWYGE Use Cases)

Undo/Redo operation: User will press undo or redo to disable or enable changes s/he
made on his/her file.

Keyboard Shortcuts: User will use keyboard shortcuts to manage tasks easily.

Using Palette: User will use drag & drop option to add built-in component to his/her
design view.

Insert Text: User will enter text input to his/her design view.

Modifying Object: User will modify components that are previously added.
Customizing the properties of element on properties editor: User will arrange the
desired properties of elements.

File Operations from desktop: User will add images and files to his/her design view
with drag and drop directly from desktop.

Image Operations: User will add, delete, resize etc. images.

Code Generation: When the user use palette/insert text/modify objects/customize
properties of elements/make file operations /make image operations.

5.1.3 Database Editor

=Prepare include file= =Text Editor

(from Database Editor Use Cases) Module=
{from Global Actors)

=<gyiend==

W

=Connect to database=
= (from Database Editor Use Cases)

T Error message generation= “GUI

=User= \)
AN {frol

\ atabase Editor Use Cases) trom G)
Global ﬁéj.o's\ " {from Global Actors)
\ <Select database schema=

\\ (from Database Editor Use Cases)
™~
N\ A
\\ \

\ (from Database Editor Use Cases] ™

N ’|“ N X

\\ =Cluery validation check= ~

—— \ <<include==

\ =View, modify table> » . —
{frofn Database Editor Uss Cases) <<gxtends==\ |
1‘:\ N\ e <DBMS=
- > | J {from Database Edior..)
~ \ —
‘\
™~ g \\ <Execute query=
1 -, (k\c{m Database Eﬁ'rtor \Use Cases)
==gxtend== e
. . \
Y
5 = \\ , ==jnclude==
— N
T S |
=Enter Database Query= csextends> T S

(from Database Editor Use Cases)

=Query generation=

({from Database Editor Use Cases) 1

Connect to Database: User will press connect button. Then user interface will bring
up connection dialog and waits for the user to enter connection info. After user enters
connection info, user interface will send it to DBMS. If the connection info is correct,
DBMS will return database info and user interface will show the result to user and also

will prepare an include file.

Select Database Schema: User will select to view a schema. User interface will
generate query and send it to DBMS. DBMS will execute the query and send the result
to UL. Ul will show the result to user. If the query is invalid, Ul will show an error

message to user.

View, Modify Table: User will select an operation on a table. User interface will
generate query and send it to DBMS. DBMS will execute the query and send the result
to UL. Ul will show the result to user. If the query is invalid, Ul will show an error

message to user.

Enter SQL Query: User will write a query. Ul will send it to DBMS. DBMS will
execute the query and send the result to Ul. Ul will show the result to user. If the

query is invalid, Ul will show an error message to user.

5.1.4 Debugger

",

=<include=> _— 7 _
. - Step inmu:fnver%\x
", (from Debugger Use Cazes) \‘x.,h
T — \"\H
7) e — .
T Operations <<include>> "=/ " ey

- A E— S
— {from Debugger Use Cases}-\\ ’ - T Sl
e Pausa/Resume ___""-i

(from Cebugger Use Cases)

<User- <:<:include:>:>\\
from Gicbal Actols) . Debugger Module
(from wbhal Aciorg) o) —
. mi:\ :\ . £ {from Diebugger Actors)
AN \
\' .‘- - - - -
M,
\.\ Break Point Operations ™-__
A (from Debugger Use Caszes) \‘\
\\ ~—
\\ 4 \ =
- ») - -
\\ =<include=>_ - = 7 ~ /f";/r
hY L Call Stack View P
A - =GUI>
(from Debugger Use Cases) ,-"’/ [from Global Actors)
S _ =<include== /
Views =

({from Debugger Use Cases)
Variables View

{from Debugger Use Cazes)

Keyboard shortcuts: User will use the keyboard shortcuts to manage the debugger

operations which are: Pause/Resume, Step in/over/out.

Pause/Resume: User will press the Pause/Resume button. The debugging engine will
stop or continue to control the execution of scripts. Call stack view and variables view

are updated according to these operations.

Step in/over/out: User will press the Step in/over/out button. The debugging engine
will go in/over/out the execution step of the scripts its debugging.

Set/clear breakpoints: User will click the the line number at which he/she wants to
set/clear breakpoints on the editor window. Breakpoint set/clear at this line. The
debugging engine will stop/continue at breakpoints. Call stack view and variables
view are updated according to these operations and the user will see the values of the

variables at that breakpoints.

Call Stack view: When the debugger is stopped, the Call Stack view displays the list

of active functions.

Variables view: When the debugger is stopped, the variables view displays values for

the current function.

5.1.5 CVS Manager

(from CW'S Manager lUse Cases)

~ =

_______———':?'\&_ . ___,,/"'-—-______
e Commit file
N ifrom CVS Manager Use Cases) ________:-?
,___H_H_H___% P — -
=User= T —
L — e
= Sy =CVE_Server=

({from Global Actors)
ifrom Global Actors)

CheckOut file
(from CVS Manager Use Cases)

Close connection
(from CV5 Manager Use Cases)

5.1.6 FTP Manager

Get File —

— (from FTP Manager Use Cases) -
FTP Server

(from Glokal Actors)

<User=
{from Global Actors)

TN
I.\) -/,'
Send File

from FTP Manager Use Case:

Close Connection

(from FTP Manager Use Cases)

5.2 Sequence Diagrams

5.2.1 Text Editor

O
/\ C TextViewGUl - TextSditor : ChangeStack
- <User= |
getCode(code) i checkCode(code) | |
highlightCode({code)
display(highlighted Syntax) |
_ highlightedSyntax = |
) [code = . OR code = -=]getMembers |
gethMembersiclass)
showhMembers(members) |
- members =
selectMember . |
" moveCursorPosition |
_ selactedMember |
- indentCode{code)
display(indentedCode) -1 |
indentedCode - |
pressComment .
- commentCode{lineNumbers) _ |
. display{commentedCaode) |
- commentedCode i
< _tommentedCode |
pressUncomment R
- uncommentCoda(lineNumbers)_ |
. display(uncommentedCode |
uncommentedCode < play(!
save(file) |
pressUndo . |
undo(} - | pushCode()
display(modifiedCode) . modifyCode .
. maodifiedCode =
pressRedo .
- redo()
popCode()
= modifyCode
_ displayModifiedCode -
) modifiedCode B
pressSearchistring) .
} search(string) ~
searchString(string)

[searchString = false]showErmor

=

[searchString = true]showReasult

L1

replace(string1, string2)

replaceString(string1, string2)

[replaceString = false]showError

[replace3tring = true]showResult

moveToBracket

[code = braket]lgetMatch

findMatch{code)
_showMatch{matchingBracket)

_ matchingBracket
-

5.2.2 WYSIWYG Editor

O O
- Jsers CWYSIWY GEditorG U WY SIWY GEditor - «Text Editor
Module=
| dragAndDrop(button) . generateCode(id, type) |
- wo~ insentCodeiposition, code) |

A

generateDasignyiew(sourceCode)

display(displayeditems, properties)

displayedliems, propertiesWindow ™] -
= —— —— —— —— —— — [ajaxAction = true]showEventWindow

enterevent(inputs)

- generateCode(inputs)

~insertCode(position, code)

— e — — — |
1

generateDesigniew({sourceCode)
display(displayeditems, properties)
displayeditems, propertiesWindow |

