
[TURKUAZ]

MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

‘Text Mining On Turkish Medical Radiology Reports’

TEST SPECIFICATIONS PLAN

By

Spring, 2007

Kerem Hadımlı – 1448752

Çiğdem Okuyucu – 1448976

Esra Zeynep Abacıoğlu – 1394568

Makbule Gülçin Özsoy – 1395383

İpek Tatlı – 1395557

Table of Contents
1. Introduction .. 3

1.1. Goals and Objectives ... 3

1.2. Scope of Document ... 3

1.3. Statement of Testing Plan Scope ... 3

1.4. Major Constraints .. 4

1.4.1. Time .. 4

1.4.2. Usefulness of Obtained Test Results / Cost Ratio .. 4

1.4.3. Staff .. 5

2. Testing Plan and Strategy ... 6

2.1. Testing Plan ... 6

2.2. Testing Strategy ... 6

3. Testing Procedure ... 7

3.1. Unit Testing ... 7

3.2. Integration Testing ... 7

3.3. Validation Testing ... 7

3.3.1. Algorithm Validation .. 8

3.3.2. Customer Requirements Validation .. 8

3.4. Performance Testing .. 8

3.5. Alpha – Beta Testing ... 8

4. Scenarios ... 10

4.1. Analyze Report Scenario ... 10

4.2. List Reports Scenario ... 10

4.3. Find Patient / Find Report Scenario .. 10

4.4. Find Patient Count Scenario .. 11

4.5. Patient Ratio Scenario ... 11

4.6. Measurement Graph Scenario ... 11

5. Testing Tools and Environment ... 12

5.1. Eclipse ... 12

5.2. NetBeans .. 12

5.3. JUnit ... 12

6. Testing Resources and Staffing .. 13

7. Testing Schedule ... 14

1. Introduction

1.1. Goals and Objectives

 RadioRead is a text-mining project that aims on converting free-text radiology reports

to a structured format and on providing doctors and staticians efficient ways to analyze the

accumulated data. RadioRead consists of 5 modules, namely GUI, Database Layer, Query

Engine, Mining Engine, and Morphological Analyzer. Database Layer handles all the SQL

queries to the database, Query Engine handles processing of complex queries, Mining Engine

is the biggest module which handles text-mining on reports, and Morphological Analyzer is

the module which wraps Zemberek Library and also uses external sources like Zargan Roche

medical dictionary to combine the results.

1.2. Scope of Document

 RadioRead is a big project that should have been finished in a short time. The purpose

of this document is to describe the testing process done for our project. While developing our

project up to now, we did testing for each module, so we will explain about the testing process

that took place since the beginning of the project.

1.3. Statement of Testing Plan Scope

Testing process of our project RadioRead includes unit testing, integration testing,

validation testing, performance testing, alpha and beta testing.

Unit testing: Unit testing is implemented only for Mining Engine, Morphological Analyzer

and Database Layer modules. GUI was found unnecessary for unit testing, and we run out of

time for unit tests for Query Engine.

Integration testing: Our project combines and integrates multiple modules, especially

submodules inside Mining Engine. Combining these modules together was very important

that’s why we chose to integrate integration testing within the testing plan.

Validation testing: We did validation testing in two categories: requirements validation and

design validation.

Performance testing: RadioRead was running very slowly at the beginning of second

semester, so we decided to include performance testing.

Alpha testing: This is the first “full” testing of RadioRead after the first partial tests are

complete.

Beta testing: This is the testing done after the bugs and problems found in Alpha Testing

period are identified and fixed the closest testing to final release.

1.4. Major Constraints

As SBAYazılım, we had several constraints and thougths on the testing process.

1.4.1. Time

 We had only a few months on second semester, which is mostly occupied by the

implementation of the project. We had fairly limited amount of time to dedicate for testing.

We needed to run testing processes meanwhile we were implementing the project.

1.4.2. Usefulness of Obtained Test Results / Cost Ratio

 The amount of usefulness of test results per the amount of time it takes and per the

amount of human resource requirement is one of the most important factors limiting the

testing of the project. Because giving too much importance to test some modules can be

unnecessary when we consider the test results/cost ratio since working on testing process

requires both time and labor.

1.4.3. Staff

 Our team consists of only 5 people, and these people are also devoted to implementing

the project. With these few people, it was relatively hard to assign people to both

implementation and testing, so staff was a major problem in testing.

