
1

DEPARTMENT OF COMPUTER ENGINEERING

CENG 491 – Computer Engineering Design

REQUIREMENT ANALYSIS REPORT

Group Name:

Group Members:

Hatice Beyza KIRBAŞ 1297951
Özgür Ufuk ÖZDEMİR 1347798
Oya TEZEL 1348010
Serdar TUĞCU 1298330

Project Title: Emulator and Development
Environment for CENG Embedded System Card

Project Alias: PicSim

2

Table of Contents

1 Project Description... 4

1.1 BACKGROUND.. 4

1.2 Project Definition and Scope.. 5

2 Literature Survey.. 7

2.1 Applications ... 7

2.1.1 MPLAB .. 8

2.1.2 PROTHEUS ... 9

2.1.3 mikroC.. 10

2.1.4 PIC BASIC COMPILER.. 12

2.2 TECHNOLOGIC RESEARCH.. 13

3 Project Requirements ... 15

3.1 User Interface Requirements .. 15

3.1.1 Functional Requirements.. 16

3.1.2 Non-Functional Requirements ... 22

3.1.3 Software Requirements .. 24

3.1.4 Hardware Requirements ... 25

4 Data Models ... 26

4.1 Data Dictionary .. 26

4.2 Data Flow Diagrams... 29

4.2.1 Level 0 DFD... 29

3

4.2.2 Level 1 DFD... 30

4.3 States of the Program ... 33

5 Usage Model .. 34

5.1 Usage Scenario ... 34

5.2 Use Cases ... 35

6 Project Management... 36

6.1 Process Model .. 36

6.2 Team Organisation ... 36

6.3 Schedule ... 37

6.3.1 Milestones .. 37

6.3.2 Gantt Chart ... 38

References .. 40

Appendix .. 41

4

1 Project Description

1.1 BACKGROUND

This document is the requirement analysis report of SoSoft, the DevEmb project

group. We are going to state the scope, functional requirements, constraints and

structural model of our project in details. This report will provide a basis throughout the

solution process of the problem specifying the requirements. The requirements are

determined after a detailed analysis of available solutions (similar programs used for

the same purpose), the tools that can be used in the solution (language capabilities &

available libraries) and users’ needs and demands.

DevEmb project includes implementing a compiler and simulator for the Pic Demo2

board (PDB) designed by Alper Kılıç for the CEng336 course. This Pic board has a

number of LEDs, an LCD screen, parallel port, serial port, USB port, five jumpers three

of which (JP1, JP2, JP3) are used in Programming Mode and two of which (JP4,SPK)

are used in Executing Mode, speaker.

In the Programming Mode, one of the JP1, JP2 and JP3 is selected. This selection

determines which microcontroller to use, since PDB supports 18, 28, 40-pin

microcontroller families. If one of these jumpers is set, the PDB is operates in

Execution Mode.

5

In the Execution Mode, 4MHz or 20 MHz oscillator must be selected for 40-pin

microcontroller using JP4. Enabling/disabling speaker is available by using SPK.

1.2 Project Definition and Scope

A microcontroller is a highly integrated chip that contains all the components

comprising a controller. Typically, this includes a CPU, RAM, some form of ROM, I/O

ports, and timers. Unlike a general-purpose computer, which also includes all of these

components, a microcontroller is designed for a very specific task – to control a

particular system. As a result, the parts can be simplified and reduced, which cuts

down on production costs.

PIC (programmable interface controller)s are microcontrollers manufactured by

microchip company. PICs are programmed via various compilers which convert the

assembly code or a high level language code to hexadecimal code. Since it is

expensive to debug the code to the PIC to see if it works correctly, some simulator

programs are available in the market.

These programs mainly show internal microcontroller architecture. Using such PIC

programs, it may be painful to control the program. These tools show the internal

6

circuit programmed and uploaded to the PIC, but does not show the external effects of

this circuit. The CENG embedded systems card shows the effect of the program

running in the PICs on the external circuit (i.e. the LEDs, LCD). The problem arises

from the fact that available programs cannot show what happens to this circuit. So

these tools cannot meet users’ demands.