- —_— e

getText(text) - .
getWrittenText{text)
insertCode(position, code) |
. done
_— — —
generateDesignView(sourceCode)
display(displayedltems) "4:'
displayedtemns = |
< — — —
selectOhject{object) |
P getPropertizs{object)
‘\./"-"- |
- display{properties)
properties\WWindow = |
B getChanges(object) |
generateCode{object, changeas) |
- muodifyCode(position, code) |
- done
e — —
generateDesignView(sourceCode)
display(displayeditems) -'l:l
displayeditermns o
- —_—

generateCodel(fileType)

dragAndDropFile(file) |
I

- insertCode(position, code)

generateDesignview({sourceCode)

) display(displayedltems)
displayeditems

i

pressShartcutikey) -
' callOperation

showResult I

o reswt =
pressUndo .
- undof)
= pushStack()
deleteCode(position, code) |
= _ dome
generateDesignView{sourceCode)
display(displayedltems)
displayaditems = |
B pressRedo |
= redol)
- popStack() |
insertCode(position, code) |
done
-
generateDesignView(sourceCode)
display(displayedltems)

I

displayeditems |
save I

|

5.2.3 Database Editor

O ~

A X
- DatabaseGUI : DatabaseEditor

c=User=

' getConnection{accountinfo) setConnection{accountinfo)

connectiaccountinfo)

[cResult = false)showError - cResult
. cResult =
E i N —
[cResult = true]setAccountinfo
[cResult = true]prepareincludeFile
getSchemasAndTables -
~ schemas, tables
showSchemasischemas) h
~ schemas -
i
selectSchema
= getTables -
tabl B showTablesitables)
i ables =
selectTable N
getTablelnfo N
generateQuery{operation)
executeQuery -
. tahlelnfo
_ [gResult = falselshowError{gResult))
_ gResult h
IE . b B
_ [gResult = truglshowTable(tablelnfo)
= tablelnfo -
modifyTable
doModificationioperation)
generateCueryioperation)
-1
executeCuery -
. qResult
gResult _. [qResult = false]showError{gResult) - — —
1% . -
_ [qResult = fruelshowChages(tahlelnfo)
_ tablelnfo '

exacute{guery)

: Datal

qResult

connectionClosed

closeWindow

meGUl

getResultiquery)

: Diatal

showResult{gResult)

closeConnection

showMessage(connectionClosed)

eEditor
executeQuery(query)
s
gResult
.;_: - o 1
closeConnection
connectionClosed
(__: I s—

5.2.4 FTP Manager

{GUIMenuBar . FipWindow FTPConnector “FTP S

- <User=

viewFtpConnection |

—_— open
%{_‘:} 1
B R done |
fipWindow _— — —
e |
etConnectioninfo{connectinfo
g {) chechConecﬁonInfo(connectln‘o)
e connacticonnectinfo)
P cResult -
[cResult = false]showErmori esssfge
error '
- — — — [{:Ftesultztrue]getFilelrLfg_x
filelnfo
showFiles(filzinfa) < —— — —
[o filelnfo
get(file) -
getFile(filz)
requestFile(file)
requestedFile
showCperationDone() -
~ done B
send(file)
sendFile(file)
requestCopy(file)
_ cResult
— — — — —
[cResult = false]showErmor(cResult)
- cResult)
_[cResult = true]showFileCreatedMessage()
B done)
e A
closeFtpConnection() -

closeConnection

“ disconnect()

closeWindow()

y
>€

5.2.5 CVS Manager

e
)/\ I\J
- CVSWindow N

- CVEManager
—=lser> ‘ - CVS Server

viewCV5Connaction | ‘

connectionWindow

showCvsRepositoryConnectionWindow

= checkCon neclionlnfo(connectln_fo)|

getConnection[c&nneclnloL

setConnection{connectinfo)

cResult

L~ cvsRepositoryWindow -

_ [cResult = falsg]showErrorcResult)

p cResult
- — — — —
checkOut{file) ~ getFile(file)
= requestFile(file) N
B rResult
. [rResult = falselshowErmor(rResult) = —
L rResult =
i _[rResult = true]showFile{requestedFile)
; requestedFile -
{._ . S—
commitifile)
- createFile(file)
- requestCreateFile(file) e
[result = falss]showErmor(result) - _resut
result =
{._ —_— e —— —
[result = frue]showFileCreatedMessage()
message)
- —
closeConnection -
closeConnection ~ .
= closeConnection
. connectionClosed
showMessage(connectionClosed) -
connectionClosed)
1:.')— _ — — —

closeWindow

5.3 Class Diagrams

5.3.1 Text Editor

T —c<implements>> SourceManipulation SRRl Filelnfo
i T] leName
UndoableEdit] ‘-insertCode{) :Ope”t':g‘.:'l“ olumnNumber
— :%eleteo:de() ‘;:; Eil;(e;o ineNumber
canUndo odifyCode() - file
%can Redog %convertPosition() :C'O‘S‘-‘E" el ndentCount
Sundo() . search()
%reda() N Tt
Suie() I\ To.n
1 ".I 1 l,ff
L) Y —
TextEditorCore
XMLParserForAutoCompletion

YreadXMLFile()
“findMethodsAndAtiributes()

1
i
".

"u
WA

AutoComplete

miReader : XMLParserForAutoCompletion e
jsReader - JavaScriptParser

“maveCursor()
@geiMethodsAndAttributes()

|

/

.lll
1

JavaScriptParsar

YreadJSFile()
%createXMLFile()

1

L

@siavasScriptHighlighter
EcssHighlighter
afleOperator - FileOperator

ourceManager - SourceManipulation
E-autoCompleter © AutoComplete

YaddFile()

WremaveFile()
SincrementindentCount()
%decrementindentCou nt()
SinsertComment)
YdeleteComment()
Sreplace()
$matchBracket()
YdeletzAlThreadFiles()

|}1

y 1

JavaScriptSyntaxHighlight

XMLHTMLSyntaxHighlight

CS555yntaxHighlight

SyntaxHighlight

hashTable
xmiFile

FileThread

Srun()
Yautosave()
Yuiait()
Sdelate()

Yvirtual isKeyword()

%virtual constructHashTable(}
Yvirtual getColon()
virtual read XMLFile{)

TextEditarCare

EfileList] : Filelnfo

&scurrentFile

Q}threadList[l . FileThread
EsxmiHtmIHighlighter
EjavaScriptHighlighter
&scosHighlighter

Q’;ﬂle@peratnr: FileCperatar
t%snurcehﬂanager: SourceManipulation
%autuCumpleter:AutnCnmplete

$addFile)

FremoveFile)
‘incrementlndentCuunt(}
‘decrementlndentt}nunt(}
FinzetComment)
¥deleteCommentd
Preplacen
PrmatchBracketd
‘deleteAIIThreadFiles{J

fileList[] : fileInfo : Stores the
information about the file and also
the information needed to
manipulate them.

currentFile : Stores the identity of
current file.

threadList[] : FileThread : Stores
the current list of the threads that
work for functionalities of every
file.

xmIHtmIHighlighter : It is the
instance of the
XMLHTMLSyntaxHighlight class.
It provides syntax highlighting for
XML and HTML.
javaScriptHighlighter : It is the
instance of the
javaScriptSyntaxHighlight class. It
provides syntax highlighting for
JavaScript.

cssHighlighter : It is the instance
of the cssSyntaxHighlight class. It
provides syntax highlighting for
CSS.

fileOperator: FileOperator : It
manages the file operations which
will be discussed later.
sourceManager :
SourceManipulation : It manages
the code writing operation which
will be discussed later.
autoCompleter : AutoComplete :
It manages auto completion.
addFile() : It receives input from
GUI and adds a new file to the
filelist.

removeFile() : It receives input
from GUI and removes a file from
the filelist.
incrementindentCount() :
Increments the indent number of the
current file.
decrementindentCount() :
Decrements the indent number of
the current file.

insertComment() : Inserts
comment line to the beginning of

every selected line.

e deleteComment() : Deletes
comment lines from the beginning
of every selected line.

o replace() : It replaces a selected
word with the given word.

e matchBracket() : It find the match
bracket of a selected bracket.

o deleteAllThreadFiles() : Removes
all the threads.