2. Testing Plan and Strategy

2.1. Testing Plan

 In our testing process, our aim is to find as many bugs and design errors as possible, as

early as possible in the development lifecycle. In order to do so, we needed to plan the testing

beforehand, and make sure we have different test paths for different tasks. Our testing plan

extends to both endpoints in a testing environment: from unit tests to scenario tests.

2.2. Testing Strategy

 Our project consisted of two main testing groups: submodules of Mining Engine

module, and the bigger modules we’ve talked about, GUI, DB Layer, Mining Engine,

Morphological Analyzer, Query Engine.

 Mining Engine was designed to be independent of all other modules (except

Morphological Analyzer module). Tests for this module were conducted separately. We

performed unit tests and tests on data flow on the mining process. We used a bottom-up

technique, we started with testing single-words (Morphological Analyzer), testing Noun

Phrase Parser submodule, then switching to LocationOrMeasurementAnalyzer (the

submodule that identifies a tagged-as-“Location or Measurement” sentence part as either

Location or Measurement), WhatQualityAnalyzer (the submodule that divides a tagged-as-

“What or Quality” sentence part to one or multiple findings with quality and “what”

information). After these initial tests are complete, we were able to test

SentencePartsGrouper, SentenceMiner submodules. We needed to perform tests on report

extraction submodules (for converting a report first into a structured form of sections, then

converting these “String” sections to sentences in our internal data format) first, before we

could do tests on FindingsSectionMiner and ResultsSectionMiner and finally ReportMiner

submodules.

 For the other part of the project, namely the testing of bigger modules, we were more

confortable. We employed a top-down testing strategy for those, first combining the modules

together, and then testing them together. We were able to do so as the bigger modules were all

bound to each other, and required the other modules to work perfectly in order to work.

3. Testing Procedure

3.1. Unit Testing

We used JUnit for unit testing of our modules. Specifically, as our submodules on

Mining Engine module were strictly bound together in a linear way, we used a bottom-up

technique for unit tests for these submodules.

3.2. Integration Testing

 As our project consists of different modules and submodules, integration testing was

necessary. During the integration testing, we first made sure all the submodules of Mining

Engine module work together in a uniform way. After we’re assured of Mining Engine, we

tested Mining Engine – Database Layer, GUI – Mining Engine, Query Engine – GUI, GUI –

Database Layer parts separately. Morphological Analyzer – Mining Engine connection was

already tested with Mining Engine’s own tests.

3.3. Validation Testing

 Validation testing is the process that validates the conformance of the implementation

versus design documents and customer requirements. We needed to perform validation testing

as our success was bound to correct implementation of our proposed algorithms in our design

documents, and also the satisfaction of our customer.

3.3.1. Algorithm Validation

 We needed to perform Whitebox testing for implemented algorithms and techniques

within the project. In whitebox testing, the internals of a module are tested step-by-step, with

the information of the exact data paths within the project. We tried to make sure every

algorithm devised in design papers were implemented correctly, and were assured they work

within some error ratio.

3.3.2. Customer Requirements Validation

 We performed Blackbox testing for requirements validation. In blackbox testing, we

only tested if the project gives desired outputs for specific inputs. We were mostly concerned

with GUI and Mining Engine. We manually placed text mining reports, and watched the

outcomes, and analyzed the results to see if they performed within an acceptable error ratio.

3.4. Performance Testing

 RadioRead project’s mining process was extremely slow at the start of second

semester. We logged time statistics on a set of reports, and on critical submodules in Mining

Engine module, then we improved the relevant submodules, optimizing the time they take to

process their input.

3.5. Alpha – Beta Testing

We conducted 2 main testing periods, Alpha and Beta. Both are done by team

members. In alpha testing period, every member chose a subset of radiology dataset given

(usually 30-40 reports) and conducted tests on those data. In beta testing period, every

member chose some random reports, and tested using those. In both alpha and beta tested,

every aspect of the project is tested, pretending the team is using the project in a live

environment.

4. Scenarios

4.1. Analyze Report Scenario

 After the GUI is shown, the user proceeds to Analyze Reports tab. From there, he

loads a report from a subset of given dataset. He checks if the report is shown completely. He

then enters patient information, clicks on Analyze Report. At this step, he checks if

meaningful “AskDoctor” questions are asked regarding the unknown phrases in the report.

After RadioRead informs the user that report is complete, the user checks the “All Reports”

tab, then clicks on “Show Findings of Selected Report” button. He opens a copy of the report

text in another window, then moving over each sentence, he tries to find the extracted findings

from that sentence, and check if they’re meaningful.

