

MIDDLE EAST TECHNICAL

UNIVERSITY

COMPUTER ENGINEERING

DEPARTMENT

CENG 491

DETAILED DESIGN REPORT

SERKAN ÇAĞLAR 1347285

BURAK CANSIZOĞLU 1347244

SERDAR KOÇBEY 1250471

HANĐFĐ ÖZTÜRK 1298140

 1

1 INTRODUCTION.. 4

1.1 Purpose of the Document ... 4

1.2 Detailed Problem Definition .. 4

1.3 Design Constraints ... 5

1.3.1 Financial Constraints.. 5

1.3.2 Manufacturing Constraints ... 5

1.3.3 Ergonomic Constraints ... 5

1.3.4 Power Constraints .. 6

1.3.5 Resource Constraints.. 6

1.3.6 Lack of Experience of Team Members .. 6

1.3.7 Time Constraints .. 6

1.4 Design Objectives and Goals ... 6

1.4.1 Power.. 6

1.4.2 Lifetime .. 6

1.4.3 Security... 7

1.4.4 Accuracy... 7

1.4.5 Size ... 7

1.4.6 Cost... 7

1.4.7 Wide Range .. 7

2 ARCHITECTURAL DESIGN... 8

 2

2.1 System Hardware Modules .. 8

2.2 System Software Modules.. 12

2.2.1 PIC Module .. 13

2.2.2 AP Module ... 15

2.2.3 Status Module... 17

2.2.4 Server Module .. 18

2.2.5 Database Module.. 19

2.2.6 Main Module .. 19

3 CLASS DIAGRAMS ... 21

3.1 Diagram.. 21

3.2 Class Tables.. 22

4 SEQUENCE DIAGRAMS... 30

5 USER INTERFACE... 32

5.1 Node Monitor ... 32

5.2 Data Analyzer... 34

5.3 Report Generator .. 36

6 PROJECT SCHEDULE ... 38

6.1 Finished Work .. 38

6.2 Future Work ... 39

6.3 Gantt Chart ... 40

7 REFERENCES... 41

 3

APPENDICES.. 42

Appendix A .. 42

Appendix B .. 45

 4

1 INTRODUCTION

1.1 Purpose of the Document

The purpose of this document is to express the detailed design specifications of our project,

HSBS_WSN. With the help of resolving software, hardware, functional and non-functional

requirements, we have prepared this report. This report will be a guideline for our future

studies. In the design process, we intended to design an effective and modular product that

will satisfy the needs and constraints of the project. In this document, we tried to explain our

design process in an illustrative way with the help of diagrams. These diagrams are specific

types of UML diagrams like class, sequence and structural diagrams. Owing to these

diagrams, we have been able to explain the functional, structural and behavioral features of

our system.

1.2 Detailed Problem Definition

As the technology evolves, usage of wireless networks has increased remarkably. In parallel

to this, application area of embedded systems integrated with wireless networks has

expanded. As a result of this development, wireless sensor networks emerged in the last

decade.

A wireless sensor network (WSN) is a wireless network consisting of spatially distributed

autonomous devices using sensors to cooperatively monitor physical or environmental

conditions, such as temperature, sound, vibration, pressure, motion or pollutants, at different

locations.
1

Wireless sensors are far more efficient and feasible than their wired counterparts with respect

to their easiness of use, wider range and application areas and less deployment costs. In our

project, we aim to establish a wireless sensor network (HSBS_WSN) that will support IEEE

1Wikipedia, Wireless Sensor Network, http://en.wikipedia.org/wiki/Wsn, October 2007

 5

802.11 protocol. Most of the wireless sensors in the market support some protocols like

ZigBee and IEEE 802.15; however, unfortunately there are too few sensors that support IEEE

802.11 and these sensors are unaffordable for us. Because of this, we have decided to build

our own wireless sensor node (HSBS Sentinel). HSBS Sentinels will have two main

advantages. Firstly, they will communicate directly with PCs that support IEEE 802.11.

Secondly, they will be more affordable than the other wireless sensors that are available in the

market. An HSBS Sentinel is formed of an Airties AP-400, a SP07 (a sensor integrated PIC

board) and other essential hardware parts. In the project, there will be a number of HSBS

Sentinels; some of them will be used in HSBS Sentinels, some of them will be repeaters and

one of them will be the access point. Moreover, there will be a server that will collect data

from HSBS Sentinels over the access point and store the data in the database. Furthermore, a

user interface that will be used to monitor and process the data will be implemented on this

server. HSBS WSNs will be able to be used in many applications in which temperature and

humidity are measured.

1.3 Design Constraints

1.3.1 Financial Constraints

In the market, there are a limited number of wireless sensors that support IEEE 802.11

protocol. However, these sensors are not affordable for us. Therefore, we have to design our

own wireless sensor nodes, namely HSBS Sentinels.

1.3.2 Manufacturing Constraints

Since we have to build our own wireless node, we are obtaining some hardware equipments

and assembling them. However, sometimes we have some problems while combining these

different parts and we cannot foresee the difficulties that we may confront. Furthermore,

testing the hardware units that we implement takes much time.

1.3.3 Ergonomic Constraints

Since a SP07 and an AirTies AP-400 will be used in HSBS Sentinels, our wireless nodes will

be larger and bulkier than other wireless sensors in the market. This makes HSBS Sentinels be

less ergonomic.

 6

1.3.4 Power Constraints

Because we are using a SP07 and an AirTies AP-400 in HSBS Sentinels, we are forced to use

a power adapter for SP07 and AP-400. For this reason, HSBS Sentinels will need a power

socket.

1.3.5 Resource Constraints

Because wireless sensor network area is a new and vast area, this subject is in fact currently

being researched by universities and institutions world wide. For this reason, we have

difficulties in finding enough resources.

1.3.6 Lack of Experience of Team Members

Since the group members have taken a few hardware courses and have little experience on

hardware, sometimes it is difficult for us to visualize the details of the project.