There are a number of Pic compilers available recently. But most of these programs

can only compile the source file and load it to the Pic board. By using these programs,

user can see if the source file is compiled successfully, but a lot of programmer

complains that their programs are being compiled successfully but running in a way

different than they want. In order to overcome this problem, user needs a simulator. A

simulator which simulates the source file that is to be compiled before loading the

compiled file to the Pic helps user see if they are going to get what they want. User

can see if the program is working correctly and if he/she is satisfied, he/she loads it to

the Pic. There are also some programs which have the ability to simulate, but our

software will be designed specifically for the PDB and user will not have to handle a lot

of extra features of other programs which are unnecessary for the PDB.

We are going to implement a software emulator, compiler and development

environment for embedded systems card in the project. By our software, users will be

able to compile, upload and debug their programs on the card. Testing the programs

in the virtual card emulated by the software will also be possible. This emulator will

show the external effects (the output of the circuit implemented in the Pics) of the

programs the users compile and debug using it.

7

Since our software will simulate the embedded system card, it will have all the features

that are present on the card and also the user will be able to do everything that he/she

can do by the card virtually. In addition our PIC compiler will compile C source codes

into hexadecimal code which can be uploaded to the PIC. It will also have a debugger

that simulates the code step by step during run process.

2 Literature Survey

2.1 Applications

When designing software, one of the most important parts is to determine the needs of

the user. The software we are going to design is usually for experienced users. And

such users usually have experience with similar programs. So, to examine the other

products that can do the same job is a very efficient way to develop the software. Due

to this fact, we have examined a number of Pic compilers and simulators. Here, we

are going to give details of our observations.

The list of the programs we are going to write in this part of the report are:

 MPLAB

 PROTHEUS

 mikroC

 Pic Basic Compiler

8

2.1.1 MPLAB

MPLAB Integrated Development (IDE) is a free integrated toolset for the development

of embedded applications. It runs as a 32-bit application on MS Windows. This

program is relatively easy to use and since it is free, a lot of users prefer this program.

Since MPLAB has a good interface, it is easy to move between tools. We are going to

have a C compiler for Pic programming, so we have examined its C compiler. MPLAB

C18 is an optimized C compiler for the PIC18 series microcontrollers. Also MPLAB

has MPLAB C30 for PIC24 and dsPIC digital signal controllers.

MPLAB has a debugger which has capabilities like auto alignment of breakpoints,

mouse-over variable inspection, drag and drop variables to watch windows, automatic

single-step animate feature etc.

The most important advantage of this program is that, it has a very powerfull help

support. Its manual is prepared very good and also its web site, www.microchip.com is a

referrence for every PIC programmer.

Another advantage is that it is easy to browse the files using its windows. Also the

tools are placed to toolbar so that you can reach the tools which are most frequently

needed very easily.

MPLAB does not have a graphical simulation of the code. One of the properties of our

project is to simulate the written code, so MPLAB is does not demand the needs of our

users totally.

9

We have added a screenshot of MPLAB to the Appendix.

2.1.2 PROTHEUS

Protheus is a software by which user can design an electronic circuit using its tools,

test the designed circuits and design the Printed Circuit Board (PCB) schematic. This

is also a common program used by circuit designer. Unlike MPLAB, Protheus is a

program mainly used for simulation. User designs a circuit and sees what he/she did

on the computer screen without loading to the PIC.

Protheus has a very good-looking interface but we think that its components are very

complex. In order to add a component to the circuit, user has to do a number of

actions. Also user is expected to have a very good memory, because user has to

know the name of the components to find.

The above paragraph listed some disadvantages but we have to say that its simulator

is very successful. Once you have designed a correct circuit, you can see what it does

on the screen.

Using view options, user can have a custom view of the program. By the help of this

property, the program is very good-looking. As a computer engineer, we think that the

view of the screen we are working on is important for motivation.

Protheus also has a good-working debugger. By using this debugger, programming

becomes easier for the user. In addition to this, like other programs, Protheus has

libraries. The components of the libraries are arranged according to their properties

10

such as serial numbers (e.g. 74xx), producer companies (e.g. Parallax), and usage

(e.g. LEDs).

Appendix includes a screenshot of Protheus.

2.1.3 mikroC

MicroC is a PIC C compiler for dsPIC applications. It is not a very common program

since it is commercial but we have examined it and have some ideas about the

interface and some other tools.

This program has an advanced code assistant. By hitting CTRL + SPACE, user can

get the list of all available variables, constants, and routines which user can insert at

cursor position (Figure a)

Figure a

There is a Parameter assistant for routines. When user hits CTRL + SHIFT + SPACE,

the parameters of the function is displayed. (Figure b)

Figure b

11

Another property is debugger. This source-level debugger helps troubleshoot and

repair the application. The debugger has options like ‘Breakpoints’ (Figure c) and

‘Watch Window’ (Figure d) options.

