
 [TURKUAZ]

MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

‘Text Mining On Turkish Medical Radiology Reports’

INITIAL DESIGN

REPORT

By

Fall, 2007

2

Kerem Hadımlı – 1448752

Çiğdem Okuyucu – 1448976

Makbule Gülçin Özsoy – 1395383

İpek Tatlı – 1395557

3

TABLE OF CONTENTS

1. Introduction 4
1.1. Project Title 4
1.2. Project Definition and Goal 4
1.3. Design Goals 5

1.3.1. Robustness 5
1.3.2. Usability 5

2. Design Constraints 6
2.1. Experience & Skills of Members 6
2.2. Time Constraints 6
2.3. Resource Constraints 6

3. Project Requirements 7
3.1. System Requirements 7
3.2. Functional Requirements 7

3.2.1 Text-Mining and Representing Information Formally 7
3.2.2. Statistical Analysis and Information Retrieval 8
3.2.3. Holding Meta Information about Patients and Reports 8
3.2.4. User Interface 8

3.3. Non-Functional Requirements 9
3.4. User Requirements 10

3.4.1. Use Case Diagrams 10
3.4.2. Use Case Scenarios 12

4. System Architecture and Component Level Design 14
4.1. System architecture 14

4.1.1. Data Engine 14
4.1.2. Query Analyzer (Query Engine) 14
4.1.3. Text Mining Engine 15
4.1.4. External Word Query Manager 15

4.2. Component Level Design 16
4.2.1. Component Class Design 16
4.2.2. Component Level Explanations 21

4.3. Sequential Diagrams 27
4.3.1. Sequential Diagram for UserManager, PatientManager, LoginManager 27
4.3.2. Sequential Diagrams for AddReportManager, ReportManager and
LoginManager 28
4.3.3. Sequential Diagrams for StatisticalQueryManager and
ReportQueryManager 29
4.3.4. Sequential Diagrams for ReportMiner, FindingsSectionMiner and
ResultsSectionManager 30
4.3.5. Sequential Diagrams for FindingsSectionMiner 30
4.3.6. Sequential Diagrams for SentenceFindingSeparator 31
4.3.7. Sequential Diagrams for ResultsSectionMiner 32
4.3.8. Sequential Diagrams for ExternalQueryManager 33
4.3.9. Sequential Diagrams for ExternalQueryManager 34

5. Modelling 35
5.1. Functional Modelling 35

5.1.1. Data Flow Diagrams 35
5.1.2. Data Dictionary 39

4

5.2. Data Modelling 41
5.2.1. Entity-Relationship Diagrams 41
5.2.2. Data Descriptions 42

5.2.3. Create Tables 45
5.3. Behavioral Modelling 46

5.3.1. State Transition Diagram for Analyzing Reports 46
5.3.2. State Transition Diagram for Analyzing Single Sentences 47

6. GUI Design 48
7. Testing Methodology 56
8. Development Schedule 57

8.1. What Has Been Done So Far 57
8.1.1. Statistical Queries 57
8.1.2. Basic Queries 57
8.1.3. Accessing an External Dictionary 57
8.1.4. Semantic Analysis 58

8.2. Future Work 60
8.3. Gantt chart 61

9. Coding Convention 63
10. Conclusion 65
11. References 65
Appendix A. Statistical Query Grammar 66
Appendix B. Noun Phrase Parser Grammar 67
Appendix C. Create Table SQL Queries 68

5

1. Introduction

1.1. Project Title
 Our project title is RadioRead.

1.2. Project Definition and Goal
 In health care services, nowadays, medical imaging is gaining importance. Quality of

the medical images is not enough on its own for acquiring information on patients. Images

need to be accurately interpreted and reported by doctors. Today, the reports of medical

images are dictated as text by secretaries who listen to the tape records recorded by doctors

while examining films and medical images of patients.

 In current systems, most of the medical information is stored as free-text. Getting and

analyzing information from a text source is more difficult than from a well structured

information source. There is a need for extracting information from these text-based sources

and storing the information in computationally accessible form.

 It is obvious that there are plenty of documents which are kept in archives of hospitals.

There are also many sources about medical situations like diseases, drugs and medical

statistics on the Internet. The problem is that, nearly all of these are in textual formats. So

there is a huge amount of data available which we can not benefit from with current methods

in use. It is easy to access data from the Internet or from reports stored in hospital archives;

but it is difficult to acquire and analyze the information enclosed inside these data.

RadioRead is a project in which we will do text mining on Turkish medical radiology

reports. We aim to develop a useful information acquirement method from huge amount of

electronic patient reports to enable secure, ethical and user friendly access to patient

information. We will provide an environment for our users to access these information as easy

as using a natural language; an environment in which the user does not have to know anything

about technical aspects of how the information is represented in the database systems

involved. As a result; detailed information about patients can be accessed easily; more

information about a patient can be given to his/her doctor before consultations; the

information can be used by doctors to diagnose diseases of other patients; and statistics can be

derived.

 According to the market research we have done so far, we have seen that there is

neither enough research nor sufficient number of production level projects for text mining in

6

Turkish. This insufficiency is caused by the difficulty in analyzing the characteristics of the

language, and also by lack of market compared to English. In this project we plan to handle

usual difficulties of extracting information from free-text clinical reports, besides providing a

usable interface for different users (like doctors, assistants or statisticians) who may not have

sufficient technical knowledge to use a complex program efficiently.

1.3. Design Goals

1.3.1. Robustness
RadioRead will be able to manage invalid user inputs or inconsistent conditions. It

provides error checking to ensure the right input format and returns errors and warnings to the

user.

1.3.2. Usability
The users of RadioRead will be medical staff, doctors and statisticians. Since all staff

will not be experienced in computers we have a special need for user friendly graphical user

interface. While using RadioRead the user will face with a familiar environment, which eases

the general use of the application.

7

2. Design Constraints

2.1. Experience & Skills of Members
As developers, our programming and design skills and experiences is one of the

restrictions. It is very difficult for us to manage unexpected problems about this field but we

may consult experienced people to get help about solving problems. We may not be able to

achieve 100% success because we were not familiar to this topic before.

2.2. Time Constraints
We have to finish our project by June and also we should provide a prototype at the

end of this semester. Therefore, especially for a software project, this is the most important

constraint.

Being able to use our time efficiently is very important for us to follow our schedule.

Since we must provide a prototype at the end of this semester, we will focus on the project

and spend more time on it.

2.3. Resource Constraints
While we are doing our project, we need different software resources such as external

dictionaries. We will be able to access and use these resources. We will need a database

server. Dictionaries that we will create manually during the project may also restrict our

project development.

8

3. Project Requirements

3.1. System Requirements
General Aspects

Java as a programming language

PostgreSQL Database Management System

Hibernate library may be considered for persisting Java objects directly in DBMS

Zemberek library[1]

(Maybe) Required licenses to access SNOMED

Development Side

Eclipse as development environment

Installed Java Development Kit

SubVersion server for version control

GNU/Linux or Windows XP environment

Internet access for online dictionary support

End-user Side

PostgreSQL Database Management System

Java Run Time Environment 6

Windows XP or Recent GNU/Linux Distribution

Internet Access for online dictionary support

3.2. Functional Requirements

3.2.1 Text-Mining and Representing Information Formally
RadioRead application will be provided with free-text radiology reports. We have to

extract the information in these texts and represent these in a database, in a structured way.