1.3.7 Time Constraints

The schedule of the project is determined by the CENG 491 course syllabus. From now on,

we have about four months to finalize the project successfully.

1.4 Design Objectives and Goals

1.4.1 Power

As we stated in the design constraints section, HSBS Sentinels will consist of a SP07 and an

AirTies AP-400. In our project, we plan to use only one power supply per an HSBS Sentinel.

Only the power adapter of the AP-400 will be used to supply energy to an HSBS Sentinel.

The power to the SP07 will be provided from AP-400 with the help of a voltage level

converter.

1.4.2 Lifetime

HSBS_WSN should operate properly for a long time. Since, the sensors (SHT15) have

CMOSens Technology, they have long-term stability. By the help of this feature of the

sensors, the overall product will be able to run for a long time.

 7

1.4.3 Security

Security issue is a big problem for WSNs, however it has been overcome by WPA (802.1x,

TKIP, PSK), WPA2 (IEEE802.11i, AES, CCMP), WEP (64/128 bit), MAC filtering and

SSID hiding properties of AirTies AP-400.

1.4.4 Accuracy

The HSBS WSN will be able to determine accurate temperature and humidity values by the

capability of high-precision measurement of the SHT15s.

1.4.5 Size

In HSBS Sentinels, we could have used a CENG 336 Embedded Board on which a SHT15 is

assembled. However, then an HSBS Sentinel would be bulky. For this reason, we have

implemented the SP07 to prevent this situation.

1.4.6 Cost

Existing similar products to HSBS Sentinel are expensive to be attained. An HSBS Sentinel

costs approximately $150 and this price is about one fourth of the price of the cheapest

wireless sensor in the market. Thus, the overall project will be affordable than the existing

ones.

1.4.7 Wide Range

The feature of AP-400 that allows it to run as a repeater provides us to implement a mesh

network. With mesh networking, an HSBS Sentinel that is not in the range of the access point

will send its data over repeaters. Thanks to this property of AP-400, HSBS_WSN will operate

on a wide range.

 8

2 ARCHITECTURAL DESIGN

2.1 System Hardware Modules

Figure 2-1 Hardware Block Diagram

In Figure 2-1, hardware block diagram is shown. As seen in the figure, the data transfer

between SHT15 and PIC 16F877 are provided by SensiBus. PIC 16F877 is programmed by

the Programming Unit whenever needed. Moreover, an oscillator and a reset circuit are

essential parts for the proper functioning of PIC 16F877 and are connected to it. The data

transfer between PIC 16F877 and AP-400 is provided through RS-232 Serial Bus.

Furthermore, a power unit is connected to AP-400 and this power unit will supply the power

needed SP07 by converting it to 5V via voltage regulator 7805. AP-400 operates via 3.3 V

and PIC 16F877 operates via 5V. In order to avoid these power differences in RS232 port,

voltage level converter MAX3378 is used between AP-400 and PIC 16F877.

Temperature&Humidity

Sensor

SHT-15

PIC 16F877

Microcontroller

Oscillator

Reset Circuit

AP-400

SensiBus

RS-232 Bus

Power Unit

Voltage Level

Converter

ProgrammingUnit

 9

22pF

C1

Cap1

100nF
C3

Cap2

D1
Diode 1N4148

22K

R1
Res

1
2

Y1

XTAL

1
2
3
4

Sensor Connection

Header 4

22pF

C2

Cap2

GND

VCC

RA0/AN0
2

RA1/AN1
3

RA2/AN2/VREF-
4

RA3/AN3/VREF+
5

RA4/T0CKI
6

RA5/AN4/SS
7

RB0/INT
33

RB1
34

RB2
35

RB3/PGM
36

RB4
37

RB5
38

RB6/PGC
39

RB7/PGD
40

RC0/T1OSO/T1CKI
15

RC1/T1OSI/CCP2
16

RC2/CCP1
17

RC3/SCK/SCL
18

RC4/SDI/SDA
23

RC5/SDO
24

RC6/TX/CK
25

RC7/RX/DT
26

RD0/PSP0
19

RD1/PSP1
20

RD2/PSP2
21

RD3/PSP3
22

RD4/PSP4
27

RD5/PSP5
28

RD6/PSP6
29

RD7/PSP7
30

RE0/RD/AN5
8

RE1/WR/AN6
9

RE2/CS/AN7
10

VSS
12

VSS
31

MCLR/VPP
1

OSC1/CLKIN
13

OSC2/CLKOUT
14

VDD
11

VDD
32

U2

PIC16F877-20/P

V
C

C

+12

1
2

P1

Power Input

GND

1
2
3
4
5

P2

Programming Unit
GND

VCC
MCLR

SCK
SDA

SCK
SDA
VCC

GND

100nF

C4

Cap2

TX
RX

S1
SW-DPST

1uF

C5

Cap Pol1

IN
1

2

O
U

T
3

G
N

D

U1
7805

MCLR
GND

GND

I/O VL4
6

I/O VL1
1

I/O VL2
2

NC
4

THREE-STATE
3

I/O VL3
5

GND
7

I/O VCC4
8

I/O VCC3
9

VL
10

NC
11

I/O VCC2
12

I/O VCC1
13

VCC
14

U3

MAX3378

1
2
3
4

P3

Header 4

GND

SOUT
SIN
3V3

VCC
TX
RX

3V3

100nF

C6

Cap2

GND
SIN
SOUT
3V3

GND

1K

R2
Res

1K

R3
Res

S
C

K

S
D

A

VCC

Figure 2-2 General Schematic of SP07 (renewed)

In Figure 2-2, general schematic of SP07 is shown. SP07 is the name for the unit that includes

SHT15 and PIC 16F877 for convenience. This schematic shows the connections of the pins in

SHT15, Oscillator, Programming Unit, SensiBus, RS-232 Bus and PIC 16F877. We renewed

the schematic of SP07 board and eliminated the errors in previous schematic. Designing of

schematic was implemented with Altium Designer. This tool also allows us to design printed

circuit board (PCB) with this schematic.

