[image: image1.jpg]Bug revealed

[
N7

D Testing and
Debugging

Unit Testing DD Integration DD Performance

Testing Testing

All visible bugs
are cleaned

A

Bug report A new feature
and Feedback New Release introduced

Increase Version Number

MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

CENG 492

Computer Engineering Design II

2006-2007

SimSys Corporation
Test Specification Report
06.05.2007

Emulator and Development Environment for

CEng Embedded System Card
Table of Contents
31. Introduction

31.1
Objectives

31.2
Scope

41.3
Testing Procedure

52. Unit Testing

52.1
 GUI

52.2
 Editor

62.3
 Project Manager

62.4
 Simulator

72.4.1 PIC

82.4.2 Peripherals

82.4.3 Analysis Tools

92.5
 Assembler and Compiler

92.6
 Debugger

102.7
 Programmer

113. System Testing

114. Platform Independence

115. Performance Testing

126. Test Schedule

1. Introduction

1.1 Objectives
PIDE is an integrated development environment, simulator and debugger for the PIC embedded development board used in the course CEng336 at Computer Engineering Department at METU.
Starting from the project definition, in this report, we will describe the procedures to test the components making up the system and the overall system as a whole. The tests will verify that not only the system operates correctly, but also it runs fast and is platform independent.
1.2 Scope

Once the implementation of the project approaches to the end and solid versions of the components are obtained, those components in the system need systematic testing. Until the start of the official testing period, the initial tests of the components were performed by the developers themselves. From this point forward, testing standards will be specified and they will be applied to the components and the system.
The testing methodologies that are described in this report are:

· Unit Testing

· System Testing

· Platform Independence Testing

· Performance Testing

These test methodologies will confirm the correctness and the quality of PIDE.

Integration testing of modules has no meaning for the PIDE system since each module operates fully independent of each other. Each module takes an input, which is the output of the previous module, and creates its own output. To be more specific, editor module creates the files (ASM or ASM++), compiler module takes these files and creates the HEX file, simulator module takes the HEX file and makes the simulation, debugger also takes the HEX file and performs debugging, programmer takes the HEX file and loads into the board. Therefore, guarantying that each module operates correctly through unit testing, integration of any modules will be guaranteed to operate correctly.

1.3 Testing Procedure

[image: image2.png]Dogys Dizen Giringm Gt Verlmn Aragar Yardm o
PRSI L e ————— 50
B ik adm B Haberler

METU Computer Engineering

Home = Home

Upcoming Seminars

= Wed Oct 11, 14:00 at METU-KKM, Hall A: Announcements.
Dynamic Networks in Information Technolagy. Technigues for = Instructions for
Decentralized, Self-Organizing and Robust Solutions. Frof O Thunderbird
Ozajp Babacgiu = Updated SSL Certfcates

= Wed Oct 11, 15:00 at METU-KKM, Hall A:

= see cowNews for more.

Fast Topology Management in Large Overlay Networks. £rof Or
Ozalp BABAOGLU = METU
= 1 mare upcoming seminars. = Lirary
= see all seminars. = Computer Club

lj =

Aragtirma Gorevliligi igin bagvuran adaylarin dikkatine
DT BILGISAYAR MUHENDISLIG! BOLUMU'NE ARASTIRMA GOREVLILIS!IGIN BASYURUDA

Quicklinks

088 Adaylanna
Academic Calendar
C.0.w.
Caurses
az Stai

Latest News

= Aragtirma Goreligi gin
haguran agaytann
dikkating

= CENG and SE wio thesis
prograrm new student
accounts!

= CENG and SE Fal
200612007 Course
Schedule

= Aragtirma Goreuller
Amacakii!

= Fall 2006 - 2007 CENG
and SE wio Program
Caurses

Tamam

>

Computer .

The schema above represents the general procedure that will be followed during testing and debugging the software.

2. Unit Testing
2.1

GUI

The GUI module is the main frame of the IDE, which provides access to the other modules.

The main frame is composed of menubar, toolbar, statusbar, workspace pane and console pane. The testing of GUI includes the tests for proper working of:

· Open, save, close projects

· Open, save, close files

· Access to compiler module and related settings

· Access to simulator module and related settings

· Access to programmer module and related settings

· Menubar, toolbar, statusbar functions

· Toggling between different views (ex: removing a panel).

The main frame is expected to support all these functions for the moment. The tester may open a project first and see that it is added to the projects list in the workspace pane. In addition, he can add new files to the project and see that they are being listed under the related project in the workspace pane. The proper access to other modules like compiler, simulator or programmer is another testing issue. Moreover, the functionalities shown under the menubar menus and on the toolbar may well be tested. One of those funtionalities is the toggling of the panels on the frame under the view menu.