We will use Natural Language Processing (NLP) with rule based techniques for this task. NLP

requires Morphological, Syntactic and Semantic analysis. We will utilize Zemberek [1] library

for morphological analysis, and will use Zargan [2] and TDK [3] online dictionaries in the

cases when Zemberek doesn’t have the roots of a given word. We will then apply syntactic

analysis, where we will spot verbs, subject(s) and indirect objects (“Dolaylı Tümleç”). After

this step, we enter the Semantic Analysis step. The verb or verb phrase found in the sentence

9

will be looked up from external dictionaries, such that Zargan, TDK Dictionary, to find

synonyms that matches with a predefined “meaning list”. This match (also affected with

qualifiers such as “-ma” negativity suffix that inverses meaning of a verb) will be used to

mark the information listed in the sentence to be “normal”, “abnormal”, “exists”, “not exists”.

The subject(s) of the sentence found in the syntactic analysis step are groups of noun phrases

referring to what-quality information about findings mentioned. For breaking them into

meaningful pieces, we will write our own noun phrase parser. Indirect-objects refer to

location-measurement information. The same noun phrase parser will be utilized for these too.

The structured information will then be recorded in the database, linked with similar records.

SNOMED may also be considered to be a secondary path for constructing ontology

information.

3.2.2. Statistical Analysis and Information Retrieval
We need to provide reasonable methods to a statistician for querying the accumulated

information from the analyzed radiology reports. The accumulated information is valuable as

a large-scale radiology data mined from free texts, which can be benefited from. A statistician

does not only require to query the data using qualifiers mined from the free-texts, but also

additional qualifiers (meta information) such as age range, date, frequency.

Besides the requirements to analyze accumulated information in a broad sense, a

doctor needs to query a specific patient’s history about a specific diagnosis or disease. This

way, a doctor can control the progress of a patient without having to search all the reports of

the patient for a specific item manually.

Thus, we need to provide two similar but slightly different ways for retrieval of mined

information.

3.2.3. Holding Meta Information about Patients and Reports
In order to meet requirements of statistical analysis and information retrieval, we need

to store meta information about patients and reports. Meta information of a patient holds

fields such as age or gender. We also need to store date, or doctor (writing the report)

information with the report records. Besides being useful in statistical analysis, the application

has to provide a convenient and intuitive way for users, mostly for doctors, to access data.

That’s why we need to hold additional information such as name of a patient.

10

3.2.4. User Interface
Authentication / Authorization

Logging into system via usernames and passwords

User account management

Adding accounts

Modifying accounts

Patient management

Adding patients

Modifying patient information

Listing patients, filtering

Report management

Adding reports associated with patients: This will invoke data mining

Listing reports, querying for a patient’s specific reports: There needs to be
options for querying mined information, besides simple filtering based on meta
data

Viewing reports

Statistical querying

Query interface: We need a query interface where a user can create his/her
queries in an intuitive way, such as constructing free-text like sentences using
dropdowns. Our users are not technically skilled, so users need to see the
constructed queries in a natural way, for ease of use.

3.3. Non-Functional Requirements
We need to provide the user an intuitively usable interface, which will require almost

no training to learn, and consume minimum time to fill data and query information. Our

intended users will be neither skilled nor interested in computers. In order for them to use the

application efficiently, the user interface needs to be simple and useful. Especially the

statistical query and information retrieval interfaces need to be designed with ease in mind, as

these can be complex even for experienced computer users if not designed carefully.

11

Besides the interface, we need to provide the security of the patients’ information.

Patients trust doctors and hospitals to store their data, and only the people who are authorized

to see their information should be able to view them.

The application needs to be responsive, especially in mining information from reports

and querying of mined information. Both reports and queries may be very complicated, but

they should not discourage the user because of latency.

3.4. User Requirements

3.4.1. Use Case Diagrams

3.4.1.1. Overview

12

3.4.1.2. Use Case Diagram for Administrator

3.4.1.3. Use Case Diagram for Staff-1

3.4.1.4. Use Case Diagram for Staff-2

13

3.4.1.5. Use Case Diagram for Statistician

3.4.1.6. Use Case Diagram for Doctor

3.4.2. Use Case Scenarios

3.4.2.1. Administrator
Login: An administrator has to login to the system in order to realize administrative

roles. There will be a user interface for administrative roles. After validation of login

information, the administrator will be able to manage users.

Manage Users: Administrator may add, remove users and modify the user

information. There will be specified user roles and rights and administrator will

control users and will be able to restrict the user rights.

14

3.4.2.2. Staff-1
Login: A staff1 has to login to the system in order to realize his/her roles. There will

be a user interface for him/her. After validation of login information, the staff1 will be

able to manage patients.

Manage Patients: Staff1 may add patients and modify the patient information. None

of the patients who had been in the clinic will be deleted even if they are dead.

3.4.2.3. Staff-2
Login: A staff2 has to login to the system in order to realize his/her roles. There will

be a user interface for him/her. After validation of login information, the staff2 will be

able to manage reports.

Add Reports: Staff2 may add reports to the records of related patients. These reports

will then be used for acquiring necessary information.

3.4.2.4. Statistician
Login: A statistician has to login to the system in order to realize his/her roles. There

will be a user interface for him/her. After validation of login information, the

statistician will be able to manage query reports.

Query Reports: Statistician may send queries about reports to data mining engine

through GUI, and get statistical mined information.

3.4.2.5. Doctor
Login: A doctor has to login to the system in order to realize his/her roles. There will

be a user interface for him/her. After validation of login information, the doctor will be

able to manage query reports.

Access Information of Reports: Doctor is the only user who can reach the pure text of

patients’ reports.

Search within Patients Data: Doctor may send queries about patients to data mining

engine through GUI, and get of mined information of patients.

4. System Architecture and Component Level Design

4.1. System architecture

4.1.1. Data Engine

15

4.1.2. Query Analyzer (Query Engine)

16

4.1.3. Text Mining Engine

4.1.4. External Word Query Manager

17

4.2. Component Level Design

4.2.1. Component Class Design
LoginManager
login(username, password) Query from database if user has valid username and password.

Set the logged in user (internally)
logout() Logout current user (internally)
getUserName() Returns username of currently logged in user
canManagePatients() Checks privileges
canAddReports() Checks privileges
canQueryReports() Checks privileges
canAccessPatients() Checks privileges
canManageUsers() Checks privileges

UserManager
addUser(userInfo) Creates a new user with given information
updateUser(userInfo) Updates user information
listUsers() Returns list of users in system

PatientManager
addPatient(patientInfo) Creates a new patient with given information
updatePatient(patientInfo) Updates patient information
listPatients() Returns list of patients in system
listPatients(constraints) Lists patients fulfilling constraints.

constraints contains information such as gender, age range,
fragments of name/surname

ReportManager
addReport(reportText) Adds a new report to system. The report is sent to Add Report

Manager.

reportText is in the format given as examples to
SBAYazılım (type is String)

listReports() Lists all reports in system
listReports(constraints) Lists reports fulfilling constraints.

constraints contains information such as patient id, date
range, words in title.

18

19

AddReportManager
addReport(reportText) Adds a new report to system. The report text is first sent to

ReportDecomposer to extract 6 components of the report, and
then added to database (to Non-NLP tables). Then, it calls
TextMiningEngine with the report id, to make the report
analyzed.

reportText is in the format given as examples to
SBAYazılım (type is String)

ReportDecomposer (mentioned as 'Rapor Ayrıştırıcı')
decompose(reportText) Given the free text, it extracts 6 components and returns them.

The components are “Başlık” ,“Klinik Bilgi”, ”Teknik”,
”Bulgular”, ”Sonuç” and “Yazan Doktorlar”

reportText is in the format given as examples to SBAYazılım
(type is String)

ReportDoctorDecomposer (mentioned as 'Rapor-Doktor Çözümleyici')
decompose(doctorsComponent) Given the “Doktorlar” component of free text, and extracts the

list of doctor names.

