CENG 334 - Introduction to Operating Systems - Spring 2009

Synchronization

due date: 5 May 2009

1 Objectives

The aim of this assignment is to help you exercise with thé&bad synchronization, using mutexes and
semaphores. You will be implementing a number of everyifaystenarios in an anonymous company.

2 Tasks

In the company, the computers of the employees are not ctathexthe Internet, lest they surf around
and fritter away their working time. However, the companynaigement realizes that the Internet will
be necessary some time or other for the work, so there is kesiogm with three computers connected
to the Internet in it. In a delicate balance where diplomacgverything, you will be taking some
precautions to guarantee the safety of the people usingabim. You will model each “person” as a
thread.

2.1 Task 1: Mutual Exclusion of Hierarchical Groups

There are two groups of employees in the company hierarchg:nfanagers and the workers. The man-
agers, if not very busy, like reading some newspapers omtieenlet, as well as doing some shopping.
However, they prefer that there are no workers in the Intewwamm meanwhile, or there can fire up some
unpleasant rumors around. Likewise, the workers, tirehfiiying to work all day, like to chat and read
emails from time to time. Not surprisingly, they are alsdimed to do these if there are no managers in
the Internet room.

As your initial task, prepare a scenario where there cam ke= 3 managers oy <= 3 workers
in the Internet room. There cannot be both managers and vedrigde at the same time. If a manager
comes to the room, and sees that the room is empty, he goeatlyi If the room is not empty, but
there are only other managers inside, and moreover, thene &ailable computer, again he goes in.
If the room is full, or if there are one or more workers insitle,waits outside until the conditions are
available for him to go in. The same scenario goes for a wotker

2.2 Task 2: Mutual Exclusion with Everyone Happy

In the scenario above, there is a risk that one group willistao death” by not being able to surf all
day. Consider that when a manager comes, there is a workiee imbom already. The manager cannot
go in, so he has to wait until the worker gets out. Howevet, pggore the worker gets out, another
worker comes, and since this worker can safely go in, he doésismediately. Meanwhile, the first

worker goes out, but the manager cannot still get in, sineeetis still one worker inside. If it happens
so that the workers keep coming, it is quite possible thatrtaeager will wait all day long outside, and
in the evening, become so angry that he might go tell the Bassdo something about the excessive
abuse of the Internet room by those workers. The same thilh@lad happen if a worker waits all day
long outside while managers keep coming. Although a workiéirbg less likely to complain to the
bosses about the managers, we would not let them suffergasaiise of that.

Therefore, we must also implement a version of the aboveasicerwhich prevents starvation of
both managers and workers. It should be so that, if therecame svorkers in the room already, and a
manager is waiting outside, the newcomer workers shouldeatlowed to the room, but should wait
outside until first the manager goes in, and finally comes Dl opposite of this scenario should also
be satisfied for a waiting worker.

(Note: In Task 1, do NOT try to eliminate starvation! Starwatwill only be eliminated in this Task
2 scenario.)

2.3 Task 3: Three for a Quake

When there are no managers around, the workers can als@degd for a quick Quake party. Assume
that this scenario takes place on Saturdays and Sundaysjrarathe managers will not be working
on these days, you need not deal with mutual exclusion of evorianager groups. However, there is
still some things to be careful about. The problem is tharearare three groups of workers which do
not like each other very much: the engineers, the desigaadsthe marketeers. If a member of these
three groups withesses members of the other two groupsgl&§uiake, but no one from his own group
involved in the play, then he will surely blabber to the basabout this. Therefore, to be on the safe
side, there can be only four cases in which Quake can be pldygthere are 3 engineers in the room,
(2) there are 3 designers in the room, (3) there are 3 markeite¢he room, (4) there is one designer,
one engineer, and one marketeer in the room.

Assume that in the weekends, the only solace of workerss lis¢o play Quake. Therefore, until the
necessary conditions are met, newcomers wait outside ¢ma.rl§ one of the above scenarios happens,
for instance, there are 3 designers outside the room, thasgte. Once they are in, one of them signals
everyone to start playing. When the game is over, they gadauts

3 Input/Output Specifications

1. The codes must be in C. No C++ codes are accepted.

2. Your programs will be compiled with gcc and run on the depant Inek machines. No other plat-
forms/gcc versions etc. will be accepted so check that yode evorks on Ineks before submitting
it.

3. For the three tasks, your program will be run with one ofdbimand line arguments, -t1, -t2, or
-t3, specifying which scenario to run. In case of tasks 1 grile2program will also take as input
the number of managers and the number of workers, as follows:

.Isync -t 1 -m2 -w 3
.Isync -t 2 -m5 -w 10

If the task is the 3rd, then the program will take as input theber of engineers, designers and
marketeers.

.Isync -t 3 -e 5 -d 10 -m 15

The order of the command line arguments will be fixed as a esyr)

. The first thing your program should do is to create the reszgsumber of threads for each group
of employees.