2.2

Editor

The testing of editor includes the tests for proper working of:

· Basic editing operations like: copy, paste, cut, redo, undo

· The toolbar and menubar activity on edit operations

· Multiple file handling

· Highlighting property of the editor.

Basic editing operations testing may include keyboard shortcuts testing as well. Multiple files, opened at a time and toggling between them are other issues for testing. After testing simple editor funtionality and multiple file handling, the main testing issue for editor module, highlighting, is considered. We have developed a highlighter for “asm” and “asm++” files. It is composed of a scanner and a syntax-color-changer and it works as the following: First, the file is being divided into atoms. Second, these atoms are given some type values and finally those type values are being highlighted. The testing may include the test for changes in the code and observations on the color changes. We have mainly three concerns for this: Keywords, numbers and comments.

2.3

Project Manager

Project manager is responsible managing a workspace. There is only one active project at any time in PIDE and all the operations are performed on the active project, however the inactive projects can also be viewed at the workspace panel. Testing of this module includes:

· Creating a new project,

· Loading a project,

· Saving a project,

· Adding files to a project,

· Removing files from a project, and

· Changing project specifications such as name, description, etc.

2.4

Simulator

The simulator module is tested at two levels. First level testing is the test of PIC, Peripheral and Analysis Tools modules separately. The second level testing is the integration testing of these modules. Integration testing should confirm that 5 main goals are achieved:

· PIC and Peripherals should communicate as required. For each module, excessive embedded programs should be tested in simulator one at a time. After positive results are obtained, programs that use more than one peripheral should be simulated. The multi-peripheral programs should use peripherals that share same or common I/O pins and also peripherals that don’t share any I/O pins.

· PIC and Peripherals should operate as if they work in real time. Since concurrency of an electric circuit should be implemented sequentially in a simulation, the modules should work in a relative time principle that resembles the real life.

· The performance of the two modules is important in the sense that the programs could be simulated as if they are executed on the Ceng 336 Board. The board and the simulator should be run at the same time and performance test results should be obtained.

· The behavior of the simulator and board should be similar. Applying the exact same test case on the board and expect the same result is nearly impossible. It is not because the board is unstable but it is due to the response time of the board is much faster than a human can react. However results received from the board should also be received from the simulator.

· Analysis Tools module results should be consistent with the simulation.

2.4.1 PIC
This part includes the simulation of various PIC modules. These are listed below with the testing procedure that will be used for each.
· FLASH Program Memory: This is where the program is stored. For testing, sample programs with various lengths will be loaded to the PIC.

· Instructions: PIDE program performs the simulation using the HEX files as input. Thus all ASM++ instructions and control structures will have been converted to their ASM mappings before the simulation step, and simulator only takes care about the ASM instructions. For the tests of simulation of instructions, a sample ASM program that consists of all of the instructions will be simulated and the changing register values will be watched at each step for correct operation. These values will also be compared with the ones generated by MPLAB SIM which is the simulator module of MPLAB.

· Data Memory: This part consists of special purpose registers and general purpose registers. Testing of data memory consists of reading and writing data.

· EEPROM Data Memory: This is the non-volatile memory. Testing of this module involves reading, writing and checking of permanence.

· Digital I/O: All input outputs ports of the PIC (PORTA to PORTE) will be tested with write and read operations. Tests will also include different TRIS register configurations, i.e. adjusting some of the bits of a port as inputs and some as outputs, etc.

· AD Converter: Analog to digital converter module will be tested with various analog input values, and various conversion clock times.

· Interrupts: There are 14 interrupt sources in PIC 16F877. All will be tested for correct operation, including whether interrupts occur at correct times and whether corresponding actions are performed correctly. Tests will also contain different interrupt-enable bit configurations.

· Timers: Timer 0, 1 and 2 will be tested with different prescale values.

· PWM module: PWM output will be tested with different periods and different duty cycles.

2.4.2 Peripherals

Peripherals are the interface of the PIC with the user so it is important they act and react properly. The peripherals may be grouped as input and output peripherals.

Input peripherals get input from the user and inform the PIC. Each input peripheral is tested to see if they receive input from the user and keeps the data. The visual elements in GUI are tested and their performance is observed.
Output peripherals represent data received from the PIC to the user in different ways. Each output peripheral is tested to see if they represent the data contained correctly. The visual elements in GUI are tested and their performance is observed.
2.4.3 Analysis Tools

This module includes some tools to help the user observe and follow the operation of the microcontroller. These tools are Stopwatch and Pin-Listener.

Stopwatch is a tool that shows the number of instructions simulated, number of cycles and number of seconds passed. It will also provide these measurements for the subroutines. It will be tested with programs of different lengths and containing various subroutines. The results will both be checked intuitively and by comparing with MPLAB correspondents.

