

MIDDLE EAST TECHNICAL

UNIVERSITY

COMPUTER ENGINEERING

DEPARTMENT

CENG 491

INITIAL DESIGN REPORT

SERKAN ÇAĞLAR 1347285

BURAK CANSIZOĞLU 1347244

SERDAR KOÇBEY 1250471

HANĐFĐ ÖZTÜRK 1298140

 1

1 INTRODUCTION.. 4

1.1 Purpose of the Document ... 4

1.2 Detailed Problem Definition .. 4

1.3 Design Constraints ... 5

1.3.1 Financial Constraints.. 5

1.3.2 Manufacturing Constraints ... 5

1.3.3 Ergonomic Constraints ... 5

1.3.4 Power Constraints .. 6

1.3.5 Resource Constraints.. 6

1.3.6 Lack of Experience of Team Members .. 6

1.3.7 Time Constraints .. 6

1.4 Design Objectives and Goals ... 6

1.4.1 Power.. 6

1.4.2 Lifetime .. 7

1.4.3 Security... 7

1.4.4 Accuracy... 7

1.4.5 Size ... 7

1.4.6 Cost... 7

1.4.7 Wide Range .. 7

2 ARCHITECTURAL DESIGN... 8

 2

2.1 System Hardware Modules .. 8

2.2 System Software Modules.. 10

2.2.1 PIC Module .. 11

2.2.2 PIC Communication Module ... 11

2.2.3 Status Module... 12

2.2.4 Server Communication Module ... 13

2.2.5 Server Module .. 13

2.2.6 Database Module.. 14

2.2.7 Main Module .. 14

3 CLASS DIAGRAMS ... 16

3.1 Diagram.. 16

3.2 Class Tables.. 17

4 SEQUENCE DIAGRAMS... 25

5 USER INTERFACE... 27

5.1 Node Monitor ... 27

5.2 Data Analyzer... 29

5.3 Report Generator .. 31

6 PROJECT SCHEDULE ... 33

6.1 Finished Work .. 33

6.2 Future Work ... 34

6.3 Gantt Chart ... 35

 3

7 REFERENCES... 35

APPENDICES.. 36

Appendix A .. 36

Appendix B .. 41

 4

1 INTRODUCTION

1.1 Purpose of the Document

In the requirement analysis report, we had determined the requirements of our project. With

the help of resolving software, hardware, functional and non-functional requirements, we

have prepared the initial design report of our project. The initial design report made us

comprehend the details and different aspects of the project more clearly and conceptualize the

overall product that will be formed accurately. In the design process, we intended to design an

effective and modular product that will satisfy the needs and constraints of the project. In the

initial design report, we used specific types of UML diagrams like class, sequence and

dataflow diagrams. Owing to these diagrams, we have been able to explain the functional,

structural and behavioral features of our system.

1.2 Detailed Problem Definition

As the technology evolves, usage of wireless networks has been increased remarkably. In

parallel to this, application area of embedded systems integrated with wireless networks has

expanded. As a result of this development, wireless sensor networks emerged in the last

decade.

A wireless sensor network (WSN) is a wireless network consisting of spatially distributed

autonomous devices using sensors to cooperatively monitor physical or environmental

conditions, such as temperature, sound, vibration, pressure, motion or pollutants, at different

locations.
1

Wireless sensors are far more efficient and feasible than their wired counterparts with respect

to their easiness of use, wider range and application areas and less deployment costs. In our

project, we aim to establish a wireless sensor network (HSBS_WSN) that will support IEEE

1Wikipedia, Wireless Sensor Network, http://en.wikipedia.org/wiki/Wsn, October 2007

 5

802.11 protocol. Supporting IEEE 802.11 protocol of a sensor enables a computer that also

supports IEEE 802.11 protocol to receive data from this sensor directly. Most of the wireless

sensors in the market support some protocols like ZigBee and IEEE 802.15; however,

unfortunately there are too few sensors that support IEEE 802.11 and these types of sensors

are too expensive for us to buy. Because of this, we have decided to build our own wireless

sensor node (HSBS Sentinel). HSBS Sentinels will have two main advantages. Firstly, they

will communicate directly with PCs that support IEEE 802.11. Secondly, they will be more

affordable than the other wireless sensors that are available in the market. In the project, there

will be a number of HSBS Sentinels which some of them will be in both access point and

bridge modes. Moreover, there will be a server that will collect data from HSBS Sentinels and

store the data in a database. Furthermore, a user interface that will be used to monitor and

process the data will be implemented on this server. HSBS WSNs will be able to be used in

various applications like environmental monitoring, habitat monitoring, acoustic detection,

seismic detection, military surveillance, inventory tracking, medical monitoring, smart spaces,

process monitoring, structural health monitoring, health monitoring and security monitoring.