. Each thread will read its own actions from an input file. Titet thing a thread must do is open its
own action file. The files will be namedanager 0, manager 1, ...,wor ker 0, wor ker _1,
....,engi neer 0,engi neer _1, ...,desi gner 0,desi gner _1, ...,mar ket eer .0, mar ket eer _1,
.... Take care of: (1) 0-based indexing, (2) that there is.bd@™at the end of the file names.

. The format of the files is as follows: Each file consists ticas to be done at each time step. At
a time step, a thread may do nothing, request to go in the retam,in the room (or play Quake,
in the case of 3rd task), and leave the room. Here is a samg|sédiymanager _0’s action file:

o nmnnon T

O n T

The files do not have an extra newline at the end.

Here is the explanation: In the first 3 time steps, managere8 dot want to do anything. At time
step 4, it requests to go in. Note that, depending on thet&itydat may or may not go in at this
time step. If it can go in, it will. Otherwise, it will block uih it is awakened by another thread.
Once itis allowed, it will go in. It will stay inside for the ne4 time steps. Note that, if it is not
allowed to go in until 20th time step, then it will stay insidetime steps 20 to 24At the end of
these 4 time steps, (when it executes “0”) it will go outsii@oing outside” means awakening
another thread who has blocked for going inside, if thereighs thread. Then it will do nothing
for 5 time steps, and at the 6th, it will request to go in oncaemdt will stay inside for 1 time
step, and go out again. It will do nothing at the last time stewill exit after that.

. A thread will exit when it has executed all the actions (@n+actions, in case of “-”) in its action
file. The program will exit when all the threads have exited.

. Ifathread has previously blocked, and another threadtengait at a time step t, then the blocked
thread must wake up at that time step t (that means immegiataid go in the room. We will
count that thread in the room at that time step t also.

. In the case of 3rd task, the action list will not include,“but “q”, meaning the thread wants to
play Quake. You can assume a quake play takes a constantstinadl, the threads in a specific

3

10.

11.

12.

run will have the number of “q”s between “i” and “0”. Here isamsple file, sayengi neer 0’s
action file:

' oL o000 — !

In the case of the 3rd task, as mentioned above, once tieqgflayers are in the room, one of
them must give a notification to everybody else to start pigyi

As mentioned, the actions will be executed in a time-stgmner. The main thread will take
care of timesteps. There will be time steps of 1 second. Alfterinitialization of the employee
threads, the main thread will initiate the cycle. At evergaal, it will “notify” the employee
threads that a new cycle has begun. The threads will thenttek@ext action in their action
list. The possibilities are, a thread may do nothing in a tstep, request to enter the room, stay
inside/play Quake, or go outside the room. If it is going @ésit must also awaken a blocked
thread if there is one. This awakening must be done at the Samaestep that it is going out. The
awakened thread will be counted as inside the room begirfrimg the same time step, also.

The main thread will hold a data structure denoting tleroOnce inside the room, a thread must
write its id and type (manager, worker, etc.) in this datacttire. When going outside, it must
delete them. At the end of each time step (or possible justrbedtarting the new time step by
notifying the employee threads), the main thread must wigecontents of this data structure to
the standard output. This printing will be done in a stricinmar. NO MATTER the order that
information has been written to the data structure, the rtm@gad will print FIRST the managers
in the room, and THEN the workers in the room. In case of 3r#,tds printing order of the
workers will be (1) engineers, (2) designers, (3) markste&he groups will also be printed IN
ORDER themselves, i.e, manager i before manager i+k. Befimgng, a line indicating the time
step will be printed. If there is no one in the room at a tim@ staly the time information will be
printed. Sample outputs might be:

time O
time 1
time 2
manager O
manager
manager 2
time 3
manager
manager 2
time 4
manager 2

=

o

time 5
wor ker O
wor ker
wor ker 2
tine 6
wor ker O
wor ker
wor ker 2
time 7

=

=

or

time O
time 1
engi neer O
engi neer 1
engi neer 2
time 2
engi neer 3
designer O
mar ket eer 0
time 3

Take care time steps begin from 0.

4 Tips

You are expected to use the pthread library (link with -lpti). It offers a good API for creating and
using threads, as well as mutexes and condition variablegiekier, you will need also semaphores for
handling count limits. The Semaphore implementation, dsasenrappers for pthread library’s mutex
and condition variable implementations, from Allen B. Dayis The Little Book of Semaphores, will
be very helpful. The code (copied rigorously) including tssociated functions is also available on
COw.

You can also find many other useful implementations of haidictires, as well as similar prob-
lems, in this book, so it is highly suggested that you woukéta look at it. It is free for download on
http://lwww.greenteapress.com/semaphores/

5 Submission

You will submit a single tar file (sync.tar or hw.tar, name moportant) including a Makefile and your
source file(s). The Makefile should create an executabledalync (yes, this name is important). The
tar file should not contain any directories! The followingramand sequence (with the exception of the
tar file name) is expected to run your program:

$ tar -xvf sync.tar
$ make
$./sync -t 1 -m2 -w 3

Note that this is not possible if the tar file extracts into@ckiory ;)

May it be easy.
—Hande

