Table of Contents

31.
INTRODUCTION

41.1.
Purpose of the Document

41.2.
Scope of the Document

42.
PROJECT DESCRIPTION

42.1
Project Title

42.2
Project Description

82.3
Project Features:

83.
DESIGN CONSTRAINTS AND REQUIREMENTS

93.1 Non – Functional Requirements

93.2 Software Requirements

93.3 Hardware Requirements

94.
Architectural Design

94.1 System Modules

104.1.1 Curriculum Module

104.1.2 Sign up, Login, Logout Module

114.1.3 Versioning Module

124.1.4 Abstract Purpose Module

124.1.5 Comparison Module

134.1.6 Course Plan Module

144.1.7 Student Feedback Module

144.2 Structure Chart of EDUPLAN

164.3 Data Flow Diagrams

164.3.1 Level 0

174.3.2 Level 1

184.3.3 Level 2

184.3.3.1 Level 2 Sign up Login Logout Module DFD

204.3.3.2 Level 2 Abstract Purposes Module DFD

214.3.3.3 Level 2 Curriculum Module DFD

224.3.3.4 Level 2 Course Plan Module DFD

234.3.3.5 Level 2 Comparison Module DFD

244.3.3.6 Level 2 Version Module DFD

254.3.3.7 Level 2 Feedback Module DFD

254.4 Data Dictionary

445. SYSTEM ANALYSIS AND MODELLING

445.1 Use Case Analysis

44Common Use Case Scenarios

44Ministry Staff Use Case Scenarios

45Managing Groups Use Case Scenarios

45Teacher Use Case Scenarios

45Inspector Use Case Scenarios

46Ministry Staff Use Case Diagram

47Managing Group Use Case Diagram

48Teacher Use Case Diagram

49Inspector Use Case Diagram

495.2 Sequence Diagrams

545.3 ER Diagram

1. INTRODUCTION
During our process until the initial design of our project, which could be named as analysis phase, we made research about the technologies required during our design and determined the functional and non – functional requirements of EDUPLAN. We have determined some risks that we could face during our design and found solution suggestions. Although the requirement analysis report included some information about the basic structure that we plan to build, the purpose of the work done was mainly research and analysis, not design.

It could be said that preparing this report brought us to a new phase of the project, we began to design the basics and some of the details of our project, EDUPLAN. Some of the ideas have become concretized so that they are converted to some function, data structure or class. Now they have been given a name, and we know that in which parts of the project we will use them. This is a very important step about concretizing the basics of the project. These concretized ideas helped us a lot to understand the project. Our ideas answered many questions of ours.

In this report, there are many diagrams like class diagrams, state transition diagrams, sequence diagrams and DFD’s. The DFD’s in this report are higher level diagrams than the one in the requirement analysis report, which means that they are more detailed now.

1.1. Purpose of the Document
The purpose of preparation of the initial design report is to record the beginning of the design phase of the project. Compared to the requirement analysis report, it is much more concrete and understandable. While it is almost impossible to mention about implementing an idea in the requirement analysis report, this report contains, explains more in detail and concretizes them.

1.2. Scope of the Document

This document comprises the interfaces, data and architecture design, design constraints, current amount of progress, plans of the future progress and estimated schedule for it which includes the scheduling and the member names of all the planned tasks to whom they are assigned to.

2. PROJECT DESCRIPTION
2.1
Project Title

Our project title is EDUPLAN, Change Management and Quality Framework for Course Design and Planning.

2.2
Project Description

Standardization and organization of process between two institutes which are doing the same job is a challenging task. Although it is difficult, standardization and organization is crucial for maximum efficiency in many areas. Education is one of these areas, and it is one that standardization is especially important. One of the most important goals in education is to establish unity in education. If unity is established, it will be much easier to reach the goals determined. It is always easier to manage institutes if their quality level is same, or at least, close to each other.

It is an unpleasant reality for education staff that the education system is more on paper than electronic environment. This situation makes remote control almost impossible. Another reality is that the education, which is spread all over the country, is controlled by a center. It is certain that an insufficient remote control mechanism would have a great impact on the education’s quality and standardization. With an education system which is executed on paper, a control mechanism with inspectors, and a mentality that hides the problems rather than solving in the times of inspection, it is impossible to reach the quality goals. Because of this, it is a necessity to shift the quality management systems of education to the electronic environment.

The project’s title is EDUPLAN – Change Management and Quality Framework for Course Design and Planning. To be more descriptive, it could be said that the resultant product of this project will aid education staff who work for different institutes and different positions. Actually, this sentence gives clues about the structure that lies behind the project. The phrase different institutes mean that there will be both horizontal and vertical relationships between them. The relationship between two similar institutes is a horizontal relationship. An example could be two primary schools. The relationship is called a vertical relationship when we mention about hierarchy. If we consider the primary schools as an example again, the relation between them and the top level of the hierarchy, ministry of education, is a vertical relation. The primary schools apply the decisions of the ministry. Hierarchy could exist within an institute rather than different institutes, as well. Faculties and their departments in a university could be a nice example for this situation. With all these examples, it will be easier to understand the hierarchical skeleton of EDUPLAN.

