MIDDLE EAST TECHNICAL UNIVERSITY
DEPARTMENT OF COMPUTER ENGINEERING

CENG 491 — DETAILED DESIGN REPORT

MILSOFT - PHOTOGRAMMETRY LAB PROJECT [PHOTOLAB]

BAD SECTEIR

Hanife UNAL
Meryem AYAS
Serap ATILGAN

Serra Sinem TEKIROGLU

18 January 2008

TABLE OF CONTENTS

1 INTRODUCTION ettt sas 4
1.1 PROJECT DEFINITION AND SCOPE..uueiiiiiiiteiiiiiiitiiiiiiieiiiie ettt eeeee et e eeeeeee et eeeeeeeeeeeeeeeeeeeeeeeeeieeeeeeeiieeeene 4
1.2 APPLICATION AREAS. uvviiiiiiiitiieieiiitee ettt ettt ettt ettt ettt ettt ettt ettt et eee ettt eeieeeeeeeieeeeeenns 5
1.3SYSTEM REQUIREMENTS c.uvttiiiiiiititeieiieiite ettt ettt ettt ettt ettt ettt ettt et ee ittt eee et eeeieeeeeeiinreene 5
1.3.1 Hardware Requirements 5
1.3.2 SOftWare ReGUITEIICIIES.oooooooeeeeoiiiieiiiiiiieeiiieeeeiieeeeeeeeeee e eeeeeeeeeeeeeeeeeeeee e e eeeie i 5
2 DESIGN CONSTRAINTS & CONSIDERATIONS oottt 7
2.1 TimiNG CONSTRAINTS 7
2.2 PROGRAMMING [LANGUAGE & SOFTWARE CONSTRAINTS . .eeeeuuueeieeieiunteeieieiitteteeeiiieeeeeeeiieeeeeeeeieeeeeeeieieeeeeeeeieeeeeeiiieeeeeenns 7
2.3 PERFORMANCE CONSTRAINTS e utuveeiiiiinteeeietieteee et ieeeee e ettt et oottt et e ettt et ee ettt e ettt et eeeeee et eeeaeeeeeeeeeeeeeeeiiaeeee 8
2.4 QUALITY CONSTRAINTS oeeuttteeeiiiittteie e i ettt ettt e et ettt ettt et e et eeet ettt eeeteeeeeeeeteeeeeeeeteeeeeeeeieeeeeeeeesteeeeeeiiteeeeeeeaees 8
2.5 Lecar/Etnicar, CONSTRAINTS 8
2.6 GROUP MEMBERS RELATED (CONSTRAINTS. teeetetuuttttteeiittetteeieiteteee ettt ettt ettt ettt ettt ettt ettt et eei et eeeieeeeeeiaeeene 9
3 ARCHITECTURAL AND COMPONENT LEVEL DESIGNS ..ottt s 9
3.1 ProroraB MODULES 9
3 A A GUIMOAUIE oo 9
3.1.2 File SyStem MOAUL.cooocooooiooeoiiiiiiiiiniiiiiiiiiiii i 13
3.1.3 Photogrammetry MOAULe.ocooooooooooiiieiiiiiiiiieiiiiiiiiiiiiieiee e 14
3.2 Data Frow DiaGraM 15
320 LEVEL O DED. ...ttt 15
322 L0VEL T DEDh.oooooiiiiiiiiiiiiiiiiioeieeeeeeeeeeee e 16
323 L0VEL2 DEDh. oo 17
3.2.4 Level 2 DFD. 18
3.3 DATA DICTIONARY ceeteetttttiiiiiiteiiee ettt ettt ettt ettt eee ettt eee e e eeie et e eeeeieeeeeeeeiaeeeeeeeinnees 19
3.4 STATE TRANSITION DIAGRAM.ceeiiittiiiiiiiiieiiiiieiiiie et eee et e ettt ettt et e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeieeeeeeeenns 21
4 OBJECT ORIENTED DIAGRAMS ...ttt sessssessss s ssssssssssssssssssssssssssnssnsssssnes 23
4.1 USE CASE DIAGRAMS . cuuvttiieiiiitiiie ettt ettt ettt ettt et ettt ettt ettt eeee et eeeieeeeeeiieeeeeeinnns 23
4.2 CLASS DIAGRAMS . ceeouttviiiiiiiiteiii ittt ettt ettt ettt ettt ettt ettt eeeeeee 23
4.2.1 GUI Module Class DiQ@IAILSc..ooooooooeeeiiiiiieeiiiiiiieiiiiiiiieieeiiiiieieeeiieeeeeeieeeeeeeeeieeeeeeeieeeeeeinee, 23
4.2.1.1 MainWindOW ClasS....cciiieeuuiieeiiiiiieiiiiiiiiiiieeeeeeeiiieiiiteeeeeeeeeieeieiieeeeeeeeeeeeisiisseeeeeeeeeeeaeaanns 24
4.2.1.2 BaSiCTOOIDAI ClasS..uuuueeeiiiiiiiiiiiiiiieeiiieeeiiieiiiiiieeiieeeeeeieiiieieeeeeeeeeeeeiiiieeeeeeeeeeeeeeiissreeeeeens 25
4.2.1.3 ProjectManager ClasS....cueuuuuueeeeeeeeiiiiiiiiieeieieeeeeiiiiiiiiieeeeeeeeeeieiiiisaeeeeeeeeeeeisiiisreeeeeeeeeeenans 26
4.2.1.4 ProjectManagerWindoOW Class......uuiuiiiiiiiiiiiiiiieiiieeieeeiiiiiiiiiiiiiiiiiieiiiiiieiieeieeeeieeeeeeeeeeeeenn, 28
4.2.1.5 ProjectDialog ClasS...uuuuuuiiieiiieeiieeeeieiieeeeieeeiiieeieee et eeeeeeiieeeeeeeeeeeeeireeeeeeeeeeeeeeirreeeeeee 28
4.2.1.6 EnhancementToolbar Class.....uuuuuiiiiiiiiiiiiiiiiiiieeieeeeeeeeeiieiiieee e eeeeeeeeeeeeeee 29
4.2.0.7 StatUSBAr ClasS..uuuiiiiiiiiiuieeeiiieieeiiiiiiiiieiieeeeeeeiiiiieeeeeeeeeeeesiieseeeeeeeeeeeieiiisseeeeereeeeeeaiineens 30
4.2.2 File System Module CIASS DIAGFAMISoooovoiioooooiiiiiiieiiiiiiiiiiiiieiiiiieeeeieieeeeeeiieeeeeeeeeeeeeeieeeeeeeeen 30
4.2.2.1 FileSystemHandler ClasS....iuuuuuiiiiiiiiiiiiiiiiieiiieiiiieiiiiiiiiiiiiiiiiiiieieiiieeeeeeeieeeeieeeeeesesesssseseees 30
4,2,2.2 HistoryWindOW ClasS...oeeeieieeiiiiiieieiieeeieieeeeeeeeeeeeeeesesesesssssssiiieieiiieiiiieieieieeeeeeeeeeeeeeeeeeeee 31

4.2.2.3 IMAZED A ClaSS. . uuuiiiiiuenssiiieieeesetteeteeteeeeseteesseseteeeressnseseessetsssssteesseessnasteseeesennneeaseees 32

4.2.3 Photogrammetry Module Class DIiQ@ramS. ... 33
4.2.3.1 PhotogrammetryManagerToolbar ClassS... eeeieeieieieieieiiiiiiiieieieeeeeeieeeeeeeeeeeeeveeeieviiiaeees 33
4.2.3.2 PhotogrammetryManager Class. ieiueeeiiiiieieeeisieeeeteeeneeteeeetrsneeteeereeenneeeieerreennaeeeeeeeees 33

423 3DEMuiiiiiiiiiiiiiiiic 3D

4.2.3.4 OrthoPNOt0.ciiiiiiiiiiiiieeeee ettt ettt ettt et e e eee e et e et e e erareeea 37
4.2.3.5 IMOSAIC. ttttttttee ittt ettt ettt ettt e et e ettt eeeeetu e eeettt e eeertta e eeeaeeraaaaes 39
4.2.3.6 SUPEIrTeSOIULION. .eeetetietiitiiti i ittt ittt ettt ettt ettt ettt ettt e e 41
4.3 SEQUENCE IDIAGRAMS . ..vvviiiiiiteeiiiiiiiiiie et e oottt et ettt et ee ettt et ee ettt eeeeeeeeeeeeeeaieeeeeeeeeeeeeeeeeiteeeeeeeaiaees 43
4.3.1 Create NeW ProOjecCt...........c..oooooovvvvoiiiiiiieiiiiiiiiiiiiiiiiiiiiiii oot 43
4.3.2 PrOject ODP@FATIOMNS ..oooo.ooooooi oo 44
4.3.3 Image File OPEIAtIONS.ooooovvvooooiieeeiiiiiiieeiiiiiiiieiiiiiiieeieieeieeeeeeeeeeeeeee et 45
434 ENAQICOIICHIE oottt 46
4.3.5 PROIOGIAIMIGIY oot 47
4.4 ACTIVITY DIAGRAMS oottt et eeeeeeeeeeeeeeeeeeeean 48
44 L OPOI PFOJOCE. .ot 48
4.2 FlE ODO AIIONS oo 48
4.4.3 Photogrammetry OPEFALIONSooooooooveiiiiieeiiiiiieiiiieiieiiiieeeeeiiieeeeeeeeeeeeeeeieee e eeeeeeeeiiees 49
444 TOOIDAT ACHIONS oo 50
5 GUI - GRAPHICAL USER INTERFACE ..ottt ssssssssasssssnssnsnsssnssssnnssnsnaaes 52
6 SYNTAX SPECIFICATION ettt s nnns 56
.1 CLASSES utteiiiiiiieeii ittt ettt ettt ettt ettt ettt eeeeeireeeeeanes 56
6.2 FUNCTIONS: tttiiiiiiieiii ettt ettt ettt et ettt ettt e et eeett et eeeeeeeeeeeeeeeeeeeeeteeeeeeaiateeeeeeieneaens 57
0.3 VARIABLES. ..eeiieiutieieiieiitte ettt ettt ee ettt oottt ettt ettt ettt ettt ettt ettt ettt ee e eeeeeenaes 57
0.4 COMMENTS. 1eeeeiiiitteie ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt e eeeennes 57
7 PROCESS MODEL AND PROJECT SCHEDULE. ..ot 57
7] TEAM STRUCTURE . .uuuttttttteeeeieeeeeeeeeeeeeeeee ettt et ettt e eee et ettt et ettt et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseeseeeeeeeeeeeeeeeeeens 57
7.2 PROCESS IMIODEL .. utttitttttteeeeeeeeeeeee et oo ettt e ettt e ettt ettt ettt ettt e ettt eeeeeeeeeeeeeeeeeeeeeeeeeeeeaeissateeseeeeeeeeeeees 58
7.3 GANTT CHART . cutttteieiiie ettt ettt ettt ettt ettt ettt ettt et ee ettt et ettt et e eee ettt eeeieeeeeeeiieeeeeeeinnes 58
B TESTING ittt bbbt s pn bbb st 62
8l TEST ITEMS . eiiiiiuuieiiiiiiieiii ettt ettt ettt et e ettt ettt e e 62
8.2 T EST A PPROACH. .ttt ettt e e et e oo oottt ettt ettt et eeeeeeeeeeeee et ettt eeeeeeeeeeeeeeeeeeeeeeeeeeeeienttaeetesaeeeeeeees 62
8.2.1 COMPONCHE TOSTIIG ..ot eeeeeeeeeeeeeeeeeeenn 63
8.2.2 Integration TOSHIMG.ooooooovvoviiiiiiieiiiiiiiiiiiiiiiiiieiei oo 64
823 INrfACE TOSTING. o oo 64
8.2.4 Performance TeSHIG.cvvvoooioiveeiiiiiiieeiiiiiiiiiieiiiieiieei oottt 64
8.3 PASS/FAIL CRITERIA . .ciieutetiiiiieiiiiiiiiieiii oot eeeee oottt et eeeee e e eeeeteeeeeeeeeeeeeeeeeteeeeeeeieeeeeeeeiieeeeeeeeanees 64
O CONCLUSION. ctuttiriririsirssssesesieississiessssssississesssssessessssissssissassssssssssassssssssnssnsssssnssssssssnssssssesssssessassssessassssasssssssasssssssassassassassass 65
REFERENCES .ot b bbb ns b ass s snssssnsns 65

1 INTRODUCTION

While writing Initial Design Report, the general design of PHOTOLAB was started to be constructed
with the drawing diagrams and specification of requirements.Now, as a group ‘Bad Sector’, we
prepare this report in order to demonstrate the last and final design of our product PHOTOLAB . As
a result of our researches, we become aware of what basic functionalities we are required to
implement and what features can we add our product. So, at this report we aim to let you know
Photolab’s design issues, its features and how we implement these features etc.While preparing
initial design report, initial design report will be a main guide for us.In order to clarify every single
detail of the reader’s mind ,we explained our design process via various diagrams. We have used
Data Flow Diagrams, Class Diagrams,Sequence Diagrams, State-Transition etc.According to the
feedback of our project assistant,we corrected our ER diagrams in initial design report.