Figure c

Figure d

12

Another advantage is Code Explorer. Code explorer finds any variable or function

within the code easily. (Figure e)

Figure e

2.1.4 PIC BASIC COMPILER

This program is a Basic compiler. We are going to have a C compiler, so we could not

have enough benefit from this program. But this program has the properties which we

are planning to include to our own program. These properties are user-friendly

graphical development environment, integrated simulator (emulator), compiler and

debugger.

Pic Simulator IDE has the following properties:

-Main simulation interface showing internal microcontroller architecture,

- FLASH program memory viewer, EEPROM data memory editor, hardware stack

viewer,

- Microcontroller pinout interface for simulation of digital I/O and analog inputs,

- Variable simulation rate, simulation statistics,

- Breakpoints manager for code debugging with breakpoints support,

- PIC assembler, interactive assembler editor for beginners, PIC disassembler,

- Powerful PIC Basic compiler with smart Basic source editor,

13

- PIC Basic compiler features: three basic data types (1-bit, 1-byte, 2-byte), optional 4-

byte (32-bit) data type with 32-bit arithmetic, arrays, all standard PIC Basic language

elements, optional support for structured language (procedures and functions), high

level language support for using internal EEPROM memory, using internal A/D

converter module, using interrupts, serial communication using internal hardware

UART, software UART implementation, I2C communication with external I2C devices,

Serial Peripheral Interface (SPI) communication, interfacing character LCDs,

interfacing graphical LCDs with 128x64 dot matrix, R/C servos, 1-Wire devices,

DS18S20, using internal PWM modules ...

- Configuration bits editor,

- PC's serial port terminal for communication with real devices connected to serial port,

- LCD module simulation interface for character LCD modules,

- Graphical LCD module simulation interface for 128x64 graphical LCD modules,

- Hardware UART simulation interface,

- Software UART simulation interface for software implemented UART routines,

- Oscilloscope and signal generator simulation tools,

- 7-segment LED displays simulation interface,

- Support for external simulation modules,

- Extensive program options, colour themes, ...

2.2 TECHNOLOGIC RESEARCH

In order to develop our program, we need to use programming languages and from

the beginning of term to this date, we have discussed on the most suitable

14

programming language for us. As a result of our discussions, we have decided to use

C and C# for development.

Our program will have an interface for editing the source code, an interface for

simulation and a compiler. We have searched for some Pic compilers and we have

seen that there are a lot of compilers written by C language. Also the interface is very

important because one of our aims is to make a user-friendly program. So we shall

use C#, which is a language of .Net technology.

For the simulation part, the situation is a bit complex. We have to understand what the

code wants to do, and show it on the screen. So there are two parts to handle. We

have decided to use both C and C# for the simulation process.

The reason for choosing these two languages is that four members of our group is

familiar with C from the courses we have taken during our education and C# is an

easy language for learning and it is very powerful at making interfaces.

We will definitely need some other languages in the internal steps of the

implementation, but since the analysis period is mainly reserved for the determination

of the requirements, we have worked on mainly the requirements. Implementation

details may change during the design process.

15

3 Project Requirements

3.1 User Interface Requirements

The most important part of the requirements analysis report is functional and non-

functional properties issue. So, we had to decide on these requirements. To decide on

these properties, literature survey helped us mostly, because during the literature

survey we made, we have did some internet researches, asked questions to people

who use similar programs and we have examined a number of similar programs. And

as a result of this research period, we have seen the usability of tools and necessity

of these tools. So, by the help of the literature survey, we collected information about

the tools and we have decided what kind of tools our program will include.

While choosing the tools, we argued on how we can meet both beginner and

professional user’s needs. To do so, we consider the simplicity to understand and use

the program. For understanding the program, the most important thing is that the first

idea of the user about the program. To make the user have positive idea, we decided

to have tools, which are placed conveniently. For using the program, the most

important thing is to understand the user’s needs and to put the tools accordingly. This

part of the report is going to give the details of the points we have explained above.