1.3 Design Constraints

1.3.1 Financial Constraints

In the market, there are a limited number of wireless sensors that support IEEE 802.11

protocol. However, these sensors are not affordable for us. Therefore, we have to design our

own wireless sensor nodes.

1.3.2 Manufacturing Constraints

Since we have to build our own wireless node, we are going to obtain some hardware

equipments and assemble them. However, we may have some problems while combining

these different parts and we cannot foresee the difficulties that we may confront. Furthermore,

obtaining these equipments take time. For instance, we ordered SHT15s from USA and we

have not received them yet and this is a factor that slows us down.

1.3.3 Ergonomic Constraints

Since hardware interface (PCB) and an AirTies AP-400 will be used in HSBS Sentinels, our

wireless nodes will be larger and bulkier than other wireless sensors in the market. This

 6

makes HSBS Sentinels be less ergonomic.

1.3.4 Power Constraints

Because we are using a PCB and an AirTies AP-400 in HSBS Sentinels, we are forced to use

the power adapters of the board and AP-400. For this reason, HSBS Sentinels will need a

power socket.

1.3.5 Resource Constraints

Because wireless sensor network area is a new and vast area, this subject is in fact currently

being researched by universities and institutions world wide. For this reason, we have

difficulties in finding enough resources.

1.3.6 Lack of Experience of Team Members

Since the group members have taken a few hardware courses and have little experience on

hardware, sometimes it is difficult for us to visualize the details of the project.

1.3.7 Time Constraints

The schedule of the project is determined by the CENG 491 course syllabus. From now on,

we have about six months to finalize the project successfully. The detailed design of the

project should be finished in a month. Working on the prototype and preparation of it will be

handled concurrently and it should be accomplished in one and a half month.

1.4 Design Objectives and Goals

1.4.1 Power

As we stated in the design constraints section, HSBS Sentinels will consist of a PCB and an

AirTies AP-400 and both of them have power adapters. In our project, we plan to use only

one power supply per an HSBS Sentinel. Only the power adapter of the AP-400 will be used

to supply energy to an HSBS Sentinel. The power to the PCB will be provided from AP-400

with the help of a regulator.

 7

1.4.2 Lifetime

The HSBS_WSN should operate properly for a long time. Since, the sensors (SHT15) have

CMOSens Technology, they have long-term stability. By the help of this feature of the

sensors, the overall product will be able to run for a long time.

1.4.3 Security

Security issue is a big problem for WSNs, however it has been overcome by WPA (802.1x,

TKIP, PSK), WPA2 (IEEE802.11i, AES, CCMP), WEP (64/128 bit), MAC filtering and

SSID hiding properties of AirTies AP-400.

1.4.4 Accuracy

The HSBS WSN will be able to determine accurate temperature and humidity values by the

capability of high-precision measurement of the SHT15s.

1.4.5 Size

We could have been used CENG 336 Embedded Board in HSBS Sentinels. However, then an

HSBS Sentinel would be bulky. For this reason, we will implement our own PCB to prevent

this situation.

1.4.6 Cost

Existing similar products are expensive to be attained. The wireless node that will be

developed by HSBS Smart costs approximately $200 and this price is about one third of the

price of the cheapest wireless sensor in the market. Thus, the overall project will be affordable

than the existing systems.

1.4.7 Wide Range

Mesh technology enables an AP-400 to function as a repeater. Moreover, an AP-400 can be in

both access point and bridge modes. Thanks to these properties of AP-400, HSBS_WSN will

operate on a wide range.

 8

2 ARCHITECTURAL DESIGN

2.1 System Hardware Modules

Temperature&Humidity

Sensor

SHT-15

PIC 16F877

Microcontroller

Oscillator

Reset Circuit

AP-400

I²C Bus

RS-232 Bus

Power Unit

Voltage Regulator

ProgrammingUnit

Figure 2-1 Hardware Block Diagram

In Figure 2-1, hardware block diagram is shown. As seen in the figure, the data transfer

between SHT15 and PIC 16F877 are provided by I2C Bus. PIC 16F877 is programmed by the

Programming Unit whenever needed. Moreover, an oscillator and a reset circuit are essential

parts for the proper functioning of PIC 16F877 and are connected to it. The data transfer

between PIC 16F877 and AP-400 is provided through RS-232 Serial Bus. Furthermore, a

power unit is connected to AP-400. This power unit will supply the power needed by these

hardware units. AP-400 operates via 3.3 V and PIC 16F877 operates via 5V. In order to avoid

these power differences, a voltage regulator is used between AP-400 and PIC 16F877.