1.1 Project Definition and Scope

Photogrammetry is to get reliable information about physical objects of photographic images. For
instance , photogrammetry is used while we need to convert two dimensional image into a three
dimensional one. Therefore, we can find the correct location and elevation of a point in earth using
photogrammetry in multiple images taken from different positions. When we narrow down the
scope of photogrammetry to our project, we face with the images collected by Unmanned Air
Vehicles(UAVs). Nowadays, in all over the world, new projects have
been launched for the UAV systems whose role in defense concepts is becoming more important,
and the expenses for UAV systems are increasing above the expectations.

UAVs can do exploration, observation and target detection with the help of a camera that is
mounted on them. The images collected by UAVs are just a collection of photos without processing.
To make use of these photos, they have to be processed and so we get meaningful outputs. This
process is called Image Exploitation. Image exploitation, by using some techniques, makes use of
image processing algorithms for information extraction. This project is about Image
Exploitation Systems. The data collected from the Unmanned Air Vehicle is not just a collection of
2D pixels, it is a 3D view of the Earth’s surface; therefore the image has a depth. In addition, the
images may not be taken at the same time or at the same attitude, so there are some difficulties in
this project and we need to follow a proper order during this project. The expected four methods
and their proper order are as follows:

v Digital Elevation Model (DEM): A three-dimensional surface map of an area is usually
stored as a grid of elevation points called a Digital Elevation Model (DEM). DEM simply
brings depth as third dimension to a two dimensional aerial image. Photolab takes one or
more images as input and estimates the height of each point in these images. As an output
we obtain exact location of the image in earth surface. So, using a DEM, a user can view an
area in three dimensions, giving a clearer understanding of the problem.

v Orthophoto: An orthophoto is an aerial photograph that has been geometrically
corrected to remove geometric distortion caused by camera tilt and differences in elevation.
The digital orthophoto is a photographic image of the terrain - but more importantly, it is
true to scale and therefore accurate distances and areas can be measured. These

orthophoto images are well suited for detail planning and analysis of what exists on the
ground.

v" Mosaic: The main goal of mosaicing is to combine the images to create an image with a
wide perspective. To generate mosaic, we have to determine the matching points in
different but related images. By applying the appropriate transformations and merging the
overlapping regions of warped images, it is possible to construct a single image covering the
entire visible area of the scene. This merged single image is the motivation for the term

mosaic".

v Super Resolution: Super-resolution is a term for a set of methods of increasing image or
video resolution. All these methods are based on same idea: using information from a set of
low-resolution images to create one or a set of high-resolution images. These methods try
to extract details from frames to reconstruct other frames.

1.2 Application Areas

The images collected from UAVs’ cameras have wide range usage areas. UAVs are currently used in
a number of military roles such as gaining military or medical information and also they are also
used in growing number of civil applications. After processing these images to get meaningful
images, we can make use of these images in many areas. For example, we can make use of these
images in searching and rescuing humans trapped in collapsed buildings, in security issues like
scenes of murders, burglars or smugglings, or in damage detection issues, in industrial applications
ranging from traffic engineering to mining engineering; anywhere geometric properties of objects
are useful, in computer applications, such as games, atlases, and encyclopedias and also in realistic
display of landforms for such diverse areas as pilot training, weapons guidance, and landscape
architecture.

1.3 System Requirements

We examined the system requirements in two parts: hardware requirements and software
requirements.

1.3.1 Hardware Requirements

While determining the hardware requirements, we look after the similar software programs that
have been developed till now. The software products that we mentioned at market research part
generally had similar hardware requirements. The following requirements for hardware seem to be
minimal and enough for our project development:

= P4 or Equivalent Processor
= Minimum 512 MB RAM

= 3D Graphics Card

®= Minimum 40 GB HDD

1.3.2 Software Requirements

We will use several tools for different phases during development of the project. The following
requirements during documentation and development phases are necessary for project.
5

Documentation Phase

= Microsoft Office 2007
= Milestone Professional 2008
For drawing Gantt Charts for the reports. It is more functional than SmartDraw while

drawing Gantt Charts, so we preferred Milestone Professional 2008.

= Diagram Studio 5.3
For drawing the diagrams and charts for the reports we were using SmartDraw.
However, from now on we draw our diagrams in Diagram Studio since it is more
flexible.

= Adobe Acrobat Reader
For writing and submitting the reports. We write our reports on Microsoft Office
2007 and submit them after we convert it to pdf format.

Development Phase

= Windows XP and Linux
PHOTOLAB must be running operating system independent, so we will work on both
Windows and Linux.

* Microsoft Visual Studio .NET 2003
From our previous experiences, we are used to work on Visual Studio .NET. Because
the language we will implement PHOTOLAB is C++, and .NET provides easy usage, we
preferred it.

= wxWidgets GUI Toolkit
We will use wxWidgets in GUI design. Software is advised by Milsoft and because it is
working with C++, we preferred it. The initial phase of implementation has started
with wxWidgets. It has reliable and easy to implement event handlers. In addition,
GUI design fragments are user-friendly and clear to understand.
The class architecture which will be clearly described in this documentation,
partially contains wxWidgets related structures, especially data types. The reason
why Detailed Design covers those structures is current state of Photolab exactly uses
them.

= Microsoft Visual Assist
It is an add-in for Visual Studio .NET and provides generally more accurate and
complete code suggestions. It also has the syntax highlighting feature.

= OpenGL Library
Since it can be run under both Windows and Linux platforms and it is compatible
with C++, we preferred OpenGL libraries for 2D and 3D image visualization.

= OSSIM (Open Source Software Image Map)
We preferred it since OSSIM is a high performance software system for image
processing, geographical information systems and photogrammetry.

= OpenCV (Open Source Computer Vision Library)
We preferred to use OpenCV for its supporting calibration techniques, feature
detection techniques and many other image processing functions we are going to
use for this project. OpenCV is almost the most important part of Photolab
Photogrammetry algorithms. In addition to Photogrammetric facilities, we take

6

advantage of mathematical and geometrical features of OpenCV, like matrix
multiplications. Besides WxWidgets, OpenCV related data types are also used in
detailed design. Function parameters, return types and Photolab’s own data
structures have OpenCV specific types by relying on the current implementations.

2 DESIGN CONSTRAINTS & CONSIDERATIONS

In the light of the fact that good limitation leads good design, Bad Sector team has formed the
constraints that put necessary limits to the design of the project. The constraints can be divided
into categories as:

= Timing Constraints
= Programming Language & Software Constraints
= Performance Constraints
= Quality Constraints
= Legal/Ethical Constraints
= Group Members Related Constraints
Below are the explanations which assert how each constraint affects the system and design of the

software.

2.1 Timing Constraints

Timing constraints play an important role for the successful completion of the project by the end of
the year. Bad Sector team has scheduled PHOTOLAB according the milestones in the syllabus. In the
light of the schedule, the team will represent a prototype demo by the end of each semester. With
the help of the assignments given by Milsoft the team gains experience on managing the time.
Since it is a hard and long-term project, in order to minimize the potential risks of not completing
the project on time, Bad Sector team moves on with the high conception of its duties. As a result of
this conception, the team updates detailed time schedule regularly, and the team members pay
attention to follow the schedule on the Gantt chart in order to complete the project successfully on
time.

2.2 Programming Language & Software Constraints

Bad Sector team has decided to implement the PHOTOLAB with C++ which is one of the two options
(JAVA or C++) that Milsoft had suggested for the implementation of the project. That C++ supports
best open source libraries on Geographical Information Systems and that C++ is the team members’
and Milsoft’ s primary choice for the implementation of the project are two main reasons for the
selection of C++ as the programming language for the project. Bad Sector team uses wxWidgets GUI
Toolkit for the design of Graphical User Interface and OpenCV as the main library for the
development of Photogrammetry and File System Modules.

2.3 Performance Constraints

One of the important constraints of PHOTOLAB project is a satisfying performance. In order to
accomplish a good performance (i.e. a fast and efficient execution), Bad Sector team has decided to
search and inspect all algorithms, methods and approaches carefully before deciding on the
method which will be used. Bearing mind that PHOTOLAB will be fast, efficient and easy to use, the
team compares the algorithms and chooses the one which is faster, easy to implement and more
accurate. In cases such that these three considerations are not satisfied at the same time, the team
gives top priority firstly to accuracy, then to fastness and finally to easiness of the implementation.

2.4 Quality Constraints

Bad Sector team has decided to design PHOTOLAB with a good quality planning. Therefore, the
team specifies quality related constraints in order to satisfy the quality plan according to below
quality criteria specified by Bad Sector team:
= Completion on deadline:
PHOTOLAB is expected to be completed at the end of the 2007-2008 spring semester of
METU.
= Functionality:
PHOTOLAB is expected to be functional in terms of suitability, accuracy, and
interoperability.
= Reliability:
PHOTOLAB is expected to be mature and error-free when the reliability is in
consideration.
= Efficiency:
PHOTOLAB is expected to be efficient on time behavior and resource utilization issues.
= Maintenance:
PHOTOLARB is expected to be analyzable, testable, stable and upgradeable when the
maintenance is in question.
= Comply with the naming, documentation and user interface standards:
PHOTOLAB is expected to be in compliance with the standards put by the team.
= Portability :
PHOTOLAB is expected to be portable in terms of installability, replaceability, and
adaptability.

In the light of the thought that the way things are built affects how they can be built better, Bad
Sector team develops PHOTOLAB in spiral process model. This model will provide compensation of
the mistakes made during the implementation of the project with the help of the quality
constraints specified above.

2.5 Legal /Ethical Constraints

One other important consideration that Bad Sector team pays attention is legal/ethical constraints.
Recognizing that the patent and copyright issues play an important role in an intellectual software

8

developer’s life, the team develops PHOTOLAB taking patent and copyright issues into account.
These previously stated constraints are also important since confidentiality agreement signed with
MILSOFT requires not using a software component or even a piece of code which is not open-
source. Therefore, Bad Sector team develops PHOTOLAB using only open-source libraries and
information.

2.6 Group Members Related Constraints

Since the developers’ programming and design skills and experiences play an important role during
the design and implementation of the project, Bad Sector team takes the group member related
risks into account. Gaining experience in every stage, the team has overcome the difficulties
encountered during the design of the project. From now on, only the risk which is not being
technically qualified on Wx Widgets, Libraries, Geographical Information Systems and the risk which
is the existence of a bad situation in one or more team members’ physical and psychological health
are decided to be paid attention by the team. In order to decrease the effects of these potentials
stated above, Bad Sector team plans not only giving equal work to all of the members (to give every
member the chance to develop herself technically) but also meeting at least twice a week. The
team also plans to consult the project supervisor and the authorized person of Milsoft on
PHOTOLAB in case of a need.

3 ARCHITECTURAL and COMPONENT LEVEL DESIGNS

3.1 Photolab Modules

Photolab is designed on modular base for a systematic architecture. There are three modules in
Photolab; namely, GUI, Photogrammetry, and File System Module. These modules are connected
to each other according to data traffic.

3.1.1 GUI Module

GUI module is central part of the modular architecture because it provides communication
between the modules with the help of windows and toolbars. This module contains 8 classes which
are BasicToolbar, MainWindow, ProjectManagerWindow, ProjectManager, ProjectDialog,
EnhancementToolbar, StatusBar and PhotogrammetryToolbar classes. User sends operation
requests by the help of events and these events trigger FileSystem module and Photogrammetry
module classes. GUI distributes requests and delivers their responces to the user. The methods of
the classes are triggered by the events from GUI module.

GUI provides user manual and automatic modes. In manual mode user selects tie points manually,
or the other option is automatic mode in which the program finds tie points automatically. In
addition GUI supports multiple image handling and visual layout options. User can either see the
images on the same grid or as cascading windows.GUI module handles all the operations done on
the project. Saving, opening, deleting, updating and such other basic project operations can be
done by ProjectManager class. EnhancementToolbar class of GUI module has enhancement
functions for better displaying purposes. It also has basic functions in BasicToolbar class such as

9

rotate and zoom in and out functions. StatusBar class methods only calculates the UTM coordinates
and shows them on the status bar.The general class diagrams of the GUI module is as follows:

10

<ereateass

<4regfeRss

sliealesss .

<epreafeass

3.1.2 File System Module

This module is responsible of handling basic file operations correctly and it also provides working on
various image formats by converting them into bitmap files. According to process on multiple and
large images, file operations must be managed in most efficient way. To succeed in efficiency, this
module contains 3 classes which are FileSystemHandler, HistoryWindow and ImageData classes.