O—

LindoahleEdit

PcanUndog
PranRedod
Pundof
Predad
Sdie)

This is an interface which Java already has.
e canUndo() : Checks whether it is an undoable action.
e canRedo() : Checks whether it is a redouble action.
e undo() : Performs undo action.
e redo() : Performs redo action.

SourceManipulation

VinsentCodel
¥deleteCoded)
FrmodifyCoden
$orvertPosition)

e insertCode() : Takes the code sent from WYSIWYG
editor and inserts it to the correct position.

e deleteCode() : Takes the code position sent from
WY SIWYG editor and deletes it from the correct
position.

e modifyCode() : Takes the code and code position sent
from WYSIWYG editor and inserts it to the correct
position.

e convertPosition() : Converts the cursor position of
WYSIWYG editor to the cursor position of text editor.

FileOperator

SopenFilen
ScreateFilen
BsaveFiled
PcloseFiled
Ycoarchi

openFile() : It opens the file specified with GUI command.
createFile() : It creates the file specified with GUI command.
saveFile() : It saves the current file.

closeFile() : It closes the current file.

search() : It searches the user specified word or phrase.

e fileName : It stores the name of the file.

Filelnfa e columnNumber : It stores the column number of the cursor
&fileMame position.
%ﬁﬁ:;”m’mb”;b” e lineNumber : It stores the row number of the cursor
&yiile position.
&pindentCount o file : It stores a file pointer.
e indentCount : It stores the indent count number of the file.

e run() : It starts the thread.

FileThread e autosave() : It saves the user changes to the temporary file
created by the system.
:r“”ﬂ e wait() : It tells the thread to wait.
autosaver) del] h fil
ait0 e delete() : It removes the temporary file.
¥delete()

AutoComplete

EsxmiReader : ¥MLParserForfutoCompletion
%steader:JauaScriptF‘arser

Prmove Cursord
*g ethiethodsAndAttributes(

xmlReader : It reads the XML
files for auto completion.
jsReader : It reads the
JavaScript files for auto
completion.

moveCursor() : It moves the
cursor after inserting an attribute
and a command for a JavaScript
Class.
getMethodsAndAttributes() :
It gets the methods and
attributes which belong to the
class user is currently dealing
with.

JavaScriptParser °

BroadJSFilen
$rreatexMLFilen

readJSFile() : It reads the javascript file the user has

created.

createCMLFile() : It creates an XML file for storing the
class, method and attribute information of a user defined
JavaScript class.

HMLParserFordutoCompletion

®road¥MLFiled
*ﬂndhﬂethndsﬁndﬁﬁrigutesﬂ

readXMLFile() : It reads the XML files that
are created by a JavaScriptParser object.
findMethodsAndAttributes() : It find the
methods and attributes of a JavaScript
function.

SyntaxHighlinht

E:hashTahble

EsxmiFile

Bvirtual iskeywordd

Bvirtual constructHashTakble(
Wvirtual getColor)

Svirtual readXMLFiled

This class is a base class for
JavaScriptSyntaxHighlight,
XMLHTMLSyntaxHighlight,
CSSSyntaxHighlight classes.

hasTable : It is the hash table of a
programming language which stores the
keywords and their predefined colors.

xmlFile : It reads the XML files to insert the
keywords to the hash table.

iskeyword() : It checks whether the written
word is a keyword or not.

getColor() : It gets the color of the keyword
which the user has entered from the hash table.
readXMLFile() : It reads the XML file to find
the keywords of the current file type.

5.3.2 WYSIWYG Editor

Ajax3uggesiTextFisld

T Point
Ccdeglz_enera: <<implemenisss—— muriﬁf %Fos@t@on
f numberOfSuggestions Constructor Position
Byfile code initializes initial SgetxPosition)
’°&‘33é?§ﬁ?}ﬂ§i'f” SgenerateCode() values - YgetyFositian()
SdeleteFile() o \ M3
n’l'. el \ II
‘ f ! hasPclfsftfon
.'rasSug%estFIe.‘d \"-. /
=<implements== y I.'
T || l\..\ 'II !
| [4 'Granhicobject
EventObject CanvasCore bjectType
&form1 Action — bjectName
oI %Jrégflﬁgtsﬁtl'ogranhicot)ject tartF'qint.: :’o_in_t
fctlrg"lri r.”?:’IIEa‘E'.-"E.!’II? \.rentLis:l_] :.Even;Object . hasObj’ec‘r‘ nggomt - Point
e = uggestField]] - AjaxSuggestTextField ventObject
" ! %yenerateDesignView() I o1 ventRole
teCode)
:*..g".reri%?‘lrfi:')e(mlu()e{J $readText() %getProperties()
Qirtual generateCode()
|
HimITable
EprowNumber
EscolumnMNumber
Swidth
eight
=alignCaplion
spyhackgroundColor
seborderThickness
=wcellSpacing
scellPadding
EstableContents[][] - GraphicObject
. e CanvasCorecursorPosition : Stores
CanvasCore the current position of cursor.
&cursorPosition e objectList[]: The List of
& xmiReader GraphicalObiject class instances.
&qgenerateCode e eventList[]:The List of EventObject
| %nbjectLlst[l . GraphicObject o class instances
1 &peventList] : EventObject . i .
&suggestField]] : AjaxSuggestTextField ° SU_QQGStF'eld[]-Th‘? List of _
AjaxSuggestTextField class instances.
:QE”HETFEEDEE'D”V'EWU e generateDesignView() : Read the
readText) source code and generate Design
view.
e readText(): get the text input from

user.

!

e objectType : Stores the type of object
e objectName: Stores the name of object
e startPoint: Stores the start point coordinates

GraphicObject

of object

&pobjectType
&sobjectName
&startPoint : Point
&endPoint : Point
&ycode
&yeventObject
&eventRole

=

¢ endPoint: Stores the end point coordinates
object

e code: Stores related code for generating the
Design view of object

e eventObject: if object is an ajax action
stores the eventObject of ajax action

YgetProperties()
Wirtual generateCode()

e eventRole: if object is an ajax action stores
the role of ajax action

EventObject

&form1Action

&form 1
&form2
Bquery
& code

%generateCode()
Swrite ToXml()

e getProperties(): return the properties of
Graphical Object

e virtual generateCode(): virtual function for
creating code according to the properties.

form1Action: Stores the action type for ajax action
form1: Stores the info of first related form

form2: Stores the info of second related form

guery: Stores desired query for custom ajax action

code: Stores code for custom ajax action
generateCode(): generates code for required for that
custom ajax action.

writeToXml(): writes the required information of custom
ajax action for reuse.

e rowNumber: Stores the row number of
html table

e columnNumber: Stores the column
number of html table

e width: Stores the row number of html

HtmiTable
&srowNumber tab_le
%cnlumnr\lumber e height: Stores the row number of html
width table
%gﬁﬂéammn e alignCaption: Stores the align info of
html table

&backgroundColor
&sborderThickness
& cellSpacing
&cellPadding

Q}table(}nntentsﬂﬂ : GraphicObject

e backgroundColor: Stores the bg color
info of html table

e borderThickness: Stores the border
thickness info of html table

e cellSpacing: Stores the cell spacing info

Paoint

&Position
&yPosition

SgetiPosition()
%getyPosition()

-

of html table

e cellPadding: Stores the cell padding info
of html table

¢ tableContents[][]:Stores the contents of
rows and column

xPosition: stores the line number information as x point
yPosition: stores the character information as x point
getXpositon(): returns the xPosition
getYposition():returns the yPosition

AjaxSuggesiTexdField

%createTemnpFile()
Swrite ToFile()
$deleteFilel)

=Zimplements==

Bauery e query : It stores the sql query which the user has
| &form 1 entered to use the AJAX application.
&numberOfSuggestions e forml: It stores the information of which
Rycode element the suggestion will show.
®generateCode() numberOfSuggestions : It stores the number of
A suggestions.
e code : It stores the JavaScript code related to the
AJAX action.
e generateCode() : It generates the necessary code
for the action.
o — | | |
CodeGenerat o createTempFlleQ: creates a temporary file for sending
or codes to Text Editor
&ie e writeToFile(): writes the codes

deleteFile(): delete the temporary file after Text Editor
gets the codes.