It would be logical to dub the courses as base structures of an education system, so if one should summarize what the education planner does, he / she could say that it gathers necessary information about the courses and helps the educators to improve or maintain the structure of a course in a way that the course will meet the expectations, which are called the abstract goal of the course. Each course is designed and taught to satisfy one specific abstract goal. The Turkish history course, as an example, is shown below:

[image: image1.jpg]Awakening national

awareness by ————— Abstract purpose

teaching the past

Ottoman Empire

Revolution History | s g

First week: Osman

Gazi era —> Courseplan

Courss Course
g > materal

Figure 1.1 – A sample visualization of the Turkish History course

At Figure 1.1, there are new terms about the courses. The first one of these terms is the syllabus. The syllabus determines what will be taught. The other term, course plan, determines when a subject in the syllabus will be taught. The last term, course material is the term that represents all the audio – visuals that will be used to teach the course. All these are closely related to each other and a change in one of these (except the abstract purpose, if the abstract purpose changes, the whole course changes, it is so rare) may require changes in others. For example, in a course which teaches the subjects A with the book Subject A and B with the book Subject B, if it is decided to add a new subject C to the course, a new book which explains the subject C must be added to the course materials list.

As mentioned before, these entities depend on each other. To make the dependencies more clear, a list could be helpful:
· The course materials depend on the course plan.

· The course plan, so the course materials depend on the syllabus.
· The syllabus, so the course plans and the course materials, depend on the abstract purpose.
· There is nothing that the abstract goal depends on, since it is the main idea that determines all the other entities of the course.

It is almost impossible to avoid changes of entities in a course, since the requirements of the course change in time. Avoiding changes would cause getting away from the abstract goal of the course in a period of time, because although the abstract goal is the same, the way to reach it changes in time. The problem is that these changes may damage the integrity of the course if not managed properly. After all changes, there should be a mechanism that gives warnings and suggestions to the educator, to maintain the integrity. The education planner tries to achieve this goal in different ways.

The education planner helps the educators by controlling the compatibility of the materials with the plan, the plan with the syllabus, and finally the syllabus with the abstract goal. So when an entity is changed, the system will check the integrity and if it finds problems, it will create suggestions.

The changed version of the education system should not always be a completely different one; it could also get closer to a subversion of the system in a past time. Here, the keyword subversion is very important, since the education planner should also keep the subversions of the education system when changes are made. For example, if a subject was removed from a course’s syllabus and it is decided that it should be in the course again, the system should suggest the course materials about that subject which were in the course in the past time. In situations like this, an education planner which keeps the subversions of the education system would have a great advantage by having a constantly growing knowledge about the course. With subversioning, the longer the education planner is used, the more useful it will be.

Up to here, all the ideas that will be used for the education planner is based on the course. It should be kept in mind that there could be some unwanted situations which aren’t only about the course. For example, consider a course named D which will be more useful if the courses A, B, C are given to the students before. In other words, the other three courses are prerequisites for the course D. So this course could reach the abstract goal more or less, with different groups of students. This situation is not about the course, since the abstract idea, so the course is the same. It is about the knowledge level of the student groups. Because of this, the education planner should also say that teaching course D without teaching the other three courses would be trivial. It could suggest teaching the three courses or changing the content of the course D in a way that the students won’t feel the lack of the other three courses.

As a conclusion, the main steps which will be followed for the solution of the problem could be listed as below:

· Building the hierarchical structure between the educators in different positions and course entities: here, to make the problem easier, the educators and the course entities that they determine could be considered together. To be clearer, the ministry of education and the abstract goal plus the syllabus, the school group and the course plan, the teacher and the course materials could be considered in a similar way.

· Determination of the integrity of an education system by keeping the entities of the course under control, which will be done by constantly checking the compability of the course entities, and how much the other entities can serve the abstract goal, in short words, course – based quality management system.

· Determination of the knowledge level of a student who will take a course, checking whether the student has the enough amount of knowledge or not, if not, offering a solution (e.g. teaching another similar course, offering a course before taking this course or change the course’s content so that the student won’t have any problems, in short words, student – based quality management system.
2.3
Project Features:

The key features of the project are listed below:

· Horizontal mapping between curriculums, course plans, etc. In other words, comparison between elements which are in the same hierarchical level.

· Vertical mapping between curriculums and course plans, etc. In other words, comparison between elements which are in different hierarchical levels.

· An alarm system which will warn the users when an element doesn’t meet the goals specified (for example, when a course plan does not meet the concrete goals of the course). A variable goal of ratio will be provided.

· Graphical user interface which will be designed for ease of use for different kinds of users (managing group, ministry staff, inspector, teacher).

· Abstract purpose management for the ministry staff,

· Curriculum management for the managing group,

· Course planning for teachers,

· Student feedback management for inspectors.

· Restrictions on the user types for prevention of irrelevant usage of the system.

· Versioning of the previous elements for further use. For example, a curriculum change may cause a drop of success ratio with the current course plan of a teacher and an older version of the course plan may work better with the new curriculum. In a situation like this, it is very useful to keep the older versions of the course plan.
3. DESIGN CONSTRAINTS AND REQUIREMENTS
Being a senior design project brings the EDUPLAN a strict deadline. The project must be completed before the second semester. This time constraint is the most important constraint of our project. Because of this, the deadlines for almost all of the tasks should be obeyed.

