

CEng 491 Final Design Report

Photogrammetry Lab / Milsoft

Fall 2007

pix‘r’us

Ebru Aydin 1394691

Berk Demir 1448588

Ender Erel 1395029

M.Ozan Kabak 1389568

Assistant/Supervisor

Murat Yükselen

- 1 -

1. INTRODUCTION ..- 4 -

1.1. Purpose ..- 4 -

1.2. Design Constraints and Limitations ..- 4 -

1.2.1. Time ..- 4 -

1.2.2. Performance ...- 4 -

1.2.3. Reliability ..- 4 -

1.3. Design Considerations ..- 4 -

1.3.1. Extensibility ..- 4 -

1.3.2. Robustness ...- 5 -

1.3.3. Reliability ..- 5 -

1.3.4. Fault-tolerance ...- 5 -

1.3.5. Modularity ..- 5 -

1.3.6. Reuse ..- 5 -

2. PROBLEM DEFINITION ..- 5 -

2.1. Problem Statement ..- 5 -

2.2. Project Goals, Objectives and Scope...- 6 -

3. DEVELOPMENT SCHEDULE ...- 6 -

3.1. Current Stage ..- 6 -

3.2. Future Work ...- 10 -

4. ARCHITECTURAL DESIGN ..- 11 -

5. DATA DESIGN ...- 13 -

5.1. Data Organization ...- 13 -

5.1.1. Image Data ...- 14 -

5.1.2. Video Data ..- 15 -

5.1.3. Registration Data ..- 16 -

5.1.4. DEM Data ..- 16 -

5.2. Overall Data Design ..- 17 -

5.2.1. Level-0 Data Flow Diagram ...- 17 -

5.2.2. Level-1 Data Flow Diagram ...- 18 -

5.2.3. Level-2 Data Flow Diagrams..- 19 -

5.2.3.1. Project Manager DFD ..- 19 -

5.2.3.2. GUI DFD ..- 20 -

5.2.3.3. DATA Manager DFD ..- 20 -

5.2.3.4. DEM Creation DFD ..- 21 -

5.2.3.5. Mosaic Creation DFD ..- 21 -

- 2 -

5.2.3.6. Orthocreation DFD ..- 22 -

5.2.3.7. Registration DFD ...- 22 -

5.2.4. Level-3 Data Flow Diagrams..- 23 -

5.2.4.1. GUI – Mainframe Data Flow Diagram ...- 23 -

5.3. File Structure ..- 24 -

6. INTERFACE DESIGN ...- 25 -

6.1.1. File Operations ...- 25 -

6.1.2. Fundamental Image Processing Operations ...- 26 -

6.1.3. Photogrammetry Operations ..- 27 -

6.2. Interface ...- 28 -

6.2.1. Project Viewer ..- 29 -

6.2.2. Main Toolbar ..- 29 -

6.2.3. Image Window ..- 29 -

6.2.4. Image Toolbar ...- 30 -

6.2.5. World File Bar ...- 30 -

6.2.6. Registration Popup Window ...- 30 -

6.3. Interface Class Design ...- 30 -

6.3.1. Overall Discussion of the GUI Class Hierarchy ..- 30 -

6.3.2. MainFrame Class ..- 33 -

6.3.3. ProjectManagerPanel Class ..- 34 -

6.3.4. ImagePanel Class ..- 34 -

6.3.5. VideoPanel Class ...- 35 -

6.3.6. DemPanel Class ..- 35 -

6.3.7. RegisterDialogPanel Class ...- 36 -

6.3.8. DemDialogPanel Class ..- 36 -

6.3.9. OrthoDialogPanel Class...- 37 -

6.3.10. MosaicDialogPanel Class ...- 37 -

6.3.11. RegisterPopup Class..- 37 -

6.4. Usability Testing ...- 38 -

7. MODULES AND PROCESS DETAIL ..- 38 -

7.1. Overall Discussion of the Module Hierarchy...- 38 -

7.2. Project Manager Module ..- 38 -

7.3. Image Processor Module ..- 40 -

7.4. Data Manager Module ...- 41 -

7.5. DEM Module...- 41 -

- 3 -

7.5.1. DEM Module Details ...- 41 -

7.5.2. DEM Module Process Details ..- 42 -

7.6. Orthophoto Module ...- 42 -

7.6.1. Orthophoto Module Details..- 42 -

7.6.2. Orthophoto Process Details ..- 43 -

7.7. Mosaic Module ...- 43 -

7.7.1. Mosaic Module Details ...- 43 -

7.7.2. Mosaic Module Process Details ..- 44 -

7.8. Registration Module ...- 44 -

7.8.1. Registration Module Details ...- 44 -

7.8.2. Registration Module Process Details ..- 45 -

8. SPECIFICATIONS AND DEPENDENCIES ..- 45 -

8.1. Software and Environment Specifications and Dependencies..- 45 -

8.2. Hardware Specifications and Dependencies ...- 45 -

8.3. Other 3rd Party Software Involved ...- 46 -

9. REFERENCES ...- 47 -

- 4 -

1. INTRODUCTION

1.1. Purpose

Purpose of this report is to give detailed information about the final design of the
Photogrammetry Lab project. Main subjects will be;

- Detailed problem description
- Architectural design
- Data design
- Interface design
- Detailed information about modules, subroutines, functions which are planned to be

used
- Hardware, software and environment specifications of the project.

1.2. Design Constraints and Limitations

1.2.1. Time

Pix’r’us Photogrammetry Suit (PPS) is planned to be completed until the end of May –
2008. Phase deadlines will be decided in a rolling structure.

1.2.2. Performance

Since PPS includes time consuming matrix operations and processing over big images,
optimization of each function should be satisfied for better performance.

1.2.3. Reliability

PPS will use wxWidgets as an interface library (as a requirement of Milsoft), which
dictates both implementation and the functionality of the software. Also libraries used in
PPS reduce the time to develop phases; their disadvantages are considered to be limitations.

1.3. Design Considerations

1.3.1. Extensibility

PPS will be designed to be flexible for new capabilities without major changes to the
underlying architecture. Super resolution and video mosaic functions can be shown as
examples.

- 5 -

1.3.2. Robustness

PPS will be able to operate under stress or tolerate unpredictable or invalid input.