5.3.3 Database Editor, CVS Manager and FTP Manager

DatabaseAccountinfo

atabaseMName
atabaseType

Accountinfo

1zerName
assword
erverLocation

/ .'_\l s
|

|
CwsAccountinfo

&respositoryPath

YqgetErorMessage()
WexecuteQueny()
YcreateFile()

il T 'ﬁ',\‘1
Uk 1 o |I
1 | 1 L1
DatabaseCore CvsManager FtpManager
%errorMessage errorMessage Q}errorMessage
chemalnfo useraccount : CyvsAccountinfo %-usere\ccount - FtipAccountinfo
fableinfo
serAccount : DatabaseAccountinfo $getErrorMassagel) Sconnect()
ueryGenerator ;| GenerateQuery Sconnect() Sdisconnect())
Sdisconnect() ﬁetErr_orMessage:_]
SgetTablelnfo() checkOutFilef) SsendFile()
“¥getSchemalnfo() ScommitFile() requestFile()
%connect()
“%closeConnection()

@requesiServerFilelnfal)

a1

GenerateCQuery

&query

%yeneratelpdateQuery()
SgetQuerny()
%ygenerateDeleteQuery()
%ygenerateSelectQuery()

ﬁg enerateCreateTableQuery()
YygenerateAlterTableQuery()
“%generateDropTableQuery()

Accountinfo

[]
&userlame .
&passward o

& serverLacation

userName : Stores username for connection.
password : Stores password for connection.
serverLocation : Stores the location of the server.

e databaseName : Stores the name of the database that
DatahaseAccountinfo is connected to.
&ydatabaseMarme e databaseType : Stores the type of the database
EsdatabaseType

(MySQL or Oracle) that is connected to.

CwsAccountinfo °

ErespositoryPath

respositoryPath: Stores the path of the reprository in the

CVS server.

DatabaseCore

&erroriessane
&schemalnfo
Etablelnfo

%userﬂccnunt: DatabaseAccountinfo
%quewﬁeneratnr: GenerateGluery

PgetTablelnfol
PyatSehermalnfol)
Prannect)
%closeConnectiond
%getErroressage
Pevecute Queryl
BcreateFilen

e errorMessage : Stores the error
message that is shown to user.

e schemalnfo : Stores the schema
info of the database that is
connected to.

e tablelnfo : Stores the table info of a
selected schema.

e userAccount :
DatabaseAccountinfo : Stores the
account information for a database.

e queryGenerator : GenerateQuery :
Instance of QueryGenerator class
which is responsible for generating
queries.

e getTablelnfo : Returns tableinfo.

e getSchemalnfo : Returns
schemalnfo.

e connect : Connects to a database
specified by userAccount.

¢ closeConnection : Disconnects
from database.

e getErrorMessage : Returns error.

e executeQuery : Sends a query to
DBMS.

e createFile : Prepares an include file
with database account information.

GenerateCluery

&query

‘generateUpdateQuer‘m
PgetDueryd
*generateDeleteQuewﬂl
*generateSelectQuewﬂ
“‘generateCreateTabIeQuenﬂ:}
"generateﬂlterTableQuerm
*generateDrinahle@uewﬂ

query : Stores the query generated.
getQuery : Returns the query.
generateUpdateQuery : Generates an
update query.

generateDeleteQuery : Generates a delete
query.

generateSelectQuery : Generates a select
query.

generateCreateTableQuery : Generates a
create table query.
generateAlterTableQuery : Generates an
alter table query.
generateDropTableQuery : Generates a
drop table query.

CasManager

&erromiessage
t%uaerﬂccnunt: CysAccountinfo

PgetErroMessageld
®connecty)
Pdisconnect])
PeheckOutFiled

errorMessage : Stores the error message that
is shown to user.

userAccount : Stores the user account
information to connect to CVS server.
getErrorMessage : Returns the error
message.

connect : Connects to CVS server.
disconnect : Disconnects to CVS server.
commitFile : Commits a specified file to

ScommitFiled CV/S server.
checkOutFile : Requests the specified file
from CVS server.
e errorMessage : Stores the error
_ message that is shown the user.
FipManager e userAccount : Stores the account
&peramessage information to connect to an FTP
&puserhccount : FipAccountinga server.
Sconnect) e connect : Connects to an FTP
Sdizconnect] server.
$getErrorMessanel) e disconnect : Disconnects from an
®sendFileq FTP server.

PrequestFilad
“requestSewerFilelnfm:]

e getErrorMessage : Returns an
error message.

o sendFile : Sends a file via ftp.

e requestFile : Requests a file via
ftp.

e requestServerFilelnfo : Gets the
file information of server.

5.3.4 Debugger

e breakPointList = It stores breakpoints locations in
a list.
e variableList = It stores variables in a list
Debuggerinterface | | ST T ST
& breakPointList
&pvariableList e setBreakpoint() = sets the breakpoint location.
®seiBreakpoint) o getBreakpomE()_ = gets the brea_lkpomt location.
%getBreakpoint() o startDebug() = it starts debugging.
YstartDebug() e stopDebug() = it stops debugging.
:EWF’D?“““-‘U e setVariable() = sets the variable that user wants to
sefariable() t
%getvariableValue() race.
¥stepOver() e getVariableValue() = gets current value of the
:steplntn[} variable.
stepOut() — . .
$getCallStack) o stepOC;/ebr() - steps over the breakpoint while
%pauseDebugging() ebugging.))
%resumeDebugging() e steplInto() = step into the breakpoint while
debugging.
e stepOut() = step out the breakpoint while
debugging.
e getCallStack() = gets current call stack of the
debugging program.
e pauseDebugging() = it pauses debugging.
e resumeDebugging() = it resumes debugging.
5.3.5 GUI
DebuggerView Dominspector
$getvariable() YyetSelectedNode()
$showVariable() YshowSelectedNode()
$updateStackView()

dl : Debuggerinterface
{from GUI Architecture)

DesignView

YgetSelectedComponent])
YdeleteComponent()

YcopyComponent{)
“pasteComponent|)

$updateComponent()

N\
N

CodeView

YgetSelectedText()
YdeleteText()
%copyText()
YpasteText()
WgoToMumber()
¥showBreakPoint()

N/

[

e CanvasCore
Ifrem GUI Architeciure)

._"'

\

\.