 This scenario is applied for different reports.

4.2. List Reports Scenario

 In this scenario, the user checks whether if the GUI – Database Layer integration is

correct. The user first opens List Reports tab, from there he opens a report’s text, then

navigates to that report’s findings. He should be able to see all the findings, and select each of

them to see the detailed information on the right side of the window.

This scenario is for testing if the navigation codes and database interaction are

implemented correctly.

4.3. Find Patient / Find Report Scenario

 The user first goes to the List Reports tab to find a patient/report to search for. He

notes down patient name, age, report date, and some extracted findings from the report. Then,

the user opens the Find Patient tab, and enters some details of the patient to see if the system

would be able to find that specific patient. The user enters different subset of the patient (and

his report) to see if he can find that patient with that information. The same steps are applied

for Find Report tab.

 This scenario basically tests the query engine.

4.4. Find Patient Count Scenario

 In this scenario, the user first applies the same steps in Find Patient Scenario, but

counts the number of patients returned. Then he enters the same details to Find Patient Count

tab, and tries to see if the same number of patients is returned. This test is repeated for a few

times, using different search details each time.

4.5. Patient Ratio Scenario

 The user goes to the Find Patient Ratio tab in Statistical Queries tab. Here, she

specifies two patient subgroups, each having the same details except for age field. She lets

one of the patient group’s age fields unbounded, where as the other within 18-35 years range.

Then she tests whether a meaningful ratio will be popped up.

4.6. Measurement Graph Scenario

 The user goes to the Measurement Graph tab in Statistical Queries tab. Here, he

specifies a non-bounded selection on findings (so it matches all the findings ever extracted

from reports), leaves the column count as 4, and clicks on calculate. He should see the number

of findings that lie within 4 different measurement ranges.

5. Testing Tools and Environment

We have used the following tools and environment for testing process of RadioRead:

5.1. Eclipse

We’ve used eclipse for compilation and debugging in the first phases of the project

development cycle.

5.2. NetBeans

 We switched to NetBeans after we noticed the needs for preparing a graphical user

interface and debugging it. Although most team members switched to NetBeans, we

sometimes still used Eclipse, especially when working on department computers.

5.3. JUnit

We used JUnit Framework for unit tests of our independent modules.

6. Testing Resources and Staffing

The task distribution for testing process to the team members can be shown as follows:

Çiğdem Okuyucu: Text-Mining Engine, Morphologic Analyzer, GUI Engine,Data Engine

Esra Zeynep Abacıoğlu: Text-Mining Engine, Morphologic Analyzer, GUI Engine, Query

Engine

İpek Tatlı: Text-Mining Engine, GUI Engine, Data Engine, Query Engine

Kerem Hadımlı: Morphologic Analyzer, GUI Engine, Data Engine, Query Engine

Makbule Gülçin Özsoy: Text-Mining Engine, Morphologic Analyzer, Data Engine, Query

Engine

7. Testing Schedule

Our testing schedule is below:

Test Specification Planning 06.05.2008 10.05.2008

Unit Tests and Integration Tests 30.03.2008 15.05.2008

Validation Tests 15.05.2008 20.05.2008

Performance and Security Tests 20.05.2008 25.05.2008

Alpha Testing 27.05.2008 31.05.2008

Beta Testing 01.06.2008 05.06.2008

Bug Tracing, Detection and Correction 01.05.2008 12.06.2008

	1. Introduction
	1.1. Goals and Objectives
	1.2. Scope of Document
	1.3. Statement of Testing Plan Scope
	1.4. Major Constraints
	1.4.1. Time
	1.4.2. Usefulness of Obtained Test Results / Cost Ratio
	1.4.3. Staff

	2. Testing Plan and Strategy
	2.1. Testing Plan
	2.2. Testing Strategy

	3. Testing Procedure
	3.1. Unit Testing
	3.2. Integration Testing
	3.3. Validation Testing
	3.3.1. Algorithm Validation
	3.3.2. Customer Requirements Validation

	3.4. Performance Testing
	3.5. Alpha – Beta Testing

	4. Scenarios
	4.1. Analyze Report Scenario
	4.2. List Reports Scenario
	4.3. Find Patient / Find Report Scenario
	4.4. Find Patient Count Scenario
	4.5. Patient Ratio Scenario
	4.6. Measurement Graph Scenario

	5. Testing Tools and Environment
	5.1. Eclipse
	5.2. NetBeans
	5.3. JUnit

	6. Testing Resources and Staffing
	7. Testing Schedule