 9

Figure 2-2 General Schematic of SP07

In Figure 2-2, general schematic of SP07 is shown. SP07 is the name for the unit that includes

SHT15 and PIC 16F877 for convenience. This schematic shows the connections of the pins in

SHT15, Oscillator, Programming Unit, I2C Bus, RS-232 Bus and PIC 16F877. We had a

research on the hardware connections in order to be able to draw this schematic; however, due

to lack of experience on hardware issues, there may have been some errors in the schematic.

However, we are supposed to remove these errors if any, and improve the schematic on the

final design report.

 10

2.2 System Software Modules

Figure 2-3 Software Component Diagram

The system is composed of three main physical structures; first one is SP07, second AP-400

and third the server. From this point of view, the modules are defined under these three

structures hierarchically. The PIC Module which is included in SP07 is responsible for

manipulating the sensor read data within the SP07 and provide an interface to AP-400 for data

sending. PIC Connection Module is placed in AP-400 and requires an interface from SP07 to

retrieve data and process this data internally in AP-400. Status Module which is placed in AP-

400 also provides an interface for querying, restarting and turning off AP-400. The Server

Connection Module is placed in AP-400 too and operates in order to communicate with

Server Module and send the data provided by PIC Connection Module. Server Module

provides an interface for Main Module for sending requests to nodes and directs the data to

Database Module and node messages to Main Module. GUI Module operates on Server side

and is responsible for handling the user interactions like receiving user commands, displaying

system outputs, recording user settings. Main Module is placed on server and processes the

user commands. It requires an interface from Server Module to send requests and GUI

Module to return the outputs. Database Module handles the queries generated by sub

 11

processes from Main Module and Server Module.

2.2.1 PIC Module

PIC Module reads the sensor via I2C and stores the data into memory banks continuously on

each timer interrupt calling read() routine. On the other hand if another interrupt is detected

on the RS232 port the PIC Module goes into send() routine and sends the stored data to the

RS232 stream. The routines for stated functions are as follows:

read (){
 1. Set the PIC for I2C communication
 2. Set the sensor for reading Humidity
 3. Read the Humidity value into humidity[i] in memory bank
 4. Set the sensor for reading Temperature
 5. Read the Temperature value into temperature[i] in memory bank
 6. Increment i, and take (mod 10)
 7. Return
}

send (){
 1. Set the PIC for RS232 communication
 2. Send ready signal to RS232
 3. Send the humidity[] array contents
 4. Send the temperature[] array contents
 5. Return
}

2.2.2 PIC Communication Module

PIC Module sends a read request by RS232 port of the AP-400 which is passed to SP07. It

buffers the incoming data from SP07 via RS232 stores it on the memory. Since the shared

memory is used among the PIC Communication Module and Server Connection Module; the

storing process can be done after PIC Communication Module obtains the lock if it has not

already.

read_rs232(){
 1. Open com port for RS232 communication
 2. Send read signal to port
 3. Sleep wait for ready signal from port
 4. Buffer the incoming data humidity[], temperature[]
 5. Record the system time
 6. Close the port.
 7. Return.

}

write_shmemory(){
 1. Get the ‘key’ for reading.
 2. Sleep if step 1 fails. Wake up on ‘key’ release go to step 1.
 3. Write buffers humidity[], temperature[] in to shared segment.
 4. Set valid.
 5. Release the ‘key’.
 6. Return.
}

 12

2.2.3 Status Module

The Status Module provides an interface for Main Module and requires an interface from

Server Module, using functions as reboot_ap400(), turn_off(), turn_on() and

send_info(). The function reboot_ap400() calls the system call reboot after it warns the