16

3.1.1 Functional Requirements

3.1.1.1 Hot Keys

Every programmer wants to use the interface tools in the most efficient way. When a

user uses a program like the one we are going to develop, he/she wants to feel

comfortable. In order to achieve this, hot keys have an importance for us. By using hot

keys, user can use the tools shortly. We decided to use hot keys to make the user’s

life easy while using the program.

Almost every program has hot key sets. For example when a user writes a code,

he/she spends very long times using the keyboard. So when he/she wants to save

this, programmer usually use the hot keys for the Save process instead of clicking on

some buttons of the interface. A person who has never written a source code and who

is not very familiar with computer may see this option very unnecessary but we all

think that hot keys make users feel comfortable. So we have decided to make a hot

key set and we have explained them in this part of the report. Here are these hotkeys:

Ctrl+S: this is used to save the changes in the work.

Ctrl+C: this is used to copy a part of a code segment.

Ctrl+V: this is used to paste a part of a code segment.

Ctrl+X: this is used to cut a part of a code segment. In other words, to copy and

to paste.

17

The above hot keys are the generally used hot keys. Every computer user knows

these ones. So we decided not to change these. The hot keys which are special for

our program are below:

Ctrl+O: this will be used to open a new file to work on.

Ctrl+D: this will be used to stop the program. For example, if the code segment

enters an infinite loop, by using this hot key the user can stop the program.

F1: this will be used to simulate the program.

F2: this will be used to compile the program.

F3: this will be used to debug the code to the Pic board.

In addition to all these hot keys, according to the needs our program has, we can add

some other hot keys. But this is something we are going to decide during the design

period of our project.

3.1.1.2 Menu Bar

Menu bar is going to be placed on the top of the screen as a horizontal bar. This bar is

going have File, Edit, Project, View and Help options. Here are the details and sub

options of these menus.

File menu: File menu has the following components:

18

 Open File: The user can open a file by selecting “Open file” component.

When he/she clicks this component, user will be able to choose the file to

be edited from a file browser and an editor will be opened with the work

in it.

 New File: The user can open a new file by selecting “New file”

component. When the user clicks this component, an empty editor will be

opened and ready to write.

 Save File: The user can save the recently written file by selecting “Save

File”. When this component is selected, the opened file will be saved to

the same place. If a new file is wanted to be saved, this component will

work like a “Save File As” component.

 Save File As: By selecting this component, user can save the file to a

custom place with a custom name using the file browser window.

 Quit: The user can exit the program by selecting the “Quit” component.

When the user selects this component, the program asks to save the

work he/she works on, and all windows are closed.

Edit menu: Edit menu has the following components:

 Undo: The user can undo his work by selecting the “Undo” component.

When the user clicks this component, last change, he/she has done, is

discarded.

19

 Redo: The user can redo his work by selecting the “Redo” component. If

he/she undoes some code segment, when the user selects this

component, last undo operation is discarded.

 Copy: The user can copy any text by selecting “Copy” component. If

some text is selected, when the user selects this component, that text is

copied to be pasted.

 Paste: The user can paste any text by selecting “Paste” component. If

some text is copied, when this component is selected, that copied part is

pasted to the place the user wants.

 Cut: The user can cut any text by selecting “Cut” component. If some

text is selected, when the user selects this component, that text is copied

and then is pasted where the user wants.

Project menu: Project menu has the following components:

 Compile: The user can compile his/her code by selecting “Compile”

component. To debug the code into the Pic board, the user compiles the

code by using this component.

 Simulate: The user can simulate his/her code by selecting “Simulate”

component. To see the simulation of his/her code on the screen, the

user selects this component.

 Debug: The user can debug the code to the Pic board by selecting

“Debug” component. After the compilation of the code, compiled code

can be debugged to the Pic board by using this component.

20

View menu: View menu has the following components:

 Project: By selecting “Project” component, the user can see the project

he/she works on.

 Toolbar: By selecting “Toolbar” component, the user can place the

needed toolbars for him according to the project requirements.

 Registers: The user can observe the changes in the registers(general

purpose) by selecting “Registers” component.

 Local Variables: The user can observe the changes in the local

variables(special use registers) by selecting “Local variables”

component.

 Program Memory: The user can observe the program memory by

selecting “Program memory” component.

 Layout: The user can change the background colour and text colour by

selecting the “Layout” component.