StatisticalQueryManager
queryForCount(hastaGrubuNode
)

Given the root node of hasta_grubu (see statistical query
grammar), returns number of patients in that group

queryForPercentage(
hastaGrubuNode1,
hastaGrubuNode2)

Given the root nodes of 2 hasta_grubu (see statistical query
grammar), returns percentage of group 2 over group 1

queryForMeasurementGraph(
hastaGrubuNode,
bulguNode,
measurementType, numberOfBars
)

Given 2 root nodes, one measurement type, and a number
specifying number of groups in the resulting graph, returns a list
containing numberOfBars numbers (see statistical query
grammar)

ReportQueryManager
setPatientId(patientId) Sets the patient ID to be used for subsequent calls
getFindings() Returns all findings extracted from all reports of the patient
getFindings(constraints) Returns all findings extracted from all reports of the patient,

limited by constraints

20

ComplexQueryHandler
queryForCount(hastaGrubuNode
)

Given the root node of hasta_grubu (see statistical query
grammar), returns number of patients in that group

queryForPercentage(
hastaGrubuNode1,
hastaGrubuNode2)

Given the root nodes of 2 hasta_grubu (see statistical query
grammar), returns percentage of group 2 over group 1

queryForMeasurementGraph(
hastaGrubuNode,
bulguNode,
measurementType, numberOfBars
)

Given 2 root nodes, one measurement type, and a number
specifying number of groups in the resulting graph, returns a list
containing numberOfBars numbers (see statistical query
grammar)

PatientGroupQueryParser (mentioned as 'hasta_grubu Query Parser')
queryPatientGroup(
hastaGrubuNode)

Given the root node of hasta_grubu (see statistical query
grammar), returns 1. list of patient IDs in that group 2. list of
report IDs in that group

FindingQueryParser (mentioned as 'bulgu Query Parser')
queryFinding(bulguNode) Returns list of finding IDs described by bulguNode root node

(see statistical query grammar)
queryFinding(bulguNode,
reportIds)

Returns list of finding IDs described by bulguNode root node
(see statistical query grammar) which exist in one of reports in
reportIds

FindingQueryHandler
queryFinding(constraints) Returns list of findings according to given constraints

ReportMiner
mineReport(
reportId,
findingsText,
resultsText)

Mine information and insert it to NLP tables. In the end, it inserts
a record to Islenmis_Raporlar with reportId (and inserts other
mined information to NLP tables associated with
Islenmis_Raporlar)

FindingsSectionMiner
mineFindings(findingsText) Returns a list of findings extracted from the findingsText

21

SectionSentenceSeparator (mentioned as 'Bölüm Ayrıştırıcı(cümlelere)')
separateSentences(
sectionText)

Returns a list of semantic sentences from the free text. Every
“semantic” sentence has only one verb (uses punctuation, and
“fiilimsiler” to separate sentences)

SentenceFindingSeparator (mentioned as 'Tek Cümleden bulgu ayrıştırıcı')
separateFindings(
sentenceText)

Returns a list of findings extracted from the given sentence

SentencePartsGrouper (mentioned as 'Yer-Ölçüm Nasıl-Ne gruplayıcı')
groupParts(sentenceText) Returns “location-measurement” and “how-what” groups from

the given sentence

VerbFinder (mentioned as 'Yüklem Bulucu')
findVerb(sentenceText) Returns verb / verb phrase forming the predicate of the given

sentence

VerbMeaningFinder (mentioned as 'Yüklem Anlam Çıkarıcısı')
findMeaning(verbPhrase) Returns if the given verb / verb phrase gives information about

normality or existence

LocationOrMeasurementAnalyzer (mentioned as 'Yer-Ölçüm Ayırıcı')
analyzeLocationOrMeasurement(
phrase)

Decides whether the given phrase points a location, a
measurement, or is irrelevant. All “Dolaylı tümleç”s are
analyzed in this class.

Examples: “sol memede”, “3 mm çapında”, “yapılan us
incelemesinde”

22

FindingsAnalyzer (mentioned as 'Nasıl-Ne Ayırıcı')
analyzeFindings(phrase) Parses the given phrase into a list of findings (“ne”) and their

qualities (“nasıl”). Most of the time, the given phrase is a
complex noun phrase consisting of quality and finding name
information.

Returns a list of finding names and their related qualities. More
than one finding may be found from a single phrase due to nature
of complex noun phrases.

Examples

 “kistik ya da solid lezyon”
-> (qualities:”kistik”,finding:”lezyon”),
(qualities:”solid”,finding:”lezyon”)

“Midenin konturları, pasaj ve peristaltizmi ve mukozal rölyefi”
-> (qualities: none, finding: “midenin konturu”), (qualities: none,
finding: “midenin pasajı”), (qualities: none, finding: “midenin
peristaltizmi”), (qualities: none, finding: “midenin mukozal
rölyefi”)

NounPhraseParser
parsePhrase(phrase) Parses the given complex phrase which is composed of adjective

and nouns into a parse tree. This tree can be scanned from leaves
to root to get single phrases. See noun phrase grammar for
details.

MorphologicalAnalyzer (mentioned as 'Ek Kök Ayrıştırıcı')
analyzeWord(word) Morphologically analyzes the given word and returns a list of

root and suffixes. Uses Zemberek for morphological analyzing,
and uses external dictionaries (to get root) in case Zemberek
doesn't have the root of the word in its root dictionary.

ResultsSectionMiner
mineResults(resultsText,
findingsList)

Returns a list of mentioned associations with findings, mentioned
in the result text. Also extracts other information such as “6 ay
sonra gelsin”, “Normaldir” related to the report.

FindingsResultsAssociator (mentioned as 'Bulgu-Sonuç ilişkilendiricisi')
associateFindingsResults(
sentenceText,
findingsList)

Finds the mentioned findings in sentenceText, to associate
with findings in Findings section.

23

ConsultationSuggestionFinder (mentioned as 'Takip Bilgisi Çıkarıcı')
findConsultationSuggestion(
sentenceText)

Returns when the patient should visit doctor again if specified

ReportNormalityFinder (mentioned as 'Rapor Normalliği Çıkarıcı')
findReportNormality(
sentenceText)

Returns if the normality of the report is mentioned

ExternalWordQueryManager
queryAllDetails(word) Given word, ask information (on synonyms, root, correct

spelling, usage in phrases (“dansite” -> “parazitel dansite”),
whether the word is a medical term, etc.) from Zargan, TDK
Dictionary, or other dictionaries. The results are persistently
cached.

Returns detailed information.
querySynonyms(word) Returns synonym information
queryPhraseUsage(word) Returns all different usages of word
queryCorrectSpelling(word) Returns correct spelling of the word (if Zemberek does not have

the root of a word in its root-dictionary, it cannot separate its
suffixes. We ask external sources “çekilmiş” words, and get the
“suggested” word as the root, injecting it into Zemberek, to make
it separate suffixes)

4.2.2. Component Level Explanations

4.2.2.1. FindingsSectionMiner

Given the free text of the findings section of a report, this component extracts the

distinct findings mentioned in the text. The result is a list of findings. Every finding has

properties such as location list, quality list, finding type (“ne”), measurement list, and

information on normality and existence.

4.2.2.2. SectionSentenceSeparator (mentioned as 'Bölüm Ayrıştırıcı (cümlelere)'):

This component separates a section of the report to a list of semantic sentences. Every

“semantic” sentence has only one verb. This component uses punctuation and “fiilimsiler” to

separate sentences.

24

The component will extract the sentences according to the full stop and some verbal

(fiilimsi) that has a comma after itself. Sentences which have “:” at the end, and the text inside

a pair of “()” will be ignored.

Ex:

Mukozal doku değerlendirilmiş, peristaltik hareketler ileride incelenecektir.