Server Connection Module. The function turn_off() brings the node to a standby state such

that no sensor data read and send but node keeps running. The function turn_on() takes out

the node from standby state. The function send_info() sends the current state information

to Main Module via TCP/IP protocol. Whenever a turn off or on actions takes place and

accomplishes send_ack() is called for sending the acknowledge signal to Server Module

telling the action was successful. The routines of these functions are as follows;

reboot_ap400(){
 1. Send ‘rebooting’ message to Server Connection Module.
 2. Wait for 5000ms.
 3. Call system call reboot.
}

handle_request(request, requestID){
 1. If request = TURN_OFF then,
 2. Call flag = turn_off();
 3. If request = TURN_ON then,
 4. Call flag = turn_on();
 5. If flag then send_ack(requestID)
 6. Reset flag
 7. If request = REBOOT then,
 8. Call reboot_ap400()
 9. If request = STATUS then,
 10. Call send_info()
 11. Return.
}

turn_off(){
 1. Send ‘turning off’ signal to Server Connection Module.
 2. Send ‘turning off’ signal to PIC Connection Module.
 3. Set environment variable state = STANBY
 4. Return True.
}

turn_on(){
 1. Send ‘turning on’ signal to PIC Connection Module.
 2. Send ‘turning on’ signal to Server Connection Module.
 3. Set environment variable state = ON
 4. Return True.
}

send_info(){
 1. Open port
 2. send status info via TCP/IP to Server Module
 3. Close port
 4. Return.
}

send_ack(requestID){
 1. Open port
 2. Send ‘acknowledge’ signal with requestID.
 3. Return.}

 13

2.2.4 Server Communication Module

The Server Communication Module requires an interface from Server Module for sending the

recorded sensor data on the shared memory. The function read_shmemory() reads the

recorded data from shared memory written by PIC Communication Module. The function

send_data() sends the sensor data to Server Module via TCP/IP protocol. The routines of

these functions are as follows;

read_shmemory(){
 1. Get the ‘key’ for reading.
 2. Sleep if step 1 fails. Wake up on ‘key’ release go to step 1.
 3. Read the data from shared segment (humidity[], temperature[]).
 4. Reset valid.
 5. Return.
}

send_data(){
 1. Open port
 2. Send data via TCP/IP to Server Module
 3. Close port.
 4. Return.
}

2.2.5 Server Module

The Server Module provides interface for Server Communication Module and Status Module

for receiving packages and an interface for Node class for node status requests directed to

Status Module. Server Module listens two ports, the method listenStatus() for receiving

status information and acknowledge signals from Status Module and method listenData()

for receiving sensor data from Server Connection Module. Whenever a package arrives on

data port saveData() method is called which Database Module provides. Whenever a status

package arrives on status port returnStatus() method is called which passes the status

information to Node class according to nodeID passed as argument. And whenever an

acknowledge signal is detected on status port returnAck() method is called passing the

message the last action accomplished to Node class according to nodeID passed as argument.

The sendRequest() method sends one of the requests TURN_ON, TURN_OFF, STATUS, REBOOT

to Status Module. The routines of these methods are described as follows;

listenStatus(){
 1. Open STATUS PORT for listening.
 2. Wait for package.
 3. Buffer the package.
 4. Parse message_type: status or acknowledge
 5. If message_type is status then,
 6. Parse nodeID, current_state
 7. Call returnStatus(nodeID, current_state)

 14

 8. Else,
 9. Parse nodeID, request_id
 10. Call returnAck(nodeID, requestID)
 11. Go to Step 2.
}

listenData(){
 1. Open DATA PORT for listening.
 2. Wait for package.
 3. Buffer the package.
 4. Parse nodeID, dataTemp[], dataHum[], time.
 5. Call DB.saveData(nodeID, dataTemp[], dataHum[], time)
 6. Go to Step 2.
}

returnStatus(nodeID, current_state){
 1. Pass message to Node class with nodeID and current_state
 2. Return.
}

returnAck(nodeID, requestID){
 1. Pass message to Node class with nodeID and requestID
 2. Return.
}

sendRequest(nodeID, request, requestID){
 1. Open port
 2. Retrieve IP of nodeID
 3. Pass request to specified nodeID,
 4. Return.
}

2.2.6 Database Module

The Database Module provides interfaces for Main Module and Server Module for querying

and updating the database. Methods as connectDatabase(), createTable(),

insertIntoTable(), dropTable(), updateTable() are offered to system. The database

module of the system will be taken from an existing API; therefore the methods are not going

to be described in detail here. Class diagrams can be seen for further information.

2.2.7 Main Module

The Main Module requires interfaces from Server Module, Database Module and GUI

Module for actions like changing node status, fetching data from database, collecting

messages and regulating the data for outputting. The base class of the Module is Node class.