 10

Figure 2-3 Printed Circuit Board (PCB) Design (v1.0)

This PCB is implemented by us manually with the help of our advisor assistant. Process is

described as follows:

After designing of PCB we print out the PCB print layout in 1-1 scale onto toner transfer

paper with the laser printer. Then we cut the circuit board into dimensions of our PCB design,

 11

we clean the copper plate of circuit board with cleaning powder. We stick the border of

printed paper onto cleaned copper plate and we pressed on it with heated iron. When slowly

ironing the paper, toners were appeared on copper plate after few minutes. If all wire roads

clearly appeared on plate then it can be placed into cool water container. Then we remove the

special paper on copper plate. Now it is ready to place into chemical solution for removing

unwanted copper plates on circuit board. This solution consists of two chemicals. First one is

Hydrochloric Acid (HCL, %38 concentration) with 1.5 measures and the second one is

Hydrogen Peroxide (H2O2) with 3 measures. After placing circuit board into the solution it

was waited about 1 minute. When the circuit wires become clear on board then we placed into

water container again for stopping the reaction on board with solution. Then we dried and

cleaned the board for drilling pin holes on the board. After drilling operation we placed and

soldered the circuit equipments and tested one by one for proper functioning when its work.

Figure 2-4 SP07 v1.0

 12

2.2 System Software Modules

Figure 2-5 Software Component Diagram

The system is composed of three main physical structures; first one is SP07, second AP-400

and third the server. From this point of view, the modules are defined under these three

structures hierarchically. The PIC Module which is included in SP07 is responsible for

manipulating the sensor read data within the SP07 and provide an interface to AP-400 for data

sending. AP Module is placed in AP-400 and requires an interface from SP07 to retrieve data

and process this data internally in AP-400 and operates in order to communicate with Server

Module and send the data provided. Status Module which is placed in AP-400 also provides

an interface for querying, restarting and turning off AP-400. Server Module provides an

interface for Main Module for sending requests to nodes and directs the data to Database

Module and node messages to Main Module. GUI Module operates on Server side and is

responsible for handling the user interactions like receiving user commands, displaying

system outputs, recording user settings. Main Module is placed on server and processes the

user commands. It requires an interface from Server Module to send requests and GUI

Module to return the outputs. Database Module handles the queries generated by sub

processes from Main Module and Server Module.

 13

2.2.1 PIC Module

PIC Module reads the sensor data via Data Bus according to its producer protocol. This

protocol includes the initialization of sensor and data bus for proper measuring of values.

Figure 2-6 Communication Start Sequence [2]

Measured data is calculated and stored in one memory unit in the banks. If interrupt is

detected on the RS232 port the PIC Module goes into send() routine and sends the stored

data to the RS232 stream. The routines for stated functions are as follows:

void communicationStart()
// generates a transmission start
// in figure 2-6 we shown the initial configuration of Data and CLK
pins for PIC
 1. set CLK pin high
 2. set DATA pin low
 3. reevaluate step 1&2 with complements of previous pin value
until two cycle

int sendCommandToSHT15(int8 iobyteiobyteiobyteiobyte)
//sending commands to sensor
 1. sends 8 bit
 2. wait ack
 3. return ack

int16 readBytesOnSensiBus ()
//reads a byte (data) from the SensiBus
 1. shift most significant bits
 2. send ack 0 bit
 3. shift least significant bits
 4. send ack 1 bit
 5. return int16 //read data

void waitSHT15Reading ()
//waits for internal functioning of SHT15 - data reading
 1. set DATA pin high
 2. set CLK pin low
 3. wait >1 ms
 4. if DATA pin is low then SHT15 is ready

2 Humidity & Temperature SHT15 Sensor Datasheet (p.3)

 14

 5. wait 100ms

Figure 2-7 Measurement Sequence [3]

int16 measuretemp ()
//in figure 2-7 measurement sequence is showed
//measure SHT15 temperature
// #define MEASURE_TEMP 0x03
 1. call communicationStart()
 2. call sendCommandToSHT15(MEASURE_TEMP)
 3. read return ack
 4. call waitSHT15Reading()
 5. call readBytesOnSensiBus()
 6. read return iobyte
 7. return iobyte

int16 measurehum ()
//measure SHT15 humidity
// #define MEASURE_HUM 0x05
 1. call communicationStart()
 2. call sendCommandToSHT15(MEASURE_HUM)
 3. read return ack
 4. call waitSHT15Reading()
 5. call readBytesOnSensiBus()
 6. read return iobyte
 7. return iobyte

void calculate_data (int16 temptemptemptemp, int16 humidhumidhumidhumid)
//required equations and parameters are showed in sensor datasheet
 1. calculate the data according to sensor producers equation

void sht15_initialization ()
//first initialize of sht15 sensor
 1. communicationReset()
 2. delay 20 ms //for powering sensor

void communicationReset ()
//resets the communication and reestablished it
 1. set DATA pin high
 2. set CLK pin low
 3. toggle CLK pin for 9 times
 4.call communicationStart()

void SHT15ReadCalculate()
 1. call measuretemp()
 2. read and store returned iobyte

3 Humidity & Temperature SHT15 Sensor Datasheet (p.4)

 15

 3. call measurehum()
 4. read and store returned iobyte
 5. call calculate_data(temtemtemtempppp, humidhumidhumidhumid) with stored_parameters

void main(){
 1. call sht15_initialization()
 2. in infinite loop make procedure
 3. call SHT15ReadCalculate()
 4. delay 500 ms //for prevent to self heating of sensor
 5. if interrupts come send measured temptemptemptemp and humidhumidhumidhumid value to rs232
port
 6.return success

2.2.2 AP Module

The AP Module opens the serial device ‘ttyS0’ and polls the PIC Module with a single

character string as “T” for temperature and “H” for humidity. Then it waits for the serial input

as strings from the PIC Module which is described as “T val” and “H val” for temperature

and humidity accordingly. The first character of the string defines the type of the following

floating point data in the “val”. AP Module parses the string and checks whether there is any

threshold violation where the threshold values are defined in “thresholds.txt”. If a violation is

detected an alert message is sent to Server Module over a TCP socket.