Performance and space usage will bring other constraints to the project. Since the curriculums of all the regions which are determined by the managing groups and all the course plans of all the schools in the country will be kept in the system, versioning might be a very important problem if the versions are kept by saving also the unchanged parts of the old version. Therefore, versioning should be done effectively.

While increasing the number of answers to the question what can be done, new technologies decrease the time for implementation because of our lack of experience on these technologies. Because we will be using technologies like Apache TomCat and SVN, which are very new to us, this may be a constraint for the project.

3.1 Non – Functional Requirements

Usability: Our program must be clear, visualized and user friendly. Since possibly most of the users of this program will not have advanced computer using experience, the user interfaces of the program must be simple, well organized and clearly commented.

Interoperability and Portability: We will use web services. The characteristic properties of web services are interoperability and portability, so our project will also have these properties. Our project will be platform independent.

Reliability: Since the main idea of our project is automating the education quality management, and our main goal is to be able to give correct and precise results so that the user will not need to check the results, and this depends on how the mappings are done. So, properly working mappings will make our project reliable.
3.2 Software Requirements
· MySQL Server as DBMS
· Subversion 1.5.4 as subversioning tool
· NetBeans IDE 6.1 as development environment
· JDK 1.6
· Internet Explorer 5.5 or higher, Mozilla Firefox 1.0 or higher
· Apache Tomcat 5.5
3.3 Hardware Requirements
· A medium level computer with Internet connection
4. Architectural Design

In this part System Modules, overall architecture, Data Flow diagrams and a data dictionary for Data Flow elements are described.

4.1 System Modules

In this part modules of our project that we will implement with Java in the Java Server Pages are described.
4.1.1 Curriculum Module

[image: image2.png]curriculum

Private nt schooType
lprivat int cegree
lprivate int region
lpivate int course
lprivate ExpectedGainl | gains.

fublic voic
reateEdCurriculum ()
lpublc voic saveCurricuium ()

DataAccess

fprivate vod datanceess ()
Jpubic cataObject getbata0bject ()
fusic void clone (1

Jrivate vore createConnection ()

lrivate void coseConnection (Connection
leon)

lpusic Arrayst getData (String uery)
Jvod setData (String auery)

ExpectedGain

lprivate Siring topic
frivate String(] gains

Jpusic String getTopic ()
fPuaic String(] getGains ()
JPusic vold setopic ()
JPudlic vold setGains ()

 Figure 4.1 – Curriculum Module

Curriculum: Curriculum is designed for enabling Ministary Staff, Managing Group and Teacher type users to display curriculums and enabling Managing Group type users to create, edit and save curriculums. Managing Group type users will be able to connect multiple concrete purposes to an abstract purpose that are defined by Ministary Staff type users and create curriculums which are tree structured data types having abstract purposes as roots.
expectedGain: Gain is designed for enabling Ministary Staff, Managing Group and Teacher type users to display expected gains and Managing Group type users to create, edit and save expected gains. Managing Group type users will be able to select concrete purposes and add the gains that are expected to developed, to the selected concrete purpose.

DataAccess: Data transfer operations between the server and system’s database is a crucial phase for our project and they will be used in all modules we have designed. DataAccess will handle those database operations
4.1.2 Sign up, Login, Logout Module

[image: image3.png]SignupLogin

DataAccess

rvate String username
riate Siring password
rivate DataAccess
ltoAccassObject

rivate vold begrisession
(userlD)

rivate Int valcatelser
{string user)

ubic in Login (String
sername, String passw)

lPivate vold dataccess ()
Jpublc dataObject getDataObject ()
lPublc vold clane ()

lrivate vold createConnection ()

frivate vold closeConnection (Connection

Jpublic Arrayist gerata (String query)
old sexData (Sting auery)

lpublc boatean fogout (nt useriD)
Private boolean endSession (in userID)

Figure 4.2 – Sign up Login Module

SignupLogin: SignupLogin is designed for enabling all users to login and sign up to the system. If the user has not a member of the system yet, registerToDatabase function will be activated and will add the new user to the system database after making necessary operations. This operations will be different for each user type (teacher, inspector etc.) Detailed information will be given on final design report.
Logout: Logout is obviously designed for enabling logged in users to leave the system.
4.1.3 Versioning Module
[image: image4.png]SubVersion

[Private int versionNo
PPrivate String Type
lPublic Object versionedObject

[Public int getversion ()
IPrivate void setVersion (int version)
lPublic void saveObject ()

DataAccess

[Private void dataAccess ()
lPublic dataObject getDataObject ()

Public void clone ()
/Puvatc void createConnection ()

[Private void closeConnection (Connection
lcon)

[Public ArrayList getData (String query)
\void setData (String query)

 Figure 4.3 – Versioning Module

SubVersion: SubVersion is designed for enabling all users to version data types according to their user types. For example Managing Group users will be able to version curriculums.
4.1.4 Abstract Purpose Module