1.3.3. Reliability

The software is able to perform a required function under stated conditions for a
specified period of time.

1.3.4. Fault-tolerance

PPS is resistant to and able to recover from component failure.

1.3.5. Modularity

PPS comprises well defined, independent components. That leads to better
maintainability. The components could be then implemented and tested in isolation before
being integrated to form a desired software system. This allows division of work in a
software development project.

1.3.6. Reuse

The modular components designed should capture the essence of the functionality
expected out of them and no more or less. This single-minded purpose render the
components reusable wherever there are similar needs in other designs.

2. PROBLEM DEFINITION

2.1. Problem Statement

The mission of pix’r’us is to design Pix’r’us Photogrammetry Suite (PPS) which will host
integrated software tools for geospatial imaging developed by pix’r’us. Software is designed
to be in co-operation with Unmanned Air Vehicles as input providers commonly using video
streams or images. Since target users of PPS are serving on military platforms, accuracy of
outputs is the most important fact to focus on. Also simple, user-friendly interface and fast
processing are other keys to the design of PPS. According to target user requirements there
will be three important functions of PPS; creating Mosaics, creating DEMs, creating
Orthophotos.

- 6 -

2.2. Project Goals, Objectives and Scope

Three main goals of PPS can be listed as;

- DEM Creation: Digital Elevation Model (DEM) is digital representation of ground

surface topography or terrain.[1] DEMs are the first step to rectification of aerial
photos. PPS will generate DEMs by using multiple images.

- Orthophoto Creation: An orthophoto or orthophotograph is an aerial photograph

that has been geometrically corrected (“orthorectified”) such that the scale of the
photograph is uniform, meaning that the photo can be considered equivalent to a
map.[2] Unlike an uncorrected aerial photograph, an orthophotograph can be used to
measure true distances, because it is an accurate representation of the earth’s
surface, having been adjusted for topographic relief, lens distortion, and camera
tilt.[3] PPS will generate orthorectified photos from input images. PPS will use DEMs
(either by importing existing DEMs or generating DEMs from the input images) in this
process to increase the accuracy of generated photographs.

- Mosaic Creation: Image mosaicking (or image mosaicing) is the process of combining

a set of separate images into a single seamless image (a panorama).[4] PPS will
combine input images to generate a unified image if requested.

- Video Mosaic Creation: A video mosaic is a high-resolution image that is created by

stitching together the low-resolution frames from a video sequence.[5]

Among these three main goals there may be additional functionalities such as;

- Super-resolution Image Creation: Super-resolution is a technique to use multiple

frames of the same object to achieve a higher resolution image.[6]

3. DEVELOPMENT SCHEDULE

3.1. Current Stage

The foundations of the general software architecture are laid. Relevant class hierarchies
and data design hierarchies are constructed. These design considerations are discussed in
relevant sections in great detail. A yearlong development schedule has been prepared (see
Gantt chart given in Appendix-A). According to the development schedule, the first task is to
design a basic image viewer GUI that will be used as a testing & development platform
during the subsequent development phases. This first task has already been completed. The
image viewer GUI is basically an MDI window containing a number of resizable children
windows, each of which is a pane that can be docked or made floating by the user. Children
windows display relevant images and perform auto-scrolling if needed. In addition to the
children windows, the main MDI window also has a menubar, a toolbar and a statusbar. The

- 7 -

menubar and the statusbar contain menus and buttons that provide various functionalities.
The statusbar is divided into two parts, each of which displays two kinds of information:

 * Global information: Information about the current project (i.e. project name,
opened files etc.) and active child window number.

 * Child window specific information: Relevant information about the active child
window; such as world coordinates corresponding to the current mouse location, number of
feature points found in the image etc.

In addition to its use as a testing & development platform during the development

subsequent development phases, this image viewer GUI itself will be developed in time to
serve as the GUI of the end product. The screenshot of the first prototype is shown below. In
this screenshot, both docking panels and floating panels of the multiple document interface
can be seen. The statusbar also shows information about the real world coordinates of the
pixel under the mouse cursor. This GUI also has a simple menubar and a simple toolbar,
which can be extended for more functionality in the future phases. The docked panels
demonstrate the automatic scrollbar adjusting property of the GUI.

Figure 2- 1 : GUI of the prototype

Progress in Mosaic Creation has been established.

- Corner point detection ;
- Putative match finding,
- Best homography matrix construction,
- Outlier elimination,
- Image unification,

- 8 -

are main steps which are established for mosaic creation. Results are at an
acceptable level with the help of interpolation and will be improved in later
development. Optimization for these steps will be established in upcoming stages of the
project.

Figure 2- 2 : GUI of the corner detected corners and putative matches

Figure 2-2 Info: In the snapshot given above (Figure 2-2); colored pluses inside the
colored circles indicates the corresponding putative matches. White pluses not circled by
are the detected corners.

Detailed information about mosaic creation steps which are done by now are given

below.

- Corner point detection: For this step Pix’r’us used Harris Corner-Detection algorithm.
This step is shown in Figure 2-2 by white pluses (+).

- Putative match finding: By using Cross-Correlation; PPS matches intersecting corners
with the help of information gathered by corner point detection. This step is shown
in Figure 2-2 by colored plusses which are circled.

- Best homography matrix construction: First quad combinations of the putative

matches set are created at this step. Following to this, test homography matrices for
them are found. Test homography matrices are points which are found based on
Euclidian Distance algorithm processes.

- 9 -

- Outlier elimination: Ideal matrix is selected from test homography matrices set.

- Image unification: After selection of ideal matrix, unification of images is established
using bilinear interpolation. This step is shown in Figure 2-3.

Figure 2- 3 : GUI of the unificated images with different camera perspectives

 Figure 2-3 Info: As shown above, PPS’ process for unification of images using putative
matches work well but not perfect since all the outliers can not be eliminated. PPS plans to
concentrate to solve this problem. For the step of unification, the user will be able to choose
between linear and cubic interpolation methods.

- 10 -

Figure 2- 4 : GUI of the unificated images with orthorectification

 Figure 2.4 Info: As shown above PPS has worked perfectly with orthorectified images
in the Mosaic creation process.