This has two logical sentences, “Mukozal doku değerlendirilmiş” and “peristaltik hareketler

ileride incelenecektir.”

4.2.2.3. SentenceFindingSeparator (mentioned as 'Tek Cümleden bulgu ayrıştırıcı') :

This component will mine findings from a single logical sentence, and returns them as

a list.

 First, the sentence is sent to VerbFinder to find the position of the predicate. Once the

predicate is found, it is separated from the sentence body. The predicate is passed to

VerbMeaningFinder to get normality / existence information. VerbMeaningFinder may also

return a single quality to associate with all findings extracted from the sentence. If there is no

normality / existence information retrieved from the VerbMeaningFinder, the sentence is no

further processed.

 Then, the rest of the sentence is sent to SentencePartsGrouper to tag parts of the

sentence “location-measurement” or “what-quality” groups. These groups are then processed

in left to right order. Each group is passed to LocationOrMeasurementAnalyzer or

FindingAnalyzer depending on group type.

The locations are attached to findings and the finding list is returned.

4.2.2.4. VerbFinder (mentioned as 'Yüklem Bulucu') :

This component will check the last words in the given sentence to find the candidate

predicate, as Turkish sentences have their predicates at their ends.

First the last word will be taken as the predicate, and then the previous ones will be

tried to be joined to this word from the left, to catch a predicate of multiple words.

At each step, the current predicate candidate will be asked to External Word Query

Manager to find out if it is a verb. The longest predicate candidate will be the result of

VerbFinder component.

25

The predicate candidate may be a verbal (fiilimsi) instead of a full verb, as

SectionSentenceSeparator separated the text into logical sentences, not physical sentences.

4.2.2.5. VerbMeaningFinder (mentioned as 'Yüklem Anlam Çıkarıcısı'):

 This component finds the meaning of a predicate (in the groups of normality and

existence).

 The predicate is first checked against an internal dictionary for meaning. If the

dictionary does not contain the predicate, it is asked against external sources (through External

Word Query Manager) to find synonyms that may exist in our dictionary. If the result is

reached through external sources, the predicate is added to our internal meaning dictionary.

 There are two cases: In the first case, the predicate has a verb root, which will show us

existence. In the second case, the predicate has a noun root (“normaldir”, “doğaldır”,

“difüzdür”), which may 1. show normality/abnormality 2. show existence and contain quality

to be associated with the finding in the source sentence.

 The result of this component is both a normal/abnormal, existent/nonexistent value, as

well as a possibly quality word to be associated with findings in the sentence.

4.2.2.6. SentencePartsGrouper (mentioned as 'Yer-Ölçüm Nasıl-Ne gruplayıcı') :

This component tags parts of the sentence as groups of “location-measurement” or

“what-quality”. These groups can be easily identified due to the rules of Turkish.

The predicate of a sentence will not be passed to this component.

We define a crush element as a word with suffixes “-e, -a” (yönelme hali), “-de, -da”

(bulunma hali), “-den, -dan” (ayrılma hali), “-(y)le -(y)la” (birliktelik durumu – but only as a

suffix, not the distinct word “ile”), a verbal (fiilimsi – such as “olup”, “olarak”), some

predefined conjunction words (such as “için”).

First the sentence will be scanned from left to right, looking for crush elements. When

a crush element is found, the part of the sentence to the left of the crush element (up to a

previous crush element or the beginning of the sentence) will be processed depending on the

type of the crush element. This part will be referred as “the part associated with the crush

element”. Depending on the crush element:

If the crush element is a suffix of “-e, -a”, “-(y)le, -(y)la”, or a conjunction word, then

the associated part of the crush element will be ignored.

26

If the crush element is a suffix of “-den, -dan”, there are two cases depending on the

leftmost word to the right of the crush element. If it is a number, no action will be

taken, otherwise, the associated part of the crush element will be ignored as in “-e, -a”

rule.

If the crush element is a verbal, the verbal will be ignored from the sentence, and the

associated part of the verbal will be joined to the right of the verbal.

If the crush element is a suffix of “-de, -da”, the associated part of the crush element

will be scanned from right to left. Initially, the rightmost word will form the “location

+ measurement” group. In each step, the rightmost word to the left of the current

“location+measurement” group will be tried to be joined to the group on its left. This

new candidate group will then be passed to Noun Phrase Parser to check if it forms a

valid noun phrase. Finally, the longest valid rightmost noun phrase to the left of the

crush element will be tagged as “location+measurement” group, and the remaining

part of the associated sentence part will be tagged as a “what+quality” group.

After the last crush element, the remaining part of the sentence (on the right) will be

tagged as a “what+quality” group.

Examples:

Sağda sigmoid sinus açıktır

 L+ M W + Q predicate

Her iki memede dağınık fibroglandüler dansiteler vardır.

 L + M W + Q predicate

Non-dominant olduğu için yavaş akıma bağlı teknik nedenlerle

 ignored ignored ignored

görüntülenememiş olabilir.

 predicate

4.2.2.7.LocationOrMeasurementAnalyzer (mentioned as 'Yer-Ölçüm Ayırıcı') :

This component decides whether the given phrase points a location, a measurement or

is irrelevant. All “Dolaylı tümleç”s are analyzed in this component.

 There are exactly five cases, illustrated below:

“Sol memede” -> Location, name: “sol meme”

“saat 6 hizasında” -> Location, name: “saat 6 hizası”

27

“aeroladan 2 cm uzaklıkta” -> Location, name: “aerola”, distance: 2, distance_unit:

“cm”

“7x5 mm boyutunda” -> 2 measurements; measurement: 7, measurement unit: “mm”,

type: “length1”; measurement: 5, measurement unit: “mm”, type: “length2”

“3 mm çapında” -> 1 measurement; measurement: 3, measurement unit: “mm”, type:

“diameter”

“(yapılan) US incelemesinde” -> irrelevant (“yapılan” crush element was ignored from

the sentence). There is a finite set of phrases: “ * sırasında”, “bunun dışında”,

“incelemesinde”, “ile karşılaştırıldığında”, “ * esnasında”

“kemik iliği difüz (olarak) baskılanmakta” -> (“olup” crush element was ignored from

the sentence). Here, to the left of “-de, -da” there is a verbal. We ignore the verbal, and return

“kemik iliği difüz” as “this should be tagged as ‘what-quality’ ”

4.2.2.8.FindingsAnalyzer (mentioned as 'Nasıl-Ne Ayırıcı') :

This unit parses the given phrase into a list of findings (“ne”) and their qualities

(“nasıl”). Most of the time, the given phrase is only a complex noun phrase consisting of

quality and finding name information. It returns a list of finding names and their related

qualities. More than one finding may be found from a single phrase due to nature of complex

noun phrases.

There can be multiple noun phrases in the given phrase. If the last phrase is a single

word, then it will be marked as a “quality” associated with all other findings to be found in the

phrase. (a special case: if the last phrase is a single word and is in a special set of words

“normal”, “anormal”, “subnormal”, it won’t be marked as a quality but as a normality /

abnormality specifier for the findings)

Ex: Kemik dokusu ve kemik iliği difüz (olarak …) -> “kemik dokusu”, “kemik iliği”,

“difüz”

Ex: Kemik dokusu ve iliği difüz (olarak …) -> “kemik dokusu ve iliği”, “difüz”

Ex: Kemik dokusu ve kemik iliği -> “kemik dokusu”, “kemik iliği

Parsing in this component is done from left to right similar to

LocationMeasurementAnalyzer. In each step, first the end of the input is checked if it contains

a conjunction word (comma, “ve”, “ile”, “ya da”, “veya”). If there is, it is removed. Then, the

rightmost side of the candidate noun phrase is fixed to the end of input. The leftmost side of

28

the candidate noun phrase is moved to left in steps, until the beginning of the input is reached.