On the other hand AP Module opens a TCP socket for handling Server Module connections,

and if a connection exists, AP Module sends the “T val”, “H val” strings over TCP socket.

The pseudo code routines of these processes are described as follows:

string readSensor(string ssss)
 1. write(ssss) to serial port,
 2. read() from serial port to string resultresultresultresult,
 3. Return resultresultresultresult.

int check(string ssss)
 1. if ssss[0]=’T’ then do
 2. if not MAX_TEMP > atof(ssss+2) > MIN_TEMP then do
 3. Return 1.
 4. else if ssss[0]=’H’ then do
 5. if not MAX_HUMD > atof(ssss+2) > MIN_HUMD then do
 6. Return -1.
 7. else do
 8. Return 0.

void initServerSocket()
 1. Allocate a TCP socket sockservsockservsockservsockserv,
 2. Setup socket structure sockservsockservsockservsockserv for port 2000,
 3. Bind it with the OS,
 4. Start listening,
 5. Return.

Void initClientSocket()
 1. Allocate a TCP socket sockclisockclisockclisockcli,
 2. Setup socket structure sockclisockclisockclisockcli for port 2001,
 3. Connect to socsocsocsockclikclikclikcli,

 16

 4. Return.

void initTty(string devicedevicedevicedevice)
 1. open devicdevicdevicdevice with read/write option,
 2. Setup the terminal I/O structure tiotiotiotio,
 3. Set the control, input, output flags of tiotiotiotio according to
BAUDRATE, LOCAL, NO_PARITY,
 4. Enable canonical inputting,
 5. Clear the devicedevicedevicedevice line,
 6. Activate settings for serial port,
 7. Return.

void apServer()
 1. Wait for inbound TCP connection inbound_connectioninbound_connectioninbound_connectioninbound_connection,
 2. While there is inboundinboundinboundinbound____connectionconnectionconnectionconnection and STATUS is ON do
 3. read() from serial device to string ssss,
 4. if (check(ssss) = -1) then
 5. sendAlert(HUMD, ssss).
 6. else if (check(ssss) = 1) then
 7. sendAlert(TEMP, ssss).
 8. end.
 9. write(ssss) to inbound_inbound_inbound_inbound_connectionconnectionconnectionconnection,
 10. end.
 11. Return.

void sendAlert(int typetypetypetype, string ssss)
 1. initClientSocket(),
 2. write(typetypetypetype + ssss) to socket,
 3. close(sockclisockclisockclisockcli),
 4. Return.

Void getThresholds(file ffff)
 1. open(ffff) for reading,
 2. read() from ffff,
 3. Set MAX_TEMP, MIN_TEMP, MAX_HUMD, MIN_HUMD,
 4. close(ffff),
 5. Return.

void getStatus(file ffff)
 1. open(ffff) for reading,
 2. read() from ffff,
 3. set STATUS,
 4. close(ffff)
 5. Return.

void statusChange(int sigsigsigsig)
 1. if sigsigsigsig is TURNOFF then
 2. set STATUS to STANDBY,
 3. else if sigsigsigsig is TURNON then,
 4. set STATUS to ON,
 5. else if sig is NEWTHRESHOLDS then,
 6. getStatus(“status.txt”),
 7. else do nothing,
 8. Return.

int main()
 1. initTty(TTYS0),
 2. initServerSocket(),
 3. assign signals sigsigsigsig TURNOFF, TURNON, NEWTHRESHOLDS, to
statusChange(sigsigsigsig),
 4. getThresholds(“thresholds.txt”),
 5. getStatus(“status.txt”),
 6. apServer(),
 7. close(sockservsockservsockservsockserv),
 8. Exit.

 17

2.2.3 Status Module

The Status Module provides an interface for Server Module for actions like sending ‘reboot’,

‘turn on’, ‘turn off’ requests, setting node thresholds and retrieving node status information. It

opens a TCP socket and listens for the requests from Server Module. Each request consists of

a string in the form “RequestID: [reboot | turnoff | turnon | status |

setThreshold(MAX_TEMP, MIN_TEMP, MAX_HUMD, MIN_HUMD)]”. Status Module parses

the request message, and takes the according action. The pseudo code routines of these

processes are as follows:

Void initClientSocket()
 1. Allocate a TCP socket sockclisockclisockclisockcli,
 2. Setup socket structure sockclisockclisockclisockcli for port 2003,
 3. Connect to socksocksocksockclicliclicli,
 4. Return.

void initServerSocket()
 1. Allocate a TCP socket sockservsockservsockservsockserv,
 2. Setup socket structure sockservsockservsockservsockserv for port 2002,
 3. Bind it with the OS,
 4. Start listening,
 5. Return.

void rebootAP()
 1. Wait for 5000ms.
 2. Call system call reboot.

void turn_off()
 1. Send TURNOFF signal to process AP Module,
 2. saveState(STANDBY),
 3. Return.

void turn_on()
 1. Send TURNON signal to process AP Module,
 2. saveState(ON),
 3. Return.

void send_info()
 1. initClientSocket(),
 2. write(“state: STATE thresholds: MAX_TEMP, MIN_TEMP, MAX_HUMD,
MIN_HUMD, uptime: UPTIME”) to sockclisockclisockclisockcli,
 3. close(sockclisockclisockclisockcli),
 4. Return.

void setThresholds(file ffff)
 1. open(ffff) for writing,
 2. write (“MAX_TEMP MIN_TEMP MAX_HUMD MIN_HUMD”) to ffff,
 3. close(ffff),
 4. Send NEWTHRESHOLDS signal to process AP Module,
 5. Return.

void parseRequest(string ssss)
 1. set requestIDrequestIDrequestIDrequestID to RequestID,
 2. get requestrequestrequestrequest from ssss,

 18

 3. if requestrequestrequestrequest = REBOOT then
 4. rebootAP().
 5. else if requestrequestrequestrequest = TURNOFF then
 6. turn_off(),
 7. Return.
 8. else if requestrequestrequestrequest = TURNON then
 9. turn_on(),
 10. Return.
 11. else if requestrequestrequestrequest = STATUS then
 12. send_info(),
 13. Return.
 14. else if requestrequestrequestrequest = setThreshold then
 15. extract MAX_TEMP, MIN_TEMP, MAX_HUMD, MIN_HUMD,
 16. setThresholds(“threshold.txt”),
 17. Return.
 18. else do nothing.
 19. Return.