3.2. Future Work

With the development of the basic viewer, the first iteration of the development process
is completed. The next iteration mainly involved the design and implementation of the
image registration module and its integration to the image viewer GUI. Also progress on
image mosaic module has been done. Also outlier elimination and best homography matrix
creation steps are nearly in the final stages of development. Image mosaic from two images
can be constructed in the current stage.

Future work planned so far by Pix’r’us can be outlined as follows in the order of priority;

- Functionality with manual selection by the user of tie points between images from

automatically detected tie points which are shown in the snapshot with white pluses
(+) shown in Figure 2-2..

- Progress in Best Homography Matrix creation and outliner elimination steps for
image mosaic creation.

- Implementation of video mosaic module, and integration with GUI.
- Blackbox testing for complete forms of Image Mosaic Creation and Video Mosaic

creation.
- Implementation for DEM module, and its integration with GUI.
- Blackbox testing for complete form of DEM module.
- Implementation for Orthophoto module, and its integration with GUI.
- Blackbox testing for complete form of DEM module.

- 11 -

- Testing of interoperability of modules.
- User supported testing of PPS.

These steps are illustrated in greater detail in the Gantt chart in appendix A.

4. ARCHITECTURAL DESIGN

During the architectural design of pix’r’us photogrammetry suite, the main consideration
was modularity. The decision of organizing the three main capabilities as separate modules
was made at this point. These are considered as functionalities of the main project. These
utilities are going to have well defined inputs and outputs to achieve the tasks, which
improves coherence of modules. Incorporating wrapper classes for external libraries and
modules to improve modularity is considered. The common functionality such as image
registration, that the three modules need, will be another module, by this way common
module and any one of the three can work independently. These three modules will not
keep their own data, they will only operate on data provided by the project manager. On the
other hand in our project the user will have all of the functionalities in one project, so for our
project there will be also a manager module. Achieving this will increase usability of the
program, such that user can use all the modules which are DEM generation,
orthorectification and mosaic generation without changing the project..

Another module of the PPS is the graphical user interface, which basically consists of an

MDI image viewer, which will be an improved version of the first prototype. The main
consideration over the design phase of this module is to separate the GUI from the other
modules. This module interacts only with the project module to get or set the required data,
and this provides a high level of abstraction from the other parts of the project. This
abstraction gives the project the ability to change the GUI without changing any other class.

Data module is a unique module assigned to a project. It keeps all the data used by the

project. Images, videos etc. are all kept in this module. This module interacts only with the
main project module. When a module needs a data, it requests the data from the project
module, and the project requests this data from the data module. Then the project module
takes the data coming from the data module, and passes it to the requesting module. This
abstraction seems to cause a redundant amount of data traffic between modules, but this
abstraction comes with a degree of freedom. This freedom gives the project the ability to
change the data module without changing any other module. In any future phase of the
project, a more flexible and efficient database module can replace the current module.

A particular example that elaborates on the data traffic mentioned above is presented

next. This example will illustrate the overall architecture in a concrete manner.

The user issues a DEM generation call.
The GUI sends a message to the project module, relaying the DEM generation request.

Relevant data (image ID’s etc.) is passed along with the message.
The project manager module checks its current context to decide if the requested

computation (DEM generation in this case) is applicable. If not, the request is stalled. For
example, if the input images are not registered to each other prior to the DEM call, the

- 12 -

project manager will stall the DEM generation process. It will send a message to the GUI
module describing the exception and will ask for user authorization to proceed with the
possible recovery alternatives. In the DEM case a possible recovery alternative is to register
the images. If the user approves a recovery method, the project manager makes the
required calls for the selected method and continues processing the request.

The project module calls the DEM module to perform the requested computation.
Pointers to the actual data (pointers to the image matrices in this case) are passed to the
DEM module in this call. To obtain these pointers, the project manager consults the data
manager module.

The DEM module performs the requested computation and issues a request to the
project manager module to save the result it generates.

The project manager saves the DEM result by a call to its data manager module.

Note that although this traffic back and forth between the project module, the data

manager module and the DEM module seems redundant, it decouples the data manager
from the DEM module. The DEM module does not need to know how data management is
handled by the project module.

Figure 4- 1 : Diagram showing interactions between modules

- 13 -

Figure 4- 2 : Module hierarchy

5. DATA DESIGN

5.1. Data Organization

Figure 5- 1 : Inheritance Diagram of the data structure

Data used by the project manager can be classified into 4 elementary kinds: Images,

DEMs, videos and image registration data. Each is represented by a class in the data
hierarchy. All classes are extended from an abstract data class, which presents common
functionalities of the four kinds as an interface. These common functionalities are opening
and saving of files that store the serialized data of the corresponding class. The functions
that make up this interface will be overridden in each class to provide the relevant
semantics. This class hierarchy makes it possible to simplify the design of the project
manager. Each of the four elementary classes is explained below in greater detail.

- 14 -

5.1.1. Image Data

Figure 5- 2 : Class Diagram of the Image data class

Image data structure consists of the information about the image according to

requirements of the process modules. Images which are included to the project will be
member of the manager project module. Image class will be capable of storing required
statistics and information about the image itself. By this way image data will be compact.
Storing all relevant information in the image class allows different modules reach these data.

OpenCV library is going to be used to store and process images. Image processing

capabilities of the project are separated to the ImageProcessor class to improve
maintainability of the project code. Images are going to have unique ids, which will be taken
from the data manager of the project. Using these ids, modules can reach desired image and
can store relative image information such as homography matrix. Camera calibration
parameters which are needed by various modules for processes are also stored in this class.
In basic image view mode these are not needed. So images can be constructed and showed
without these parameters. In order to avoid any conflict, data validity of these will be
checked before usage. Storing camera calibration parameters in a different class will allow
calculations be done in this class and make project more understandable.

This class will also open the world file associated with the image and then read the data

from it. It will store this data and reuse it for image to earth registration. The file information
will also help to show pointed pixel’s earth registration information on the status bar which
is located at the bottom of main window.

 Image input/output will be done by this class using abilities provided by GDAL library.

This gives the project the ability to support a broad range of image file formats, where some
of them being specially designed for geospatial images, and some of them being very
common.

- 15 -

This class has some methods for processing the contained image data, such as

brightening or sharpening the image. To provide this additional ability to the end user, the
abilities of openCV library will be utilized in this project.

