
0

Middle East Technical University
Department of Computer Engineering

CONFIGURATION MANAGEMENT PLAN

ÖZGÜR YAZILIM

Özgür Özgür
Fırat Erdoğan

Onur Demircan
Abdulkerim Mızrak

Mehmet Emin Ulusoy

1

1. Introduction 2

1.1 Purpose of CMP 2

1.2 Scope of Document 2

1.3 Definitions, Acronyms and Abbreviations 2

1.4 Document References 2

1.5 Document Overview 3

2. The Organizations CM Framework 3

2.1 Organization 3

2.2 Responsibilities 3

2.3 Tools & Infrastructure 3

3. The CM Process 4

3.1 Identification 4

3.1.1 Engines & Modules 4

3.1.2 Game Data 5

3.1.3 Documents 5

3.2. Management and Control 5

3.2.1. Change Request 6

3.2.2. Evaluation 6

3.2.3. Approving or Disapproving Requested Changes 6

3.2.4. Implementing Changes 6

3.2.5. Version Control 6

3.3. Configuration Status Accounting 7

3.4 Configuration Auditing 8

4. Project Schedule 8

5. Project Resources 8

6. Plan Optimization 9

APPENDIX 10

2

1. Introduction
1.1 Purpose of CMP

The CM plan is a vital component of a software project in terms of management
and development issues. This applies our project too.

The development process is not a straightforward issue. Throughout the
development, the project may expand or shrink, and certainly there shall be some
problems about different issues. At this point it becomes inevitable to have a good plan
and organization to manage the changing conditions and to fix the problems.

1.2 Scope of Document

This document is prepared by the members of Özgür Yazılım project group and
introduces the Software Configuration Management Plan for the game Treasure Hunt.

This document involves the key issues about the standards of the Treasure Hunt
project, and also introduces how to act when problems occur or some modifications are
needed.

Every member of the team shall behave in a way described in this plan and
responsible from the overall mechanism of the project.

1.3 Definitions, Acronyms and Abbreviations

ACRONYMS DEFINITION

CM Configuration Management

CMP Configuration Management Plan

SCMP Software Configuration Management Plan

CVS Concurrent Versions System

MMOG Massively Multiplayer Online Game

AI Artificial Intelligence

NPC Non-personal Character

1.4 Document References

While preparing this plan, we made use of:
 Our Requirement Analysis Report
 Our Final Design Report

3

 SCMP Guideline: IEEE Standard for Software Configuration Management
Plans

1.5 Document Overview

Being a 3D MMOG, our project consists of multiple modules involving network
and graphics components. This results in problems of integrating different modules
throughout the development process and prior to the release of new versions.

During the development phase of our game, modules should be working
consistently, and there should not be any conflict between them. To achieve this, in
addition to a good plan and organization, there should be some criteria about the design
and implementation issues. Those criteria involve key issues like the tools to be used, the
standards in coding, and the action plan when problems or changes occur.

This document introduces those criteria and will act as a guide throughout our
progress.

2. The Organizations CM Framework
2.1 Organization

Our team consists of five people.
Having a democratic-decentralized organization, there is not a permanent leader in

our group, but coordinators. The coordinators are also changeable according to the type
of task to be done or the change in the task. A good communication between group
members is essential in this model, since every individual must have a complete
understanding of how things are to be handled. The main and most important thing about
this type of organization is making decisions by a group consensus. The negative aspect
of this organization is the difficulty of reaching a consensus in some situations.

2.2 Responsibilities
Having different modules to implement, division of labor is inevitable in our

group. This is achieved by dividing the job to be done mainly into two parts, which are
network and graphics. However, there is not a clear-cut about the responsibilities and
team members may sometimes work on the same issue to meet the deadlines. This is a
possible situation and it is impossible to overcome this problem without having standards
by means of implementation and tools to be used.

Each group member should be active at the time of determination of the
deadlines. Then each member is responsible from his task and should do his best to meet
the deadlines.

The group, as a whole, is also responsible from the overall architecture and
organization of the project, and also motivation of the team.