FileSystemHandler class handles file operations on files that are in project folder. These files can
also be video files besides image files. By the help of our library , openCV, we capture frames from
video and process them as basic image files. Another class in this module is HistoryWindow class
that is just for making the user’s job easy, for example, the user may not want to lose the original
image after he/she does any process on it, HistoryWindow class makes it possible to undo up to 3
previous processes done on image. ImageData class stores all the necessary information about the
image such as world file information, camera parameters etc. The class diagram of file system
module is below:

FileSystemHandler
+image . ImageData*
+ileName ; sting
+leL ocation ; string
+all ; Projectanager *

+F ileSygtemHandler (path : dring)

+0pent e (path : string): void

+Deletefile (inage ImageData *, path ; gring): void
+CloszFile (image: ImageData*) void

+RenameFile newkileName : tring, path : sring) : void
+3aveFile (image . InageData* path: tring); void
+CreateOutputf older (oM : ProjectManager*) void

+m ageF om atHancler (image - ImageData*) wxBitmap

4 0IEalEsss
sarrealesy
/
HistoryWindow ImageData
+higory: vedor </ mageData* image= +path : string
+Get0rgnalmageqmage : ImageData’); void +projedNamg: ﬁﬂ'ﬂg
+GetPreviousimagen :int): wid +pf019dLOCﬂt|9ﬂ + shing
pdateHistoryVector history - vedtor <ImageData* image»): woid HleType - sting

+image: [PLimage*
+worldFile(s] : double
+cameraParameters[11] : double

+mageData(projecthiame ; string , projectLocation ; string, path ; dring)

13

3.1.3 Photogrammetry Module

Photogrammetry Module is designed on three stages. In the base stage, module has four classes.
These classes are DEM, Mosaic, Orthophoto and SuperResolution. Each of them uses Photolab’s
basic image object; ImageData class. OpenCV is the main library which has helper methods for
these four classes, especially data structures that are already presented in this library. The basic
algorithmic operations are performed on these base classes. The class members and methods as
steps on Photogrammetry algorithms are described in detail at class diagrams part of the detailed
design report.

The second stage is PhotogrammetryManager Class. This class has methods that combines the
algorithmic steps and creates objects of DEM, Mosaic, Orthophoto, or SuperResolution by assigning
the object members. Except Orthophoto, all Photogrammetry operations will work with two input
images. However, users usually will want to work on more than two images. To handle this
situation we store input and output images in the vectors in PhotogrammetryManager Class and
use simple loops to generate outputs. Orthophoto operations use image arrays as parameter to
methods. More input images for Orthophoto, more correct results we can obtain.

The top stage is the event base stage. PhotogrammetryManagerToolbar Class basically triggers the
PhotogrammetryManager Class methods depending on the users button clicks. This buttons are
fixed on the PhotogrammetryManager toolbar. When main window is created, all toolbars included
PhotogrammetryManager toolbar is activated and becomes ready to get events from user. This
class has also store selected images that are selected for the DEM, Mosaic, Orthophoto,
SuperResolution. The selected images can be determined by the user among the images that are
belonged to the current Project. The class diagram of the top two stages of photogrammetry
module is below:

PhotogrammetryManagerToolbar
+selectedimages ; vector<imageData'>

+TriggerCreatellosaioselectedmages : vedor<im ageData®>) : void
+TriggeE dradDE M(sslededimages : vector<imagelata=); void
+TriggenzenerateOnthophotoselectedmages | vedor<imageDatat=) ; void
+TriggeCresteSuperR esolution(selectedimages ; vectorzimageData*s) ; void

T
i
I
I
|
i
f< use=s
i
I
I

V
PhotogrammetryManager

+images : vectorslmageData*>
+resufimages: vector<imageData'>
+corespondingPoints] : vedar<cP oint>
+correspondingPoints2 : vecor=cvP cint=

+GetCorrespondingPoints(comespondingPoints! © vector<cvPoint=, correspondingP oints2 ; vector<cvPoint=) ; void

+CreateM ossiclim ages: vector<imageData*s, resuimages : vectorimageData®s, correspondingpoints! _DEFAULT(NULL) : cvPoint* | corresponcingpoints2 DEF AULTMULL): evPoint*) void
+E stractDEM(images: vector<ImageData*s, resuttim ages: vector<imageData*z, correspondingpoints_DEFAULT (NULL): evPoint* | comespondingpoints2_DEF AULTNULL) : cvP oirt*): void
1+ enerateCrthophotol im ages : vector<imageData®> resultimages : vectorslmageData*>): void

+CreateSuperResolution(images ; vedor<lmageData*>, resutimages . vector<ImageData®>): void

14

3.2 Data Flow Diagram

3.2.1 Level 0 DFD

PHOTOLAB
VvV 0.0

File System

15

3.2.2 Level 1 DFD

> Project

History
Process Process
($)
& 2
o b @
4 > &
e 8 &
o /o &
o /o &5
Re ¥ e
< <
_“sto\'\l 9"" g
o)
[o'(\
&=° N D1 Workspace
° o S
USER 3 . o e
e, .
% %. ent'fler 0,8@ y
A > '7‘90 S
e o,
- I)] O,
o S n, n,
Q, Se
A\ 3 K File est
) 3 Process 7o
< o 1.1
(p" (]
Project Folder
File
$° dentifier
a‘ Qs" “se
S & resP®
$ oo
$ 3 e,
& ¥ K
NS ()
e 8 " G
S 2, %s,
N (AN
N %,
Q ()
o) %
“%
%
&, C
A m,
e”ce e’?[o
e, S,
L4 Ry ,Oo,’s
e e
S¢
Photogrammetry Enhancemen
15 1.4
Enhancement Output
Photogrammetry Output

16

3.2.3 Level 2 DFD

File System Process

File Command
Evaluater
111

File Format Converte
11.2

Open File

114

Delete File
Add File

1.1.8

Rename File Save File
1.1.5 \ 1.1.7

ysenbay Aupo 914

External Data
Transporter
11.3

17

3.2.4 Level 2 DFD

Photogrammetry Process

File Identifier

ile
request

File
Process

Super
Resolution

Orthophoto

18

3.3 Data Dictionary

Name

File Identifier

Where & How Used

File Process(1.1) INPUT
Project Folder(D2) INPUT
History Process(1.3) OUTPUT

Description Identifier for the file consists of name of file and name of Project it
belongs to.
Name File Command

Where & How Used

File Process(1.1) INPUT
USER OUTPUT

Description Commands for file operations of adding, opening, deleting, saving
and renaming.
Name File Request

Where & How Used

File Process(1.1) INPUT
Project Folder (D2) INPUT
History Process(1.3) OUTPUT

Description

Request for the file from the file process with file identifier.

Name

File Response

Where & How Used

File Process(1.1) INPUT
Project Folder (D2) OUTPUT

Description

Response of the file system to the file process.

Name

Project Identifier

Where & How Used

Project Folder (D2) INPUT
Project Process(1.2) OUTPUT
File Process(1.1) INPUT & OUTPUT

Description

Identifier of the project for the files it includes.

Name

Project Commands

Where & How Used

File Process(1.1) INPUT
Project Process(1.2) OUTPUT

Description Commands for opening, closing, updating, deleting, saving,
displaying projects.
Name | Project Request

19

Where & How Used

Project Folder (D2) INPUT
File Process(1.1) OUTPUT

Description

Request for the project from the file process with project identifier.

Name

Project Response

Where & How Used

File Process(1.1) INPUT
Project Folder (D2) OUTPUT

Description

Response of the file system to the file process.

Name

User Command

Where & How Used

Project Process(1.3) INPUT
USER OUTPUT

Description

Commands of the user about project.

Name

History Request

Where & How Used

History Process(1.2) INPUT
USER OUTPUT

Description

User request to undo the processes done on images.

Name

Data Identifier

Where & How Used

Workspace(D1) INPUT
File Process(1.1) OUTPUT

Description Identifier for data that is a combination of file identifier and a flag
of file that defines whether it is an image file, video file or world
file.

Name Data Request

Where & How Used

Workspace(D1) INPUT
File Process(1.1) OUTPUT

Description

Request for data with data identifier from workspace.

Name

Data Response

Where & How Used

File Process(1.1) INPUT
Workspace(D1) OUTPUT

Description

Response of the workspace to the data request of the file process.

Name

Photogrammetry Request

Where & How Used

Photogrammetry(1.5) INPUT
USER OUTPUT

Description

Request of the user for a photogrammetry process on images.

20

Name

Photogrammetry Result

Where & How Used

USER INPUT
Photogrammetry (1.5) OUTPUT

Description

Result of the photogrammetry process on images.

Name

Photogrammetry Input

Where & How Used

Photogrammetry(1.5) INPUT
File Process(1.1) OUTPUT

Description

Input files for photogrammetry process.

Name

Photogrammetry Output

Where & How Used

File Process(1.1) INPUT
Enhancement(1.4) INPUT
Photogrammetry(1.5) OUTPUT

Description

Output files of photogrammetry process.

Name

Enhancement Input

Where & How Used

Enhancement(1.4) INPUT
File Process(1.1) OUTPUT

Description

Input files for enhancement process.

Name

Enhancement Output

Where & How Used

File Process(1.1) INPUT
Photogrammetry(1.5) INPUT
Enhancement(1.4) OUTPUT

Description

Output files of enhancement process.

Name

Enhancement Request

Where & How Used

Enhancement(1.4) INPUT
USER OUTPUT

Description

Request of the user for an enhancement process on images.

Name

Enhancement Response

Where & How Used

USER INPUT
Enhancement(1.4) OUTPUT

Description

Response of the enhancement to the enhancement request.

3.4 State Transition Diagram

21

Welcome Close Project Request

State Invoke Displaying Welcome
Page

Close Project Request
Invoke Displaying Existing l

Project
File System

Create Project Request

Displaying
Inv oke Displaying New Project File
Project
File System
System
State

CI051 File Request

Return to Project Page

Open File|Request
Show [mage

Y

Image/Video
View State

Image Enhancement Request Image Process Request

Invoke DEM/OP/MOS/SR
process

Invokel Enhancement Tools

Process

Enhancement
State

State

Exit From

Enhancement Exit From Process

Invoke Image View Invoke Image View

22

4 OBJECT ORIENTED DIAGRAMS

4.1 Use Case Diagrams

Create
New
<5 Project
>
Run ., A
Photolab i c
/8
I o
! Vv
\ [Y
\ i
\
\\ N Delete/Modify Open/Close
\ 4% Existing Project
A Project
\ N

Image/Video
Operations

A
USER Change

Mode

§ A \- Resolution
A i
8 @ |
< 2 [
v 9 io
Vol O\
i3 + \
\ % \ '&¢ Remove
Vo \% Image/Video
Enhance 4 Y
!
Image \ N
\ X
Choose the \ -
Visual Layout

Process
History

Image/Video

World File
Process

4.2 Class Diagrams

4.2.1 GUI Module Class Diagrams

The class diagrams of the GUI module are positioned below GUI module explanation.

23

4.2.1.1 MainWindow Class

MainWindow

-WxStatusBar . weStatusBar®
-xMaini enuBar ;. wxMenuBar*

+M airVincow)

+~ Il ai Wi nclowd)

-CreateGUIControls) . void
|HWdainMenuBar() © void
+WxStatusBar() : void

+E nhancementToolBar) : void
+HigtoryWindow() ;. void

+P rojectiManagerindow) | void

+P hotogrammetryManager Toolban) . void

¢ wxMenuBar *WxMainMenuBar : This menubar stores all basic file operation trigger handling
buttons.

o wxStatusBar *WxStatusBar : This is needed to show mouse coordinate or world coordinate on
the image.

e MainWindow()

It is the constructor of the MainWindow class. The initializer function gets the wxFrame parameters
from the constructor. In addition it uses CreateGUIControls to show each toolbar on the main
window. This simple activate event handlers.

¢ (void) CreateGUIControls()
All events handlers are created and showed on this function for the MainWindow constructor.
Toolbar methods in the following will be called in this method.

¢ (void) WxMainMenuBar()
This method creates and activates the MainMenuBar.

¢ (void) WxStatusBar()
This method creates and activates StatusBar class on main window by using StatusBar Class.

¢ (void)JEnhancementToolBar()
This method creates and activates the Enhancement Toolbar on main window by using
EnhancementToolbar Class.

¢ (void)HistoryWindow()
This method creates an object of HistoryWindow class for main window.

¢ (void)ProjectManagerWindow()
This method creates an object of ProjectManagerWindow class for main window.

¢ (void)PhotogrammetryManagerToolbar()

This method creates and activates the PhotogrammetryManager Toolbar on main window by using
PhotogrammetryManager Toolbar Class.