Another important data stored by this class is the interest points of the contained image.

These points are used in the calculations to register two images and are of much
importance. The importance of these points increases the importance of the algorithm used
to calculate them; therefore Harris Corner Detection algorithm will be used.[8] The decision
to use this algorithm was affected by the fact that it is widely used and its success is
approved.

One of the main considerations during the process of designing this class was

performance. In order to achieve this purpose, image processing will be done on the Fourier
domain, which shows greater speeds than processing in the spatial domain.[7]

5.1.2. Video Data

Figure 5- 3 : Class Diagram of the Video data class

Video Data class is designed to support video mosaic feature. It is basically an array of
images taken from the specified video file. It captures a number of images from the video
file using the given sampling rate. If a sampling rate is not specified, it uses the default value
provided. Using all the frames contained in the video file requires a lot of time and is
redundant; therefore a sampling functionality will be provided. The images taken from the
video according to the specified sampling rate will be kept in a vector of images.

- 16 -

5.1.3. Registration Data

Figure 5- 4 : Class Diagram of the RegistrationData data class.

Registration data is the class that contains the data calculated by the registration
module. It can contain image-to-image or image-to-earth registration data. It stores the
unique image ids for image-to-image registration or a unique image id and a special id
reserved for earth registration. Homography matrix is used only in image-to-image
registration; for image-to-earth registration only the worldfile and scaling data will be used.

5.1.4. DEM Data

Figure 5- 5 : Class Diagram of the DEMData data class.

DEMData class is designed to be a container for the actual DEM data represented as an
ordinary image. This data can either be the data coming from a DEM file, or the output
coming from the DEM module. This class keeps the IDs of the images it is created from, or
these fields keep a special id reserved for representing NULL. Reference pixel sets keep 4
pixels representing the overlapping area of the respective images.

- 17 -

5.2. Overall Data Design

Data flow between user and program and inside program is described using data flow
diagrams. Data flow diagrams for levels up to there were drawn. Since in this project
modules are designed as algorithmic process modules, all of them are not exploded. These
are described in more detail in the modules/subroutines parts of the project

5.2.1. Level-0 Data Flow Diagram

Figure 5- 6 : Level-0 DFD

Level-0 DFD is shown in the figure above; this is an overview of the system in general.

Interaction between user and system is described. PPS is capable of different functionalities,
and most of these have parameters decided by the user, these are shown as process
parameters, and given in detail in the preceding parts of the report.

- 18 -

5.2.2. Level-1 Data Flow Diagram

Figure 5- 7 : Level1- 1 DFD

At the heart of the Data Flow in PPS stays Project Manager, which provides required data
to modules such as Mosaic Creation, Registration, etc. whom are responsible for image
processing. Project Manager gathers input information from GUI, and organizes data with
the help of DATA Manager. Information needed for image processing is requested to Project
Manager by Photogrammetry modules. Project Manager provides this information from
DATA Manager, also results of Photogrammetry modules are send back to DATA Manager
with supervision of Project Manager.

- 19 -

Explanations;
GUI collects user provided Input data, and performs requested operation data flow to

the user.
- Between GUI (1.0) and Project Manager (2.0) data flows shown in figure Level2 – 1,
- Between Project Manager (2.0) and Registration (7.0) data flows shown in figure

Level2-7,
- Between Project Manager (2.0) and Orthocreation (6.0) data flows shown in figure

Level2-6,
- Between Project Manager (2.0) and DATA Manager (3.0) data flows shown in figure

Level2-3,
- Between Project Manager (2.0) and Mosaic Creation (5.0) data flows shown in figure

Level2-5,
- Between Project Manager (2.0) and DEM Creation (4.0) data flows shown in figure

Level2-4.

5.2.3. Level-2 Data Flow Diagrams

5.2.3.1. Project Manager DFD

Figure 5- 8 : Level 2 DFD

- 20 -

Details of the data flow in the project manager are given above. Capabilities of the

project manager are grouped into three main set of processes. File operations includes
creating a new project, saving or loading an existing project and closing the project. Creating
and loading project includes constructing process modules and data manager. To save a
project, project manager saves the current status and data manager saves all information
since other modules do not save any data about the status of the project they do not hold a
place in this procedure. Saving details are described in the file structure. Project operations
respond user requests about sub processes. According to the request related sub process
invoked. Since no other module interact with each other results of the sub processes are
also sent to the project manager, these data are sent to the data manager and through GUI
sent to the user.

5.2.3.2. GUI DFD

Figure 5- 9 : Level 2 DFD

User requests, such as Photogrammetry functions, image property edits, project
operations are transformed to internal messaging with the help of GUI. Data flow between
GUI and Project Manager provided with Mainframe.

5.2.3.3. DATA Manager DFD

Project Manager and DATA Manager Modules, sends each other data which is required

for image processing. File manager keeps these data organized under four sections.

- 21 -

Figure 5- 10 : Level 2 DFD

5.2.3.4. DEM Creation DFD

DEM Generator receives data for requested process. Incoming data are sent by Project

manager and outgoing data are collected by Project manager to be sent to DATA Manager.

Figure 5- 11 : Level 2 DFD

5.2.3.5. Mosaic Creation DFD

Mosaic creation has a similar data flow as other Photogrammetry modules. Data

manager sends input data for requested operation, and collects the outcomes from
Mosaic Generator process. Mosaic result is kept by Data Manager with the help of Project
Manager.

- 22 -

Figure 5- 12 : Level 2 DFD

5.2.3.6. Orthocreation DFD

Orthocreation receives input data, Operation Request as called in the diagram, from

Project Manager. Results of Orthophoto Generator process are transported to Data Manager
by Project Manager.

Figure 5- 13 : Level 2 DFD

5.2.3.7. Registration DFD

In registration data flow, incoming data, called Operation Request, is brought by Project
Manager to the Register Generator. As the same procedure in other modules outputs from
the register generator are carried by the Project Manager to the Data Manager to be kept in
organization with other files.