[image: image5.png]AbstractPurpose

lPrivate String purpose
Private int schoolType
Private int year

DataAccess

[Private void dataAccess ()

Private int courselD | ublicdataObject getDataObject ()

lPublic void clone ()

lPrivate void createConnection ()

Private void closeConnection (Connection
icon)

lPublic ArrayList getData (String query)
|void setData (String query)

[Private String courseName

lPublic AbstractPurpose
lgetAbsPurpose ()

lPublic void setAbsPurpose ()
Public void
(createEditAbsPurpose ()

 Figure 4.4 – Abstract Purpose Module
AbstractPurpose: AbstractPurpose is designed for enabling Ministary Staff and Managing Group type users to display abstract purposes and enabling Ministary Staff type users to create, edit and save abstract purposes.
4.1.5 Comparison Module
[image: image6.png]Comparison

[Private float matchPercent
Private String [] unmatchedTopics
Private Object comparedObj1
[Private Object comparedObj2

[Public void horizontalComparison (Object
lobj1, Object Obj2)

Private void verticalComparison (Object
lobj1, Object Obj2)

Alarm

DataAccess

[Private void dataAccess ()

lPublic dataObject getDataObject ()
iPublic void clone ()

[Private void createConnection ()

[Private void closeConnection (Connection
jcon)

lPublic ArrayList getData (String query)
\void setData (String query)

Private float criticalValue

Private String[] unmatchedTopics

lunmatchedTopics)

[Public void warn (Object user, String[]

 Figure 4.5 – Comparison Module

Comparison: Comparison is designed for enabling Ministary Staff, Managing Group and Teacher type users to make horizontal and vertical comparisons between curriculum, abstract purposes and course plan data types. The data types hierarchically grow up as a tree structure. The vertical comparisons will be made between abstract purposes – curriculum and curriculum - course plan. The horizontal comparisons will be made between curriculum-curriculum and course plan – course plan. The system will return a similarity percentage in horizontal comparisons. These similarities will be calculated by comparing the tree data structure of compared elements (number of nodes, leaves etc.) and comparing keyword similarities of the strings that are stored in tree elements.
Alarm: Alarm is designed for warning the users if there exists non-fulfilled roots and nodes in the tree data structure. Alarm will be used in vertical comparisons that are between abstract purposes – curriculum and curriculum - course plan.
4.1.6 Course Plan Module
[image: image7.png]Coursepian

fprivate it teachertD
frivate it schoolID.

lprivate i Region

frivate i cegree

frivate it year

frivate CourseanElement(] schedule

lPuBic void createEarSeheduie ()
frivate volc saveScheduie ()

Fivate vord Gatanceess [
bl dataObiect getD:
sl void done ()
private void createConmection ()
rivate void closeConnection (Cannection
n)
[pusic Arraylist getData (String auery)

object ()

CoursePlanElement

frivate Date beginDate
frivate Date endbate
fprivate String topic

Jpivate vold setDate (Date beginate,
Ipate endDate)

Jpivate vold setrogic (String topic)
Jpivate Date getBeginDate ()

Jrivate Date getEndDate ()

JPrivate String getTopic ()

lPubic voic createEdtElement ()

JPrivate vold saveElement ()

oid setData (tring cuery)

Figure 4.6 – Course Plan Module
CoursePlan: CoursePlan is designed for enabling Managing Group and Teacher type users to display course plans and enabling Teacher type users to create, edit and save course plans.
CoursePlanElement: CoursePlanElement is designed for Teacher type users to connect multiple course plan elements to a concrete purpose that are defined by Managing Group type users and create course plans which are tree structured data types having abstract purposes as roots, concrete purposes as nodes and course plan elements as leaves.
4.1.7 Student Feedback Module
[image: image8.png]Studentreedback

DataAccess

[Pivate Sing Inspeciorlame
fPivate String InspectorSumarme
frivate it InspectoriD.

lpivate it reglon

frivate it feedbackiD

lprivate it year

frivate in schoolType

fprivate it schoollD

frivace in degree

fpivate i courselD

lPusic createEditFeedback ()
[rivate saveFeedback ()

lpivate void datanceess)
Jpusic cataObject getbata0bject ()
lusic vold clone (1

Jrivate voic createConnection ()

Jrivate voie coseConnection (Connection
lean)

lpusic ArrayList getbata (String query)
fvod setData (String query)

Alarm

Jprivate float critcalvatue
Jrivate String[] unmatchedTopics

[PUBTC vo1d warn (Gbject user, Stringl]
Junmaichectopies)

 Figure 4.7 – Student Feedback Module
StudentFeedback: StudentFeedback is designed for enabling Managing Group and Inspector type users to display student feedbacks and enabling Inspector type users to create and edit student feedbacks. Student feedbacks are very important for our project because they are the success measurement system of the applied education system (course plan, curriculum, etc.)
Alarm: Alarm is designed for warning the users if there is a drop in the success rate of the applied course plan with respect to previous year’s course plan version of the same course. Alarm will be used when Inspector type user enter and save new student feedbacks of a course that already has student feedbacks of previous year(s).
4.2 Structure Chart of EDUPLAN

Below structure chart of our project are demonstrated. The relationships between user types and modules are simply showed. We preferred to show our structure chart in two pieces for visual simplicity concerns.
[image: image9.png]Currcutum

Signup
Login Logout

Comparison
Mapping)

Course pian

Versioning.