24

4.2.1.2 BasicToolbar Class

BasicToolbar

+image . ImageData*
+rotate Angle © double
+zoomRate : double

+HayoutType : int

+ZoomIn{image . ImageData®, zoom Rate : double) . void

+Zoom Qutlim age ; ImageData®, zoomRBate | double)
+RotateClockWiselimage . ImageData® | rotatefngle ; doukle) ; void

+R ot ateC ounterClockWise(image : ImageData®*, rotatefngle : double) : void
+Displayl avout (ayout Type @ int): void

+ChangeMode(]) . void

« ImageData* image: It is the instance of the ImageData class.

» double rotateAngle: It is used for specifying the rotation angle.
* double zoomRate: It is used for specifying the zoom rate.
* int layoutType: It is used for the type of display layout.

* (void) ZoomIn(ImageData* image, double zoomRate)
This method does a zoom in process on image with a specified zoom rate.

* (void) ZoomOut(ImageData* image, double zoomRate)
This method does a zoom out process on image with a specified zoom rate.

* (void) RotateClockWise(ImageData* image, double rotateAngle)
This method rotates the image clockwise with a specified angle.

* (void) RotateCounterClockWise(ImageData* image, double rotateAngle)
This method rotates the image counter clockwise with a specified angle.

« (void) DisplayLayout(int layoutType)
The layout style is changed according to the layoutType parameter.

e (void) ChangeMode()

Change the mode from automatic to manual or manual to automatic for detecting tie points. It
uses a global flag value to change the mode.

25

4.2.1.3 ProjectManager Class

ProjectManager

-projectlocation : string
-projectMame : sting
-projectFiles : string*
+projectProp © fatream

+P rojectManager ()

+CreateP rojectDial ogiprojecd Dialog : ProjedDialog * | projectLocation : string) © void

+0 penMewP rojectiprojedMame : string, projectlocation : string) ; void

+0penkE dgingProjediprojectProp ; fetream) : void

+3etProjedMameiprojedDialog : ProjectDialog®) © void

+SetProjedlocationprojedDialog : ProjectDialog *) void

+AddFileTaProjectifileMame : string, fileLocation : gtring, projectFiles: string *, projectProp : fstream 1 waid
+Rem oveFileFromProject{fleMame : string, fileLocation : string, projedFiles: string *, projectProp ;. fstream 3 woid
+CreateP rojectFolder{projedMame : string, proje dlocation : string): void

+CloseProject() ;. void

+LpdateProjediprojecthlame : string, projedlocation : sting, projedFiles: sring * | projectProp : fstream) : void
+DeleteP roject{projectProp : fetream) void

+SaveP ojectiprojedFiles : string *, projedP rop ;. fetream) : void

+5aveP rojectAs(projedMame : gring, projectLocation : string, projectFiles : string *, projedP rop : fatream) ; void
+CreateP rojectFolder{projedMame : string, proje dlocation : string): void

string projectLocation : Stores the location of the project.
¢ string projectName: Stores the name of the project.
e string *projectFiles: It stores the locations of the files that belong to the project.

fstream projectProp : When user is creating a new project this file will be created and all changes
will be inserted at the time when there is a change. To open an existing project this file will be used.

e ProjectManager ()
This is constructor for the ProjectManager Class. It assigns NULL initially for projectLocation, pro-
jectName and projectFiles.

¢ CreateProjectDialog(string projectLocation, ProjectDialog * projectDialog)
This method is triggered by OpenNewProject() method. It opens a dialog window on the screen to
take project name and project location from the user.

¢ (void) OpenNewProject(string projectName, string projectLocation)

This method creates a new project with the name projectName and with the location
projectLocation. The projectName and projectLocation is set from the newProjectDialog window. It
also creates projectProp file.

¢ (void) OpenExistingProject(fstream projectProp)
This method opens an existing project by using the file projectProp.

¢ (void) SetProjectName(ProjectDialog* projectDialog)

This method sets the project name as projectName. It is triggered by CreateProjectDialog()
method.

26

¢ (void) SetProjectLocation(ProjectDialog * projectDialog)
This method simply sets the location of the project as projectLocation. It is triggered by
CreateProjectDialog() method.

¢ (void) AddFileToProject(string fileName, string fileLocation,string *projectFiles, fstream
projectProp)

This method adds the file with name fileName and location fileLocation to the projectFiles of the

project with the properties given in projectProp.

¢ (void) RemoveFileFromProject(string fileName, string fileLocation,string *projectFiles, fstream
projectProp)

This method removes the file with name fileName and location fileLocation from the projectFiles of
the project with the properties given in projectProp.

* (void) CreateProjectFolder(string projectName, string projectLocation)
This method creates the folder in location projectLocation with the name projectName for storing
project files.

¢ (void) CloseProject()
This method closes the project that is open in main window without exiting the program.

¢ (void) UpdateProject(string projectName, string projectLocation, string *projectFiles, fstream
projectProp)

This method updates the project if there are modifications in it and it saves these modifications in
projectProp file.

¢ (void) DeleteProject(fstream projectProp)
This method deletes the project with the properties in projectProp.

¢ (void) SaveProject(string *projectFiles, fstream projectProp)
This method saves the project with the given project properties in projectProp file and with the files
in projectFiles.

* (void) SaveProjectAs(string projectName, string projectLocation, string *projectFiles, fstream
projectProp)

This method saves the project with the given project name as projectName, project location as
projectLocation, project files as projectFiles and project properties as projectProp.

¢ (void) CreateProjectFolder(string projectName, string projectLocation)
This method creates a folder in specified location set by projectLocation, and necessary files are
saved under that folder. It is triggered by OpenNewProject() method.

27

4.2.1.4 ProjectManagerWindow Class

Projectivla mgé:‘windnw
+DisplayP roject (projedM anager : ProjedManager*) : void
+FetButtonEvert (evertType - int) ; void

¢ (void)DisplayProject (ProjectManager* projectManager)
This method activates the ProjectManager class constructor and shows the existing project on the
ProjectManagerWindow.

¢ (void)GetButtonEvent (int eventType)
This method triggers the methods of the ProjectManager class according to the event type.

4.2.1.5 ProjectDialog Class

ProjectDialog

-projectlocation : string
-projectMame : string

+P rojectDialog{projedMame ;. string, projedlocation ; gring)
+GetProjedMam el | void
+GetProjedl ocation() : void

e string projectLocation : Stores the location of the project.
e string projectName: Stores the name of the project.

* ProjectDialog(string projectName, string projectLocation)
The constructor of the class.It gets the project name and project location from the user.

e GetProjectName()
This method returns the project name.

* GetProjectLocation()
This method returns the project location.

28

4.2.1.6 EnhancementToolbar Class

EnhancementToolbar

+histograms . vector= double**>
+images : vedor<lmageData* =

+FindHistogram (image : IPLImage * | hisgogram : double **) ;. void

+Local Adjugt (images | vector=ImageData*> , histogram : double**) : void

+Brightenim age(image : IPLImage *, brightenF ador DEFALILT() © int): void

+Sharpenimage (image : IPLImage * | shapenFador_DEFALLT() : int) : void

+Denoizselmage (image : IPLimage * | denciseF actor_ DEF AULT(: int) @ void

+Deblurlmage (image : IPLimage * | debluF actor_DEFALLTD :int, higogram : double**) void

+C ontrastStrecthimage (image : IPLImage * | grecthingFactor_DEFAULT(): int, higogram : double**) void

¢ vector< double**> histograms : It stores pointers pointing the histograms of the images.
¢ vector<ImageData*> images : It stores the pointers pointing the images.

¢ (void) FindHistogram (IPLImage * image, double ** histogram)
It calculates the histogram of “image ' and stores it in the “ histogram(][] .

¢ (void) LocalAdjust (vector<imageData*> images, double** histogram)
It makes local adjustment by examining the image in terms of the local intensities of the need
areas in order to avoid ghosting and blur in the image.

¢ (void) Brightenlmage (IPLImage * image, int brightenFactor_DEFAULT())
It brightens the image according to a brightenFactor which is either taken from Enhancement
ToolBar on the MainWindow or a defult value.

¢ (void) Sharpenimage (IPLIimage * image, int sharpenFactor_DEFAULT())
It sharpens the image according to a sharpenFactor which is either taken from Enhancement
ToolBar on the MainWindow or a defult value.

¢ (void) Denoiselmage (IPLImage * image, int denoiseFactor_DEFAULT())
It removes noises on the image according to a denoiseFactor which is either taken from
Enhancement ToolBar on the MainWindow or a defult value.

¢ (void) Deblurimage (IPLImage * image, int deblurFactor_DEFAULT(),double** histogram)
It blurs the image according to a deblurFactor which is either taken from Enhancement ToolBar on
the MainWindow or a defult value.

¢ (void) ContrastStrecthimage (IPLImage * image, int strecthingFactor_DEFAULT(), double**
histogram)

It strech the contrast of image according to a stretchingFactor which is either taken from
Enhancement ToolBar on the MainWindow or a defult value.

29

4.2.1.7 StatusBar Class

StatusBar

+image @ lmageData*

+coor coint

+Coor’y it

+utmi it

+utm ™ int

+GetCoordinatesicoorX © int &, image : ImageData*) : void

+C aloulateP arametersfcoorX | int, coory | int, utmX ;. int &, utm™ : int &) ; void
+ShowParametersfutm X ;- int & utm™ : int &) wvoid

¢ ImageData* image : It is the instance of the ImageData class.

e int coorX : Stores the x coordinate of the cursor while it is rounding on the image.
¢ int coorY: Stores the x coordinate of the cursor while it is rounding on the image.
e int utmX: Stores the latitude values of the UTM coordinates.

¢ int utmY: Stores the longtitude values of the UTM coordinates.

* (void) GetCoordinates(ImageData* image, int &coorX, int &coorY)

This method gets the x and y coordinates of the cursor on image and stores them to coorx and
coory.

¢ (void) CalculateParameters(int coorX, int coorY , int &utmX, int &utmyY)

This method calculates the UTM coordinates according to the coorx and coory values taken from

GetCoordinates() method and saves them in utmX and utmyY.

¢ (void) ShowParameters(int utmX, int utmy)
This method writes the calculated parameters utmX and utmY on status bar.

4.2.2 File System Module Class Diagrams

The class diagrams of the File System module are positioned below its module explanation.

4.2.2.1 FileSystemHandler Class

FileSystemHandler
+image : lmageData*
+fileMame : string
+fileL ocation : string
+p M - ProjecdManager *
+FileSystemHandler (path : string)
+DpenFile (path © string) © void
+DeleteFile (image : ImageData * | path : string) : void
+ClosaFile (image : ImageData *) : void
+RenameFile (newFileMam e : gring, path : string) : void
+SaveFile (image : ImageData * |, path : sring) : void
+CreateDutputF older (pM : ProjedManager®*) : void
+lm ageF omm atHandler {(image : ImageData *) . wxBitmap

30

ImageData* image : Points an image whose type is imageData.

string fileName : It is the name of the file object .

string fileLocation : It stores the path of the file. It is taken directly from user.

ProjectManager * pM : Points the project manager object.

¢ FileSystemHandler (string path)
It is the constructor of File System Handler class. It takes the path of the file and extracts the file
name and file location. Then, it assigns them to the class members fileName and fileLocation.

¢ (void) OpenfFile (string path)
It shows the wximage on the screen whose path is given by the fileLocation.

¢ (void) DeleteFile (ImageData * image, string path)
It destroys the imageData object and deletes the real image file whose location is taken from path .

¢ (void) CloseFile (ImageData * image)
It destroys only the imageData object.

¢ (void) RenameFile (string newFileName, string path)

It changes the name of the file whose location is taken from path.

¢ (void) SaveFile (ImageData * image, string path)

It saves the image pointed by ‘iImageData* image’ as a bitmap image to the location specified by
path.

¢ (void) CreateOutputFolder (ProjectManager* pM)
It creates an output folder to store the outputs of the project in the project folder. It assignes the
name ‘Output’ to the folder.

¢ (wxBitmap) ImageFormatHandler (ImageData * image)
It takes the IPL image pointed by ‘ImageData * image’ and converts it to wxBitmap.

4.2.2.2 HistoryWindow Class

Histon/Window
+history : vedor <Ilmagelata® image=

+Getonginallmageimage : ImageData*) void
+GetPreviousimage(n ; int) ; void
+UpdateHistorye dor(history : vedor <ImageData* image=) : void

31

e vector <ImageData* image> history : It is the vector of ImageData class instances that contains
the previous 3 versions of the image, to undo the processes that are done on images.

¢ (void) GetOriginallmage(ImageData* image)
Resets the processes done on image and loads the original file from project folder.

¢ (void) GetPreviousimage(int n): It undoes the n processes done on image. The integer number
n can not be greater than 3.

¢ (void) UpdateHistoryVector(vector <ImageData* image> history)

This method updates the history vector if a process is done on image. New version of the image is
pushed to stack and the oldest version is deleted if there are more than 3 versions in history vector.