~

a: TextEditorCore

FileMenu EditMenu
“newFile() %undo()
YopenFile() Yredo()
%closeFile() Pcut()
%saveFile() Scopy()
Boxit() Wpaste()

Ydelete()
| Wfind()

{from GUI Architecture)

ToolsMenu

%databaseConnector()
$FTPConnector()

/s
P

N

Y

\
A

a. TextEditorCore
{from GUI Architecture)

c: CvsManager
(from GLUI Architecture)

.'"'\

YVersioninghenu
&yisConnected

$openCvsManager()
Lrommit()
YcheckOut()
Ydisconnact()

f . FipMamager
ifrom GUI Architecturs)

d : DatabaseCore
ifrom GUI Architecturs)

HelpMenu

%helpContents()

Sabout)

This class'

| operations open

the help file

dl - Debuggerinterface
(from GUI Architecturs)

T

FrojectMenu

&ExdebugStarted

%newProject!)
YopenProject()
SrunProject()
YdebugFile()
YstepOver)
“stepintol)
YstepOut])

WindowMenu

SshowWorkspace()
SshowProjectview()
%showDomInspector()
$showPalette()

SshowDebuggerview()

This class

manages window
control

Properies\Window

Sreadinput()

%getSelectedComponent)
%showProperties()

“changeProperties()

AddAjaxActionForm

SshowEvents()

YshowGraphicObjects() -

WreadSqglQuery()
$addAjaxAction()

InsertAjaxWindow

WshowForm1()

YshowForm2()
WshowEvents()

= b

e CanvasCore
{from GUI Architecturs)

!I\

EventsWindow

YyetSelectedComponent()

YshowEvents()
Freadinput()
“changeEvents()
WorkspaceView Projectview
&isCopied
i %openProject()
SeEer) Sehesrraectvien)
YcloseFile() SnewProject()
ScopyFile() YdeleteProject()
$pasteFile()
YnewFile() /

\\ y,
/
N

a: TextEditorCore
{fram G Architecture)

DatabaseConnectionVWindow

YgetAccountinfo)
“%getDatabaseOpearation()
Yconnect()

Ydisconnect()

d : DatabaseCors
— " {from GIUI Architecture)

CvsConnectionVWindow

“%gettccountinfol)
$connect()

e : CanvasCore

{from GUI Architecture) N

¢ - CvsManager

— == (from GUI Architecture)
[
[

ToolBar

WnewFile()
penFilel)
WnewProject()

@saveFile()

Yredol)
Bfind()
Yeut()

Wpastel)

Srun()
YstartDebugging()
@pauseDebugging)
YresumeDebuggingl)
WstopDebugggingl)

Yundof) L~

“copy() —

FtpConnectionWindow

Sgetaccountindol)
SyetFile()
SGsendFile()
%connect()
“Ydisconnect()

I
Y

W
f: FipMamager
{from G Architecture)

a: TextEditorCore
{from Gl Architecture)

dl : Dehuggerinterface
{from GUI Architecture)

FileMenu

PnewFile()
%openFile()
%closeFilel)
%saveFile()
Pexit()

newFile() : Creates a new file and invokes TextEditorCore.
openFile() : Invokes TextEditorCore to open a file.
closeFile() : Invokes TextEditorCore to close a file.
saveFile() : Invokes TextEditorCore to save a file.

exit() : Invoke exit function of system.

T e undo() : Invokes Text Editor’s related function.
e redo() : Invokes Text Editor’s related function.
%undo() e cut() : Invokes Text Editor’s related function.
:redni} e copy() : Invokes Text Editor’s related function.
*EEE;[} e paste() : Invokes Text Editor’s related function.
Ypaste() e delete() : Invokes Text Editor’s related function.
Ydelete() e find() : Invokes Text Editor’s related function.
find()
F'rnjeu:ltr-.ﬂenu . . .
& debugstarted o neerOJect() - Creates a new project, invokes related
function.
:newF'rﬂj?':t[} e openProject () : Invokes related function to open a project.
Jfﬂ?&;gﬁg“ e runProject () : Invokes related function to run project.
debugFile() e debugProject() : Invokes Debuggerinterface to debug.
®stepOver() e stepOver() : Invokes Debuggerinterface to step over.
:32”'{;33 e steplnto() : Invokes Debuggerlinterface to step over.
d e stepOut() : Invokes Debuggerinterface to step over.
ToolsMenu e databaseConnector() : Shows Database
° connection console and invoke DatabaseCore
databaseConnector() . .
$FTPConnector() J FTPConnec_tor() : Shows FTP connection
. : console and invoke FTPManager
Windowheny . sGhL(J)\I/onrkspace() : Shows Workspace view of
% showWorkspace() e showProject () : Shows Project view of GUI.
$showProjectview() e showDomlInspector () : Shows DomInspector

% showDomlnspector()
% showPalette()

% showDebuggeriew()

view of GUI.
e showPalette () : Shows Palette view of GUI.
e showDebugger () : Shows Debugger view of
GUI.

VersioningMenu

&isConnected

%openCvsManager()
Scommit()
%checkOut()
%disconnect()

isConnected : Stores connection information.
openCvsManager() : Invokes CVS Manager to
open CVS window

commit() : Invokes CVS Manager to commit a file.
checkOut() : Invokes CVS Manager to check out a
file.

disconnect() : Invokes CVS Manager to close CVS
connection.

HelpMenu

%helpContents()

helpContents() : Shows help contents.
about() : Shows information about IDE.

%startDebugging()
%pauseDebugging()
%resumeDebugging()
%stopDebuggging()

%about()
e newkFile() : Creates a new file and invokes
TextEditorCore.
e openFile() : Invokes TextEditorCore to open a file.
e newProject() : Creates a new project and invokes
ToolBar related function.

o saveFile() : Invokes TextEditorCore to save a file.
®newFile() e undo() : Invokes Text Editor’s related function.
:ﬁﬂi@-ﬁ!}ﬁu e redo() : Invokes Text Editor’s related function.
$saveFile() e find() : Invokes Text Editor’s related function.
$undo() e cut() : Invokes Text Editor’s related function.
$redo() e copy() : Invokes Text Editor’s related function.

| :EE;':E} e paste() : Invokes Text Editor’s related function.
Scopy() e delete() : Invokes Text Editor’s related function.
:naait}ta[} e run() : Invokes related function to run project.
run °

startDebugging() : Invokes Debuggerinterface to
start debugging.

pauseDebugging() : Invokes Debuggerinterface to
pause debugging.

resumeDebugging() : Invokes Debuggerinterface
to resume debugging.

stopDebugging() : Invokes Debuggerinterface to
stop debugging.

Designyiew

PgetSelectedComponent()
PdeleteComponent()

e getSelectedComponent() : send selected
component to CanvasCore.

e deleteComponent() : Invokes CanvasCore to
delete a component.

e copyComponent() : Invokes CanvasCore to
copy a component.

%copyComponent() .
®pasteComponent() e pasteComponent() : Invokes CanvasCore to
%updateComponent() paste a component.
e updateComponent() : Invokes CanvasCore to
update a component.
CodeVien e getSelectedText() : send selected text to

%getSelectedText()
SdeleteText()
%copyText()
%pasteText()
%goToNumber()
%showBreakPoint()

TextEditorCore.

deleteText () : Invokes TextEditorCore to delete text.
copyText () : Invokes TextEditorCore to copy text.
pasteText () : Invokes TextEditorCore to paste text.
goToNumber() : Invokes TextEditorCore to go
selected line.

showBreakPoint() : shows breakpoints of Debugger.

PropertiesWindow

%getSelectedComponenty()
%showProperties()
%readinput()
%changeProperties()

e getSelectedComponent() : send selected
component to CanvasCore.

e showProperties() : show properties of
component.

e readlnput() : gets input from user.

e changeProperties() : update properties of
selected component.

EventsWindow

%getSelectedComponent()
PshowEvents()
Preadinput()
%changeEvents()

e getSelectedComponent() : send selected
component to CanvasCore.

e showEvents() : show events of selected
component.

e readlnput() : gets input from user.

e changeEvents() : update events of selected
component.

InsefAlAxWindow

showForm1() : shows the form to insert objectl.

