[image: image1.png]

MIDDLE EAST TECHNICAL

UNIVERSITY

[image: image2.png]

COMPUTER ENGINEERING

DEPARTMENT

CENG 491

22/10/2006

WEEKLY MEETING
REPORT

[image: image3.jpg]MOON

SOFTWARE SOLUTIONS

Network infrastructure: As we talked at first meeting, Osman and Adem Ali made research about network part of project. We can categorize our research into two groups. These are:

· We went to Kitlesel A.Ş. at Bilkent Cyberpark which is developing 3D game software. They talked with Aykut SEVİM, project manager of the company about lots of topics related to our project. He advised us that we could develop mainly two kinds of 3D multiplayer game which are:

· Car race based games like F1 racing, rally
We discussed about advantages and disadvantages of this type of game. Considering AI and graphical environment, it is not so difficult to implement such a game. On the other hand, since this is a massively multiplayer 3D game, it requires great amount of data transfer in real time. Thus, synchronization of several players in real time is so hard. This made us reconsider our previous decision on type of game.
· Strategy games like Star Craft
Comparing to car based games this requires less data transfer. Therefore, it is much easy to synchronize all players in real time on network. And it does not require much graphical environment. However, from the aspect of artificial intelligence, strategy games needs great effort to make game realistic.

· We conducted research concerning problems of data transfer in an online multiplayer game. According to research there are mainly three problems which are Timing, Identification and Determinism.
· Timing:

If you don't have a unified, identically progressive time system on all connected machines, you have a problem. You need to be able to synchronize time to be able to identify when things happen in the game and when messages arrive. The simplest timing system to use is a turn-based one, where machines move in lock-step through the game according to whose turn it is at the moment. The most complex is a real-time system, for obvious reasons.
· Identification:

Identification is all about being able to direct the correct data to the correct area in your game. It is no need to worry about routing with most networking implementations, but it is need to come up with a way to uniquely identify each machine and have all other connected machines aware of that identification and "who they're talking to". You also need in-game identification to make sure you're sending info to/from the right objects.

· Determinism:

Determinism is the predictability of your game. You only need to send as much info across the network as you need to ensure matching game states across the board. So a very deterministic game will only require small amounts of information (ie: the exact choices the user made, because these are the only points that difference can exist in the system) whilst a completely non-deterministic game will require all the info that describes a state to be sent, sometimes as often as every time step. Things like creating lists of random numbers, broadcasting or re-seeding them in chunks and creating time-based lookups for random-equivalents are ways to help creating deterministic game play that doesn't look pre-determined... Determinism also helps in lag-elimination and prediction in real-time games, but that's a whole different level of implementation.

· Graphic infrastructure: As we talked at last meeting, Yusuf and Mustafa have made research about graphic part of the project. Our research generally focused on selection of the platform. We try to learn which is suitable for us to implement our project: OpenGL or DirectX? After research, we listed advantages of both.
· Advantages of using OpenGL

1. It is a consistent, straightforward C style API, which of course means you can use it in both C and C++. DirectX requires you to have a pretty good working knowledge of C++ before you can get much out of it.

2. Each graphics card vendor can add their own extensions, allowing programmers to use the latest features of the hardware as long as the graphics card drivers support them. Eventually, if the extension proves itself as being useful and good, the OpenGL ARB (Architecture Review Board) will make a standardized extension taking into account that vendor specific extension. The standardized extension then becomes non vendor specific. As time goes, the standardized extension might make it directly into GL core. You can use libraries to ease the use of extensions (really good, and makes life much easier), and remember you don't have to use extensions; they're just there to provide more cool features.

3. It is easier to find documentation. Older copies of "The Red Book" can be found online for free. DirectX changes versions so quickly that often as soon as you find a book about the current version, a new version comes out.

4. If you have a compiler, the headers and libraries you need to get started with OpenGL are almost certainly sat on your computer right now.

· Advantages of using DirectX

1. DirectX offers a lot more than just rendering: it can also handle user input, sound/music, networking, and there are also a whole load of tools that make life much easier. DirectX also gives you 3D math functions, mesh manipulation functions, image loaders, tools for viewing models, effects, textures, performance etc... This has to be considered too if development time is a constraint. It's definitely possible to use OpenGL for graphics alongside DirectX for the other stuff (DirectInput and DirectSound being good examples), and there are plenty of other libraries floating around you can use as well, but you might decide you'd prefer a "one stop shop" for all this game functionality.

2. DirectX comes with its own formats for models, textures etc. The models, for instance, are the .X file format, and most modeling packages can export these. DirectX already contains the code to load .X files, so you don't have to write your own model loader like you would in OpenGL. Although writing stuff like model loaders can be a fun challenge and will certainly teach you a lot about game development, you might prefer to have a loader in place already to get up and running quickly.

PAGE
1