Help menu: Help menu is similar like hot keys. Inexperienced computer users see

this tool unnecessary but a professional user uses help menus very often. The aim of

help menu is very clear: to help the user. The user uses help menu when he/she

wants to know something about the program or when he/she has some problem about

the work. As a part of the project, we are going to prepare a user manual. The user will

be able to access the user manual by using “User manual” component of this menu.

We hope to make this manual so good that a user will find whatever he/she looks for.

21

Also the user can search any word by using “Search” component of help menu. For

this property, we are planning to make an interface by which user can search for a

word or phrase from the manual. At the end of the menu list, we are going to make

user visit our web site by “About Us” component.

As we have stated before, this report is mainly for deciding the requirements. During

the design of the project, if we think that any other menu is needed, we can add

needed part conveniently.

3.1.1.3 Tool Bar

Almost every program has a tool bar. On the tool bar, a shortcut to most frequently

used components are added. So we have decided to make a toolbar for our software.

What we are going to add on this toolbar is decided according to general use.

In the tool bar, a new file can be opened and the user can save the file he/she works

on. By using toolbar components, the user can open a new project and can save the

project he/she works on. Also searching for a phrase on the editor will be available

using the toolbar.

Although simulation, compilation and debugging can be done by using program menu,

these can also be done by using tool bar. In addition to this, the user can stop the

project and he/she can run the project step by step by the help of the tool bar. This will

be useful for debugging process.

22

3.1.2 Non-Functional Requirements

At the 1.1 part of the report, we have listed the functional requirements.

Functional requirements are the ones specific for the software. But there are

also non-functional requirements of a program. These requirements are not

only about how to make the program functionalities better while using. They are

about how to make user feel comfortable, not to make them wait too long for an

action and so on.

Here is the list of these requirements.

3.1.2.1 User Friendliness

The interface of the program is one of the most important part of the project. For the

user, working on the project without being lost in an interface is important and the user

prefers a program with most convenient interface for his/her work. As we have stated

at literature survey, there are some programs which have very powerful functionalities

but difficult to use because of their complex interfaces. Accordingly, the importance of

the design of the interface is one of the most important issues for our team.

The components of the interface will be well-defined and the user will be able to

access the item he/she wants easily. The menus and the tool bar will also be clear and

an access to them will be convenient.

23

3.1.2.2 Stability

The stability of the program is one of the most important issues that the user is

interested in. Because our program will compile the C code , when the user wants to

compile his/her code, it will only be compiled according to the Ansi C standards. Any

other programming language cannot be compiled.

Furthermore, our program will simulate the source code and will have an ability to

debug the compiled code to the Pic board. So, our program will have the same results

when the program is executed with both ways.

3.1.2.3 Performance

Graphical programs can have time problems. In addition to this, the project we are

working on has to do a lot of machine-based jobs and these jobs may take long times

for a computer.

Not to make the user wait too long for simulation, we are going to find algorithms

which will make the simulation faster and more efficient. Moreover, by using some

algorithms and data structures, we are going to develop a compiler which can do its

job in smallest time interval.

Since .Net is a product of Microsoft, we will also make the interfaces which are

developed by .Net technology works efficiently on windows platform.

24

3.1.2.4 Portability

Portability is important for a product to have a wide demand. If we were preparing

software for a larger purpose, we had to consider different platform and operating

system choices, but because we will make the program specific for ceng336 students

and almost every student has Windows XP operating system, we will develop our

program for Windows XP.

3.1.3 Software Requirements

3.1.3.1 Software Requirements for SoSoft

As we have stated before, we are going to develop the interface of our program using

C#. Both C and C# will be used for simulator, and we will use C for the compiler. So

our software demands are based on these two.

First of all, .Net is a technology which can work on only Windows XP. So our

computers should have Windows XP operating system installed on them. Since C# is

a part of Visual Studio, we will need Visual Studio. Visual Studio has compiler and

debugger for C# and from our previous experiences, we know that especially the

debugger will help us during the implementation.

For the C code part, the only thing that we need is a C compiler. In fact we can

compile our C files by Visual Studio, we prefer to use DevC++ which four of us are

25

already familiar to. Just like Linux environment DevC++ uses gcc and gcc is one of the

most successful compilers.

As a result, here is a list of our software requirements:

 Windows XP

 Visual Studio.Net

 C#

 DevC++

3.1.3.2 Software Requirements for the End User

Since one of our major aims is to make our program easy to use, we are going to

develop it in a way that user will only concentrate on his/her own code. So, we are

going to make an install package and this package is going to have all of the software

requirements for the user. The only thing the user is going to do is to install the

program to his/her computer. In addition to this, because our program works only on

Windows XP operating system, the user also has to have Windows XP operating

system on his computer.