Void statusServer()
 1. Wait for inbound TCP connection inbound_connectioninbound_connectioninbound_connectioninbound_connection,
 2. While there is inbound connection do
 3. read() from inbound_connection inbound_connection inbound_connection inbound_connection to string ssss,
 4. parseRequest(ssss),
 5. end.
 6. Return.

int main()
 1. initServerSocket(),
 2. statusServer(),
 3. close(sockservsockservsockservsockserv),
 4. Exit.

2.2.4 Server Module

What Server Module simply does is, establish a connection to database server, setup a TCP

socket for collecting the data from nodes in the active nodes list. On the other hand Server

Module opens another TCP socket for receiving alert messages, and sending request strings of

the type “RequestID: [reboot | turnoff | turnon | status | setThreshold(

MAX_TEMP, MIN_TEMP, MAX_HUMD, MIN_HUMD)]” and request results. The pseudo code

routines of these processes are as follows:

void initRequestClientSocket(string ipipipip)
 1. Allocate a TCP socket sockclisockclisockclisockcli,
 2. Setup socket structure sockclisockclisockclisockcli for port 2002,ipipipip,
 3. Connect to sockclisockclisockclisockcli,
 4. Return.

void initRequestServerSocket()
 1. Allocate a TCP socket sockservsockservsockservsockserv,
 2. Setup socket structure sockservsockservsockservsockserv for port 2001,2003
 3. Bind it with the OS,
 4. Start listening,
 5. Return.

void initCollectDataClientSocket(string ipipipip)

 19

 1. Allocate a TCP socket sockclisockclisockclisockcli,
 2. Setup socket structure sockclisockclisockclisockcli for port 2000,ipipipip,
 3. Connect to sockclisockclisockclisockcli,
 4. Return.

void RequestServer()
 1. Wait for inbound TCP connection inbound_connectioninbound_connectioninbound_connectioninbound_connection,
 2. While there is inbound_connectioninbound_connectioninbound_connectioninbound_connection do
 3. read() from serial device to string ssss,
 4. if ssss:type is ALERT then
 5. send signal ALERT to Main Module,
 6. else if ssss:type is STATUS then
 7. send signal STATUS to Main Module,
 8. end.
 9. Return.

void collector()
 1. for each node in the active node list do
 2. initCollectDataClientSocket(node.ipnode.ipnode.ipnode.ip),
 3. receive() from sockclisockclisockclisockcli to float temptemptemptemp, humdhumdhumdhumd,
 4. mysql.insertIntoTable(temptemptemptemp, humdhumdhumdhumd),
 5. end.
 6. Go to step 1.

void sendRequest(sigsigsigsig)
 1. string requestrequestrequestrequest buildRequest (sigsigsigsig),
 2. initRequestClientSocket(sigsigsigsig:ipipipip),
 3. write(requestrequestrequestrequest) to sockclisockclisockclisockcli,
 4. close(sockclisockclisockclisockcli),
 5. Return.

void main()
 1. mysql.connectDB(HOSTNAME, DB),
 2. initRequestServerSocket(),
 3. assign signals sendRequest(sigsigsigsig) from Main Module,
 4. RequestServer(),
 5. collector(),
 6. Exit.

2.2.5 Database Module

The Database Module provides interfaces for Main Module and Server Module for querying

and updating the database. Methods as connectDatabase(), createTable(),

insertIntoTable(), dropTable(), updateTable() are offered to system. The database

module of the system will be taken from an existing API; therefore the methods are not going

to be described in detail here. Class diagrams can be seen for further information.

2.2.6 Main Module

The Main Module requires interfaces from Server Module, Database Module and GUI

Module for actions like changing node status, fetching data from database, collecting

messages and regulating the data for outputting. The base class of the Module is Node class.

The methods getStatus(), changeNodeState(), rebootNode(), acknowledge() are

 20

offered as interface. The routines of these methods are as follows;

void getStatus(){
 1. If stastastastatustustustus = UNREACHABLE then,
 2. Return.
 3. Else,
 4. Generate requestIDrequestIDrequestIDrequestID
 5. Call server.sendRequest(nodeIDnodeIDnodeIDnodeID, STATUS, requestIDrequestIDrequestIDrequestID)
 6. Return.
}

void changeNodeState(){
 3. If sssstatustatustatustatus = ON then,
 4. Generate requestIDrequestIDrequestIDrequestID
 5. Call server.sendRequest(nodeIDnodeIDnodeIDnodeID, TURNOFF, requestIDrequestIDrequestIDrequestID)
 6. Else if sssstatustatustatustatus = STANDBY then,
 7. Generate requestID
 8. Call server.sendRequest(nodeIDnodeIDnodeIDnodeID, TURNON, requestIDrequestIDrequestIDrequestID)
 9. Return.
}

void rebootNode(){
 1. If sssstatustatustatustatus is UNREACHABLE then,
 2. Return.
 3. Else,
 4. Generate requestIDrequestIDrequestIDrequestID
 5. Call server.sendRequest(nodeIDnodeIDnodeIDnodeID, REBOOT, requestIDrequestIDrequestIDrequestID)
 6. Return.
}

 21

3 CLASS DIAGRAMS

3.1 Diagram

Figure 3-1 Class Diagram

+getStatus() : void

+changeNodeState(in state : int) : void

+rebootNode() : void

+acknowledge() : bool

-nodeIP : string

-nodeLocation : string

-nodeID : int

-nodeStatus : bool

Node

+drawBarChart(in data : Graph)