Stugent
Fecdbacks

Figure 4.8 – Structure Chart Part 1

[image: image10.png]s

Ministary
Starr

v
bz @

Ao

Abstract
Purpose

Currcutum

Signup
Login Logout

Comparison
(Mapping)

Course pian

Versioning.

Stugent
Feedbacks

 Figure 4.9 – Structure Chart Part 2

4.3 Data Flow Diagrams

In this part we showed the Data Flow diagrams of our project. Having defined modules resulted in changes on the Data Flow diagrams that we defined in our Requirement Analysis report.
4.3.1 Level 0

[image: image11.emf]Process

User

userInput

validation

query

result

Databases

4.10 – Level 0 DFD
4.3.2 Level 1

[image: image12.emf]Signup

Login

Logout

1.1

userInput

validation

Student

Feedbacks

1.7

Versioning

1.6

Course

Plan

1.4

Comparison

1.5

Curriculum

1.3

Abstract

Purpose

1.2

c

u

r

r

i

c

u

l

u

m

R

e

s

p

o

n

s

e

p

l

a

n

R

e

s

p

o

n

s

e

c

o

m

p

a

r

i

s

o

n

R

e

s

p

o

n

s

e

a

b

s

P

u

r

p

R

e

s

p

o

n

s

e

a

b

s

P

u

r

p

o

s

e

Q

u

e

r

y

c

u

r

r

i

c

u

l

u

m

Q

u

e

r

y

p

l

a

n

Q

u

e

r

y

v

e

r

s

i

o

n

i

n

g

Q

u

e

r

y

f

e

e

d

b

a

c

k

Q

u

e

r

y

absPurposeAuth

curriculumAuth

coursePlanAuth

comparisonAuth

versioningAuth

feedbackAuth

response

query

c

o

m

p

a

r

i

s

o

n

Q

u

e

r

y

v

e

r

s

i

o

n

i

n

g

R

e

s

p

o

n

s

e

f

e

e

d

b

a

c

k

R

e

s

p

o

n

s

e

signupResponse

signupQuery

Figure 4.11 – Level 1
4.3.3 Level 2
4.3.3.1 Level 2 Sign up Login Logout Module DFD

For visual simplicity concerns we decided to show our Signup Login Logout Module in three parts.

[image: image13.emf]Ministary Staff

Password

Verification

and User Type

Authentication

2.1.1

Abstract

Purpose

Authentication

2.1.2

Inspector

Teacher

Managing

Group

Comparison

Authentication

2.1.5

Course Plan

Authentication

2.1.4

Curriculum

Authenticatio

n

2.1.3

Student

Feedback

Authentication

2.1.7

Versioning

Authentication

2.1.6

username,

password

ministaryTypeUser

mgroupTypeUser

teacherTypeUser

inspectorTypeUser

min_ap

min_cur

 validation

User

Database

s

i

g

n

u

p

R

e

s

p

o

n

s

e

s

i

g

n

u

p

Q

u

e

r

y

min_ver

min_sfb

mg_ap

mg_cur

mg_cp

m

g

_

c

o

m

p

mg_ver

mg_sfb

absPurpAuth

c

u

r

r

i

c

u

l

u

m

A

u

t

h

c

o

u

r

s

e

P

l

a

n

A

u

t

h

comparisonAuth

versioningAuth

feedbackAuth

Figure 4.12 – Signup Login Logout Module DFD part 1

[image: image14.emf]Ministary Staff

Password

Verification

and User Type

Authentication

2.1.1

Abstract

Purpose

Authentication

2.1.2

Inspector

Teacher

Managing

Group

Comparison

Authentication

2.1.5

Course Plan

Authentication

2.1.4

Curriculum

Authentication

2.1.3

Student

Feedback

Authentication

2.1.7

Versioning

Authentication

2.1.6

username,

password

ministaryTypeUser

mgroupTypeUser

teacherTypeUser

inspectorTypeUser

 validation

User

Database

s

i

g

n

u

p

R

e

s

p

o

n

s

e

s

i

g

n

u

p

Q

u

e

r

y

t

e

a

_

c

u

r

tea_cp

tea_comp

tea_ver

absPurpAuth

c

u

r

r

i

c

u

l

u

m

A

u

t

h

c

o

u

r

s

e

P

l

a

n

A

u

t

h

comparisonAuth

versioningAuth

feedbackAuth

i

n

s

_

v

e

r

i

n

s

_

s

f

b

Figure 4.13 – Signup Login Logout Module DFD Part 2

[image: image15.emf]signup

2.1.8

logout

2.1.9

User

Database

s

i

g

n

u

p

I

n

f

o

l

o

g

o

u

t

A

p

p

r

o

v

a

l

s

i

g

n

u

p

A

p

p

r

o

v

a

l

l

o

g

o

u

t

I

n

f

o

Figure 4.14 - Signup Login Logout Module DFD Part 3
4.3.3.2 Level 2 Abstract Purposes Module DFD