- 23 -

Figure 5- 14 : Level 2 DFD

5.2.4. Level-3 Data Flow Diagrams

5.2.4.1. GUI – Mainframe Data Flow Diagram

User requests over Main Toolbar, Image Toolbar are collected to be processed by

Mainframe’s sub processes. Some of these process’ outputs are sent to panel to be shown
by the output device, and some other outputs are carried between sub processes for further
work as shown in GUI – Mainframe DFD.

Figure 5- 15 : Level 3 DFD

- 24 -

5.3. File Structure

PPS will have saving and loading capabilities of the project. To support this, PPS needs to
save calculated features, matrices and all relevant data. Every data class needs a save and
load format. Saving all relevant data for images will be done using image ids.

Figure 5- 16 : File Structure

For avoiding recalculation of phases processed, PPS will have save and load features for
different file types and workspaces. There will be four different data types, for better
organization and faster use these four data types will be collected under four different
folders. For every different project there will be a file which holds information about
processed images. This information consists of; processed images’ unique id’s, results of
calculations done on these images, last status of every process, etc. Additional saving
options will be provided according to requests of target users’ prototype testing phases.
With the help of these files; handicap of recalculation for phases will be exceeded which will
provide less time consuming software. Changes on images such as blurring and histogram
equalization will be saved according to user request.

Under a project, user will be able to save the result of every function in a desired format.

For Mosaic and Orthophoto modules user will be able to save the results in the same format
of processed image; or from a variety of choices. For DEM module the user will be able to
select the output format from commonly used DEM formats list.

According to USGS DEM technical details, a DEM file format will be as the following;

 Type A record: header information, one per file,

 Type B record: made up of data from one-dimensional arrays called profiles, one
per line of elevation data,

 Type C record: contains statistics on the accuracy of the data in the file,

 Logical record size of 1,024 bytes,

 More than one record is usually required to store a single record type B.

- 25 -

6. INTERFACE DESIGN

Before presenting the detailed design of the user interface, some key requirements are
presented. PPS must provide the necessary interfaces for the following vital functionalities;

File operations,

o Opening/Closing images
o Saving/Loading images
o Opening/Creating/Saving/Closing projects

Photogrammetry operations,
o Registering Images
o Creating DEM
o Creating Orthophoto
o Creating Mosaic

 Fundamental image processing operations,
o Image Blurring and Sharpening
o Converting to Grayscale
o Histogram Generation
o FFT and IFFT support
o Elementary Filtering
o Image Mirroring
o Image Rotation
o Upsampling / Downsampling
o Brightness Adjustment
o Contrast Adjustment

 Capabilities of PPS can be shown with the help of following use case diagrams, and
general look of PPS Interface can be understood intuitively. For fast and simple user
interaction, PPS interface will offer three toolbars for commonly used functionality.

6.1.1. File Operations

User will have three main file interactions with PPS which can be listed as;

- Open / Close Images
- Save / Load Images
- Open / Create / Save / Close Projects

To satisfy these three main requests of potential users; PPS will have “File Operations”

submenu under “Main Toolbar” with easy access. Below one can see, PPS use case diagram
for file operations. Since “Main Toolbar” is static under the interface, one can have access to
“File Operations” at any time.

- 26 -

6.1.2. Fundamental Image Processing Operations

Since PPS has all its functionalities over images, operations over image attributes are
available as a rule of thumb. Commonly used image attribute operations such as Filtering,
Mirroring, Rotating, Brightness/Contrast Value functionalities etc. are presented under
Image Processing Operations toolbar.

When an image is selected as the active playground, image processing operation toolbar

will pop-up as a side menu for the image. One can have the choice of closing/opening image
processing operation toolbar, with this property PPS will provide user friendly interface.

- 27 -

6.1.3. Photogrammetry Operations

The heart of PPS Interface will be constructed over Photogrammetry Operations.
Registration / DEM Creation / Orthophoto Creation / Mosaic Creation will be static under the
“Main Toolbar”. Every operation will have its own button with easily understandable icons.
These buttons will be inactive initially, and become active when an image or project is
selected. Pix’r’us considers and will provide user-friendly, fast accessible, easy to use
interface for PPS’s Photogrammetry operations; since they are the main purposes using a
tool such as PPS.

- 28 -

6.2. Interface

A simple sample of PPS interface is shown below. Main toolbar, Project Viewer, image
window (including children windows), image toolbar and world file bar are basic
components of the main interface. Detailed information is given in subsections. As a rule of
thumb for this project all contents of contents will be kept simple and clean, for fast and
user-friendly use.

- 29 -

Figure 6 - 1 : GUI outline

6.2.1. Project Viewer

This window shows the components that make up the project: images, DEMs, videos or
other files included in the project. The state of each component will be shown with
appropriate easy to understand symbols so that the user can see what state the project is in
with one quick look. Files can be selected from this window and can be opened in an image
window if required. A selected file can be removed from this window too.

6.2.2. Main Toolbar

This bar includes basic file operations over the images and projects such as; opening,
closing, saving etc. Help menu, software preferences (theme, window sizes, fonts) are
available in main toolbar. Additional content may be added according to flow of project.

This toolbar consists of several sub-toolbars, which contain buttons related to each
other. A selected sub-toolbar can be hidden or moved to suit the user’s needs. This increases
the user-friendliness of the software by not drowning the user with unnecessary tools.

Nearly all functionalities of PPS will have buttons grouped into sub-toolbars.

6.2.3. Image Window

This area is reserved for currently being used image, and derived images from it. Image
window can be thought as a workplace for functionalities of PPS. Created Mosaics, DEMs,

- 30 -

Orthophotos and the image set of the current project will be displayed in image window
area.

6.2.4. Image Toolbar

Image toolbar contains shortcuts to the most frequently used image processing
operations. Clicking on these shortcuts will perform the selected image processing task on
the image displayed by the active window. The ordering of the shortcuts (i.e. image
processing functions) will be arranged in such a way that the most commonly used tasks will
be placed first. This ordering will be determined according to user analysis surveys.

6.2.5. World File Bar

World file bar is a status bar which shows relevant information about the current project
as well as specific information about the current active window’s contents. Most commonly,
the active window will be displaying an image and the status bar will be showing the world
coordinates of the location pointed by the mouse pointer on the image.