+drawLineChart(in data : Graph)

+drawTrendLineChart(in data : Graph)

-startDate : Date

-endDate : Date

-pointInterval : int

-xAxisScale : int

-yAxisScale : int

Graph

+connectDatabase() : Database

+createTable(in tableName : string, in columnName : string)

+insertIntoTable(in tableName : string, in columns : string, in values : string)

+dropTable(in tableName : string) : bool

+updateNodeInfoTable(in oldColumns : string, in oldValues : string, in newColumns : string, in newValues : string) : void

-serverIP : string

-dbName : string

-portNumber : int

-userName : string

-userPasswd : string

-db : object

-timeOut : int

Database

+saveData(in nodeNumber : int, in tableName : string, in data : uint) : bool

«interface»

dataRecorderHandler

+getData(in sqlParameter : string, in sqlQuery : string) : object

+executeQuery(in sqlParameter : string, in parameterList : string, in sqlQuery : string) : bool

«interface»

dataQueryHandler

«uses»

«uses»

+getNodeList() : string

+getStates() : void

+showWsnSitePlan() : void

+nodeAction(in nodeID : int, in action : int) : void

-nodeList : string

nodeMonitor

+isCheckedNode(in nodeID : int) : bool

+drawCharts() : void

-nodeList : string

-object : Graph

-isLatestChecked : bool

-pointInterval : int

-startDate : Date

-endDate : Date

-chartType : int

dataAnalyzer

+generateReport() : void

+saveFile() : void

+viewFile() : void

+printFile() : void

+isCheckedNode(in nodeID : int) : bool

+browsePath(in path : string) : void

-isCheckedHumidity : bool

-isCheckedTemperature : bool

-isCheckedGraphs : bool

-isCheckedComments : bool

-isCheckedAuthor : bool

-fileType : int

-startDate : Date

-endDate : Date

-fileName : string

-filePath : string

-nodeList : string

-filePreview : string

ReportGenerator

+listenStatus() : void

+listenData() : void

+recordData() : void

+returnStatus(in nodeID : int) : void

+returnAck(in nodeID : int) : void

+requestStatus(in nodeID : int) : void

+sendRequest(in param1 : int, in param2 : int, in param3 : int) : void

-statusPort : int

-dataPort : int

-serverIP : string

Server

«uses»

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*

«uses»

 22

3.2 Class Tables

NodeMonitor

Attribute Name Type Description

Attributes
nodeList Node[] Holds all the information about sensors in the database

Method Name Return Arguments Description

Methods
getNodeList Node[] Void Extracts all the information about

sensors in the database

 getStates Void Void Determines the states of all sensors
with the help of server module

 showWsnSitePlan Void Void Displays the existing site plan

 nodeAction Void Int, Int Perform node applications(turn
on&off, reboot node, ack node)

DataAnalyzer

Attribute Name Type Description

Attributes
nodeList Node[] Holds all the information about sensors in the database

 Graph Object
graph

 23

 isLatestChecked Bool Holds the value of the Latest checkbox

 pointInterval Int Sets the x axis interval

 startDate Date Start date of the measured data

 endDate Date End date of the measured data

 chartType Int Holds the chart type

Method Name Return Arguments Description

Methods
isCheckedNode Void Void Determines whether checkbox of a node

is checked or not

 drawCharts Void Void Draws the charts according to user
preference

ReportGenerator

Attribute Name Type Description

Attributes
nodeList Node[] Holds all the information about sensors in the

database

 isCheckedTemperature Bool Holds the value of temperature checkbox

 isCheckedHumidity Bool Holds the value of humidity checkbox

 isCheckedGraphs Bool Holds the value of graph checkbox

 24

 isCheckedComments Bool Holds the value of comments checkbox

 isCheckedAuthor Bool Holds the value of author checkbox

 fileType Int Holds the value of file type dropdownlist

 startDate Date Holds the value of start from dropdownlist

 endDate Date Holds the value of end dropdown list

 fileName String Holds the value of file name textbox

 filePath String Holds the value of save to textbox

 filePreview String Holds the value of text version of generated data

Method Name Return Arguments Description

Methods
generateReport Void Void Shows the data in preview textbox

with respect to user preferences

 browsePath Void String Browse the path of the file to be
saved

 saveFile Void Void Saves the generated data

 viewFile Void Void Views the print preview of the
generated data

 printFile Void String Prints out the generated data

 25

Graph

Attributes

Attribute Name Type Description

 startDate Date Start date of the measured data

 endDate Date End date of the measured data

 pointInterval Int Holds the interval of x axis selected by the
user(minutely, hourly, daily)

 xAxisScale Int Holds the interval of x axis scale

 yAxisScale Int Holds the interval of y axis scale

Method Name Return Arguments Description

Methods
drawBarChart Void Void Draws the bar chart of requested data

 drawLineChart Void Void Draws the line chart of requested data

 drawTrendLine Void Void Draws the line chart of requested data

Node

Attributes Attribute Name Type Description

 26

 nodeIP String Holds IP of the node

 nodeLocation String Holds the location of the node

 nodeID Int Holds the unique id of the node

 nodeStatus Bool Holds the state of the node

Method Name Return Arguments Description Methods

getStatus Void Void Sends a request to the server module to

get the state of the node

 changeNodeState Void Int Sends a request to the server module to
change the state of the node

 rebootNode Void Void Sends a request to the server module to
reboot the node

 acknowledge Bool Void Request the acknowledge message of the
requested actions

Server

Attributes Attribute
Name

Type Description

 statusPort Int Holds the port number for the status

 dataPort Int Holds the port number for the incoming data

 27

 serverIP String Holds the unique id of the server

Method
Name

Return Arguments Description Methods

listenStatus Void Void Listens the status port

 listenData Void Int Listens the data port

 recordData Void Void Records the data which is buffered from the
data port

 returnStatus Bool Int Returns the state of the node buffered from
the status port to whom it requested it

 returnAck Void Int Returns the acknowledgement of the requests.

 sendRequest Void Int, Int, Int Sends a request to the Status Module in
HSBS Sentinel in order to learn the state, turn
on, turn off or reboot.