Pin-Listener is a tool that shows the change of the value on a pin with respect to time. The change of the values on a pin will be recorded manually by observing the data memory view, and the graphical output of this tool will be compared with the recorded data to test correct operation.

2.5

Assembler and Compiler
The assembler module converts the given “.asm” files into hex files in two steps. These steps are the two passes of the assembler. In the first pass, the labels and constant declarations are checked and added to the symbol table, and in the second pass the instructions are converted into machine code. Therefore, these two steps are dependent on each other.
In order to test the correct operation of the first pass, the input file should contain any number of constants and labels and the symbol table should be checked whether that constant is correctly added. In order to test the correct operation of the second pass, all instructions should be included in the input file, in all addressing modes, namely with arguments given in binary, decimal, hex, and also as constants defined previously.
The output of the assembler can be verified for correct conversion by not only hand checks, but also by giving the same input file to MPASM assembler.
The compiler is one step above the assembler. It includes not only extended instructions for the PIC but also special control statements and variable declarations. The ASM++ instructions will be tested similar to the ASM instructions described above. The control structures in ASM++ are while/for/do-while loops, if-else statements. In the test procedure, combinations of nested control statements will be provided in the input files and the output ASM file will be checked manually for proper conversion. The variables declared will be tested by dumping the address and contents of the variables taken in the test cases.
2.6

 Debugger
The Debugger module gives the user a handle of an embedded program enabling the user to stop at certain points and examine certain data during execution. The expectation from a debugger is not only to manage breakpoints and watchpoints, but also to simulate the program. Hence it is convenient to split debugger module testing process into several parts.
Breakpoint tests are one part of the testing process. Breakpoints should be added/removed by the user using GUI elements. The management of the breakpoints should be immediately reflected to cross reference files. Possible inconsistencies such as inserting a breakpoint to an invalid line (empty line) should be prevented. Inserting multiple breakpoints at the same line should be prevented. The simulation should be stopped at the exact spot that the breakpoint resides. When a breakpoint is reached, corresponding editor should jump up to the spot.
Watchpoint tests are one other part of the testing process. Watchpoints should be added/removed by the user using GUI elements. Data fields watched should be immediately reflected to the debug files. Possible inconsistencies such as adding a watchpoint to an invalid memory position should be prevented. Inserting multiple watchpoints at the same register should be prevented. The simulation should be stopped at the exact spot that the watchpoint is altered. When a watchpoint is altered, corresponding editor should jump to the spot where the change is made.

Debugger control tests are performed to check the consistency of the flow of the debug process. After a breakpoint or watchpoint condition is satisfied, the debugger should go into step-by-step mode. Each step should execute a single line at a time. Since some ASM++ lines correspond to multiple ASM lines (instructions), the debugger should also execute all instructions corresponding to the line. The editor should follow the steps of the debugger.
2.7

Programmer

The programmer is responsible of writing data to PIC, reading data from PIC and verifying PIC contents. Testing of the programmer will be performed differentially, i.e. comparing the results of various read-write-verify operations with those of ICprog software.
3. System Testing
To test the complete program, a procedure that uses all the modules will be followed. Namely, a new project will be created; new source files will be created through the editor and added to the project. That input files will be compiled and then simulated. Analysis tool outputs will also be observed. Then debugging will be performed and the program will be uploaded to the board.

These steps will constitute the alpha testing. Later on, beta tests will be performed by the CENG336 students.
4. Platform Independence

PIDE, being developed in Java is expected to be platform independent. Thus, it will be tested on both Windows and Linux machines to confirm this claim.

5. Performance Testing
The PIDE software is written with Java, therefore requires JVM (Java Virtual Machine) to run. Except from the slowness of the JVM, we expect no extra degradation in performance from system to system. This is partially due to the fact that all components of the software are independent and no two components run simultaneously and partially due to the low memory and processor requirements of the software.

The major tests that we will perform to measure the performance of the software is to run PIDE on computers with different CPUs and memory capacities. Moreover, since the utilization of the hardware may differ in Linux and Windows, we will take the efficiency calculation with respect to the OS into account.
6.
Test Schedule

Test Plan Delivery:
(Deadline) 06.05.2007

Unit Test and Integration Tests:
(Deadline) 22.05.2007

Validation Tests:
(Start) 22.05.2007 - (Deadline) 29.05.2007

Performance and Stress Tests:
(Start) 25.05.2007 - (Deadline) 29.05.2007

Beta and Alpha Tests:
(Start) 27.05.2007 - (Deadline) 06.06.2007

Results Tracing and Correction:
(Deadline) 11.06.2007

2