The longest valid noun phrase will be marked as one item, and the same process will be

applied to the rest of the input.

Ex:

Kemik dokusu ve kemik iliği difüz

 ^ ^ valid noun phrase

Kemik dokusu ve kemik iliği difüz

 ^ ^ invalid noun phrase

Kemik dokusu ve kemik iliği difüz

 ^ ^ invalid noun phrase

Kemik dokusu ve kemik iliği difüz

 ^ ^ invalid noun phrase

Kemik dokusu ve kemik iliği difüz

^ ^ invalid noun phrase

The longest valid noun phrase is “difüz”, so it is marked as one item, removed from

the input, and the process is repeated. This technique relies on the fact that our noun phrase

parser can only parse single noun phrases (“kemiğin dokusu ve iliği”, “kemiğin dokusu”, but

not phrases containing distinct items as in “kemik dokusu ve kemik iliği” or “doku ve ilik”).

The noun phrase parser will return each item as a list of simple noun phrases.

Ex: Midenin konturları, pasaj ve peristaltizmi ile mukozal rölyefi

 “midenin konturları”, “midenin pasajı”, “midenin peristaltizmi” “midenin mukozal

rölyefi” are simple noun phrases parsed from the initial long noun phrase.

Ex: Kistik ve solid lezyon bulunmuştur.

 2 findings: quality: kistik what: lezyon ; quality: kistik what: lezyon

Ex: Kistik solid lezyon bulunmuştur.

 1 finding: quality: kistik, solid what: lezyon

Ex: Kistik ve solid mide lezyonu bulunmuştur.

29

 2 findings: quality: kistik what: mide lezyonu ; quality: solid what: mide lezyonu.

30

4.3. Sequential Diagrams

4.3.1. Sequential Diagram for UserManager, PatientManager, LoginManager

31

32

4.3.2. Sequential Diagrams for AddReportManager, ReportManager and
LoginManager

33

4.3.3. Sequential Diagrams for StatisticalQueryManager and
ReportQueryManager

34

4.3.4. Sequential Diagrams for ReportMiner, FindingsSectionMiner and
ResultsSectionManager

4.3.5. Sequential Diagrams for FindingsSectionMiner

35

4.3.6. Sequential Diagrams for SentenceFindingSeparator

36

4.3.7. Sequential Diagrams for ResultsSectionMiner

37

4.3.8. Sequential Diagrams for ExternalQueryManager

38

4.3.9. Sequential Diagrams for ExternalQueryManager

39

5. Modelling

5.1. Functional Modelling

5.1.1. Data Flow Diagrams

5.1.1.1. Level-0 Data Flow Diagram

5.1.1.2. Level-1 Data Flow Diagram: RadioRead

40

5.1.1.3 Level-2 Data Flow Diagram: Data Engine

41

5.1.1.4 Level-2 Data Flow Diagram: Report Information Engine

5.1.1.5 Level-3 Data Flow Diagram: Query Analyzer

42

5.1.1.6 Level-3 Data Flow Diagram: Text Mining Engine

43

44

5
.
1
.
1
.
7
L
e
v
el
-
4
D
a
t
a
F
l
o
w
D
i
a
g
r
a

m: External Word Query Manager (Part of Morphological Analyzer)

45

5.1.2. Data Dictionary

Name: Word query
Where used? Output of External Word Query Manager (Level 3: Text Mining

Engine)
Input to External Dictionaries (Level 0)

Description Query that is sent to external dictionaries to get meaning
information.

Name: Simple queries
Where used? Output of Data Engine DB Interface(Level 2: Data Engine)

Input to External Database (Level 0)
Description SQL queries that are sent to external database to get/set information

which are not mined from reports, but about meta data.

Name: Text mining queries
Where used? Output of Database Interface (Level 2: Report Information Engine)

Input to External Database (Level 0)
Description SQL queries that are sent to external database to get/set information

which are mined from reports.

Name: Data Engine
Where used? Level 1
Description Internal engine that separates data depending on whether they will

be sent to Report Information Engine to be text-mined or External
Database to be stored.

Name: Report Information Engine
Where used? Level 1

46

Description Internal engine that extracts information from reports and handles
complex queries such that statistical and report queries.

Name: New Reports
Where used? Output of Data Engine (Level 1)

Input to Report Miner (Level 3: Text Mining Engine)
(renamed as ‘findings text’, ‘results text’ in Level 3)

Description Original text reports that are to be mined.

Name: Text Mining Engine
Where used? Level 2
Description Internal engine that extracts information from reports by using text

mining techniques.

Name: Query Analyzer
Where used? Level 2
Description Internal analyzer that sends a stream of simpler queries which are

obtained from complex queries (statistical/report queries), and
merges results.

Name: Information query
Where used? Output of Query Analyzer (Level 2:Report Information Engine)

Input to Database Interface (Level 2:Report Information Engine)
Description Simpler queries which are obtained from complex queries.

Name: hasta_grubu Node

Where used? Output of Complex Query Handler(Level 3:QueryAnalyzer)
Input to Patient Group Query Parser (Level 3:Query Analyzer)

Description The root node of a hasta_grubu syntax tree. See statistical query
grammar for details.

Name: bulgu Node

Where used? Output of Complex Query Handler(Level 3:QueryAnalyzer)
Input to Finding Query Parser (Level 3:Query Analyzer)

Description The root node of a bulgu syntax tree. See statistical query
grammar for details.

5.2. Data Modelling

5.2.1. Entity-Relationship Diagrams

47

5.2.2. Data Descriptions
The data description part gives

information about the structure of the database. We have

demonstrated entities and relations without their attributes.

Instead of this, attributes of entities are listed below. The

underlined data are the primary-keys, and the data with stars are foreign keys.

We have 5 global tables that will be populated after doing some text mining on reports.

T h e y are “Ne”, “Yer”, “Nasil”, “Yer_Rel” (demonstrating the

relation between two “Yer” records) and “Ne_Rel”

(demonstrating the relation

between two “ N e ” records).

Ne:

This entity contains information about kinds of all possible

findings.

Yer:

This entity contains information about locations of all possible

findings.

Nasil:

This entity contains information about qualities of all possible findings.

Bulgu
_Nasil

Raporlar

Islenmis_Bulgu

Sahiptir

Yazildi

Eklendi

Bulgular

Yer
Nasil

Bulgu_Yer

Is_ Ne

Ne_ Rel

Yer_Rel

Ne

Hastalar

Doktorlar

Kullanicilar

Bulgu_
Olcum

Has_ Olcum
Ana_yer

Islenmis_Raporlar

ISA

48

Hastalar:

This entity contains all necessary information about the patients. This information will be

inserted to database through GUI, and they will not be text-mined. This information will be

used for diagnostic purposes by doctors.

Doktorlar:

This entity contains all necessary information about the doctors that write the reports. This

information is gathered from reports. This information will be used for statistical purposes.

Kullanicilar:

This entity contains all necessary information about the users. The “Kullanicilar” entity

contains information about login information and access-rights. This information will then be

used to categorize users into five groups: Admin, Staff-1, Staff-2, Doctor, and Statistician.

Raporlar:

This entity contains all necessary information about reports. Each report is owned by a patient,

can have multiple doctor information which is written in reports and can be added by only one

user. This entity contains only non-mined meta information about reports, such as title, text,

date.

Islenmis_Raporlar:

This entity is a Raporlar. This entity holds the mined information about reports and separates

meta information and mined information.

Bulgular:

This entity contains any finding mentioned in the findings (“Bulgular”) section of a report

text. All information (normal, abnormal, existent, and non-existent) that can be extracted from

the report text about a single finding is stored here.