[image: image16.emf]getAbsPurp

2.2.1

setAbsPurp

2.2.2

createAbsPurp

2.2.3

Abstract Purpose

Database

absPurposeAuth

g

e

t

A

b

s

P

u

r

p

A

u

t

h

c

r

e

a

t

e

a

b

s

P

u

r

p

A

u

t

h

setAbsPurpAuth

a

b

s

P

u

r

p

o

s

e

Q

u

e

r

y

g

e

t

A

b

s

P

u

r

p

Q

u

e

r

y

s

e

t

A

b

s

P

u

r

p

Q

u

e

r

y

c

r

e

a

t

e

A

b

s

P

u

r

p

Q

u

e

r

y

absPurpResponse

gapResp

capResp

sapResp

Figure 4.15 - Abstract Purposes DFD
4.3.3.3 Level 2 Curriculum Module DFD

[image: image17.emf]getCurr

2.3.1

setCurr

2.3.2

createCurr

2.3.3

Curriculum

Database

curriculumAuth

g

e

t

C

u

r

r

A

u

t

h

c

r

e

a

t

e

C

u

r

r

A

u

t

h

setCurrAuth

c

u

r

r

Q

u

e

r

y

g

e

t

C

u

r

r

Q

u

e

r

y

s

e

t

C

u

r

r

Q

u

e

r

y

c

r

e

a

t

e

C

u

r

r

Q

u

e

r

y

currResponse

gcResp

ccResp

scResp

Figure 4.16 - Curriculum Module DFD
4.3.3.4 Level 2 Course Plan Module DFD

[image: image18.emf]getPlan

2.4.1

setPlan

2.4.2

createPlan

2.4.3

Course Plan

Database

coursePlanAuth

g

e

t

P

l

a

n

A

u

t

h

c

r

e

a

t

e

P

l

a

n

A

u

t

h

setPlanAuth

p

l

a

n

Q

u

e

r

y

g

e

t

P

l

a

n

Q

u

e

r

y

s

e

t

P

l

a

n

Q

u

e

r

y

c

r

e

a

t

e

P

l

a

n

Q

u

e

r

y

planResponse

gpResp

cpResp

spResp

alarm

2.4.4

a

l

a

r

m

C

h

a

n

g

e

d

P

l

a

n

s

e

t

P

l

a

n

I

n

f

o

r

m

A

l

a

r

m

S

y

s

t

e

m

a

l

a

r

m

N

e

w

P

l

a

n

n

e

w

P

l

a

n

I

n

f

o

r

m

A

l

a

r

m

S

y

s

t

e

m

Figure 4.17 – Course Plan Module DFD
4.3.3.5 Level 2 Comparison Module DFD

[image: image19.emf]horzComp

2.5.2

vertComp

2.5.3

alarm

2.5.4

Curriculum

Database

Course Plan

Database

decide

2.5.1

h

o

r

i

z

o

n

t

a

l

a

l

a

r

m

I

n

f

o

r

e

s

u

l

t

curriculumInfo

comparisonAuth

v

e

r

t

i

c

a

l

h

o

r

z

C

o

m

p

P

l

a

n

R

e

s

p

o

n

s

e

h

o

r

z

C

o

m

p

C

u

r

r

R

e

s

p

o

n

s

e

planInfo

horzCompCurrQuery

h

o

r

z

C

o

m

p

P

l

a

n

Q

u

e

r

y

v

e

r

t

C

o

m

p

C

u

r

r

Q

u

e

r

y

v

e

r

t

C

o

m

p

P

l

a

n

Q

u

e

r

y

 Figure 4.18 - Comparison Module DFD

4.3.3.6 Level 2 Version Module DFD

[image: image20.emf]decide

2.6.1

Abstract Purpose

Database

absPurp

Versioning

2.6.2

feedback

Versioning

2.6.5

coursePlan

Versioning

2.6.4

curriculum

Versioning

2.6.3

Student Feedback

Database

Course Plan

Database

Curriculum

Database

versioningAuth

a

b

s

P

u

r

p

s

t

u

d

e

n

t

F

e

e

d

b

a

c

k

newApVersion

getApVersionInfo

newCurrVersion

getCurrVersionInfo

getCurrVersionInfo

getSfbVersionInfo

newCpVersion

newSfbVersion

c

u

r

r

i

c

u

l

u

m

c

o

u

r

s

e

P

l

a

n

Figure 4.19 – Version Module DFD
4.3.3.7 Level 2 Feedback Module DFD

[image: image21.emf]getFeedback

2.7.1

setFeedback

2.7.2

createFeedback

2.7.3

Course Plan

Database

courseFeedbackAuth

g

e

t

F

e

e

d

b

a

c

k

A

u

t

h

setFeedbackAuth

f

e

e

d

b

a

c

k

Q

u

e

r

y

g

e

t

F

e

e

d

b

a

c

k

Q

u

e

r

y

s

e

t

F

e

e

d

b

a

c

k

Q

u

e

r

y

c

r

e

a

t

e

F

e

e

d

b

a

c

k

Q

u

e

r

y

feedbackResponse

gfbResp

cfbResp

sfbResp

alarm

2.7.4

a

l

a

r

m

C

h

a

n

g

e

d

F

e

e

d

b

a

c

k

s

e

t

F

e

e

d

b

a

c

k

I

n

f

o

r

m

A

l

a

r

m

S

y

s

t

e

m

a

l

a

r

m

N

e

w

F

e

e

d

b

a

c

k

n

e

w

F

e

e

d

b

a

c

k

I

n

f

o

r

m

A

l

a

r

m

S

y

s

t

e

m

c

r

e

a

t

e

F

e

e

d

b

a

c

k

A

u

t

h

Figure 4.20 – Feedback Module DFD
4.4 Data Dictionary

	Name
	Username, password

	Where Used
	User input
2.1.1 input

	Description
	Username and password

	Name
	validation

	Where Used
	User input

2.1.1 output

	Description
	Boolean value showing if written username and password are valid

	Name
	signupQuery

	Where Used