2.3 Tools & Infrastructure

4

 Our game will run on Microsoft Windows XP Operating System.
 We use C++ to develop our project. The development environment we use is

Microsoft Visual Studio.NET 2003.
 In terms of graphics we make use of the OpenGL libraries.
 To create 3D objects, textures, and the game environment, we make use of 3D

Studio Max and Adobe Photoshop.
 The Concurrent Version System (aka CVS) is another tool we use. Since we

are developing our project as a group, it becomes inevitable to use a tool like
CVS in order to make the sources accessible by every member and to keep
different versions of our program.

 For documentation purposes we make use of MS Word, Visio, and Smart
Draw.

3. The CM Process

3.1 Identification

We have divided our project into units of configuration that can be individually
managed and versioned. These configuration items can be examined mainly in 3 parts:
Engines & modules, game data, and documents.

3.1.1 Engines & Modules:

 GameEngine: Core of the game engine.
Server Side Game Engine
Client Side Game Engine

 Network Engine: The interaction between the clients will be done by this
module by a server.

 Input Module: Input handling will be done.

 Artificial Intelligence Engine Module: NPC control and AI engine.

 Menu Module: Graphical User Interface management

 Graphics Engine: handle all of the rendering operations during the game
according to user input.

Characters
Map
Models
Physics
Camera

5

 Audio Module: The Audio Module will hold the path of the selected sound file
and load the file to memory when desired

Sounds

 Chat Module: Chat module will enable players to communicate with others in
real time.

3.1.2 Game Data:

 Map
 Model
 Character Models
 Character Animations
 Texture
 Music
 Puzzles
 SoundTracks

3.1.3 Documents:

 Design Report
 Configuration Management Plan
 Installation Manual
 User Manual

In order to assign unique identifiers to each item to be controlled, we have
specified an identification system. The identification system will work in a way like this:
the prefix of each sub-module name is the module that it belongs to. For example, Server
Side Game Engine is a sub-module of Game Engine and the initialization of the game is a
sub-module in the Server Side Game Engine. We name initialization as:
gameengine.serversidegameengine.initilization. As can be seen; all letters are small.

Since we have a modular system, we have the flexibility of working
independently. For the development and implementation phase we will define baselines
that will help us for the milestones. CVS server will be used to physically define these
baselines.

3.2. Management and Control

 In this section we will introduce the process of the possible update and change
operations during the semester. This update process can be analyzed in four phases:
Change Request, Approving or Disapproving Requested Changes, Implementing
Changes, and Version Control.

6

3.2.1. Change Request

Our group consists of two sub-groups. One is network sub-group, the other is
graphics sub-group. Any change request can be made by anybody in the group, but firstly
the sub-group will evaluate this request, if they accept the request, the other sub-group
will be informed too.

3.2.2. Evaluation

 Firstly the sub-group will evaluate the request. If they accepted the request they will
inform the other group also. The sub-group will have to implement a small demo that
shows the request in practice. After that the other group will explain their opinion about
the request.

3.2.3. Approving or Disapproving Requested Changes

 The request that has been negotiated by the group will be announced on the web
page of our group. If rejected, the reason will be announced also. If the change is
accepted, the one who proposed the modification will start implementation.

3.2.4. Implementing Changes

First, the baseline configuration item of project is checked out and changes
are applied. Next, the updated item is tested for quality assurance. Then the configuration
auditing is performed and finally the new version of the software is saved and every
group member is informed about the modification.

3.2.5. Version Control

Version numbers must be used in order to follow our project development stages.
As we develop our project we give the most final version a number to identify it.
Our version numbering system will be like this;

<major change>.<minor change>

If there is a major change then we increase the number in the major change field
by one. If the change is minor then we increase the number in the minor change field by
one.

Our project's version control will be done by CVS. Every update of the project
will be saved in CVS and its version control functionality will maintain a history of all
updates.