Database

Attributes Attribute Name Type Description

 serverIP String Holds the IP of the database server

 dbName String Holds the name of the database

 username String Holds the username of the user who will login to the
database

 28

 userPasswd String Holds the password of the user who will login to the
database

 timeOut Int Holds the connection timeout value

Method Name Return Arguments Description Methods

connectDatabase Bool Void Creates a connection to the database

 createTable Void String,
String[]

Creates a table in the database

 insertIntoTable Void String,
String[],

Inserts a values into a table as a row

 dropTable Void String Deletes the table

 updateTable Void String[],
String[],
String

Updates the table with the new values

dataRecorderHandler <<interface>>

Method
Name

Return Arguments Description Methods

saveData Void Int, String,
Uint

Saves the data which is coming from the
server module

dataQueryHandler <<interface>>

 29

Method Name Return Arguments Description

getData DataTable String,
String

Gets the result of the query from the
database

Methods

executeQuery Bool String,
String,
String

Executes the requested query

 30

4 SEQUENCE DIAGRAMS

Figure 4-1 Node Monitor

Figure 4-2 Data Analyzer

 31

reportGenerator

generateReport()

dataAnalyzer Graph dataQueryHandler

drawCharts() getData(parameter,query)

Database

executeQuery(parameter,paramList,query)

DataTableDataTablechart
chart

isCheckedNode(nodeID)

saveFile()

OsFileSystem

printFile()

viewFile()

Figure 4-3 Report Generator

 32

5 USER INTERFACE

The HSBS WSN Soft which will run on the server constitutes the user interface of the project.

The user interface has three parts namely Node Monitor, Data Analyzer and Report

Generator. The following text describes these three features in detail.

5.1 Node Monitor

Figure 5-1 Node Monitor

Node Monitor tab has three panels as can bee seen in the Figure-5-1; node list, location map

and activation output.

The left side panel lists the nodes with the names user has defined while initiating the system.

Little squares before the node names illustrates the status of the node in such a way that

“green” square means the node is alive, “red” square means node is turned off, “gray” square

means node is unreachable. If a right click mouse event occurs on a node in this panel a menu

shows up as shown in the Figure-5-2 allowing user to trigger four actions; ping the node, turn

 33

the node off, turn the node on and reboot the node.

Ping

Turn off

Turn on

Reboot

Figure 5-2 Right Click Menu

The location map illustrates the node locations according to their definition to the system.

This part is only for only demonstrating the overall view of the system, no interactions are

provided to user. The colored circles represent the positions of the nodes. The colors are

captured from the left side node list panel.

Figure 5-3 Activation Output

The activation output panel in Figure 5-3 displays the messages of system responses the user

actions over nodes. The displayed text also recorded into “ActivationLog.txt” in file system.

 34

5.2 Data Analyzer

HSBS Smart - WSN Soft v0.1HSBS Smart - WSN Soft v0.1

Report GeneratorNode Monitor

File View Help

Data Analyzer

Node #1

Node #2

Node #3

Node #4

Node #5

Node #6

Node #7

Node #8

Minutely

15

17

19

21

23

25

23:21 23:22 23:23 23:24 23:25 23:26 23:27 23:28 23:29 23:30 23:31 23:32 23:33 23:34 23:35 23:36

Temperature

Hourly

15

17

19

21

23

25

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Humidity

Trend Line
Line

Bar
Graph Type

18/01/2008 17:00 19/01/2008 17:00

Start From End

Latest

Figure 5-4 Data Analyzer

Data Analyzer tab allows user to see the recorded data on graph illustrations. The nodes

defined in the system are listed in the left side panel and specified types of graphs are plotted

on the window according to the options specified by user using options panel.

The node list on the left side panel includes checkboxes for each node and user can add or

remove the nodes to be displayed in the graphs. Different colors are assigned to each node to

make the graphs more understandable.

Figure 5-5 Graph Options Panel

The options panel in the Figure 5-5 consists of two parts, first the graph type radio group and

second part is time panel to set the interval of the graph to be plotted. In the graph type radio

group there are three types of graphs as, bar, trend line and line and if a change event occurs

 35

the graphs are redrawn. The time panel allows user to define the start and end points of the

graph in means of time. The user also can select to display latest time interval and let the

program select the interval.

15

17

19

21

23

25

23:21 23:22 23:23 23:24 23:25 23:26 23:27 23:28 23:29 23:30 23:31 23:32 23:33 23:34 23:35 23:36

Figure 5-6 Plotted Graphs

There always two graphs are drawn a temperature and a humidity like in Figure 5-6. User can

set the frequency of the data shown from the combo box on the right top of each graph. The

minutely, hourly and daily options are listed here and if user changes this setting the graph

related is redrawn. Each line or bar on the graph is related to a node on the left side node list

panel.

 36

5.3 Report Generator

Figure 5-7 Report Generator

Report Generator in tab in Figure 5-7 contains seven parts as left side node list panel, include

option panel, file save panel, generate report panel, time panel, print panel and preview panel.

The left side node list panel is same with the panel in Data Analyzer tab and lets the user by

check boxes to define to include or exclude the nodes which the report will be created about.

Include

Humidity

Temperature

Comments

Author

Graphs

Figure 5-8 Include Panel

Include options panel allows user to select the information which is going to be reported. User

can leave out the unwanted info by deselecting the checkboxes on each row. The include

options panel can be seen in detail in Figure 5-8.

 37

MS Office Excel *.xsl
MS Office Word *.doc
Text Document *.txt

Adobe PDF *.pdf

File Type

C:\Documents and Settings\admin_us...