6.2.6. Registration Popup Window

This popup is opened when a context check fails during a photogrammetry request. On

the left there are two lists that show the image pairs that fail the registration check. The user
can select a pair from this list and hit the Register button. When the Register button is
pressed, this window issues a registration call to the project manager and removes the pair if
the registration process is successful.

6.3. Interface Class Design

6.3.1. Overall Discussion of the GUI Class Hierarchy

The GUI is designed as a collection of classes with a certain hierarchy. The main frame of
the GUI is an instance of the MainFrame class, which is derived from the wxWidgets’
wxMDIParentFrame class. A MainFrame object contains the statusbar, menubar, toolbar and
the image processing toolbox as its fields. A children window vector is also stored in the

- 31 -

MainFrame object. Children windows themselves are dockable panels. A children window
may be a DEM panel, image panel, video panel, DEM creation dialog panel, registration
dialog panel, mosaic dialog panel or an orthophoto panel. Each of these panels is
represented by a class. These classes are derived from a base abstract Panel class, which
serves as an interface for the common functionalities that are offered by each of these
panels. These common functionalities include common event handling methods and the
display method (called show() in the diagrams). Instances of these classes communicate with
each other by sending event objects to each other. These event objects are instances of the
Event class, which is an extension of the wxWidgets’ wxCustomEvent class. The overall
hierarchy is depicted in the figure below.

Figure 6 - 2 : Inheritance Diagram showing extensions of Panel class.

- 32 -

Figure 6 - 3 : Inheritance Diagram showing extensions of panel. The top two figures are essentially the same diagram but

are shown separately for the sake of simplicity and understandability.

Figure 6 - 4 : Class Diagram showing the cardinalities of panels belonging to the MainFrame class.

- 33 -

6.3.2. MainFrame Class

This class is the backbone of the graphical user interface. Only one instance of this class

exists for each instance of the software. It consists of the main window of PPS and is the host
of each instance of the below classes like ImagePanel, VideoPanel etc. Basic layout of this
module can be seen in Figure 6.1.

All of the interaction with the user is done via mouse or keyboard input therefore its
functions are kept at minimum where the only external interaction is done with the project
manager.

- 34 -

6.3.3. ProjectManagerPanel Class

This class is the class that is responsible for displaying files included in the project. It

keeps pointers to images, videos and dems included in the project and gives necessary
details about these files to the user via a list view. If the user selects a number of files and
issues a photogrammetry request, the appropriate function is called from the MainFrame
class.

6.3.4. ImagePanel Class

Figure 6 - 5 : Class Diagram of ImagePanel GUI class.

Instances of this class are dockable panels that display images belonging to the current

project. This class encapsulates the necessary methods that convert the images into a
suitable format that can be displayed on a device context (DC).

- 35 -

6.3.5. VideoPanel Class

Figure 6 - 6 : Class Diagram of VideoPanel GUI class.

Instances of this class are dockable panels that display videos belonging to the current

project. Like the ImagePanel class, this class encapsulates the necessary methods that
convert videos into a suitable format that can be displayed on a device context (DC). This
class also includes methods that implement the common video playing functionalities
(pausing, rewinding etc.)

6.3.6. DemPanel Class

Figure 6 - 7 : Class Diagram of DemPanel GUI class.

Objects of this class are specialized panels that are able to render DEM’s as 3-D surfaces.
This class uses the OpenGL library to accomplish the rendering task. The overridden event
handlers of this class relay relevant user inputs (such as rotation, zooming etc.) to OpenGL.

- 36 -

6.3.7. RegisterDialogPanel Class

Figure 6 - 8 : Class Diagram of RegisterDialogPanel GUI class.

Objects of this class present the user the necessary interface to issue an image

registration task. The user may choose to register an image using a worldfile, or register two
images with respect to each other. These options are provided by the overloaded method
IssueRegisterRequest(). The standard event handlers are overridden to capture the user
input in the desired manner.

6.3.8. DemDialogPanel Class

Figure 6 - 9 : Class Diagram of DemDialogPanel GUI class.

Objects of this class are dialog panels that present the user the interface to issue
orthorectification tasks. Standard event handlers are overridden in the same manner.

- 37 -

6.3.9. OrthoDialogPanel Class

Figure 6 - 10 : Class Diagram of OrthoDialogPanel GUI class.

Instances of this class are dialog panels that present the user the interface to issue DEM
creation tasks. Standard event handlers are overridden in the same manner.

6.3.10. MosaicDialogPanel Class

Figure 6 - 11 : Class Diagram of MosaicDialogPanel GUI class.

Objects of this class are dialog panels that present the user the interface to issue image
mosaic creation tasks. Standard event handlers are overridden in the same manner.

6.3.11. RegisterPopup Class

This class represents the popup window that opens when a photogrammetry request is

issued and some of the inputs fail the registration check.

- 38 -

6.4. Usability Testing

Before the final release of PPS, several prototypes will be created and tested by actual
users with a talk aloud protocol, where thoughts of actual users about PPS interface will be
gathered and processed in a positive manner.

7. MODULES AND PROCESS DETAIL

7.1. Overall Discussion of the Module Hierarchy

PPS performs user requested operations over user supplied inputs, which puts PPS’s GUI
module over all other modules in the hierarchy and workflow. Project Manager which works
with requests of GUI Module is the task distributor. From a top view, PPS can be seen as a
circle with Project Manager in the center, and GUI as a messenger to the Project Manager
Module. On the circle there are helper modules which are directly connected to Project
Manager to operate requested tasks; Data Manager Module, DEM Module, Orthophoto
Module, Mosaic Module are the elements of helper module set. According to the
distributions made by Project Manager, helper module receives messages for performing
requested operation and sends back meaningful answers to be stored in Data Manager
Module over the Project Manager Module.

7.2. Project Manager Module

Figure 7 - 1 : Class Diagram of ProjectModule class.

- 39 -

Project Manager is the main module of the PPS. It handles all the data traffic and process
flow between modules. User has to open or create a project to be able to use the
functionalities of the PPS. After creating a new project, user can open multiple files to work
with. The project does not handle the data requests, instead it issues commands to the data
manager to open or save the data.

Project Manager keeps pointers to different modules. Each of these modules are

specialized to accomplish one functionality. Details of these modules will be explained
below. The createDem(), createMosaic(), createOrtho(), register() and save() methods are
called by the GUI, and then this class issues the required commands to corresponding
modules.