3.1.4 Hardware Requirements

Users will use this program to see what their codes do on the computer screen. So,

our attention is on the software side of the process. The only thing our program is

going to do as a hardware process is to load the final compiled file to PDB. As a result

of this, user is not going to have any hardware device other than a computer and PDB.

26

Of course, in order to connect PDB to computer, user is going to use cables for

parallel port, serial port and USB port.

For our side, the procedure is the same. We are going to develop our program by

totally using programming languages. There is no need for hardware for the

implementation. At the end of the implementation, in order to test our scenarios, we

will use the PDB just like the user will.

As a result, both we and the user will only need a computer, PDB and the required

cables.

4 Data Models

4.1 Data Dictionary

Name Source Code

From User

To Graphical Interface

Format Text

Description The user inputs a text as source code, using keyboard

27

Name Source File

From File Directory

To Input File Manager

Format Text File(.c file)

Description The user inputs a text file which includes previously written code,

using mouse, keyboard or hotkey

Name Interface Commands

From User

To Graphical Interface

Format action/mouse

Description The user commands the Graphical interface using the mouse

Name Simulate

From Graphical Interface

To Simulator

Format Simulation file

Description The simulation of the written source code will simulated by the

program

28

Name Compile

From I/O manager

To Compiler

Format .c file

Description The compiler will compile the written source code and make a HEX

file

Name Debug

From File manager

To PDB(Pic board)

Format HEX file

Description The output of compilation will be loaded to the PIC board

29

4.2 Data Flow Diagrams

4.2.1 Level 0 DFD

PicSimPic Programmer

Request to Open a File

Request to Save a file

Request to Simulate the file

Request to Compile saved file

Request to Debug the compiled file to the pic board

 file na m
e a nd fo rm
at

(source c ode o
r h ex file)

 file
(hex file)

fi
le

(s
ou

rc
e

fi
le

)

30

4.2.2 Level 1 DFD

PicSimPic Programmer

Request to Open an existing file (file name)

Request to Save a file(file name and format)

 file

(sour ce code)ex
is

ti
ng

 fi
l e

(s
ou

rc
e

co
de

)

Saving the wanted file
(save message)

Opening the wanted file

Level 1 DFD for Open/Save file request

31

PicSimPic Programmer

Request to Simulate the loaded file

(file name)

w
an

te
d

fi
le

(s
ou

rc
e
co

de
)

Simulating the wanted file

Level 1 DFD for simulation

PicSimPic Programmer

Request to Compile the loaded file

(file name)

 file

(hex file)

fi
le

(s
ou

rc
e

co
de

)

Compiling the wanted file

Level 1 DFD for compilation

32

PicSimPic Programmer

Request to Debug hex file to pic board
(file name)

fi
le

(h
ex

 fi
le

)

Debugging the file to the board

Level 1 DFD for Debugging

33

4.3 States of the Program

initial state Open a file project files

editor state

N
ew

 file

C
ancel P

rocess

C
lose file

Load the file

Save the file

Parse

Sim
ulate the file

(syntax error)

Failure

Simulate

F
inish

Compilation

C
om

pile file

F
ailure in com

pilation(syntax error)

Compilation
Debug to board

Failure in debugging

Finish

State Transition Diagram

34

5 Usage Model

5.1 Usage Scenario

In our project, user will write a Pic C source code, simulate the code, compile it and

debug the code. So usage scenario will have editing, simulation, compilation and

debug parts.

In order to run our program, user firstly needs a source file. User may open a new file

and write his/her own source code on this file. To do this, user has to open a new file

using File tab of the menu or the shortcut on the tool bar. While writing the code, since

source code is a text file, user will probably need to cut copy or paste some phrases.

After writing the source file, or at any step of editing the file, user may want to save the

file. This action has two alternatives: ‘Save’ and ‘Save As’. If the user wants to use an

already saved file, he/she may load this source file to the program by using the ‘Open

File’ option.

After writing the source code or loading a previously written one, simulation part is

coming. For the simulation, first the source file should be saved. When the simulation

component is selected, a new screen will be opened for the simulation. If the source

file is a valid source file, the simulation may be done for either the whole job expected

by the code at once or step by step. Since user may want to see the simulation and

the source file at the same time, simulation screen is a new window, which will be able

to move on the computer screen. When the simulation process is completed, user will

close the simulation window manually.