7

Every group member has his own CVS account and a copy of the source tree.
After making some modifications the member can add or remove the files and by using
CVS commit he merges his changes back into the repository. So that the modified
version can be seen by other group members using CVS. If the group member wants to
merge updates committed by other group members into is working directory then he
simply uses CVS update. If there are uncommitted changes CVS attempts to merge the
changes from the repository with the changes in the working directory. If the merge fails
then CVS indicates a conflict and tries to correct it manuall

3.3. Configuration Status Accounting

In the CVS we will have four main directories: Graphics directory, Audio
directory, Puzzle directory, Codes directory.

In the graphics directory there will be the models, meshes, 3d objects, textures
and maps.

In the audio directory there will be music and sound effects that will be used in the
game.

In the puzzle directory there will be puzzle database.

In the codes directory there will be all the files: cpp files, header files.

In each of these directories there will be a Change_X_.txt file that will contain this
information:

 Detailed description of the change: The change made will be explained. Why this
change is needed and how it is made will be recorded.

 Analysis of the change: After the change, what changed in the system and how th
e system works after the change.

 Names of people making the change: The names of the group members who made
the changes.

 Title, type, release and version, with date: The title, type of the changes and the re
lease and version numbers of the system after the changes.

The Change_X_.txt will be saved as Change_(X+1)_.txt to avoid loosing the
previous change information.

8

3.4 Configuration Auditing

Auditing is the act of evaluating an organization, system, process, project or
product. Because of being a democratic-decentralized team we don’t have a CM
manager. In our project the auditing is held in two ways: By weekly meeting, and by
requesting.

There are meetings each week where the members explain any changes or any
problems by informing the other members about his weekly progress. During audits, the
baseline configuration and current configuration is compared. According to that the team
either verifies that any item in the plan is achieved or not. By the way, if there are any
questions, the other members try to answer that question of that member. At the end of
each audit decisions are taken about the project plan.

There may be audit requests from any member of the team. Auditing sessions will
be held after release of each version and every important progress. During auditing
sessions, it will be checked whether the correct changes are made, the changes are
correctly implemented, any additional changes are needed, and whether the final release
is in compliance with the baseline and requirements. Since the modules are well-defined,
every team member will test his modules independently. Also there will be continually
testing and according to these results, deficiencies will be noted in the audit report, and
coder(s) of the module are expected to fix the deficiency. Auditing of the data can be
done separately by any member of the group by informing the code owner and the other
members via e-mail.

4. Project Schedule

All the tasks have been divided while we were four people but this semester one
more person joins to us. Now we will show all the milestones
that we have designed previously. The new-comer friend will be ready in a few weeks,
after that we will reschedule the milestones and
give some task to him. The project milestones are available in the appendix part.

Our schedule will be put on the web and each week this schedule will be updated.

5. Project Resources

Özgür Yazilim was consisting of four members. By this term a new member is
added to the. Team members need some tools to carry out the CM operations, changes,
development, communication and documentation. The main tool for CM activities is
CVS supplied by the department. When a modification is finished; the latest version will
be updated by CVS. Also any team member will access to test version of the project.
Project members can work on same files simultaneously by using CVS. CVS notify when
any conflicts occur.

9

For documentation Özgür Yazilim team members will use MS Word, Visio
and Smart Draw.

Özgür Yazılım members communicate with each other by e-mail, newsgroup
and forum on our web site. (http://senior.ceng.metu.edu.tr/2007/ozguryazilim/)

We will use FTP and Web Server for location and updating project web site.

6. Plan Optimization

Özgür Yazilim members consider the CMP as a mainframe for the project
development process. Our progress will be compatible with CM. Nevertheless we are
aware of possible changes and optimizations in our CMP.

Throughout the project development, we will need optimization of CMP.
Considering our weekly meetings and continuous communication with various tools, we
will update our plan continuously. After every milestone, we must prevent our CMP
becoming out-of-date.

All project members are responsible all the project process cycle and also take
care of maintaining of CMP. When we need changes we will discuss the necessary
optimizations and we will keep our plan contemporary. Using CVS and communicating
with other group members continually is very important to keep our plan up-to-date.
By using CVS in the development process any changes in the project can be informed to
other group members, and if necessary, new changes can be applied to the CMP.

Changes will also be made in case of dropping behind our schedule.

10

APPENDIX

0