The methods getStatus(), changeNodeState(), rebootNode(), acknowledge() are

offered as interface. The routines of these methods are as follows;

getStatus(){
 1. If status = UNREACHABLE then,
 2. Return.
 3. Else,
 4. Generate requestID
 5. Call server.sendRequest(this.nodeID, STATUS, requestID)

 15

 6. Return.
}

changeNodeState(){
 3. If Status = ON then,
 4. Generate requestID
 5. Call server.sendRequest(this.nodeID, TURN_OFF, requestID)
 6. Else if Status = OFF then,
 7. Else if Status = ON then,
 8. Generate requestID
 9. Call server.sendRequest(this.nodeID, TURN_ON, requestID)
 10. Return.
}

rebootNode(){
 1. If Status = UNREACHABLE then,
 2. Return.
 3. Else,
 4. Generate requestID
 5. Call server.sendRequest(this.nodeID, REBOOT, requestID)
 6. Return.
}

acknowledge(requestID){
 1. Pop requestID from activeRequestList[]
 2. Return.
}

 16

3 CLASS DIAGRAMS

3.1 Diagram

+getStatus() : void

+changeNodeState(in state : int) : void

+rebootNode() : void

+acknowledge() : bool

-nodeIP : string

-nodeLocation : string

-nodeID : int

-nodeStatus : bool

Node

+drawBarChart() : void

+drawLineChart() : void

+drawTrendLineChart() : void

-startDate : Date

-endDate : Date

-pointInterval : int

-xAxisScale : int

-yAxisScale : int

Graph

+connectDatabase() : bool

+createTable(in tableName : string, in columnName : string) : void

+insertIntoTable(in tableName : string, in values : string) : void

+dropTable(in tableName : string) : bool

+updateTable(in newColumns : string, in newValues : string, in tableName : string) : void

-serverIP : string

-dbName : string

-userName : string

-userPasswd : string

-timeOut : int

Database

+saveData(in nodeNumber : int, in tableName : string, in data : uint) : void

«interface»

dataRecorderHandler

+getData(in sqlParameter : string, in sqlQuery : string) : object

+executeQuery(in sqlParameter : string, in parameterList : string, in sqlQuery : string) : bool

«interface»

dataQueryHandler

«uses»

«uses»

+getNodeList() : string

+getStates() : void

+showWsnSitePlan() : void

+nodeAction(in nodeID : int, in action : int) : void

-nodeList : string

nodeMonitor

+isCheckedNode(in nodeID : int) : bool

+drawCharts() : void

-nodeList : string

-object : Graph

-isLatestChecked : bool

-pointInterval : int

-startDate : Date

-endDate : Date

-chartType : int

dataAnalyzer

+generateReport() : void

+saveFile() : void

+viewFile() : void

+printFile() : void

+isCheckedNode(in nodeID : int) : bool

-isCheckedHumidity : bool

-isCheckedTemperature : bool

-isCheckedGraphs : bool

-isCheckedComments : bool

-isCheckedAuthor : bool

-fileType : int

-startDate : Date

-endDate : Date

-fileName : string

-filePath : string

-nodeList : string

ReportGenerator

+listenStatus() : void

+listenData() : void

+returnStatus(in nodeID : int) : void

+returnAck(in nodeID : int, in requestID : int) : void

+sendRequest(in nodeID : int, in requestID : int, in request : int) : void

-statusPort : int

-dataPort : int

-serverIP : string

-objectdb : Database

Server

«uses»

1

1..*
1

1..*

1

1..*

1

1..*

1

1..*

«uses»

«uses»

Figure 3-1 Class Diagram

 17

3.2 Class Tables

NodeMonitor

Attribute Name Type Description

Attributes
nodeList Node[] Holds all the information about sensors in the database

Method Name Return Arguments Description

Methods
getNodeInfo Node[] Void Extracts all the information about

sensors in the database

 getStateofList Void Void Determines the states of all sensors
with the help of server module

 showWsnSitePlan Void Void Displays the existing site plan

 changeStates Bool Int Changes the state of the node

DataAnalyzer

Attribute Name Type Description

Attributes
nodeList Node[] Holds all the information about sensors in the database