35

If the user is satisfied with the simulation, he/she will need to compile it in order to

make the source file available for the Pic board. After closing the simulation window,

user will use compile component of the program either from the menu bar or the tool

bar. Compilation is not a graphical process, so during compilation, user will only see a

message informing about the compilation. If the compilation is successful, a message

box will appear and this means that program is ready to debug the file on the PDB.

At the end of all these process, we have a HEX file and by using the debug

component of the program, this HEX file will be loaded to the PDB. After this step, our

program has nothing to do. The rest is up to the PDB.

5.2 Use Cases

We have described how a user may use the file at the usage scenario. In this part, we

are going to list the use cases:

1. open a new/existing source code

2. edit the code (cut/copy/paste)

3. save the code

4. select how to simulate the code (totally or step by step)

5. simulate the code

6. correct the errors (if any) of the source code

7. if there were any errors, retry to simulate the code after correction of the code

8. close the simulation window

9. compile the file

10.close the message box which tells that the compilation process is ended

36

11.debug the file (load it to the PDB)

6 Project Management

6.1 Process Model

During the implementation process of our project, we are going to use Rapid

Application Development (RAD) Model. The RAD model is an incremental software

process model that emphasizes a short development cycle. The RAD model is a ”high-

speed” adaptation of the waterfall model in which rapid development is achieved by

using a component-based construction approach. If requirements are well understood

and project scope is constrained, the RAD process enables a development team to

create a “fully functional system” within a very short time period. We have a four

months period for implementation process of our project, but since we are not

experienced engineers, the time is not very long for RAD model.

6.2 Team Organisation

Organization of a group plays important role for the success of the project. We are

aware of this, so firstly we have chosen the project leader, who is Serdar Tuğcu.

Actually, the leader of our team has the responsibility to arrange the deadlines of

project parts for our team schedule and arrange meetings of the team members.

Because every member of our team has almost equal technical experience and

knowledge about team work and developing the product, we are applying democratic

decentralized team organization. According to this, we are sharing the work load and

continuously we are gathering and sharing the works done individually.

37

6.3 Schedule

6.3.1 Milestones

Here is the list of milestones of the project:

 Proposal October 8th 2006

 Requirement Analysis Report November 7th 2006

 Initial Design Report November 28th 2006

 Team Presentations December 5th 2006 – December 22nd 2006

 Final Design Report January 15th 2006

 Prototype Demo January 23rd 2006

38

6.3.2 Gantt Chart

Current Week

Weeks

Tasks

10/
09
to

10/
16

10/
16
to

10/
23

10/
23
to

10/
30

10/
30
to

11/
06

11/
06
to

11/
13

11/
13
to

11/
20

11/
20
to

11/
27

11/
27
to

12/
04

12/
04
to

12/
11

12/
11
to

12/
18

12/
18
to

12/
25

12/
25
to

01/
01

01/
01
to

01/
08

01/
08
to

01/
15

01/
15
to

01/
22

Problem
Definition

Proposal

Literature
and User
Survey

Interview

Functional
Requirement
Decision

Software
Requirement
Decision

Requirement
Analysis
Report

Practising On
Tools

Discussion On
Initial Design

Design
Decision

Interface
Decision

Prototype
Decision

Prototype
Implementati
on

Initial Design
Report

Tasks

Weeks

10/
09
to

10/
16

10/
16
to

10/
23

10/
23
to

10/
30

10/
30
to

11/
06

11/
06
to

11/
13

11/
13
to

11/
20

11/
20
to

11/
27

11/
27
to

12/
04

12/
04
to

12/
11

12/
11
to

12/
18

12/
18
to

12/
25

12/
25
to

01/
01

01/
01
to

01/
08

01/
08
to

01/
15

01/
15
to

01/
22

39

Plan for second term

February March April May

Implementation

Testing

Documentation

40

References

1. http://www.htsoft.com/

2. http://www.oshonsoft.com/index.html

3. http://www.dattalo.com/gnupic/gpsim.html

4. http://www.antrak.org.tr/

5. http://www.microchip.com/

6. PDB user manual

41

Appendix

Screenshot of MPLAB

42

Screenshot of Protheus

43

Screenshot of PIC Basic Compiler