4.2.2.3 ImageData Class

Imageld ata

+path : string

+projediame : ging
+projedlocation : string
+ileType : sting

+image : IPLImage*
+worldFile[E] : double

+cameraP aram eters[11] : double

+HmageDatalprojectMame : string |, projec Location : string, path : sring)

¢ string projectLocation : Stores the location of the project.

¢ string projectName: Stores the name of the project.

¢ string path : Stores the location of the image.

¢ string fileType : Stores the format of the image such as ‘jpeg’ .

¢ |IPLImage* image: Stores the image data as an openCV image type IPLImage.

¢ double worldFile[6] : Stores the world file informations of the image.

e double cameraParameters[11] : Stores the intrinsic and extrinsic camera parameters for the
image.

* ImageData(string projectName, string projectLocation,string path)

This method takes project name, location and the path of the image, and stores the file type in
fileType, reads corresponding world file and stores the information in *worldFile if it exists, reads
the corresponding camera parameters file and stores it in *cameraParameters, stores the image as
IPLImage in image.

32

4.2.3 Photogrammetry Module Class Diagrams

The class diagrams of the Photogrammetry module are positioned below the photogrammetry

module explanation.

4.2.3.1 PhotogrammetryManagerToolbar Class

PhotogrammetryManagerToolbar
+zelededimages | vector=imageData*=

+TriggerCreateM osaic{selededimages | vedor=ImageData*>) . void
+TriggerE xtradDE Misslededimages : vector<lmagelbata*=): void

+Triggers enerateCthophoto(selectedimages | vedor<ImageData*=) : void
+TriggerCreateS uperR esolution(selectedimages : vector<imageData®=) : void

¢ vector<lmageData*> selectedimages : The selected images from the Project. “images” vector
which will be created from selected images.

The four methods in the following, works according to user events. The button event taken from
Photogrammetry Toolbar on the main window, calls one of these methods :

¢ (void) TriggerCreateMosaic(vector<ImageData*> selectedimages)

e (void) TriggerExtractDEM(vector<ImageData*> selectedimages)

¢ (void) TriggerGenerateOrthophoto(vector<imageData*> selectedimages)

¢ (void) TriggerCreateSuperResolution(vector<imageData*> selectedimages)

4.2.3.2 PhotogrammetryManager Class

PhotogrammetryManager

+images ; vector<|mageData's
+esufimages; vectoreimageData's
reamespondingPoints! : vedarsciP oint
+comespondingPoints? ; vedarecyP oint>

+GeCormespondingPoints{comespondingPaints! : vectorsc\Paint, comespondingP aints2 : vedoracuPaintz) : vaid

+reatel osaicfimages; vector<ImageData'’s, resulmages ; vector<ImageData®s, correspondingpaints! DEFALLT(NULL) ; cvPoint* | comespondingpaints? DEF AULTRNULL): cvPoint*) veid
+EtractDEM(images: vectoreImageData®s, resutimages: vector<ImageDatas, corresponcingpoints! DEFALLT (NULL): evPoint! | comespondingpairts?_DEFAULTHNULL): cvP aint*): void
+GenerateOrthophatol images ; vectordmageData*s resultimages : vectorelmageData's); void

+CreateSuperResolution|images : vectorsimageData®=, resuimages : vectorelmageData®s); void

¢ vector <ImageData*> images : It is the instance of the ImageData class. This vector contains
input images which will be parameters to the photogrammetry subclasses.

¢ vector <ImageData*> resultimages: It is again the instance of the ImageData class. This vector is
used for storing output images comes from the PhotogrammetryManager Class methods.

e vector<cvPoint> correspondingPointsl : The manually selected corresponding points of the first
image. We use openCV library for corresponding point selection.

33

e vector<cvPoint> correspondingPoints2 : The manually selected corresponding points of the
second image. This points are matched-paired with the correspondingPointsFirst, e.g the first point
in the CorrespondingPointsFirst is the matching of the first point in the CorrespondingPointsSecond.

e (void) GetCorrrespondingPoints(vector<cvPoint> correspondingPoints1,

vector<cvPoint> correspondingPoints2)
This method take the positions of the left mouse clicked events from the screen and store these
point values to the parameter vectors respectively.

¢ (void) CreateMosaic(vector <ImageData*> images, vector <ImageData*>

resultimages, cvPoint* correspondingpointsl_DEFAULT

(NULL), cvPoint* correspondingpoints2_DEFAULT(NULL))
By using these parameters, this function uses Mosaic Class functions to mosaic images in the
“images” vector. At initial phase it uses first 2 images on the vector and creates a Mosaic Class
object. Then output of this operation and next image on the “images” vector will be input of next
mosaic operation. This function simply assigns the output mosaiced image to the “resultimages”
vector. If Photolab is in manual mode and if user selects corresponding points in two images by
hand, DetectCorner() and DetectMatchingPoints() steps will be skipped. As a result of this method,
final version of mosaiced images will be shown in the screen and will be saved as another
ImageData object with ‘MOSAICED_IMAGE’ flag .

¢ (void) ExtractDEM(vector <ImageData*> images, vector <ImageData*> resultimages,
cvPoint* correspondingpointsl_DEFAULT (NULL), cvPoint*
correspondingpoints2_DEFAULT(NULL), int displayType)
This method uses DEM Class methods to calculate the digital elevation model. From input vector
“images”, we use first 2 images and calculate Digital Elevation Model by the help of camera
parameters. We again use corresponding points taken from user or detected automatically.
“displayType” is an integer flag to set the output show type, such as contour lines and 3D relief
map. As a result of this method, final version of DEM will be shown in the screen according to
display type and saved in ‘imageName.dem’ file in the Project directory. In addition, the process
type of the output image is changed with ‘DEM_EXTRACTED IMAGE’ flag.

¢ (void) GenerateOrthophoto(vector <ImageData*> images, vector <ImageData*>
resultimages)

Orthophoto generation uses Orthophoto Class methods. To start orthophoto generation, each

image needs to have its “imageName.dem” file. If this method can not find the ”.dem” file in the

Project directory, it forces user to extract DEM of images or it uses ExtractDEM() method with

default parameters. Final result is shown in the screen and saved as ImageData object with

‘GEORECTIFIED _IMAGE’ flag.

¢ (void) CreateSuperResolution(vector <ImageData*> images, vector <ImageData*>
resultimages)

This method uses SuperResolution Class. The first image in the “images” vector is the original and

superresolution is shown on this one. Super Resolution steps similar to Mosaic methods, however

the difference is we only improve the first original image. We use all overlapped layers as

parameters to calculate final resolution of original image. Final result is shown on the screen and

saved as ImageData object with ‘SUPER_RESOLVED IMAGE’ flag.

34

4.2.3.3 DEM

DEM

-imagel image2 resultimageR elief resutimageContour : IPLimage*

-interestP oints1{int max_comers] interestPoints2[int max_corners] : cvP oint

-homographyMatrixfint m ax_value] : cuMat*

-correspondingP cints1, comespondingPoints? © cvPeint *

-wordFiled (6], worldFile2[6] : double

-cameraP arameters1[11], wendFile2[11] : doukle

DEM { input? : ImageData®, input? : ImageData®, correspondingP oints DEFAULT(MULL) : cvPoint *, *correspondingP oints2_DEFAULT(NULL) : evPoirt *)
-DetedComers(image! : IPLImage*, interegPoints : cvPoint *): int

-DetedM atchingPoints(imagel : IPLImage*, image2 : IPLImage®, interegtPoirts : cvPoint *, interestPeints2 : cvPaint *); void
-EliminateCutliers { homographyMatrix ; cvMat®, correspondingP cints? : cvPoirt *, correspondingP oints2 ; ovP oint *): void
-GetBestHom ographyi atix (homographyiatnix: cilat™) irt

-GetWorldFileHomography(werdFilel ; double *, worldFile2 ; double *, homographyhiatrix ; ciat*) void
-CalculateElevation{ imagen : IPLImage*, homographyatrix: cviat*, cameraParametersn : double*, demn: fstream): void
DivideGrids (imagen: IPLImage* , demn ; fdream | slopes : fstream) : void

-EstimateE levation (correspondingPointsn ; cvPoint *, dopes: faream |, demn: fstream *) : void

-CompareDems (dem1 : fstream , cem?2: fatream |, demCompared : fstream) : void

-DrawReliefM ap(demCompared : fstream, resutimageRelief: IPLImage *) : void

DrawContourlines(dem Compared ; fstream | resutimageC ontour : IPLImage *) : void

-ShowReliefapimage (resultimageRelief: IPLImage*) : void

-ShowC ontourLinelmage (resuttim ageC ontour : P LImage*): void

-Savelmage (resultimageRelief; IPLImage*) ; void

¢ |PLImage* imagel,image2,resultimageRelief,resultimageContour: The first two members are
DEM inputs. The “resultimageRelief”and “resultimageContour” are the output images.

e cvPoint interestPoints1[int max_corners],interestPoints2[int max_corners] : It stores the
detected corner values. This values are optimized by DEM methods.

e cvMat* homographyMatrix[int max_value] : It contains the calculated homography matrixes of
the images.

e cvPoint * correspondingPoints1, correspondingPoints2 : It stores the matching points of the
images. If these values are not NULL,assigned by the user manually, we use them directly.

e double worldFile1[6], worldFile2[6]: It stores the world file parameters of the two inputs which
are the inputs of the DEM() method. As default, they are NULL since images may not have world
files.

e double cameraParameters1[11], worldFile2[11]: It stores the camera parameters of the two
inputs which are the inputs of the DEM() method.

e DEM (ImageData* inputl,ImageData* input2,

cvPoint *correspondingPoints1_DEFAULT(NULL),

cvPoint *correspondingPoints2_DEFAULT(NULL))
Constructor of the DEM Class. This constructor assigns the IPLImage of inputl and input2 to the
Mosaic object members imagel and image2 .In addition, it assigns world files of inputl and input2

35

to the Mosaic object members worldFilel and worldFile2. It assigns camera parameters of inputl
and input2 to the DEM object members cameraParametersl and cameraParameters2.

e (int) DetectCorners(IPLImage* imagel , cvPoint *interestPoints1)
By using Harris Corner Detection, this finds the corners of the first image and stores them to the
interestPoints1 array. It returns the number of corners.

¢ (void) DetectMatchingPoints(IPLImage* imagel , IPLimage* image2 ,cvPoint

*interestPointsl, cvPoint *interestPoints2)
cvGoodFeaturesToTrack() method of openCV library finds the interest points of the second image.
While storing these values, it compares the second image with the first image interest points and
updates these arrays according to the matches between them.

¢ (void) EliminateOutliers (cvMat* homographyMatrix, cvPoint *correspondingPoints1,
cvPoint *correspondingPoints2)

According to the RANSAC algorithm, we calculate homography matrix between two images. In
addition RANSAC eliminate the outliers by using the interest points of the activated DEM object.

e (int) GetBestHomographyMatrix (cvMat** homographyMatrix)
It returns the location of best homography matrix among the given calculated homography
matrixes array.

¢ (void) GetWorldFileHomography(double *worldFilel, double *worldFile2, cvMat*
homographyMatrix)

If the world files of the two images are given, not NULL, we can directly calculate the homography

matrix and then we register images with this homography matrix.

¢ (void) CalculateElevation(IPLImage* imagen, cvMat* homographyMatrix, double
*cameraParametersn,fstream demn)

This method is called for both imagel and image2. According to the homography matrix and by

using the given camera parameters, it calculates the elevations of the images and stores them into

the dem1 and dem?2 files.

¢ (void) DivideGrids (IPLImage* imagen,fstream demn,fstream slopes)

This method is again called for both imagel and image2. It uses the calculated elevations of the two
images for the dem files and calculates the slopes between two points whose elevations are
calculated before. We again store this slope values into the file.

¢ (void) EstimateElevation (cvPoint *correspondingPointsn,fstream slopes,
fstream * demn)

36

This function finds the elevation of the corresponding points of the two images by using the
elevation and slope information of nearest neighbours of these points. Itadds the estimated
elevations of the corresponding points to the dem files of images.

¢ (void) CompareDems (fstream dem1, fstream dem2,fstream demCompared)
Since we calculate the elevations of the matching points into two images before, by comparing
them we find their exact elevations.

¢ (void) DrawReliefMap(fstream demCompared, IPLImage *resultimageRelief)
According to the compared elevations this method generates the relief map image.

e (void) DrawContourlLines(fstream demCompared, IPLImage *resultimageContour)
According to the compared elevations this method generates the image with contour lines.

¢ (void) ShowReliefMaplmage (IPLiImage* resultimageRelief)
This method only displays the resultimageRelief on the screen. It is called by the DrawReliefMap
method.

¢ (void) ShowContourLinelmage (IPLiImage* resultimageContour)
This method only displays the resultimageRelief on the screen. It is called by the DrawContourLines
method.