 Gui Object
GUI

 18

 isLatestChecked Bool Holds the value of the Latest checkbox

 pointInterval Int Sets the x axis interval

 startDate Date Start date of the measured data

 endDate Date End date of the measured data

 chartType Int Holds the chart type

Method Name Return Arguments Description

Methods
isCheckedNode Void Void Determines whether checkbox of a node

is checked or not

 drawCharts Void Void Draws the charts according to user
preference

ReportGenerator

Attribute Name Type Description

Attributes
nodeList Node[] Holds all the information about sensors in the

database

 isCheckedTemperature Bool Holds the value of temperature checkbox

 isCheckedHumidity Bool Holds the value of humidity checkbox

 isCheckedGraphs Bool Holds the value of graph checkbox

 19

 isCheckedComments Bool Holds the value of comments checkbox

 isCheckedAuthor Bool Holds the value of author checkbox

 fileType Int Holds the value of file type dropdownlist

 startDate Date Holds the value of start from dropdownlist

 endDate Date Holds the value of end dropdown list

 fileName String Holds the value of file name textbox

 filePath String Holds the value of save to textbox

 filePreview String Holds the value of text version of generated data

Method Name Return Arguments Description

Methods
generateReport Void Void Shows the data in preview textbox

with respect to user preferences

 browsePath Void String Browse the path of the file to be
saved

 saveFile Void Void Saves the generated data

 viewFile Void Void Views the print preview of the
generated data

 printFile Void String Prints out the generated data

 20

Graph

Attributes

Attribute Name Type Description

 startDate Date Start date of the measured data

 endDate Date End date of the measured data

 pointInterval Int Holds the interval of x axis selected by the
user(minutely, hourly, daily)

 xAxisScale Int Holds the interval of x axis scale

 yAxisScale Int Holds the interval of y axis scale

Method Name Return Arguments Description

Methods
drawBarChart Void Void Draws the bar chart of requested data

 drawLineChart Void Void Draws the line chart of requested data

 drawTrendLine Void Void Draws the line chart of requested data

Node

Attributes Attribute Name Type Description

 21

 nodeIP String Holds IP of the node

 nodeLocation String Holds the location of the node

 nodeID Int Holds the unique id of the node

 nodeStatus Bool Holds the state of the node

Method Name Return Arguments Description Methods

getStatus Void Void Sends a request to the server module to

get the state of the node

 changeNodeState Void Int Sends a request to the server module to
change the state of the node

 rebootNode Void Void Sends a request to the server module to
reboot the node

 acknowledge Bool Void Request the acknowledge message of the
requested actions

Server

Attributes Attribute
Name

Type Description

 statusPort Int Holds the port number for the status

 dataPort Int Holds the port number for the incoming data

 22

 serverIP String Holds the unique id of the server

Method
Name

Return Arguments Description Methods

listenStatus Void Void Listens the status port

 listenData Void Int Listens the data port

 recordData Void Void Records the data which is buffered from the
data port

 returnStatus Bool Int Returns the state of the node buffered from
the status port to whom it requested it

 returnAck Void Int Returns the acknowledgement of the requests.

 sendRequest Void Int, Int, Int Sends a request to the Status Module in
HSBS Sentinel in order to learn the state, turn
on, turn off or reboot.

Database

Attributes Attribute Name Type Description

 serverIP String Holds the IP of the database server

 dbName String Holds the name of the database

 username String Holds the username of the user who will login to the
database

 23

 userPasswd String Holds the password of the user who will login to the
database

 timeOut Int Holds the connection timeout value

Method Name Return Arguments Description Methods

connectDatabase Bool Void Creates a connection to the database

 createTable Void String,
String[]

Creates a table in the database

 insertIntoTable Void String,
String[],

Inserts a values into a table as a row

 dropTable Void String Deletes the table

 updateTable Void String[],
String[],
String

Updates the table with the new values

dataRecorderHandler <<interface>>

Method
Name

Return Arguments Description Methods

saveData Void Int, String,
Uint

Saves the data which is coming from the
server module

dataQueryHandler <<interface>>

 24

Method Name Return Arguments Description

getData DataTable String,
String

Gets the result of the query from the
database

Methods

executeQuery Bool String,
String,
String

Executes the requested query

 25

4 SEQUENCE DIAGRAMS

Figure 4-1 Node Monitor

Figure 4-2 Data Analyzer

 26

reportGenerator

generateReport()

dataAnalyzer Graph dataQueryHandler

drawCharts() getData(parameter,query)

Database

executeQuery(parameter,paramList,query)

DataTableDataTablechart
chart

isCheckedNode(nodeID)

saveFile()

OsFileSystem

printFile()

viewFile()

Figure 4-3 Report Generator

 27

5 USER INTERFACE

The HSBS WSN Soft which will run on the server constitutes the user interface of the project.

The user interface has three parts namely Node Monitor, Data Analyzer and Report

Generator. The following text describes these three features in detail.

5.1 Node Monitor

Figure 5-1 Node Monitor

Node Monitor tab has three panels as can bee seen in the Figure-5-1; node list, location map

and activation output.