%showForm1() e showForm2() : shows the form to insert object2.
:ShUWF”mEU e showEvents() : shows events of inserted objects.
showEvents()
AddAjaxasctionForm

%showGraphicObjects()

e showGraphicObjects() : shows the list of objects.
e showEvents() : shows events of inserted objects.

®showEvents() e readSqlQuery() : gets the SQL query input of
:reads_qll:lu_er:.f[} USer.
T e addAjaxAction() : invokes system to add new
AJAX object.
e openProject () : Invokes related function to open a
— project.
ropeeEd e closeProject () : Invokes related function to close a
%openProject() project.

%closeProjectyiew()
$newProject()

Y deleteProject()

e newProject() : Creates a new project and invokes
related function.

e deleteProject () : Invokes related function to delete
project.

WorkspaceView)])
&isCopied . openFll_e() . Invokes TextEdlt_orCore to open a flle_.
o deleteFile() : Invokes TextEditorCore to delete a file.
*ﬂnenFiI}e(} e closeFile() : Invokes TextEditorCore to close a file.
:glf]':t;;”';g} e copyFile() : Invokes TextEditorCore to copy a file.
@copyFile() o pasteFile() : Invokes TextEditorCore to paste a file.
%pasteFile() e newkFile() : Creates a new file and invokes
®newFile() TextEditorCore.
Debuggerview

%getvariable()
YchowVariable()
%updateStackiiew()

e getVariable() : gets the entered varible information

e showVariable() : shows information of variable.

e updateStackView() : Invoke Debuggerinterface to
update program stack.

Dominspector

%getSelectedMode()
%showSelectedMode()

e getSelectedNode() : gets the node information
e showVariable() : shows information of selected
node.

CvsConnectionWindow

Pgetdccountinfol)
%connect()

e getAccountinfo() : gets input of connection
information from user.
e connect() : Invokes CVSManager to connect.

DatabaseConnectionWindow

% geticcountinfol)
‘getDatabaseOperatinn[}
¥ connect()

% disconnect()

e getAccountinfo() : gets input of connection
information from user.

e getDatabaseOperation() : gets input of
operation from user.

e connect() : Invokes DatabaseCore to connect.

e disconnect() : Invokes DatabaseCore to
disconnect.

FtpConnectionWindow

%getAccountinfal)
$getFile()
®sendFile()
%connect()
®disconnect()

getAccountlInfo() : gets input of connection information
from user.

getFile() : gets file information from user and invokes
FtpManager to get file.

sendFile() : gets file information from user and invokes
FtpManager to send file..

connect() : Invokes FtpManager to connect.
disconnect() : Invokes FtpManager to disconnect.

6. GUI DESIGN

6.1. Overview of GUI

AJAXDEYV project has to provide developers a user-friendly environment which
they can create interactive and rich web applications especially using AJAX actions.
“GUI Design” module of our project is one of the most important parts because it
provides the permanent interaction of user with Development Environment. We will
design a GUI that supports all features of our IDE in a user-friendly way and also
view of our IDE should be nice-looking. We have investigated existing Development
Environments such as “Aptana”, “Tibco” and “JSE8” to be able to identify our design
as an applicable combination of these well-designed tools. As stated before, we have
already determined our GUI functional requirements mainly in “Requirement Analysis
Report”. We revised and made some changes about our GUI to provide users more
usability.

Consequently, we have started to design and implement GUI of our development
environment. As we decided to implement our project by using JAVA, we have used

“JAVA Swing’ package while implementing GUI.

6.2 GUI Requirements

e User will be able to see “Code”, “Design” and “Browser” views in the middle of
main window, each one will be placed in a different tab. S/he will be able to

switch between these tabs.

e \When user chooses “Code” tab, s/he will be able to write his/her source code with
the help of a featured text editor.
o If user right clicks in the “Code” view, s/he will be able to perform “Cut”,

“Copy”, “Paste”, “Delete”, “Select All” actions.

When user chooses “Design” tab, s/he will create graphical design of his/her
project by using a WY SIWYG editor.
o If user right clicks in the “Design” view, s/he will be able to perform
“Cut”, “Copy”, “Paste”, “Delete” and “Select All” actions.

When user chooses “Browser” tab, s/he will be able to see his/her application in

an embedded browser.

User will able to see “Project” and “Workspace” view at the left of

“Code/Design” view, in tabbed structure.

When user chooses “Project” tab, s/he will see all projects of development
environment and select by double clicking any of them. If user selects one of
these projects, that project will be set as current project and appears in
“Workspace” view.
o If user right clicks in the “Project” view, s/he will be able to perform
“New”, “Open”, “Edit” and “Delete” actions.
o User will be able to expand and enclose the hierarchical tree structure of

projects.

When user chooses “Workspace” tab, s/he will see current project and its files that
s/he creates and will probably run. If user selects one of these files by double
clicking on it, that file will be ready for editing or running and appears in “Code”
view. User will also be able to see JavaScript variables and functions of classes of
files.
o If user right clicks in the “Workspace” view, s/he will be able to perform
“New”, “Open”, “Edit” and “Delete” actions for current project’s files.

User will be able to see “DOM Inspector” view (Outline) just below the “Project /

Workspace” view.

(0]

When user chooses “DOM Inspector” view, s/he will see and reach all
nodes which are tags of HTML/XML document of current project. If user
chooses one of components by double clicking on it, that component's

appearances will be highlighted in editor.

e User will be able to see “Palette” view at the right of the “Code/Design” view.

There are HTML and JavaScript components and AJAX Actions that are created

before for the ease of user in this view.

o

If user selects one of these components by clicking the icon of component
and put it on the “Design” view (drag and drop), that component will be
added to design and also its source code will be added to the file in
“Code” view.

If user wants to add a new AJAX action to the palette (the one that s/he
creates or benefits from another source), s/he will click “Add New AJAX
Action” button, and a window will be open for user to write the source
code of action to be added.

After making required connection and configurations about action, user
will clicks “Add” button on window and new AJAX component will be

added to palette.

e User will be able to see “Properties” and “Events” views that are in table structure

just below the “Palette” view in tabbed structure.

o

User will define his/her component’s properties (name, type, width, height,
action etc.) by using “Properties” table.

If user will click any cell of “Properties” table, that cell will be ready to
edit or update, entered text can be the name of component or column
number of a table.

User will define his/her component’s events (handlers, actions) by using
“Events” table.

If user will click any cell of “Events” table, that cell will be ready to edit

or update.

e User will be able to see “Debugger” view at the bottom of main window, with two

tabs which are “Stack” and “Watch” views.

(0]

In “Stack” view, user will be able to see variables and functions currently
placed in program stack.

In “Watch” view, user will be click a cell, write name of the variable that
s/he want to trace, and s/he will be able to see value of it during program
flow.

User will be able to add breakpoints at the line which is just left of “Code”

view.

e User will be able to see “Database” view if s/he clicks to “Connect Database”

button and connects his/her database without any problem.

(0]

When user clicks “Connect Database” button, an input dialog will open
and will get information of user’s account name, password, location of
database and type of database (MySQL or Oracle).

If request is accepted by DBMS, “Database” view will be shown to user to
interact with his/her database.

If request is denied system will show an error message and request
account information again.

After user connects to a database, schemas in that database will be shown
to user. User can select a schema among the list.

After a schema is selected its tables will be shown as selectable items.
User will be able to select a table to view or modify.

After a table is selected its rows and columns will be shown.

User will be able to execute queries (table, column or row creation,
modification, deletion) without the need to know the proper syntax by just
clicking on the appropriate action.

User will select any row or column (attributes) in the tables by clicking on.

(0]

If cell is empty user can write new value for that attribute, if it has a value,
s/he can change it by using “Update” icon, or delete it by clicking
“Delete” icon.