	2.1.1 Output

User DB input

	Description
	User related signup queries

	Name
	signupResponse

	Where Used
	2.1.1 Output

User DB output

	Description
	User related signup responses

	Name
	Username, password

	Where Used
	User input

2.1.1 input

	Description
	Username and password

	Name
	ministaryTypeUser

	Where Used
	Ministary Staff entity input

2.1.1 output

	Description
	Assignment of Ministary Staff type user

	Name
	mGroupTypeUser

	Where Used
	Managing Group entity input

2.1.1 output

	Description
	Assignment of Managing Group type user

	Name
	teacherTypeUser

	Where Used
	Teacher entity input

2.1.1 output

	Description
	Assignment of Teacher type user

	Name
	InspectorTypeUser

	Where Used
	Inspector entity input

2.1.1 output

	Description
	Assignment of Inspector type user

	Name
	min_ap

	Where Used
	Ministary Staff entity output
2.1.2 input

	Description
	Request for Ministary staff type users to use Abstract Purpose module

	Name
	min_cur

	Where Used
	Ministary Staff entity output
2.1.3 input

	Description
	 Request for Ministary Staff type user to use Curriculum

	Name
	min_ver

	Where Used
	Ministary Staff entity output
2.1.6 input

	Description
	Request for Ministary Staff type user to use Versioning Module

	Name
	min_ver

	Where Used
	Ministary Staff entity output
2.1.6 input

	Description
	Request for Ministary Staff type user to use Versioning Module

	Name
	min_sfb

	Where Used
	Ministary Staff entity output
2.1.7 input

	Description
	Request for Ministary Staff type user to use Student Feedback Module

	Name
	mg_ap

	Where Used
	Managing Group entity output
2.1.2 input

	Description
	Request for Managing Group type users to use Abstract Purpose Module

	Name
	mg_cur

	Where Used
	Managing Group entity output
2.1.3 input

	Description
	Request for Managing Group type users to use Curriculum Module

	Name
	mg_cp

	Where Used
	Managing Group entity output
2.1.4 input

	Description
	Request for Managing Group type users to use Curriculum Module

	Name
	mg_comp

	Where Used
	Managing Group entity output
2.1.5 input

	Description
	Request for Managing Group type users to use Comparison Module

	Name
	mg_ver

	Where Used
	Managing Group entity output
2.1.6 input

	Description
	Request for Managing Group type users to use Versioning Module

	Name
	mg_sfb

	Where Used
	Managing Group entity output
2.1.7 input

	Description
	Request for Managing Group type users to use Versioning Module

	Name
	mg_cur

	Where Used
	Managing Group entity output
2.1.4 input

	Description
	Request for Managing Group type users to use Curriculum Module

	Name
	tea_cur

	Where Used
	Teacher entity output
2.1.3 input

	Description
	Request for Teacher type users to use Curriculum Module

	Name
	mg_cur

	Where Used
	Managing Group entity output
2.1.3 input

	Description
	Request for Managing Group type users to use Curriculum Module

	Name
	tea_cp

	Where Used
	Teacher entity output
2.1.4 input

	Description
	Request for Teacher type users to use Course Plan Module

	Name
	Tea_comp

	Where Used
	Teacher entity output
2.1.5 input

	Description
	Request for Teacher type users to use Comparison Module

	Name
	tea-ver

	Where Used
	Teacher entity output
2.1.6 input

	Description
	Request for Managing Group type users to use Versioning Module

	Name
	mg_cp

	Where Used
	Managing Group entity output
2.1.4 input

	Description
	Request for Managing Group type users to use Curriculum Module

	Name
	ins_ver

	Where Used
	Inspector entity output
2.1.6 input

	Description
	Request for Inspector type users to use Versioning Module

	Name
	ins_sfb

	Where Used
	Inspector entity output
2.1.7 input

	Description
	Request for Teacher type users to use Student Feedback Module

	Name
	absPurpAuth

	Where Used
	2.1.2 Output
2.1.7 input

	Description
	Granted abstract purpose module use authentication, changing according to use type

	Name
	curriculumAuth

	Where Used
	2.1.3 Output
2.1.7 input

	Description
	Granted curriculum module use authentication, changing according to use type