The left side panel lists the nodes with the names user has defined while initiating the system.

Little squares before the node names illustrates the status of the node in such a way that

“green” square means the node is alive, “red” square means node is turned off, “gray” square

means node is unreachable. If a right click mouse event occurs on a node in this panel a menu

shows up as shown in the Figure-5-2 allowing user to trigger four actions; ping the node, turn

 28

the node off, turn the node on and reboot the node.

Ping

Turn off

Turn on

Reboot

Figure 5-2 Right Click Menu

The location map illustrates the node locations according to their definition to the system.

This part is only for only demonstrating the overall view of the system, no interactions are

provided to user. The colored circles represent the positions of the nodes. The colors are

captured from the left side node list panel.

Figure 5-3 Activation Output

The activation output panel in Figure 5-3 displays the messages of system responses the user

actions over nodes. The displayed text also recorded into “ActivationLog.txt” in file system.

 29

5.2 Data Analyzer

HSBS Smart - WSN Soft v0.1HSBS Smart - WSN Soft v0.1

Report GeneratorNode Monitor

File View Help

Data Analyzer

Node #1

Node #2

Node #3

Node #4

Node #5

Node #6

Node #7

Node #8

Minutely

15

17

19

21

23

25

23:21 23:22 23:23 23:24 23:25 23:26 23:27 23:28 23:29 23:30 23:31 23:32 23:33 23:34 23:35 23:36

Temperature

Hourly

15

17

19

21

23

25

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Humidity

Trend Line
Line

Bar
Graph Type

18/01/2008 17:00 19/01/2008 17:00

Start From End

Latest

Figure 5-4 Data Analyzer

Data Analyzer tab allows user to see the recorded data on graph illustrations. The nodes

defined in the system are listed in the left side panel and specified types of graphs are plotted

on the window according to the options specified by user using options panel.

The node list on the left side panel includes checkboxes for each node and user can add or

remove the nodes to be displayed in the graphs. Different colors are assigned to each node to

make the graphs more understandable.

Figure 5-5 Graph Options Panel

The options panel in the Figure 5-5 consists of two parts, first the graph type radio group and

second part is time panel to set the interval of the graph to be plotted. In the graph type radio

group there are three types of graphs as, bar, trend line and line and if a change event occurs

 30

the graphs are redrawn. The time panel allows user to define the start and end points of the

graph in means of time. The user also can select to display latest time interval and let the

program select the interval.

15

17

19

21

23

25

23:21 23:22 23:23 23:24 23:25 23:26 23:27 23:28 23:29 23:30 23:31 23:32 23:33 23:34 23:35 23:36

Figure 5-6 Plotted Graph

There always two graphs are drawn a temperature and a humidity like in Figure 5-6. User can

set the frequency of the data shown from the combo box on the right top of each graph. The

minutely, hourly and daily options are listed here and if user changes this setting the graph

related is redrawn. Each line or bar on the graph is related to a node on the left side node list

panel.

 31

5.3 Report Generator

Figure 5-7 Report Generator

Report Generator in tab in Figure 5-7 contains seven parts as left side node list panel, include

option panel, file save panel, generate report panel, time panel, print panel and preview panel.

The left side node list panel is same with the panel in Data Analyzer tab and lets the user by

check boxes to define to include or exclude the nodes which the report will be created about.

Include

Humidity

Temperature

Comments

Author

Graphs

Figure 5-8 Include Panel

Include options panel allows user to select the information which is going to be reported. User

can leave out the unwanted info by deselecting the checkboxes on each row. The include

options panel can be seen in detail in Figure 5-8.

 32

MS Office Excel *.xsl
MS Office Word *.doc
Text Document *.txt

Adobe PDF *.pdf

File Type

C:\Documents and Settings\admin_us...

Save to:

File Name:

17_09__19_01_08_report.pdf

Browse

Include Date and Time

Save

Figure 5-9 File Save Panel

The file save panel in Figure 5-9 has two parts; first one is file type selection combo box and

second part is path and file name textbox and buttons. The user can select through four types

of file formats which are Adobe PDF, MS Office Excel, MS Office Word and plain text

document. Save to text input box displays the path where the file to be saved and file name

text input file allows user to type in a custom name. The user can check the “include date and

time” check box allowing program to add time and date info to file name.

Figure 5-10 Generate Report Panel

Generate report panel consists of a time panel, a help icon and a generate button which are

used for defining the time interval that the information in the report will be built on,

displaying a calendar for supporting the user while deciding on interval and generating the

report accordingly.