Bulgu_Olcum:

This entity contains information about quantities of a “Bulgular” record.

Bulgu_Nasil:

 This relation makes an n-to-n correspondence between “Bulgular” and “Nasil” entitites. This

holds qualities of a “Bulgular” record.

Bulgu_Yer:

49

This relation makes an n-to-n correspondence between “Bulgular” and “Yer” entitites. This

holds locations of a “Bulgular” record.

Database Tables:

Kullanicilar (user_id, access_rights, username, password, active, name)

Hastalar (patient_id, name, surname, cinsiyet, year_of_birth)

Doktorlar (doctor_id, title, name, surname)

Raporlar (report_id, patient_id*, user_id*, title, date, clinical_info, technical_info, findings,
result)

Yazildi (doctor_id*, report_id*)

Islenmis_Raporlar (report_id*, sure, sure_birimi, normallik)

Bulgular (bulgu_id, report_id*, ne_id*, yer_id*, normal, var, sonucta_geciyor)

Bulgu_Yer (bulgu_id*, yer_id*, uzaklik_olcum, uzaklik_birim)

Bulgu_Olcum (bulgu_olcum_id, bulgu_id*, olcum, olcum_birimi, tur)

Bulgu_Nasil (bulgu_id*, nasil_id*, sonuctan)

Yer (yer_id, isim)

Yer_Rel (birincil_yer_id*, ikincil_yer_id*)

Nasil (nasil_id, isim)

Ne (ne_id, isim)

Ne_Rel (birincil_ne_id*, ikincil_ne_id*)

Raporlar
report_id*
patient_id*
user_id*
title The title text of the report
date Date of the report
clinical_info The text in the Clinical Information section
technical_info The text in the Technical Information section
findings The text in the Findings section
result The text in the Results section

50

Islenmis_Raporlar
report_id*
sure Quantity of the advised time for next consultation. Can be NULL if not

specified in the Results section of the report
sure_birimi Unit of the time
normallik True / False / NULL – Holds whether normality / abnormality is

specified in the Results section of the report

Bulgular
bulgu_id
report_id*
ne_id*
yer_id* Holds the primary location of this finding. Bulgu_Yer table holds

secondary locations
normal True / False / NULL – holds whether this finding is specified as normal

or abnormal or not specified in normality
var True / False / NULL – holds whether this finding is specified as existent

or non-existent or not specified in existence
sonucta_geciyor True / False – Holds whether this finding is also referenced in the results

section of the report

Bulgu_Yer
bulgu_id*
yer_id*
uzaklik_olcum The quantity of the distance
uzaklik_birim The unit of the measurement

Bulgu_Olcum
bulgu_olcum_id
bulgu_id*
olcum The quantity of the measurement
olcum_birimi The unit of the measurement
tur The kind of the measurement (i.e. “çap”, “hız”, “uzunluk”, “boyut”)

Bulgu_Nasil
bulgu_id*
nasil_id*
sonuctan True/False. Holds whether this quality is gained only from the “Results”

section of a report

Yer
yer_id
isim Name of the quality (i.e “meme”, “sol meme”, “areola”)

51

Yer_Rel
birincil_yer_id*
ikincil_yer_id*

Nasil
nasil_id
isim Name of the quality (i.e “dens”, “heterojen”, “solid (lezyon)”)

Ne
Ne_id
isim Name of the finding (i.e “duktal ektazi”, “patern”, “lezyon”)

Ne_Rel
birincil_ne_id*
ikincil_ne_id*

5.2.3. Create Tables
 CREATE TABLE statements are in Appendix C.

52

5.3. Behavioral Modelling

5.3.1. State Transition Diagram for Analyzing Reports

53

5.3.2. State Transition Diagram for Analyzing Single Sentences

54

6. GUI Design

Figure 6.1- Login to RadioRead

Login screen is above. The user must enter his/her username and password to be able

to login to the system (Figure 6.1).

dr.ipektatli

55

Figure 6.2- “Kullanıcı İşlemleri” of RadioRead

We have 4 tabs in the main window but every user is not able to use every task. They

can access these tasks only if they have the necessary permissions. In RadioRead only

administrators (modifyUsers privilege) can access “Kullanıcı İşlemleri” (Figure 6.2).

Administrators can add and modify users, they can change user’s access rights and can

activate/deactivate their accounts. They can search users according to name, surname and

username. They can list users found in the grid view.

56

Figure 6.3- “Hasta İşlemleri” of RadioRead

In RadioRead only the users who have AccessPatients or ManagePatients privileges

can access “Hasta İşlemleri” (Figure 6.3). Users having ManagePatients privilege can list

patients, can add and modify patient information. Users having AccessPatients privilege can

list patients, can access the “Doktor Girişi” button which will show the patient details of the

selected patient (explained later). Any user listing patients can search patients according to

their name, surname, gender and age range.

57

Figure 6.4- “Doktor İşlemleri” of RadioRead

 In RadioRead only the users who have AccessPatients privileges can access “Doktor

İşlemleri” (Figure 6.4 and 6.5). They can list reports of a patient or search within the extracted

findings from the reports. By clicking on the “Raporu Oku” button, user can read the selected

report or selected finding’s report.

58

Figure 6.5- “Doktor İşlemleri” of RadioRead

59

Figure 6.6- “Rapor Oku” in RadioRead

This is the view report window. Any user that has AccessPatients privilege can access

this window (Figure 6.6).

60

Figure 6.7 “Rapor İşlemleri” of RadioRead

In RadioRead only the users who have “AddReports” permissions can access “Rapor

İşlemleri” (Figure 6.7). They can add a new report. They can search reports according to name

and surname of patients, report date and report title. They can list reports found in the grid

view. They cannot read reports.

Figure 6.8 “İştatistiksel Sorgular” of RadioRead

61

In RadioRead only the users who have “QueryReports” privilege can access

“İstatistiksel Sorgular” (Figure 6.8). There are three types of queries: “how many”, “what

percentage” and “graphical”. Users can select a query type by using the links in the window.

Figure 6.9 “Kaç Tane Sorgusu” part of RadioRead

 Above is the “how many” query (Figure 6.9). The user will specify details of the

components of the query by clicking on the links. Clicking on “Hasta Bilgileri” brings the

following window:

62

Figure 6.10 “Hasta Bilgisi” part “İstatistiksel Sorgular”

After the user specifies the constraints in the above window (Figure 6.10), the query

text will be automatically updated as below:

Figure 6.11 View of the program after patient constraints

63

Then the user can click the “Rapor Bilgileri” link to specify report constraints (Figure
6.11 and 6.12).

Figure 6.12 “Rapor Bilgileri” part of “İstatistiksel Sorgular”

Figure 6.13 View of the program after report and findings constraints

64

A finished “how many” query will look like as in the above window (Figure 6.13). The

user can click on the “Hesapla” button to execute the query.

7. Testing Methodology

We plan to use Unit Tests to maintain the integrity of components and classes over

time. Due to time restrictions in the first semester, we will not write unit tests during the first

semester, but will maintain the design and components separate from each other. For example,

the design will allow instantiating and testing a SentencePartsGrouper apart from the rest of

RadioRead.

 The design restrictions chosen this semester will allow us to easily integrate Unit Test

frameworks such as JUnit within RadioRead codebase in the second semester, when the

design will be more stable.

65

8. Development Schedule

8.1. What Has Been Done So Far

8.1.1. Statistical Queries
As we stated before, we aim to develop a useful information acquirement method from

huge amount of electronic patient reports to enable secure, ethical and user friendly access to

patient information. We will provide an environment for users to access these information as

easy as using a natural language; an environment in which the user does not have to know

anything about technical aspects of how the information is represented in the database systems

involved.