Figure 7 - 2 : Sequence Diagram of the process flow.

The GUI module issues any command to the project manager for any request coming

from the user. Then the project module checks the context if the request can be fulfilled or
not. This context check may consist of various elements. It can be image registration check
or camera calibration parameters check according to the type of photogrammetry request. If
the registration check fails, the register popup window is shown to the user. This popup
prompts the user to register failed image pairs and returns when all required images are
registered. Then if the context is valid, the project manager requests the needed data from
the data module. When the data module returns the required data, the project manager
issues the appropriate command to the corresponding module. When the called module

- 40 -

finishes its job, it returns the result to the project module. The project module then issues a
command to the data manager to add the result to the data managed. When the data is
stored in the data manager, then the project module returns the result to the GUI, which
displays the result to the user.

7.3. Image Processor Module

This module is a wrapper class for the functionalities of OpenCV library. It does not have

any members. Its functions take the image to be processed as input and any other required
data to complete the operation. This class is member of the Project Manager class and is
friend class of the ImageData class in order to be able to operate on its members. When
needed functionalities according to image processing can be added to this class.

Most of the function names listed explain themselves, therefore only the complex ones
are explained below:

filter() function is a generic function that convolutes any given kernel over the entire
image. According to this kernel, this function can sharpen, blur, find edges in a specific
direction etc.

findCorners() function extracts the corners from the image. For this purpose Harris
Corner Detection algorithm is used. This function calculates the corner points of the given
image.

resample() function can be used to increase or decrease the size of the input image by
the given ratio if required. Interpolation algorithm can also be given as argument to give the
user the ability to choose between speed and quality.

- 41 -

7.4. Data Manager Module

Figure 7 - 3 : Class Diagram of DataManager module class.

All data and file operations of the PPS are handled by this module. According to requests
of the project manager, data manager responds with the appropriate data. This module also
works as a unique id generator for stored data. When a storage request comes, a new id is
generated and assigned to the corresponding data. The id is used as the key to the HashMap,
and the data pointer is stored in the HashMap. When this process is complete, the unique id
for the data is returned to the project manager.

A similar process is followed when the user requests a data removal through the GUI and

the project manager. All the fields related with the corresponding data such as registration
data belonging to this id are removed along with the data itself. When this process is
complete, the unique id of the removed data is no longer needed, and it is recycled for
future needs.

7.5. DEM Module

7.5.1. DEM Module Details

This class acts like a wrapper around the functionality. It does not store any specific data.
Common DEM algorithms work on stereo images. However, this class is designed to work

on non-stereo images. If a stereo input is given, their output can also be calculated by
assuming them as non-stereo.

This class only works on overlapping areas of the images, therefore images need to be
registered before coming to this module. Camera calibration parameters for both images are
needed to process the images. For each pixel in the overlapping area, using information
taken from two images, position of the point in third dimension can be calculated.[9]

- 42 -

Figure 7 - 4 : Class Diagram of DemModule class.

7.5.2. DEM Module Process Details

Workflow of a process over DEM Module can be described as follows;
1. User is prompted to select multiple images for processing via PPS interface
2. Collected information about the image (image ID) is transferred to Project Manager
3. Project Manager asks Data Manager if following information about images exists or

not
a. Registration information of input images’ pair tuple combinations.
b. Camera calibration information of every input image.

4. If there is missing information about 3.a or 3.b user is informed about the error.
Required information is gathered by registration over images, or by gathering camera
calibration parameters from the user. If there is not any missing information process
continues without any prompt to user.

5. Project Manager collects the required information for DEM creation (3.a and 3.b)
from Data Manager, and sends it to DEM Module.

6. After processing of DEM algorithms over images, DEM Module sends outputs to
Project Manager, also the output images are shown by DEM specific window which
has three options of viewing; Contour, Height Map, Color map via PPS interface.

7. Outputs which are sent to Data Manager are saved temporarily, and flagged to show
that they are temporary. User is prompted to save the outputs or not when closing
the project if they are not already saved.

7.6. Orthophoto Module

Figure 7 - 5 : Class Diagram of OrthoModule class.

7.6.1. Orthophoto Module Details

This class acts like a wrapper around the functionality. It does not store any specific data.
It takes an image and a DEM as input to generate the output. First, input image is projected
onto the input DEM using the camera calibration parameters of the image. If no DEM is

- 43 -

specified as input, planar surface assumption can be used to continue the process. After this
step, the projected image is captured at a right angle. The output image can be considered
equivalent to a map. This process is called Orthorectification.

7.6.2. Orthophoto Process Details

Workflow of a process over Orthophoto Module can be described as follows;
1. User is prompted to select an image for processing via PPS interface
2. Collected information about the image (image ID) is transferred to Project Manager
3. Project Manager asks Data Manager if following information about the image exists

or not
a. Registration information of input images’ pair tuple combinations.
b. Camera calibration information of input image.
c. DEM or Planar Surface Assumption information of input image.

4. If there is missing information about 3.a or 3.b user is informed about the error.
Required information is gathered by registration over images, or by gathering camera
calibration parameters from the user.
For 3.c; If there is not any DEM information about the image, Planar Surface
Assumption is made, or user may select to use Planar Surface Assumption although
there exists DEM information about the image.
If there is not any missing information process continues without any prompt to user.

5. Project Manager collects the required information for Orthophoto creation (3.a, 3.b,
3.c) from Data Manager, and sends it to Orthophoto Module.

6. After processing of Orthophoto algorithms over images, Orthophoto Module sends
outputs to Project Manager, also the output images are shown in the output window
via PPS interface.

7. Outputs which are sent to Data Manager are saved temporarily, and flagged to show
that they are temporary. User is prompted to save the outputs or not when closing
the project if they are not already saved.

7.7. Mosaic Module

Figure 7 - 6 : Class Diagram of MosaicModule class.