¢ (void) Savelmage (IPLImage* resultimageRelief)

This method only saves the resultimage with the flag ‘DEM_EXTRACTED_IMAGE’ both in
Project.phl file and ImageData object .

4.2.3.4 Orthophoto

Orthophoto

-images : [PLImage *

-cameraP arameters: float *

-worndFile[E] - double *

-Crthophotel input : Imagelbata*)

-Redifdmagefimages : IPLImage *, cameraP arameters: float * | resultimage : IPLImage *) : void
-DetedComuptedP cintg{resultimage : IPLImage *). void

-CompleteBlack Pointslimages: IPLImage * |, resultimage : IPLImage * J : void

-Radiom etricC orredtion resultimage . IPLImage*, cameraParameters : float *) void
-Showltholmage (resultimage : IPLImage* § ; void

-Savelmage (resultlmage : IPLimage®) ; void

37

¢ |IPLImage *images : This array stores the input IPL images for the Orthophoto methods.
¢ float *cameraParameters: This array stores the camera parameters coming from input
imageData objects.

e double *worldFile[6]: It is a pointer array pointing the world file of each input image.

e Orthophoto(ImageData* input)

Constructor. It assignes the IPL images of ‘input’ to the Orthophoto object member ‘images’. In
addition it assigns world file and camera parameters coming from input object to members of
Orthophoto object.

¢ (void) Rectifylmage(IPLImage *images, float * cameraParameters, IPLimage

*resultimage)
This method rectifies the image to topographic view according to the camera parameters. The
outer parameters determine the perspective view of the camera. ‘resultimage’ stores the output of
rectification process.

¢ (void) DetectCorruptedPoints(IPLImage * resultimage)
It detects the areas where rectification process has destroyed. It outputs the resultimage with
detected areas.

e (void) CompleteBlackPoints(IPLIimage * images, IPLImage *resultimage)

It completes the areas which are outputs of DetectCorruptedPoints method by using Mosaic class
methods. It finds all of the necessary images which have unfilled areas and mosaic them with the
resultimage. The output of this method is again resultimage.

¢ (void) RadiometricCorrection(IPLimage* resultimage, float * cameraParameters)
It simply enhances the resultimage using Enhancement class methods. Camera’s sensor failures and
illumination differences are corrected in this method and outputs the resultimage.

¢ (void) ShowOrtholmage (IPLiImage* resultimage)
This method only displays the resultimage on the screen.

¢ (void) Savelmage (IPLImage* resultimage)

This method only saves the resultimage with the flag ‘ORTHOPHOTO_IMAGE’ both in Project .phl
file and ImageData object.

38

4.2.3.5 Mosaic

Mosaic

-image! jmage2 resultimage ; IPLImage!

-interestPoints![int max_comers] interestPoints2[int m ax_corners] : cvPoirt

-homaographyMatrixfint max_valug]. cat!

-correspondingP aints1 comespondingPoints2 : cvPoint *

-wortdF il [6], worldFile2[6] : double

+M osaic (input! : ImageData® | input? : ImageData®, correspondingP oints! DEFAULT(NULL): evPoint *, correspondingP oints2_DEF AULT(MULL): cvPairt *)
-DetedtComers(imagel ; IPLImage* , interedPoints? ; cyPoirt *); int

-Detecthl atchingPointsimage! ; IPLImage* image2 : IPLimage* | interestPoirts? : cuPoint * interestP oints2 : cvP oint *); vaoid
-EliminateCutiiers (homographyMatrix : cuMat* | correspondingP oints? : cvPoint *, correspondingP oints2 ; cvP oint *): veid
-GetBestHom ographyi atrix { homographyMatrix; cvidat™) : int

-GetWarldFileHomography(wordFilel ; double * worldFile2 ; double *, homographyMatrix: cuMat') ; woid

-Registerlmage { image! : IPLImage*, image2 ; IPLImage* homographyMatrix ; ceblat™). veoid
-Interpalatelmage(intempolationMode - int, image! : IPLImage*, image2: IPLImage*, resultimage : IPLImage*) : void
-Showhlosaicedimage (resuttimage IPLimage*): veid

-Savelmage (resuttimage ; IPLImage') : void

¢ |IPLImage* imagel,image2,resultimage: The first two members are mosaic inputs. The
“resultimage” is the mosaiced image.

e cvPoint interestPoints1[int max_corners],interestPoints2[int max_corners] : It stores the
detected corner values. This values are optimized by methods.

e cvMat* homographyMatrix[int max_value] : It contains the calculated homography matrixes of
the images.

e cvPoint *correspondingPointsl, *correspondingPoints2 : It stores the matching points of the
images. If these values are not NULL,assigned by the user manually, we use them directly.

e double worldFile1[6], worldFile2[6]: It stores the world file parameters of the two inputs which
are the inputs of the Mosaic() method. As default, they are NULL since images may not have world
files.

¢ Mosaic (ImageData* inputl,ImageData* input2,

cvPoint *correspondingPoints1_DEFAULT(NULL),

cvPoint *correspondingPoints2_DEFAULT(NULL))
Constructor. It assigns the IPLImage of inputl and input2 to the Mosaic object members imagel
and image2 .In addition, it assigns world files of inputl and input2 to the Mosaic object members
worldFilel and worldFile2.

¢ (int) DetectCorners(IPLImage* imagel, cvPoint *interestPoints1)
By using Harris Corner Detection, this finds the corners of the first image and stores them to the
interestPoints1 array. It returns the number of corners.

¢ (void) DetectMatchingPoints(IPLImage* imagel, IPLImage* image2 ,cvPoint

39

*interestPointsl, cvPoint *interestPoints2)
cvGoodFeaturesToTrack() method of openCV library finds the interest points of the second image.
While storing these values, it compares the second image with the first image interest points and
updates these arrays according to the matches between them.

¢ (void) EliminateOutliers (cvMat* homographyMatrix, cvPoint *correspondingPointsl,
cvPoint *correspondingPoints2)

According to the RANSAC algorithm, we calculate homography matrix between two images. In

addition RANSAC eliminate the outliers by using the interest points of the activated Mosaic object.

e (int) GetBestHomographyMatrix (cvMat** homographyMatrix)
It returns the location of best homography matrix among the given calculated homography
matrixes.

¢ (void) GetWorldFileHomography(double *worldFilel, double *worldFile2, cvMat*
homographyMatrix)

If the world files of the two images are given, not NULL, we can directly calculate the homography

matrix and then we register images with this homography matrix.

e (void) Registerimage (IPLImage* imagel , IPLImage* image2 ,cvMat**

homographyMatrix)
It applies transformations to the images by using the best homography matrix and so imagel and
image2 are ready to be displayed as mosaic.

¢ (void) Interpolatelmage(int interpolationMode, IPLImage* imagel, IPLImage* image2,
IPLImage* resultimage)

It contains the bilinear and bicubic interpolation algorithms. The algorithm selection is specified by

interpolationMode. Also it combines the two transformed images and forms the output mosaicked

image as a resultimage . Interpolation algorithms are for displaying resultimage properly.

¢ (void) ShowMosaicedimage (IPLImage* resultimage)
This method only displays the resultimage on the screen. It is called by the Interpolatelmage
method.

¢ (void) Savelmage (IPLImage* resultimage)

This method only saves the resultimage with the flag ‘MOSAICED_IMAGE’ both in Project.phl
file and ImageData object .

40

4.2.3.6 Superresolution

Superresolution

-magel image2 resutimage : [PLImage*

-nterestPoirts! [int max_comers] inte restPoints2{int max_comers]: cvPoirt

-homographyMatrix[int max_valug] : cyhlat®

-correspondingP ointst : cvP cint *

-correspondingP oints2 ; cvP oint *

+SuperResolution { inputt : ImageData*, input2 : ImageData*, corespondingPoirts1_DEFAULT(NULL): cvPaint * comespondingPoints2 DEFAULTMULL) : cvPaint *)
-DetedComers(imagel ; [FLImaget, interetPoints? ; cvPoirt *); int

-DetedM atchingPoints{image! : IPLImage*, image2 : IPLImage* interedPoints? : cvPoirt *, interestPoints? : cvPoint *): void
-EliminateCutliers (homographyhatrix : cyMat!, corregpondingP oints1 : cvPaoint *, correspondingP oints2 : cvPaint *): void
-GetBedH om ographyi atrix (homographyiatrix; cwat*) ; int

-Registerimage (image2 : IPLImage*, homographyMatrix : cwat'): void

-Reconstructim age(image ; IPLImage*, image2 : IPLImage®, resutimage : IPLImage*) : void

-ShowSuperResolutionimage | resultimage ; IPLImage*) ; void

-Savelmage [resulimage : IPLImage*): void

¢ |IPLImage* imagel,image2,resultimage: The first two members are SuperResolution inputs. The
“resultimage” is the high resoluted image.

e cvPoint interestPoints1[int max_corners],interestPoints2[int max_corners] : It stores the
detected corner values. This values are optimized by SuperResolution methods.

e cvMat* homographyMatrix[int max_value] : It contains the calculated homography matrixes of
the images.

e cvPoint *correspondingPointsl, *correspondingPoints2 : It stores the matching points of the
images. If these values are not NULL,assigned by the user manually, we use them directly.

e SuperResolution (ImageData* inputl,ImageData* input2,

cvPoint *correspondingPoints1_DEFAULT(NULL),

cvPoint *correspondingPoints2_DEFAULT(NULL))
Constructor. It assigns the IPLImage of inputl and input2 to the SuperResolution object members
imagel and image2 .

e (int) DetectCorners(IPLImage* imagel , cvPoint *interestPoints1)
By using Harris Corner Detection, this finds the corners of the first image and stores them to the
interestPoints1 array. It returns the number of corners.

¢ (void) DetectMatchingPoints(IPLImage* imagel, IPLImage* image2 ,cvPoint

*interestPointsl, cvPoint *interestPoints2)
cvGoodFeaturesToTrack() method of openCV library finds the interest points of the second image.
While storing these values, it compares the second image with the first image interest points and
updates these arrays according to the matches between them.

¢ (void) EliminateOutliers (cvMat* homographyMatrix, cvPoint *correspondingPoints1,
cvPoint *correspondingPoints2)
41

According to the RANSAC algorithm, we calculate homography matrix between two images. In
addition RANSAC eliminate the outliers by using the interest points.

e (int) GetBestHomographyMatrix (cvMat** homographyMatrix)
It returns the location of best homography matrix among the given calculated homography
matrixes.

¢ (void) Registerimage (IPLImage* image2 ,cvMat* homographyMatrix)
It applies transformations to the second image by using the best homography matrix.

¢ (void)Reconstructimage(IPLImage* imagel,IPLImage* image2, IPLImage* resultimage)
Method takes first image and warped second image then buils resulting image by combining and
improving resolution in parts of imagel, where it intersects with image2.

¢ (void) ShowSuperResolutionlmage (IPLImage* resultimage)
This method only displays the resultimage on the screen. It is called by the Reconstructimage
method of the SuperResolution class.

¢ (void) Savelmage (IPLImage* resultimage)

This method only saves the resultimage with the flag ‘SUPER_RESOLVED IMAGE’ both in Project.phl
file and ImageData object .

42

4.3 Sequence Diagrams

4.3.1 Create New Project

3

User :mainWindow :ProjectDialog :projectManagerWindow
1 1 1
1 1 1
1 1 1
1 1 1
<<creates>> ' : :
PP 1 1
initialize 1 1
1 1
: :
actionPerformed 1
1
OpenProjectDialog :
1
1
1
i
setProjectName(projectName) -
setProjectLocation(projectLocation
1
1
1
1
1 1 1
1 1 1
1 1 1
1 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1 1
1 1 1
1 1 1
1 [l 1

43

4.3.2 Project Operations

3

User i
:mainWindow :proj ectManagerWindow fileSystemHandler
i ! I
<<creates>> - 1 :
1 1
1 1
1 1
] 1
1 1
: 1
- . 1
requestProjectOperation <<creates>> 1 :
i
setOperationType 1
—) 1
1
i
setProjectldentifier :
<<creates>>
dpProjectOperation ——————>
doFiIeOperazion
<
updateProject
1
1
1
1
1 I 1
1 1 1
1 1 1
1 I 1
1 1 I
1 1 1
1 1 1
1 1 I
! ! :
1
1 I 1

44

4.3.3 Image File Operations

3

User

:mainWindow

:projectManagerWindow

fileSystemHandler

<creates>>

<<creates>>

requesstimageFileOperation

>

<<creates>>

>

setOperationType

setFileldentifier

doFileOperation

updateProject

45

4.3.4 Enhancement

3

User

:mainWindow fileSystem :enhancement :historyWindow
Handler

1 1 1

: 1 1 1

<<creates>> : : :

: <<creates>> : !

T 1 >
1 1
i i
processType <<creates>> :
> 1
1
processldentifigr, :
1
1
imageDataldentifipr :
1
i
update
i >
1
1
1
actionPerformed
>
doEnhancement

update

46

.