RadioRead has 3 types of statistical queries. One of them is “How many?” query

which provides to access how many patients there are with the given specifications. Other is

“What percentage?” query. This query provides access to percentage of patients over a super

class of patients. The user will give specifications about a group of patients (a) and another

group of patients (b) that encloses the first group. RadioRead will return the percentage of ‘a

intersection b’ over ‘b’. The third type of the queries is “Measurement-Graph” query which

provides access to some graphics about the specifications given by the user. User will give a

group of patients (a), a single finding (b), and measurement type (c) and a number (d). ‘b’

must exist inside ‘a’s specified reports if there is any report constraint given. Otherwise ‘b’

exists inside all reports of the patient ‘a’. RadioRead will return a graph plotting the

measurement of ‘c’ in ‘b’. ‘d’ specifies the number of groups (columns) in the graph. Each

column in the graph has the range
(calculated_max_measurement - calculated_min_measurement) / d

as measurement value. The language grammar that we created for the statistical queries is in

Appendix A.

8.1.2. Basic Queries

These queries do not use acquired data mined from the reports. Instead, they are used

for data such as information of patients, doctors, users or reports.

66

8.1.3. Accessing an External Dictionary

We plan to use Zargan as an external dictionary because it has a medical dictionary

inside. We have implemented some classes in Java and we can send words to Zargan and have

information about whether it is a medical term or not.

 When we ask a word to Zargan, Zargan may propose us some words similar to the

given word if the word is not in it. This provides us to guess and analyze the most similar

word and send it to Zemberek’s dictionary. Zemberek can separate it into its root and suffixes.

If the word is in Zargan, Zargan gives the Turkish, English meanings and source dictionary

type of the word. It also gives us phrases about its usage and synonyms of the word that we

asked. This is useful for us because we can guess if it is an illness or it is a locus of a patient

etc. Also we can utilize the phrase usage information to separate “what” and “quality” from an

input in a better way, although we haven’t completely placed this idea in our algorithms yet.

In the future we can relate some other Turkish words with the given synonyms or send the

translated English meanings to Snomed to extract ontology information. Source dictionary

type in Zargan is also convenient to differentiate between medical terms and non-medical

words.

 Zargan has XHTML pages that can be easily parsed with Java’s XML parsers. This

makes Zargan an excellent choice.

8.1.4. Semantic Analysis

8.1.4.1. Importance of Noun Phrases in Sample Radiology Reports

Semantic analysis is the most important step in natural language processing. In this

step, sentences are translated to semantic formulas. In order to create these formulas, lexical

and syntactic analysis are used.

 We have analyzed the sample clinical reports given to us and seen that most of the

sentences in the findings part can be considered as “simple sentences”, composed of a

(probably) complex noun phrase and a verb phrase. The noun phrase is a composition of

different findings, whereas the verb phrase (usually consisting of one or two words) identifies

the overall semantic information about these findings, such as “exists” “do not exist” “is

identified” “is normal” “is abnormal”.

8.1.4.2. Noun Phrase Parser Grammar

67

We have decided to start with parsing noun phrases. Noun phrases are rather complex

phrases, since there can be multiple noun phrases connected to each other with conjunction

operators (e.g: ',', 've', 'ile'). Even more, these operators not only specify connections, but also

associativity. Common parts of phrases can be grouped together such as in arithmetic, forming

a complex noun phrase, which can then take part in a bigger noun phrase. In order to handle

noun phrases we have decided to write our own noun phrase parser.

 We have written a grammar for handling noun phrases suitable for bottom-up parsing,

and conducted tests using JS/CC. JS/CC is a LALR(1) parser and lexical analyzer generator

for JavaScript, written in JavaScript. Although JavaScript interpreters are readily available for

Java, JS/CC has its limitations. JS/CC does not allow backtracking, and that restricts our

grammar to a certain subset. We plan to use another compiler compiler for our grammar in

RadioRead.

There are mainly two types of phrases in Turkish that we are interested in: adjective

phrases and noun phrases. These phrases both consist of two parts, “Tamlayan” and

“Tamlanan”. There are 2 kinds of suffixes that are related; “-ı/-i” (specifying a Tamlanan) and

“-ın/-in (specifying a Tamlayan).

Adjective phrases consists of one adjective (Tamlayan) and one noun (Tamlanan),

without suffixes. Although adjective phrases act as nouns (as a group) in other phrases, they

cannot act as a noun in another adjective phrase; so an adjective phrase only consist of two

consecutive words without suffixes.

Noun phrases are in three different forms, “belirtili”, “belirtisiz” and complex. All

three of them has two parts: Tamlayan and Tamlanan. “Belirtili” and “belirtisiz” noun phrases

consist of two nouns, the second one (“tamlanan”) always has the suffix “-ı/-i”. In “belirtili”

noun phrase, the first word (“tamlayan”) always has the suffix “-ın/-in”, and in “belirtisiz”

noun phrase, the “tamlayan” does not contain any suffix.

Complex noun phrases are in fact “belirtili” noun phrases, whose “tamlayan” part is

not a word but another noun phrase. The noun phrase still has the suffix “-ın/-in”.

According to our grammar, there are two noun phrase kinds: adjective phrases

(SIFAT_TAMLAMASI) and noun phrases (ISIM_TAMLAMASI). Adjective phrases

(SIFAT_TAMLAMASI) are composed of one noun (ISIM) or two consecutive nouns. If there

is one noun in an adjective phrase, then the phrase degrades to a word. Noun phrases

68

(ISIM_TAMLAMASI) are composed of two parts, namely TAMLAYAN and

TAMLANAN_GRUBU.

TAMLAYAN can be composed of BELIRTILI_TAMLAYAN_GRUBU or

BELIRTISIZ_TAMLAYAN. BELIRTILI_TAMLAYAN_GRUBU is composed of

BELIRTILI_TAMLAYAN_GRUBU connected to each other with commas (','), ILE ('with'),

VE ('and') or BELIRTILI_TAMLAYAN_GRUBU2. BELIRTILI_TAMLAYAN_GRUBU2 is

composed of TAMLAMA -IN or multiple SIFAT_TAMLAMASI connected with commas and

ends with VE/ILE SIFAT_TAMLAMASI –IN . BELIRTISIZ_TAMLAYAN is mainly a

name only.

TAMLANAN_GRUBU is composed of multiple TAMLANAN_GRUBU connected to each

other with commas (','), ILE, VE or TAMLANAN_GRUBU2. TAMLANAN_GRUBU2 is

composed of SIFAT_TAMLAMASI -I or multiple SIFAT_TAMLAMASI connected with

commas and ended with VE/ILE SIFAT_TAMLAMASI -I.

Example:

 Ali’nin evinin pembe duvarı, mavi panjuru ve eflatun çatısı
 ISIM -IN ISIM -I -IN ISIM ISIM -I , ISIM ISIM -I VE ISIM
ISIM –I

 You can see our Noun Phrase Parser Grammar in Appendix B.

8.2. Future Work

In this semester, we will be mainly concerned with implementing the first prototype, to

prove our ideas of decomposing free text radiology reports to be correct. We will be trying to

get the whole components together in this semester, so that in the second semester we can

easily optimize and change them or apply new ideas with only focusing on a single

component, without starting from scratch.

 We will be using rule based approach in RadioRead. We have given up and

discontinued with the idea of using Machine Learning methods, as we couldn't find any proper

method to calculate features from single sentences in Findings section of the sample radiology

reports. We believe that rule based approach is most suitable in these radiology reports as the

information contained within is not sparse, but very dense.

69

 We want to implement the first prototype quickly, so that we can continue with

enhancing our ideas and integrating new ideas easily.