7.7.1. Mosaic Module Details

Like the DEM and orthophoto modules, this module consists of a class that wraps the
mosaic creation subroutine. The class contains a createMosaic method which implements
the mosaic creation algorithms. The method takes a vector of images and a number of other
parameters as its arguments and returns a pointer to the constructed mosaic image. Some

- 44 -

of these parameters are internal in the sense that they are used by the project manager
module to create an effective communication channel between the modules. In the mosaic
module’s case, one of these parameters will be reserved for the homography matrix, which
is a data structure managed by the registration module by default. This matrix is required by
the mosaic module to perform its computations; hence the matrix is communicated to the
mosaic module by the project manager as a parameter to the createMosaic method. Rests of
the parameters of the createMosaic method are optional in the sense that they are used to
carry user preferences and other relevant optional data.

7.7.2. Mosaic Module Process Details

Workflow of a process over Mosaic Module can be described as follows;
1. User is prompted to select multiple images for processing via PPS interface
2. Collected information about the images (image ID’s) are transferred to Project

Manager
3. Project Manager asks Data Manager if following information about images exists or

not
a. Registration information of input images’ pair tuple combinations.

4. If there is missing information about 3.a user is informed about the error. Required
information is gathered by registration over images. If there is not any missing
information process continues without any prompt to user.

5. Project Manager collects the required information for Mosaic creation (3.a) from
Data Manager, and sends it to Mosaic Module.

6. After processing of Mosaic algorithms over images, Mosaic Module sends outputs to
Project Manager, also the output images are shown by output window via PPS
interface.

7. Outputs which are sent to Data Manager are saved temporarily, and flagged to show
that they are temporary. User is prompted to save the outputs or not when closing
the project if they are not already saved.

7.8. Registration Module

Figure 7 - 7 : Class Diagram of the RegisterModule class.

7.8.1. Registration Module Details

- 45 -

This class has two functions: first one is to register an image to world coordinates, and
the second is to register two images with respect to each other. Registration data is needed
for most of the other functionalities, therefore most data will pass through this class at least
once.

7.8.2. Registration Module Process Details

Registration between two images is done in this module via following these steps below:
First interest points of both images are calculated. For this task Harris corner detection

algorithm is utilized. Second, putative matches among these interest points are calculated
using the cross correlation formula. The pairs found in this step are not reliable enough,
therefore the next step is eliminating outliers. In this step, the main purpose is to eliminate
pairs that are not following a general pattern of motion. Using the putative pairs found in
the last step, multiple trial homography matrices between two images can be calculated.
Then the most successful of these matrices are taken, which is the one that most number of
putative pairs validate. Using this homography matrix, the outliers (unsuccessful pairs) are
eliminated. This process is called registration of two images among each other and it gives
the spatial relation between images.

8. SPECIFICATIONS AND DEPENDENCIES

8.1. Software and Environment Specifications and Dependencies

The primary targeted software platform is GNU/Linux (kernel 2.6). Although the design is
made to ensure that the software will be cross-platform in source format, other
development phases (i.e. testing) will concentrate on the GNU/Linux port of the Pix’r’us
Photogrammetry Suite. A Windows (XP/Vista) port will also be available; however its support
is of less priority.

Pix’r’us Photogrammetry Suite utilizes various external libraries to perform a variety of

image processing tasks. Thus, the software requires appropriate ports of these libraries to be
available in the software platform. GNU/Linux and Windows ports of these libraries are
available and supported actively.

8.2. Hardware Specifications and Dependencies

The end product is required to run on contemporary x86/x64 platforms and will support
only these hardware platforms by default. However, as C++ is used as the development
language, the software will retain its portability (in the source code format) among the
platforms where ISO C++ is supported. Thus, as long as external libraries are available on a
platform, the software can be recompiled to obtain a compatible executable that runs in the
desired platform.

By default, the software launches a GUI and performs the required computations in an

interactive manner: i.e. it asks the user to supply various parameters for fine tuning

- 46 -

purposes. Thus, the user also needs an adequate display equipment to be able to run the
software in its default interactive mode.

8.3. Other 3rd Party Software Involved

Apart from three external libraries, Pix’r’us Photogrammetry Suite does not incorporate
any 3rd party software. The mentioned external libraries are all free software (i.e. open
source) and are licensed with free software licenses that are GNU General Public License
(GPL) compatible. These libraries are:

 * Open Computer Vision Library (OpenCV)
 * wxWidgets GUI Toolkit (wxWidgets)
 * Geospatial Data Abstraction Library (GDAL)
 * Open Computer Graphics Library (OpenGL)

OpenCV contains robust implementations of various image processing algorithms

(feature detection, homography matrix calculation etc.) used by the software. wxWidgets is
used to construct the GUI. GDAL is used in the input/output modules when reading/writing
image files. OpenGL will be used to display DEM.

- 47 -

9. REFERENCES

Wilson, J.P.; Gallant, J.C. (2000). "Chapter 1", in Wilson, J.P., and Gallant, J.C. (Eds.):
Terrain Analysis: Principles and Applications, 1–27. ISBN 0471321885.

Bolstad, P., (2005), GIS Fundamentals: A First Text on Geographic Information Systems,
Eider Press, White Bear Lake, MN, 2nd ed.

Petrie, G., (1977), Transactions of the Institute of British Geographers: Orthophotomaps
New Series, vol. 2, no.1, Contemporary Cartography. , pg. 49-70

New methods for dynamic mosaicking, Nicolas, H. Image Processing, IEEE Transactionson
On page(s): 1239-1251, Volume: 10, Issue: 8, Aug 200Fernandez, E., Garfinkel, R. & Roman
Arbiol, (May-June, 1998) Operations Research, Vol. 46

Real-time scene stabilization and mosaic construction (2002), Hansen, M. Anandan, P.
Dana, K. van der Wal, G. Burt, P. Applications of Computer Vision, 1994., Proceedings of
the Second IEEE Workshop

G.T. Clement, J. Huttunen, and K. Hynynen, "Superresolution ultrasound imaging using
back-projected reconstruction" Journal of the Acoustical Society of America, Volume 118,
Issue 6, pp. 3953-3960, 2005.

Brigham, E. Oran (1988). The fast Fourier transform and its applications. Englewood
Cliffs, N.J.: Prentice Hall.

C. Harris and M. Stephens (1988). "A combined corner and edge detector". Proceedings
of the 4th Alvey Vision Conference: pages 147—151

Trucco T. , Verri A. (1998). Introductory Techniques for 3D Computer Vision. New York:
Prentice Hall.