—>
update

4.3.5 Photogrammetry

3

User

oce

:mainWindow AfileSystem) . . ’ . :history
Handler :dem :oP :mosaic :sR Window
1 1 1 1 1 1
<<creates>> | ! ! ! ! !
> 1 1
I <<creates>> !
I o f
1
1
— 1 1 1 1
1 1 1 1
1 1 1 1 —
1
<<creates>>
Type
orocessldentif‘ggr
{mageDataldentifipr
update
ju i i H
fl 1 1 1
processType
if(dem) actionPerformed
doDem 1 1
71 Ly I
e 1
1 uptlate
update =
E elseif(oP) -
1 B ctionPerfarmed
1
doOP ! 1
update 1 update >
7else|f(mosa|c) actionPerformed
1
doMosaic !
update update
L elseiftsR) actionPerformed
1
doSR !
_}
update update

47

4.4 ACTIVITY DIAGRAMS

4.4.1 Open Project

When the user initiates the PHOTOLAB program, most likely the user wants to open a project. The
user will either open an existing project or create a new project. If the user wants to create a new
project, PHOTOLAB shows new project dialog . The user enters a project name and determines the
file location to this dialog. After getting the project parameters from the user,a project folder is
created by PHOTOLAB. The user may want to open an existing project. In this case, PHOTOLAB
shows the user lookup dialog so the user can select the project that he/she wants to open. In both
cases, PHOTOLAB opens the project on the main window.

* Name
I Directory

Project
parameters
from user

Show new
project dialog

Create Project
Folder

(New Project)

Open Project

(Existing Project)

Show lookup
dialog

User selects
project

Update Main
Window

Set Project on
GuUI

4.4.2 File Operations

File operations start with opening a Project. User may want two different spaces depending on file
operations. On Project, first user selects a file to operate. After selection, user decides on file
operation type; open, close, save and remove. Since the directory tree structure will be modified,
save and remove operations needs updates on Project Management Window. On Project directory
user may want select files to add Project. The file format is controlled by file system module and if it

48

needs a conversion same module converts it into specified format. Then a link is created between
file and Project. This operation also needs Project Management Window update. At the end, main
window is updated and file operations finish.

Open
proje ct
On Project

On Proje ct Directory

Select file to
add project
ile system
module
converts file
format

File linked to

User selects
file

&)

Save/Remove
file

OpeniClose
file

project

Update
Project

Manageme nt
window

4.4.3 Photogrammetry Operations

The user selects the mode from the menu bar. PHOTOLAB gives two options to the user.User can
either select the automatic mode or the manual mode. The default mode provided by PHOTOLAB is
automatic mode. If the user selects manual mode, he/she either selects the tie points or the target
image according to the photogrammetry process type to be processed. The user selects tie point if
the process is DEM or Mosaic and selects target image if the process is SuperResolution and
nothing is done if the process is OrthoPhoto. In the automatic mode PHOTOLAB wants user only to
choose process type. Then PHOTOLAB processes on the images according to the selected process
type.After the photogrammetry process, PHOTOLAB updates the world file,main window and
history window.

49

User
Selects
Mode

Automatic Manual

User Selects (DEM, Mosaic) (Superresolution) (Orthophoto)

Photogrammetry|
type

User Selects
target image

User Selects
tie points

Update
worldfile

Update
Main window

Update History|
Window

processes
image

4.4.4 Toolbar Actions

Toolbar actions provide making some operations on images. This toolbar is very crucial part of our
IDE. It provides image enhancing, zooming, rotating options. Also, the layout can be changed from
toolbar. The user first selects the operation to be done. After operating the process chosen by
toolbar, the main window and the history window is updated.

50

User
Selects
Area

Zoom
In/Out

User inputs
enhanc.
parameters

Image
enhances

Rotate Im.

clk /cclk

User changes
layout

Window

Update Main | |y5qate Histor
Window

5 GUI - GRAPHICAL USER INTERFACE

As a group we tried to design our GUI user-friendly to make the interaction with user easy and
practical. In our design, all of our modules interact among each other via GUI, so this makes GUI
design module, the most important part of our project.

The general graphical user interface of PHOTOLAB looks like as shown below.

©

TEPHOTOLAB +1 0 by Badsectur -

| Fie Process Mede el

| BN g e Erhwria E'd Aon FoomTiatan

By g @ 3 = |z OB O | ChT W, g

oo el —— @@@@ = >

EE *t 5k N E opmmes0o]
m | f_!‘r'.z\g .

IFrﬂjsbtlnspamr 3=

=

Upon starting, project inspector window is shown at left middle side of the main window. Project
inspector window lists the files of the current opened project and it makes file operations easier.
Just below it there is the history window. In history window there is a list of last three processes
and the original version for the selected image. Besides undo and redo operations, user can turn
back to the images before photogrammetry operations. In addition to project inspector and history
window there is the main area for image display. At first the display area is not divided to sub
display areas.

At the top of the main window, there is a menu bar which contains ‘File’, ‘Process’, ‘Mode’ and
‘Help’ menu items. To start working with PHOTOLAB, you have to open a file or project by using
‘File” menu. The user can either open a single file or, open or create a project. You save the project
and files from this menu item and you also do the closing job from here.

52

EPHOTOLAB v1 0 by BadSectc
File Process Mode

e]

7 Open Project or Fie,., Chr0
=" Recpen k

B s e
WP Save fs... Chrl+F12
L Save Project as...

i;,'; Save Al

Cf Close CRrl+F4
Choze all
Cloze Projact

Fropetties

3 e

After forming a project or opening an existing one, the components of the project can be seen in
project (manager) inspector window.

Project Inspector E

Froject

5 g2 Projectz
fe test jgw
tezt1.jpg
te=t1big. jgw
tezt]big.jpg
tezt1Topo. jgw
tezt1Topo.jpg
testTw jgw
test1w jpg
testTwe jguw
testlws jpg
testlwes jgw
testlwses jpg
testT wma jgu
testl v jpg

o) 1 O G)

53

"BEPHOTOLA v1.0 by BadSertor {0 s |

[B rossc 5 @ Enhanen =
e 5 gz OEE=—= 02 |G-

o
b e A= a
[suwereciion [ios O pr——— O 2 :’1 S—
HE ThE N op—s 02 W 2 2

B 20
|Praject inspactor R x
[Frojecs
| =
= 4 Project?
[ER A
[;l el pg
[5] iid Thegy. e
d testlba b0
[_1 et T opa ja
1 est1Topaipa
T v iges
1 ety
e Tws o
[imtiveipg
d e T e
teatiwes ipg
] i T e
[LSREASN o]
14 vt T fgwe
I,-j et T po

=

Jhower| _hm.
[cew]
L.(Briniress changs
o : [
o i]v

|ASTIM, BOATED A 3L HIEE SE0000

The second menu item is ‘Process’. The sub menu items are mosaic, DEM, Orthophoto and Super
Resolution. After opening the files that are going to be processed with one of these methods, the
user simply click on which process he/she wants the PHOTOLAB to perform. The result of an
example mosaic process is below.

ERPHOTOLAR 1.0 by Badsector = = |

| B L N | e Erbanza E_LJ R + ZoonFotate

Gty |2 % 3) e g O P 02 T W Bl =]
i Rl T L e Ty o

FEEE + A (W gD [N 2 2
ri T

|Froject Inspechor L
If‘\qml
| = g2 Propect2

[ERT

e Taml i

k
]
I
-
Inativzz Fg
14 teat v jgw
et Twves 0
[T

AT TTHL 20TET 431300 SO0

The next menu item is ‘Mode’ menu item. Mode is used for determining the tie point selection
method. The user has two options, which are automatic and manual. In automatic mode, the tie
points are determined by the program automatically and pointed in images, however in manual
mode the user selects the tie points on images.

54

The last menu item is ‘Help’ menu item. PHOTOLAB provides user help files in order to make easier
usage. These help files include the necessary information about the usage of the software in terms
of functionalities. Help files also include a search and index box for faster search.

Dizplay &2 @ :: EA o

| m =

M ~+ ‘i = %
$ &

Above is a part of PHOTOLAB user interface toolbar. The display menu on the left provides the user
to view the image(s) in five different scenes which are one-two-three-four images on the screen
simultaneously or multiple images cascaded. This property of PHOTOLAB GUI is designed with MDI
(Multiple Document Interface). Beside this, PHOTOLAB provides a number of other functionalities.

Enhance
iz Opm——— 002
L —
O p—— DO

PHOTOLAB gives the user an opportunity to enhance the images by using various enhancement
techniques such as setting the brightness values of images, contrast stretching and sharpening.

~ Roam

= —
|5

By the roaming function of PHOTOLAB (optional), the user can roam on a predefined pattern. The
user can define a path either as a linear line or as a non-linear path. User can also calculate the
distance between the two end points of this predefined pattern.

ZoomdHotate

OEr—TT—a O

By the zoom/rotate function of the PHOTOLAB, the user can zoom in and out on the image and
he/she can also rotate them.

496704, 204753 431353025, 920000

L E]

At the bottom of the main window there is a status bar. The world file of the images give
information about the world coordinates of each pixel in the image. PHOTOLAB uses this world file
55

information to calculate the original coordinates of the image. While the cursor is wandering on the
image, the world coordinates of the place shown by cursor is written in status bar as UTM
coordinates.

|=|
History =
& DEM ~ll
& Brightneszs change
& Mosaic
& Original w
B B |

At the lower left side of the main window there is history window. The aim of the history window is
to provide the user more possibilities to see the whole process step by step. PHOTOLAB records last
four changes on the project and the original of the project easily. For this purpose history window
shows these recorded changes for selected image.

6 SYNTAX SPECIFICATION

6.1 Classes

Class names start with a capital letter. If it has more than one word, first letter of each word is
capital, too. In “x.h” files classes are divided into three parts and their order is private, protected
and public members. Inside each part, members are ordered as;

1. Data structures
2. Variables
3. Functions

And there is one empty line to seperate these three. Besides, data structures, variables and
functions are grouped according to their usage areas.

Opening curly brace of class is adjacent to closing parenthesis. Closing curly brace is in independent
empty line.

A sample class structure is;

class Sample{
private:
vector<Example> sampleVector;

int variablel;
int variable2;

void DoSomething();
void DoAnotherThing();
protected:
public:

56

6.2 Functions:

Function names in local areas start with lower case. If there is more than one word other words
start with capital letter. Functions are implemented in x.cpp files. All implementation has a tab from
the page edge Local variables are grouped at the top of the function implementation. Language
concerned implementations like “if”, “while” and “for” has one tab between the nested belongings
and curly braces. Opening and closing parenthesis have one space between parameters and each
other. A sample function is;

void sampleFunction(int parameter)

{
int variable;
int variable2;
while(isHappening)
{
doSomething();
}
}
6.3 Variables

Global variables started with capital letter. However local variables and class members have lower
case first letter. If variable has more than one word other words start with capital letter, too.

6.4 Comments

There will be a comment line above each function which defines the aim of the function. The
comment sentences will be formal and clear. Each member of the class “.h” files has definitions as
comment. In “.cpp” files, before implementations there will be creation date of file, name of
creator, modification date, name of modificator and class definition inside multiple line comment. A
sample comment is;

/* # Created 01.12.2007 by Serra Sinem Tekiroglu
Modified 02.12.2007 by Serap Atilgan

This sample class comment is written for exemplification of comment specifications. */

7 PROCESS MODEL and PROJECT SCHEDULE

7.1 Team Structure

As a group we decided that “Democratic Decentralized (DD)” fits best to our project and project
group. Our first priority is cooperation and this model ensures a high rate of cooperation since it

57

forces us to communicate in decision making. We appointed the tasks to the members for short
durations at our weekly meetings. Another reason that we have chosen this structure is; we make
decisions on problems or weekly tasks by agreement of each member. In case there is a
contradiction among the group members, we chose a group leader to say the last word to prevent
disagreements.

7.2 Process Model

Our project team will iteratively go through planning, modeling, construction and deployment
stages. For this reason, linear (waterfall) model of development best fits to our project. After the
requirements analysis, we are going to make our initial design. Actually, Milsoft wanted the process
model to be spiral during the design and implementation phases so they wanted more than one
prototype. By this way, we will have a chance to go back and correct the faults in the design which
we found during implementation.

7.3 Gantt Chart

Time Schedule of Photolab Project is shown by Gantt Chart. We have planned for a whole academic
year.