Figure 5-11 Print Panel

Print panel has two icons representing the print preview and print functions. User can preview

the generated report before printing by clicking on the print preview icon and can print the

report by clicking the print icon.

The preview panel is to display the preview of the generated report in a simple text view

mode. Objects like graphs or images are included as tags, (<<graph01>>, <<image002>>).

 33

6 PROJECT SCHEDULE

6.1 Finished Work

• We have compiled Embedded Linux Kernel on AP-400 with Pardus.

• We could reach Linux that operates on AP-400 by a helper tool which is CuteCom.

We have tried some of the commands which are on the “MadWifi/Atheros Wireless

Linux Driver Users Guide” by using CuteCom. We are now able to communicate with

AP-400 via a PC.

• We have been provided a CENG 336 Embedded Board and in order to get familiar

with the PIC 16F877 we have programmed it with the codes which were written in the

CENG 336 course last year. Moreover, we have studied the PIC 16F877 datasheet.

• We have obtained the CCS C Compiler and a recitation about it has been carried out

by our assistant. Furthermore, we wrote some codes on this tool and compiled them

successfully.

• We have acquired WinPic800 which is a helper program. This program is used to send

the ‘.hex’ files which were formed after compilation of the codes on CCS C Compiler,

to the PIC 16F877 via a parallel cable.

• The SHT15 Temperature & Humidity Sensor Datasheet has been examined.

Furthermore, the schematic of SHT15 has been analyzed.

• Inter-Integrated Circuit Bus Protocol (I2C) which is going to be used in data

transferring between SHT15 and PIC 16F877 has been investigated. How this protocol

works has been researched.

• RS-232 Serial Communication Bus Protocol which is going to be used in data

transferring between AP-400 and PIC 16F877 has been examined.

• We have been studying “Embedded Linux System Design and Development” book.

• “MadWifi/Atheros Wireless Linux Driver Users Guide” which explains the wireless

 34

Linux commands has been studied.

6.2 Future Work

• We will continue to explore AP-400 on the following days.

• We will study “Atheros AR2317 Processor” datasheet.

• We will peruse “ADM Tech ADM6996F Single Chip Ethernet Switch Controller”

datasheet.

• We will read “SpiFlash NX25P16 Serial Flash Memory” datasheet.

• We will study “Altium Designer” which is going to be used to draw the PCB.

• We will study on IEEE 802.11 protocol.

• We will design the schematic of the PCB and then draw it using “Altium Designer”.

After this, the drawing of the PCB will be printed, and then the PCB will be tested.

• We will program the PIC 16F877 in order to transfer data from SHT15 to PIC 16F877

via I2C protocol.

• After getting data from SHT15 via I2C protocol, we will program the PIC 16F877 in

order to transfer data from PIC 16F877 to AP-400 by RS-232 protocol.

• We will adjust AP-400 and after adjusting, AP-400 will be able to receive data that is

coming from PIC 16F877.

• Next, we will write a program that will run on AP-400 and this program will send the

data that is gathered from sensors to the server.

• After above steps have been accomplished, we will obtain an HSBS Sentinel and it

will be tested.

• The next step is to implement a server that will receive data sent from HSBS

Sentinels, store the data in a database. The server will also be used to monitor and

query the data in the database via a user interface.

 35

• The last step is to build a wireless mesh network via a number of HSBS Sentinels and

a server.

6.3 Gantt Chart

Gantt Charts of first and second semester can be found in Appendix-A and Appendix-B

accordingly.

7 REFERENCES

1. Wikipedia, Wireless Sensor Network, October 2007, http://en.wikipedia.org/wiki/Wsn

2. Jason Lester Hill, System Architecture for Wireless Sensor Networks, 2003,

http://www.jlhlabs.com/jhill_cs/jhill_thesis.pdf

3. SHT1x Breakout Board, 2007, http://www.sparkfun.com/datasheets/Sensors/ SHT15-

Breakout-Schematic.pdf

4. P. Raghavan, Amol Lad, Sriram Neelakandan, “Embedded Linux System Design and

Development”, Auerbach, (2005).

 36

APPENDICES

Appendix A

Figure A-1 General View of the Gantt Chart of 1st Semester

Following 4 images show the Gantt Chart of 1st Semester in detail.

 37

 38

 39

 40

 41

Appendix B

Figure B-1 General View of the Gantt Chart of 2nd Semester

Following 6 images show the Gantt Chart of 2nd Semester in detail.

 42

 43

 44

 45

 46

 47