Save to:

File Name:

17_09__19_01_08_report.pdf

Browse

Include Date and Time

Save

Figure 5-9 File Save Panel

The file save panel in Figure 5-9 has two parts; first one is file type selection combo box and

second part is path and file name textbox and buttons. The user can select through four types

of file formats which are Adobe PDF, MS Office Excel, MS Office Word and plain text

document. Save to text input box displays the path where the file to be saved and file name

text input file allows user to type in a custom name. The user can check the “include date and

time” check box allowing program to add time and date info to file name.

Figure 5-10 Generate Report Panel

Generate report panel consists of a time panel, a help icon and a generate button which are

used for defining the time interval that the information in the report will be built on,

displaying a calendar for supporting the user while deciding on interval and generating the

report accordingly.

Figure 5-11 Print Panel

Print panel has two icons representing the print preview and print functions. User can preview

the generated report before printing by clicking on the print preview icon and can print the

report by clicking the print icon.

The preview panel is to display the preview of the generated report in a simple text view

mode. Objects like graphs or images are included as tags, (<<graph01>>, <<image002>>).

 38

6 PROJECT SCHEDULE

6.1 Finished Work

• The SHT15 Temperature & Humidity Sensor Datasheet has been examined.

Furthermore, the schematic of SHT15 has been analyzed.

• RS-232 Serial Communication Bus Protocol which is used in data transferring

between AP-400 and PIC 16F877 has been examined.

• We have assembled a SHT15 on a CENG 336 Board in order to try our PIC-sensor

protocol.

• We have implemented the PIC Module. This module retrieves the data from a sensor,

processes it and sends this data to AP-400 over RS-232.

• After implementing the PIC Module successfully, next mission was to obtain a SP07.

In order to obtain a SP07, firstly we have drawn the schematic and PCB layout of

SP07. Next, we have printed the board with the help of this schematic and layout.

• We have configured Embedded Linux kernel of AP-400 and reloaded it. We have

disabled the serial console of AP-400 which was implemented by default and now, AP

Module can use the serial port.

• We have implemented a basic version of AP Module. This module reads the values

from the serial port and sends the data to the Server Module on the server.

• We have implemented a basic version of Server Module. This module gets the data

from an HSBS Sentinel over TCP/IP protocol, checks the data against an alert

condition and prints an alert message on the screen if the data violates the alert

condition. Furthermore, this module saves the incoming data into the database.

• We have created the database and necessary tables.

• For the prototype demo, we have implemented a simple interface that is used to show

the last 15 temperature and humidity values. The data shown is refreshed every 5

 39

seconds.

• Now, we are able to read data from sensors to PIC, send it to AP-400 over RS-232

port, read data from PIC to AP-400 over serial port, send it to the server over TCP/IP,

read data from HSBS Sentinel to server over TCP/IP, save it to the database and show

the data via a simple user interface.

Figure 6-1 HSBS Sentinel v1.0

6.2 Future Work

• We are going to implement two more SP07s. With these two SP07s and two AP-400s,

we are going to obtain two more HSBS Sentinels and totally with the existing one, we

will have three HSBS Sentinels.

• We are going to upgrade the AP Module. In the demo version we have implemented,

AP-400 reads data from the serial port periodically. However, the final AP Module

will send a request to the PIC Module and the PIC Module will send a temperature

value or a humidity value depending on the request. Furthermore, alert condition

testing will be implemented.

• We are going to modify the PIC Module a bit. In the demo version, PIC Module sends

temperature and humidity values to the AP Module periodically. In the final version,

PIC Module will send a temperature or a humidity value depending on the request

from the AP Module.

 40

• We are going to implement the Status Module. This module, will turn off, reboot or

turn on the node depending on the request from the Server Module. Moreover, it will

get the user defined alert conditions from the Server Module and write them to the

flash of AP-400. Furthermore, this module will send data about the state of the node to

the Server Module.

• We are going to modify the Server Module significantly. In the demo version, it just

gets temperature and humidity values from AP Module and records the data to the

database. However, in the final version, in addition to the demo version, the Server

Module will send turning on and off and rebooting requests to the Status Module.

Moreover, it will send user defined alert conditions to the Status Module. Furthermore,

it will get the status of the node from the Status Module. In addition to these, this

module get the alert messages from the AP Module.

• We are going to implement the Main Module. Generally, this module is an interface

for Server, GUI and Database Modules. In addition, it will handle alert conditions.

• The GUI Module will be implemented. This module will provide a user interface and

generally, this interface will be used to monitor temperature and humidity values of

the specified nodes and states of the nodes, to turn on, turn off and reboot the nodes

and to create reports of the information about the nodes.

• The next step is to build a wireless mesh network via a number of HSBS Sentinels,

some repeaters, an access point and a server.

• The last step is to use HSBS_WSN in a scenario. This scenario will be created in the

spring semester.

6.3 Gantt Chart

Gantt Charts of first and second semester can be found in Appendix-A and Appendix-B

accordingly.

 41

7 REFERENCES

1. Wikipedia, Wireless Sensor Network, October 2007, http://en.wikipedia.org/wiki/Wsn

2. Jason Lester Hill, System Architecture for Wireless Sensor Networks, 2003,

http://www.jlhlabs.com/jhill_cs/jhill_thesis.pdf

3. SHT1x Breakout Board, 2007, http://www.sparkfun.com/datasheets/Sensors/ SHT15-

Breakout-Schematic.pdf

4. P. Raghavan, Amol Lad, Sriram Neelakandan, “Embedded Linux System Design and

Development”, Auerbach, (2005).

5. Data_Sheet_humidity_sensor_SHT1x_SHT7x_E.pdf,2007

http://www.sparkfun.com/commerce/product_info.php?products_id=8257/Data_Sheet

_humidity_sensor_SHT1x_SHT7x_E.pdf

 42

APPENDICES

Appendix A

Figure A-1 General View of the Gantt Chart of 1st Semester

Following 2 images show the Gantt Chart of 1st Semester in detail.

 43

 44

 45

Appendix B

Figure B-1 General View of the Gantt Chart of 2nd Semester

Following 6 images show the Gantt Chart of 2nd Semester in detail.

 46

 47

 48

 49

 50

 51