58

Page 10of 1

Duration

Gannt Chart

1

2 1,234 Teaming Up&Praject Prapasal 7 days

3 Analysiz Report 28 days
4 1:2 Cutline of Report 1 day

L3 1,234 Market Research 7 days
g 3.4 Determining User Requirements |13 days
T 1,2 Determining System 7 days

2 1.2 Data&Behavioural Modal 9 days
g 34 Functional Modiea! 7 days
m 1,2 Last Version of Report 2 days
11 MILESTOME 1

12 Milsoft Assignment 2 weeks
13 Initial Design Repart 258 days
14 |34 Dutline of Report 1 day
15 1,234 Izl GUIT Design 8 days
16 34 Defining Consatraints 6 days
A b P Design of Care Madwia 5 days
1% 1,2 Desigh of Supparing Maduies 4 days
19 1,234 Modariing 5 days
20 34 Update Scheduwle 1 day

1 34 Last Varsion of Report 2 days
22 MILESTOME 2

23 Milsoft Assignment 2 weeks
24 1,234 Initial Prototype Preparation 12 days
25 Final Design Report 33 days
B 1,2 Dutline of Report 2 days
27 1,2,3.4 Review of Modules 7 days
28 1,2,3.4 Final GUT Design T days
24 1,2,3.4 Final Design Verfication T days
30 |34 Last Veraion of Report 2 days
31 MILESTOME 3

32 1,2,3.4 Prototype Freparation 4 yweaks
33 Other

34 1,2 Weh Site Desigh 5 days
oL Prasantation 2 weeks

59

60

Gannt Chart

Page 10of 1

1D Group Task Duration & ._.__um..._..r__.:ni..
36 Implementation of Toolbar
a7 1,234 Enhancement aptiohs 10
38 1 FRoarming 10 days
34 2 ZoorryRotate 10 days
40 3 Display Lavout 10 days
41 4 Basic Funclions 10 days
42 MILESTOME 4
43 Implementation of Submodules
44 Implementation of Mosaic 18 days
45 T2 Algonthm Search 3 days
46 1,234 Tmplernentation 12 days
47 3.4 Testing A days
48 MILESTOME 5
449 Implementation of DEM 18 days
a0 34 Algontem Search 3 day
a1 1,234 Implgrmentation 12 days
a2 1,2 Testing i days
a3 MILESTOME B
a4 Implementation of OrthoPhotao 18 days
kil 1,2 Algorithem Search 3 days
fali} 1,2,3,4 Impigrmentation 12 days
a7 34 Testing 4 days
a8 MILEETOME 7
a9 Implementation of SuperResolution |18 days
B0 34 Algorithem Search 3 days
61 1,2,3.4 Impigrmentation 12 days
62 1,2 Testing 4 days
63 MILESTOME 8
64 1,2 Whole System Test 2 days
{itd) 34 Optimization 7 days
66 Other
BT 1,2 FPresentation 2 weaks

61

1-Hanife, 2-Serap, 3-Serra, 4-Meryeam

8 TESTING

Testing is to detect the differences between existing and required conditions and to evaluate the
overall software by analyzing it with respect to predefined validity and correctness norms. As Bad
Sector team, we believe that the testing is a crucial part of a software design procedure since
without testing; one can not be sure the overall validity and correctness of the final software
package. Upon decisions on testing, Bad Sector team has prepared an initial test plan to follow. In
subsequent sections the testing procedure will be covered according to this plan.

8.1 Test Items

Testing is a procedure which must be performed at several predefined points in the life cycle of the
software development. Since testing is a very dependent and continuing activity, test plan must be
developed according to these predefined levels. In order to specify these points, firstly test items
must be identified. Bad Sector team has identified the items as below:

= Software Modules
e GUI
e File System
* Photogrammetry
= Job Control Procedures
e Production Scheduling and Control(refers to the prepared project
schedule (Gantt Chart) and controlling time, cost and efficiency issues.)

e Calls and Job Sequencing (refers to the job calls and the their sequence
in these calls.

e Job Control Language(“is a scripting language to instruct the system on
how to run a batch job or start a Subsystem”[wikipedia].)

» QOperator Procedures
Operator procedures are the items to be tested in order to ensure that the application can
run on different machines and environments.

= User Procedures
User procedures are the items to be tested in order to ensure that user documentation is
correct, complete and comprehensive.

8.2 Test Approach

As Bad Sector team we think that the software testing consumes 20 percent to 30 percent of
software development resources. Therefore Bad Sector team has decided to specify an approach
for all major testing tasks and for the required time estimation to do these tasks, with the minimum
time & cost and maximum efficiency & satisfaction.

The team constructed the approaches by identifying the types of testing with the methods and
criteria used in the testing.
62

8.2.1 Component Testing

Component testing is to test particular functions or code modules. It is usually the most micro scale
of testing. Bad sector team plans to test the modules of Photolab with the component testing

approach.

= GQUI
Component Test Check List

Question to be answered:

Passed

Failed

Are the passes between
subunits of GUI successful?

Yes, skip to the next
question...

No, work on the unit further.

Do the shortcuts work
correctly?

Yes, skip to the next
question...

No, work on the unit further.

Are the menu items in correct
order?

Yes, skip to the next
question...

No, correct the order.

Are the appropriate menu
choices active?

Yes, skip to the next
question...

No, recover the activation.

Are the data interactions
between subunits of GUI

successful?

Yes, skip to the next unit.

No, focus on the data
interactions.

= File System
Component Test Check List

Question to be answered:

Passed

Failed

Are all the file operations
coherent with the File
System?

Yes, skip to the next
question...

No, work on the coherence.

Can all the image file types be
converted to the common
data type correctly?

Yes, skip to the next
question...

No, work on the image type
conversion.

Can File System and GUI
interact successfully?

Yes, skip to the next
question...

No, focus on the interaction.

Can File System and Data
Library interact successfully?

Yes, skip to the next
question...

No, focus on interaction.

Can video files be converted
to image files correctly?

Yes, skip to the next
question...

No, focus on conversion.

Can images with a relatively

Yes, skip to the next unit...

No, work on handling the

63

large size be handled? large sized images further.

= Photogrammetry
Component Test Check List

Question to be answered: Passed Failed

Are the interactions between | Yes, skip to the next No, work on the interactions.
subunits of Photogrammetry guestion...
successful?

Are all the algorithms efficient | Yes, skip to the next No, work on the algorithms.
and fast? guestion...
Can subunits work Yes, skip the next question No, correct the subunit.

successfully?

Are the subunits coherent Yes, skip to next question... No, work on coherence.
with the Photogrammetry
module?

8.2.2 Integration Testing

As Bad Sector team, we decided to make an integration test to check the system after combining
the parts (i.e. modules or individual applications such as image enhancement or photogrammetry
processes) to ensure that they function together correctly. Bad Sector team can not be satisfied
with a component, only working correctly on its own area. Therefore, the team will also ensure that
the integration is successful while doing a continuous component testing in background.

8.2.3 Interface Testing

Bad Sector team plans to make an interface testing after completing component and integration
testing successfully and solving the all critical errors. The aim of the team in doing interface testing
is to check the external interfaces with Photolab in order to verify the execution times, data
exchange, transmission and control. In order to make the test Bad Sector team needs to find
external organizations having interfaces which can be tested with Photolab.

8.2.4 Performance Testing

As Bad Sector team, we also plan making a performance test in order to see how fast a component
outputs under a particular workload or what percent of quality (time, cost, efficiency) and validity
issues such as reliability or resource usage are satisfied by the system.

8.3 Pass/Fail Criteria

Bad Sector team decided pass/fail criteria for the test cases. The decisions include the suspension
of a test in case an occurrence of a more urgent one. After the completion of the urgent test case,

64

the suspended test will be resumed from where it already is. Decisions also include the resumption
of a test case until it succeeds as well as approval of a specific test case if it satisfies the criterion for
all of the components forming the case.

9 CONCLUSION

The detailed design components of Photolab was simply identified in this report. As a summary, A
simple Project definition and design constraints are expressed.Project is explained by architectural
and component levels and object oriented diagrams. In addition possible testing scenarios are
created to get ready for any cases.

At detailed design phase, Bad Sector has reviewed the whole architecture and according to current
implementation state, the class structures have been rearranged. In the Initial design phase,
Photolab have some problems and deficiencies upon input/output specifications or data structures.
In this documentation these problems are handled and the solutions are described clearly.

In conclusion, Bad Sector has designed the whole Project in detail in order to be ready for the
implementation phase. In the following duration of five months our team will concentrate on the
coding and testing process.

REFERENCES

1. UML Sequence Diagram Tutorial, Effexis Software,LLC,[2005-2007]
URL: http://www.sequencediagrameditor.com/uml/sequence-diagram.htm

2. |[EEE Standard 829-1998, Standard for Software Test Documentation
URL: http://www.ecs.csun.edu/~rlingard/COMP480/IEEETestPlanTemplate.pdf

3. High Resolution Panaromas using Image Mosaicing,Stanford University EE368 Final Project
Laurent Meunier and Moritz Borgmann,May 2000

URL: http://scien.stanford.edu/class/ee368/projects2000/project13/index.html
65

4. Norvelle, F.R., 1994. Using Iterative Orthophoto Refinements to Generate
and Correct Digital Elevation Models, Proc. Mapping and
Remote Sensing Tools for the 21st Century, ASPRS, pp. 134-142.
5. Krzystek, P., 1995. Generation of Digital Elevation Models, Second
Course in Digital Photogrammetry, Bonn, 6-10 February, Ch. 7.
6. [Davis] Davis, J. Mosaics of scenes with moving objects.(1998).Computer Vision
and Pattern Recognition
7. Feature Based Image Mosaicing,Satya Prakash Mallick,Department of Electrical and Computer
Engineering, University of California, San Diego
URL: http://www-cse.ucsd.edu/classes/fa02/cse252c/smallick.pdf
8. Prof.A.Gruen&Henri Eisenbeiss(2006) UAV Photogrammetry IGP-ETH Zurich, 25/11/2007
URL: http://www.photogrammetry.ethz.ch/research/heli/index.html
9. Prof. Serge RIAZANOFF , depending on Envisat MERIS Geometry Handbook. (2008)

URL: http://www.brockmann-consult.de/beam/doc/help/visat/Orthorectification.html

66

	1 INTRODUCTION
	1.1 Project Definition and Scope
	1.2 Application Areas
	1.3System Requirements
	1.3.1 Hardware Requirements
	1.3.2 Software Requirements

	2 DESIGN CONSTRAINTS & CONSIDERATIONS
	2.1 Timing Constraints
	2.2 Programming Language & Software Constraints
	2.3 Performance Constraints
	2.4 Quality Constraints
	2.5 Legal/Ethical Constraints
	2.6 Group Members Related Constraints

	3 ARCHITECTURAL and COMPONENT LEVEL DESIGNS
	3.1 Photolab Modules
	3.1.1 GUI Module
	3.1.2 File System Module
	3.1.3 Photogrammetry Module

	3.2 Data Flow Diagram
	3.2.1 Level 0 DFD
	3.2.2 Level 1 DFD
	3.2.3 Level 2 DFD
	3.2.4 Level 2 DFD

	3.3 Data Dictionary
	3.4 State Transition Diagram

	4 OBJECT ORIENTED DIAGRAMS
	4.1 Use Case Diagrams
	4.2 Class Diagrams
	4.2.1 GUI Module Class Diagrams
	4.2.1.1 MainWindow Class
	4.2.1.2 BasicToolbar Class
	4.2.1.3 ProjectManager Class
	4.2.1.4 ProjectManagerWindow Class
	4.2.1.5 ProjectDialog Class
	4.2.1.6 EnhancementToolbar Class
	4.2.1.7 StatusBar Class

	4.2.2 File System Module Class Diagrams
	4.2.2.1 FileSystemHandler Class
	4.2.2.2 HistoryWindow Class
	4.2.2.3 ImageData Class

	4.2.3 Photogrammetry Module Class Diagrams
	4.2.3.1 PhotogrammetryManagerToolbar Class
	4.2.3.2 PhotogrammetryManager Class
	4.2.3.3 DEM
	4.2.3.4 Orthophoto
	4.2.3.5 Mosaic
	4.2.3.6 Superresolution

	4.3 Sequence Diagrams
	4.3.1 Create New Project
	4.3.2 Project Operations
	4.3.3 Image File Operations
	4.3.4 Enhancement
	4.3.5 Photogrammetry

	4.4 ACTIVITY DIAGRAMS
	4.4.1 Open Project
	4.4.2 File Operations
	4.4.3 Photogrammetry Operations
	4.4.4 Toolbar Actions

	5 GUI – GRAPHICAL USER INTERFACE
	6 SYNTAX SPECIFICATION
	6.1 Classes
	6.2 Functions:
	6.3 Variables
	6.4 Comments

	7 PROCESS MODEL and PROJECT SCHEDULE
	7.1 Team Structure
	7.2 Process Model
	7.3 Gantt Chart

	8 TESTING
	8.1 Test Items
	8.2 Test Approach
	8.2.1 Component Testing
	8.2.2 Integration Testing
	8.2.3 Interface Testing
	8.2.4 Performance Testing

	8.3 Pass/Fail Criteria

	9 CONCLUSION
	REFERENCES