User will be able to switch between different views.

If user wants to execute his/her query by using the query window on the
top of “Database” view, s/he will write queries and click execute button to
get the result of query.

e User will be able to see “Menu Bar” on the top of the main window.

o

If user selects “File” submenu of “Menu Bar”, s/he will be able to perform
“New File”, “Open File”, “Close File”, “Save File”, “Save File As” and
“Exit”.

If user selects “Edit” submenu of “Menu Bar”, s/he will be able to perform
“Undo”, “Redo”, “Cut”, “Copy”, “Paste”, “Delete” and “Find” actions.

If user selects “Project” submenu of “Menu Bar”, s/he will be able to
perform “New Project”, “Open Project”, “Close Project”, “Run Project”,
“Debug Project” and “Step Over”, “Step Into”, “Step Out” actions.

If user selects “Tools” submenu of “Menu Bar”, s/he will be able use
“Database Connection Manager” to connect database or send his/her files
by using “Publish via FTP” option.

If user selects “Window” submenu of “Menu Bar”, s/he will be able to
show or hide “Workspace View”, “Project View”, “Outline View”,
“Palette View” and “Debugger View”.

If user selects “Versioning” submenu of “Menu Bar”, s/he will be able use
“CVS Manager”. User can easily “Import” or “Check-out” his/her files.

If user selects “Help” submenu of “Menu Bar”, s/he will be able to choose

“Help Contents” or “About”.

User will be able to see “Toolbar” on the top of the main window, just below the

Menu Bar.

(0]

If user clicks any icon on the toolbar, s/he will be able to perform the
action of that icon.

Possible icons that will be shown on the toolbar are, “New File”, “Open
File”, “New Project”, “Save File”, “Undo”, “Redo”, “Search”, “Cut”,
“Copy”, “Paste”, “Run”, “Debug” and “Stop”.

User will be able to customize the toolbar, by clicking arrow at the right of

toolbar and selecting an icon to be shown on the seen part.

If user runs his/her application or chooses “Preview in selected browser” option,

s/he will also be able to see application in an external browser.

Efficient keyboard shortcuts will be provided for user.

0O O O 0O 0O o o o o o o o o

New (CTRL + N)

Save (CTRL +S)

Load (CTRL +L)

Find (CTRL + F)

Find & Replace (CTRL + H)

Cut (CTRL + X)

Copy (CTRL + C)

Paste (CTRL + V)

Selectall (CTRL + A)

Undo (CTRL + U)

Redo (CTRL +R)

Switch to design view (CTRL + D)
Switch between tabs (CTRL + T)

e Keyboard shortcuts for pause, resume, step in/over/out, break will be provided.

(0}

O O O O

Break (Pause)

Go (F5)

Step into (F11)
Step over (F7)
Step out (F8)

e Powerful keyboard navigation in the file system browser is allowed.

(0]

User will press 'ALT" and the file menu fill be opened.

0 User will use arrow keys to navigate on the menu.

6.3 Screenshots of GUI
In this part, screenshots of all GUI modules are shown.

6.3.1 “Code”, “Design” and “Browser” views

indez.bkml | query,php || suggestBox.js | properties.xml

1
z
3
4
5
6
7
8
9

<HTML>
<HEAD>
<TITLE=Kodadi Yazilim - Deneme</TITLE>
<META CONTENT="text/html; charset=windows-1254" HTTE-EQUIV="Content-Type
<METL MAME="Language”™ CONTENT="en'"=
<META MAME="Copyright"” CONTENT="@20048 kodadi yazilim™>
<META MAME="Author" CONTENT="kodadi yazilim'>
<link href="common/style.css" content="text/css" rel="stylesheet"=
“3CRIPT language=JavaScript sre="deneme.js" type=text/javascripts</3ICRIE
<stylex
.form { font-size:1lpx; font-family:arial }
</stylex
</HEAD=

<BODY BECOLOR=#FFFFFF leftmargin="0" topmargin="0" bottommargin="0" marginheight
0" marginwidth="0" rightmargin="0">
<TAELE WIDTH=100% EORDER=0 CELLPADDING=0 CELLIFPACING=O=
<TR>
<td width="50%" background="images/yeni bg3.gif"= </td>
<TD align="right">
<IMG SRC="images/indexy 01l.gif" WIDTH=ZA0 HEIGHT=1%=</TL
<TD>
<IME SRC="images/index 0Z.gif" WIDTH=304 HEIGHT=19></TD3>
<TD HEIGHT=1% bhackground="images/bgl.gif" width="350%" clas=="foy
=
</ TD>

Code Wiew | Desian Yiew | Browser view

6.3.2 “Project” and “Workspace” views

Projects | Wirkspace |

=7 Hello world
Ela Source Packages
: Ell._'f'.\ Jawvascripk Files
i # suggestBox.js
=[5 HTML Files
g indes.html
Elfj Libraries
[|_—__?| A8 1A%-Password Checker

6.3.3 “DOM Inspector” view

Di2M Inspeckor |

|l Daocument
=129 Hemil
=119 Head
L Tite
EIE} By
., Table

6.3.4

“Palette” view

Palette

Built-In AJAX Actions

) (& (&) (=]
=] (=] (=] [z
=] £
Q) v |
» [@] [E

1] |2

6.3.5 “Properties” and “Events” views

Properties

Compaonent Mame | Ewents |
Marme kablel
Id kableld_1
Rows 3
Zolumns 4
Height: 300
YWidth 200
Align Caption Cenker
BG Color Magenta
Border thickness |2
Cell Padding 1
Cell Spacing 1]

6.3.6 “Debugger” view

Debugger

W Wakches |

VARIABLE CRTE
ryYariable1 :

ryYariableZ merhaba dunya
ryvariable3 |3. =

6.3.7 “Menu Bar” & “Tool Bar”

File Edit Project Toaols ‘Window Wersioning Help

CEEE ¢*+2BANCL ABOHD

0 PI'E E|qELE A
1 BUIppEd (30 BAUND BRI Za|eMEAAW
2 ssauyy Jepuog ¥ T2|qeuE AW
eyuatbe)y I0)e08g EA u._quE
Jauas uoldes ubiy _ SALIEH, _ﬂm___,_lv_u.mum |
002 AP e
s JUbEH JaBBngag
¥ SUWND =
c Sy | il AmskAnIg | ufiisan _ Rl P07
1 PI=|9=) i <IL />
181959 alep tdequy. £ L #
[520983 | suey usundues | | (A0Fu=SSETP 4806, =HAPTM ,3TH Tho/sabeuT, spunoabyory T=IHOTEH QL> o
Q AL /><6 T=IHOTHEH 505=HIAIM ,3FTH Z0 X=put/caBewT, =08 SHI» 1z
- B < Id= 0z -
1L /><4T=IHOTEH 09 Z=HIAIM ,3TH T Axeput/sabewr, =04 SMIs - ucmc._:uaaml._d
<, 3ubra, =ubTTE Qn- all———— i
== <P /> {dequyc, 3TH gl Tusd /eafiewT, —punoahyeg , $05, =UIPTM PIx | Jomatsl 1o
Q <dili> <
I <0=DNIDVASTIED (J=2NIJIVATTHD 0=ddI40d %00T=HIIIM HTIVI: &

<4 Ou=uthasmgybra 0, =yapmauthaem g 3
qubtayurbaswm g, =uthavwmosqoq | g,=uthaswdoy g, =uTtbIvwiisT 414143 =d0TOR9d Adod> PT
<I¥EH /> EI