8.3. Gantt chart

70

9. Coding Convention

1. Tab will be used as indentation unit.

2. In editors, tab length will be specified as 4 space characters for viewing. This is for

cases when spaces will support tabs (in if's and so on).

3. Class names will be CamelCase, starting with uppercase.

4. Method and member names will be camelCase, starting with lowercase.

5. Constants will be defined in UPPER_CASE_AND_SEPARATED_WITH_

UNDERLINES. They should be able to explain themselves, but not too long (they can

be much longer than a member / method name).

6. Method names will be imperative (doSomething()).

7. All members will be declared before methods.

8. this keyword will be used explicitly for accessing class members and methods (

this.blaBlaBla).

9. No indentation before import statements.

10. First privates, then publics will be defined.

11. No public members, just methods.

12. Class declaration starts with no indentation, inside the class, there is at least one level

of indentation.

13. If block sample:
if (something)
{

this.lalalala();
other statements;

 }

if (something && another thing //line limit reached
&& another thing)

{
this.lalalala();
other statements;

 }
 else if (anything)
 {
 some statements;
 }
 else
 single statement;

14. Inside method body, there will be 2 levels of indentation (one for class one for

method).

71

15. We will be using packages, and nearly every component will have multiple classes.

Multiple classes in a single package will be preferred over a single class with many

subclasses inside. Subclasses may only be used if it is very specific to the parent class.

16. Every class does a single job and does it best.

17. JavaDoc comments will be utilized.

72

10. Conclusion

This report includes the general aspects of our project and is also a guide for the reader

to get the general idea of the project. During the preparation of this report, we have gained

insight for our project. Some points that still seem ambiguous after Requirements Analysis

Report are now clearer for the team with this report. Our project is scheduled to spend our

effort more efficiently during all semester. Also we listed our general requirements to

determine our basic functionalities and drew diagrams to make the implementation easier.

The process, from the beginning to the end, will be heavily-loaded and challenging,

but we believe in the success of our team and our project. Our users will easily realize the

difference of RadioRead when it takes its place in the market.

11. References
[1] Zemberek Library, http://zemberek.googlecode.com

[2] Zargan English Turkish Online Dictionary, with Roche Medical Dictionary,

http://www.zargan.com

[3] TDK (Türk Dil Kurumu) Online Dictionary, http://www.tdk.gov.tr

73

Appendix A. Statistical Query Grammar

Deleted…

Appendix B. Noun Phrase Parser Grammar

Deleted…

Appendix C. Create Table SQL Queries

CREATE TABLE Kullanicilar
 (user_id INTEGER NOT NULL,
 access_rights INTEGER NOT NULL,
 username VARCHAR(16) NOT NULL,
 password VARCHAR(8) NOT NULL,
 active BOOL,
 name VARCHAR(20) NOT NULL,
 PRIMARY KEY(user_id));

CREATE TABLE Hastalar
(patient_id INTEGER NOT NULL,
name VARCHAR(32) NOT NULL,
surname VARCHAR(32) NOT NULL,
cinsiyet CHAR(1) NOT NULL,
year_of_birth DATE NOT NULL,
PRIMARY KEY(patient_id));

CREATE TABLE Doktorlar
 (doctor_id INTEGER NOT NULL,
 title VARCHAR(10) NOT NULL,
 name VARCHAR(32) NOT NULL,
 surname VARCHAR(32) NOT NULL,
 PRIMARY KEY (doctor_id));

CREATE TABLE Raporlar
 (report_id INTEGER NOT NULL,
 patient_id INTEGER NOT NULL,
 user_id INTEGER NOT NULL,
 title VARCHAR(255) NOT NULL,
 rdate DATE NOT NULL,
 clinical_info TEXT NOT NULL,
 technical_info TEXT NOT NULL,
 diagnosis TEXT NOT NULL,
 findings TEXT NOT NULL,
 results TEXT NOT NULL,
 PRIMARY KEY (report_id),
 FOREIGN KEY (patient_id) REFERENCES Hastalar,
 FOREIGN KEY (user_id) REFERENCES Kullanicilar);

CREATE TABLE Yazildi
(doctor_id INTEGER NOT NULL,
report_id INTEGER NOT NULL,
PRIMARY KEY (doctor_id, report_id),
FOREIGN KEY (doctor_id) REFERENCES Doktorlar,
FOREIGN KEY (report_id) REFERENCES Raporlar);

CREATE TABLE Islenmis_Raporlar
(report_id INTEGER NOT NULL,
sure INTEGER,
sure_birimi VARCHAR(10) NOT NULL,
normallik BOOL,
PRIMARY KEY (report_id),
FOREIGN KEY (report_id) REFERENCES Raporlar);

CREATE TABLE Bulgular
(bulgu_id INTEGER NOT NULL,
report_id INTEGER NOT NULL,
ne_id INTEGER NOT NULL,
yer_id INTEGER,
normal BOOL,
var BOOL,
sonucta_geciyor BOOL NOT NULL,
PRIMARY KEY (bulgu_id),

74

FOREIGN KEY (report_id) REFERENCES Raporlar,
FOREIGN KEY (ne_id) REFERENCES Ne,
FOREIGN KEY (yer_id) REFERENCES Yer);

CREATE TABLE Bulgu_Yer
(bulgu_id INTEGER NOT NULL,
yer_id INTEGER NOT NULL,
uzaklik_olcum REAL,
uzaklik_birim VARCHAR(20) NOT NULL,
PRIMARY KEY (bulgu_id, yer_id),
FOREIGN KEY (bulgu_id) REFERENCES Bulgular,
FOREIGN KEY (yer_id) REFERENCES Yer);

CREATE TABLE Bulgu_Olcum
(bulgu_olcum_id INTEGER NOT NULL,
bulgu_id INTEGER NOT NULL,
olcum REAL NOT NULL,
olcum_birim VARCHAR(20) NOT NULL,
tur INTEGER NOT NULL, -- 0=uzaklik, 1=cap, 2=hiz …
PRIMARY KEY (bulgu_olcum_id),
FOREIGN KEY (bulgu_id) REFERENCES Bulgular);

CREATE TABLE Bulgu_Nasil
(bulgu_id INTEGER NOT NULL,
nasil_id INTEGER NOT NULL,
sonuctan BOOL NOT NULL,
PRIMARY KEY (bulgu_id, nasil_id),
FOREIGN KEY (bulgu_id) REFERENCES Bulgular,
FOREIGN KEY (nasil_id) REFERENCES Nasil);

CREATE TABLE Yer
 (yer_id INTEGER NOT NULL,
 isim VARCHAR(50) NOT NULL,
 PRIMARY KEY (yer_id));

CREATE TABLE Yer_Rel
(birincil_yer_id INTEGER NOT NULL,
ikincil_yer_id INTEGER NOT NULL,
PRIMARY KEY (birincil_yer_id, ikincil_yer_id),

 FOREIGN KEY (birincil_yer_id) REFERENCES Yer(yer_id),
 FOREIGN KEY (ikincil_yer_id) REFERENCES Yer(yer_id));

CREATE TABLE Nasil
(nasil_id INTEGER NOT NULL,
isim VARCHAR(50) NOT NULL,
PRIMARY KEY (nasil_id));

CREATE TABLE Ne
(ne_id INTEGER NOT NULL,

 isim VARCHAR(50) NOT NULL,
 PRIMARY KEY (ne_id));

CREATE TABLE Ne_Rel
(birincil_ne_id INTEGER NOT NULL,

 ikincil_ne_id INTEGER NOT NULL,
 PRIMARY KEY (birincil_ne_id, ikincil_ne_id),
 FOREIGN KEY (birincil_ne_id) REFERENCES Ne (ne_id),
 FOREIGN KEY (ikincil_ne_id) REFERENCES Ne (ne_id));