J |

£ k2] [=2]
|

A <aTA3E /> z1
—l_ { TeTam:ATTuwe-quoy (xdyT:iszTs_guog |} waog- i
«aThis: ol
6
ATd08 fr«3dTraneeanlqxag=adiy ,sl-awsusp, =01 jdracgeasp=sbenbue] 14TH0E:
< d@aysaTAle, =191 ,E50/3Xa], =jUajuos ,£50 9 TARE /UoMmOD, =323 YUTT> 2
i
<, WITTZBA TPRPOY, =INAINOD ,I0UINY, =HH¥N VLI Jayayy paowssed-yyry -
<, MTTTZRA TPRPOY DO0Z@,=INIINOD ,3ubTiaddo), =aWvN YIEH: : saueaq (-2
<, U8, =INIINOD ,8BenbusT, —HWYN YIZH> 5 RSl S
2dAL-3ua3u00, =ATNDE-ALIH , F5ZT-SMOPUTM=02EIRY> {TWIY/3X2%, =INAINOD YIEN: b 584 TulH 3-8
<HTLIL/>9Waua - WITTZE] TREPOY<ATLIL> i sioogysabins &
s34 yduceae -2
<I¥HEH> z B
sabeyed annos (-5
<THILH> "
SUDIDY XYY UL-}ing ! Pléadh afEH £
ayaed | ;n_ém:_u_ ugyxapuy mmumn_mv_a_e,_._ spalnig

6.3.8 Final view of GUI

ECORDIVLERLABFD

.n__m_._ Buoisias MopUIy m_oo.h. Rl Ip3 m__u_.

X.__m E A3axyry :ipepo R

7. SYNTAX SPECIFICATION

Variable names: If a variable name consists of more than one word, first letter of each
word except the first one will be capitalized: control, requestReturnData

Function names: Functions will be named with the same rule as variables: getControl,

check

Class names: The first letter of every word in a class name will be capitalized:

HomelndoorArea, Student

Class members and methods will be written in the following order:

Private members
Protected members
Public members
Private methods
Protected methods
Public methods

o g~ w N e

There will be one empty line between function bodies. Only one member can be written
on a line. There will be two empty lines after member declarations. Members in a same

visibility will be grouped according to their data types. Example:

public class Student {

private String name;
private String surname;
private int studentNumber;

public char studentType;

Student() {

//body

protected int getStudentNumber() {

/Ibody

public String getName() {

Ilbody

Functions: When writing a function the opening and closing brackets of functions will be
on individual lines. Local variables in a function will be declared on top and local
variables with the same data type will be grouped. Only one local variable can be
declared on a line. After the declaration of local variables there will be two empty lines

before starting to code. Example:

Bool checkDoorCollision(void) {
int control,
int index;
float distance;

Position cameraPos;

[/Icode starts here.

Conditionals and loops: Opening and closing brackets of conditional and loops will be

on individual lines. Example:

if() {
/I condition body

Comments:
e At the beginning of every file, the author of it, the date file is created and the date

file was last modified will be written in a comment with the following syntax.

/**
@author: Fulya Oktay
Created 01.12.2006
Modified 01.12.2006
*/

e Before the ‘“if’ and “for’ expressions, the purpose of them will be stated in a

comment.

e Before every class definition, the component which the class specifies will be

stated in a comment.
e Before every function definition, the functionality will be stated in a comment.

e For every attribute of the class, an explanation will be provided in a comment.

Syntax for comments is

/**

Comment
*/

8. TESTING ISSUES

8.1 Testing Plan and Strategy

In order to present an error-free and defect-free product we need to make some tests. For
this purpose, we have decided on some testing strategies and built a testing plan during
our design interval. Since we will have very little time for testing, we tried to simplify our
strategy and concentrate on an efficient strategy rather than trying to do all real software
test methods.

To see how easily our software can be tested we check our project with according to

several characteristics:

Operability: From the beginning we will try to work carefully and eliminate errors.
This will help us to test our product easily. Several modules and tasks will be prepared in
order to perform efficient tests and obtain better results.

Observability: We will prepare distinct error and warning messages.

Controllability: We decomposed a job into several units in order to control the actions

easily.

Decomposability: Several modules and tasks will help to uncover errors.

Simplicity: We’ll also try to code as efficiently as possible.

Stability: Separate modules will help us for the stability. Past tests won’t be invalid.
Function and module dependencies, architecture are all understood clearly by group

members and this will help in testing. Also our large document archive will help this

process.

We will test
e User interaction
e Data manipulation

e Display processing and generation

Below are the methods we will use.

8.1.1 Unit Testing

In the unit test case we will test each module separately. White box testing will be
used to both detect the errors and correct them. We will test the components by

passing data through it and we will be monitoring data to find the errors.

We will make sure that all the components work correctly and efficiently. The test
will be done primarily by the programmer who designed and implemented the
module. If necessary, the other programmer will do the second testing for the

same module.

All the important paths will be tested with a white box method. Rather than the
complete program, all of the modules will be tested individually. Below are the

modules:

e GUI Testing

e Text Editor

e Database Editor

e WYSIWYSG Editor
e JavaScript Debugger
e CVS Support

e FTP Support

8.1.2 Integration Testing

Although we can find errors in modules by unit test, we must also make an
integration test in order to find errors due to integration of the modules. We will
examine the product from the user’s perspective for making integration test. We
are planning to use an incremental integration for this manner. Smoke testing may
be the most suitable because of the time interval however we won’t have time to
test or product daily. This is unrealistic. We will probably use bottom-up
integration.

We will be looking whether all the modules work correctly, i.e. is data correctly
managed, are interface features easy to understand and use, does the product
really do the job we want, is there any confusion where more than one person uses
the product, etc. All of these tests will be implemented from the perspective of a
user. However it will not be possible to see all the errors, and there may probably

be defects. Some other tests are still needed.

8.1.3 Validation Testing

Validation asks: “Are we building the right product”. And the answer specifies
whether our program will be preferred by the web developers or not. Therefore
validation is important.

We will perform a black box testing too. Use cases will be used in order to
specify all the needed requirements and obtain possible errors.

Beta Testing: It is virtually impossible for us to foresee how the customer will

use our program. We are especially interested in alpha testing. Therefore we will
release an alpha version of the product before the demo deadline. Since our
customers are web developers, we believe we will obtain some error reports from
our friends who have experience in web developments and Ajax actions. In
addition, we are planning to put our product on web site and do advertisement in

some communities and forums related with Ajax applications.

9. CONCLUSION

This is the Initial Design Report of kodadi: AJAXDEYV project. During preparing this

report, we have tried to decide on the way we will implement our product. We have made

several discussions when deciding on class attributes and operations however this still

needs more review which will be done until Final Design Report. Up to Final Design

Report we plan to improve our design procedure and provide some functionality on GUI.

I Task Mame et ‘08 [Mov'0f [Dac'Of [Jan'07
1] 17 (241 [a (1522 [20[5 [12 (19 [26 | 2 [10 [17 [24 [31 [7 [14 [21 28

1 kodad:: AJAX ¥ ¥

2 e Understanding the project =

3 E hlilestone: Project Proposal Y

4 Analysis = =

5 v Literature Suncey

fi e Meeting with customers

7 v Project Seheduling

g V’ Requirament an alysis

a \/ Data mdodeling

10 e Functional Modeling

1 va Usgm Caze hiodaling

12 vf Milestone:Requirement A

13 Design

14 [Architectural Design

15 V’ Req. Analysis Reviem

16 v Uszar Interface Dezign

17 Vf Component Level Design

12 E Milestone: Initial Dresing F

19 Cetailed Arch. Design

20 EC Design Reviem

21 Detailed Ul Design

22 Detailed Comp. Level De:

23 e Milestone:Final Desing R

24 Prototype Development

258 E Implementing Prototype

28 E Milestone:Prototype Dem