	Name
	coursePlanAuth

	Where Used
	2.1.4 Output
2.1.7 input

	Description
	Granted course plan module use authentication, changing according to use type

	Name
	coursePlanAuth

	Where Used
	2.1.4 Output
2.1.7 input

	Description
	Granted course plan module use authentication, changing according to use type

	Name
	comparisonAuth

	Where Used
	2.1.5 Output
2.1.7 input

	Description
	Granted comparison module use authentication, changing according to use type

	Name
	versioningAuth

	Where Used
	2.1.6 Output
2.1.7 input

	Description
	Granted versioning module use authentication, changing according to use type

	Name
	feedbackAuth

	Where Used
	2.1.7 Output
2.1.7 input

	Description
	Granted feedback module use authentication, changing according to use type

	Name
	signupInfo

	Where Used
	2.1.8 Output
User DB input

	Description
	User data, changing according to user type

	Name
	signupApproval

	Where Used
	User DB output
2.1.8 input

	Description
	Approval of sign up operation

	Name
	logoutInfo

	Where Used
	2.1.9 Output
User DB input

	Description
	Request for logging out

	Name
	logoutApproval

	Where Used
	UserDB output
2.1.9 input

	Description
	Approval of logout operation

	Name
	getAbsPurpAuth

	Where Used
	2.1.2 Output
2.2.1 Input

	Description
	Authentication to display Abstract Purpose data

	Name
	setAbsPurpAuth

	Where Used
	2.1.2 Output
2.2.2 Input

	Description
	Authentication to set Abstract Purpose data, changing according to user type

	Name
	Create AbsPurpAuth

	Where Used
	2.1.2 Output
2.2.3 Input

	Description
	Authentication to create Abstract Purpose data, changing according to user type

	Name
	getAbsPurpQuery

	Where Used
	2.2.1 Output
Abstract Purpose DB input

	Description
	Send Abtract Purpose related queries to display Abstract Purpose

	Name
	setAbsPurpQuery

	Where Used
	2.2.2 Output
Abstract Purpose DB input

	Description
	Send Abstract Purpose related queries to edit Abstract Purpose

	Name
	getAbsPurpQuery

	Where Used
	2.2.1 Output
Abstract Purpose DB input

	Description
	Send Abstract Purpose related queries to create Abstract Purpose

	Name
	gapResp

	Where Used
	Abstract Purpose DB output
2.2.1 Input

	Description
	Result set of get Abstract Purpose query

	Name
	sapResp

	Where Used
	User DB output
2.2.1 Input

	Description
	Result set of set Abstract Purpose query

	Name
	capResp

	Where Used
	User DB output
2.2.1 Input

	Description
	Result set of create Abstract Purpose query

	Name
	getcurrAuth

	Where Used
	2.1.3 Output
2.3.1 Input

	Description
	Authentication to display Curriculum data

	Name
	setcurrAuth

	Where Used
	2.1.3 Output
2.3.2 Input

	Description
	Authentication to set Curriculum data, changing according to user type

	Name
	createCurrAuth

	Where Used
	2.1.2 Output
2.3.2 Input

	Description
	Authentication to create Curriculum data, changing according to user type

	Name
	getCurrQuery

	Where Used
	2.3.1 Output
Curriculum DB input

	Description
	Send Curriculum related queries to display Curriculums

	Name
	setCurrQuery

	Where Used
	2.3.2 Output
Curriculum DB input

	Description
	Send Curriculum related queries to edit Curriculums

	Name
	createCurrQuery

	Where Used
	2.3.3 Output
Curriculum DB input

	Description
	Send Curriculum related queries to create Curriculums

	Name
	gcResp

	Where Used
	Curriculum DB output
2.3.1 Input

	Description
	Result set of get Curriculum query

	Name
	gsResp

	Where Used
	Abstract Purpose DB output
2.3.2 Input

	Description
	Result set of set Abstract Purpose query

	Name
	ccResp

	Where Used
	Curriculum DB output
2.3.3 Input

	Description
	Result set of create curriculum query

	Name
	getPlanAuth

	Where Used
	2.1.4 Output
2.4.1 Input

	Description
	Authentication to display Course Plan data

	Name
	setPlanAuth

	Where Used
	2.1.4 Output
2.4.2 Input

	Description
	Authentication to set Course Plan data, changing according to user type

	Name
	createPlanAuth

	Where Used
	2.1.4 Output
2.4.2 Input

	Description
	Authentication to create Course Plan data, changing according to user type

	Name
	getPlanQuery

	Where Used
	2.4.1 Output
Course plan DB input

	Description
	Send Course Plan related queries to display Course Plans

	Name
	setPlanQuery

	Where Used
	2.4.2 Output
Course plan DB input

	Description
	Send Course Plan related queries to edit Course Plans

	Name
	createPlanQuery

	Where Used
	2.4.3 Output
Course plan DB input

	Description
	Send Course Plan related queries to create Course Plans

	Name
	gpResp

	Where Used
	Course Plan DB output
2.4.1 Input

	Description
	Result set of getPlanQuery query

	Name
	spResp

	Where Used
	Course Plan DB output
2.4.2 Input

	Description
	Result set of setPlanQuery query

	Name
	cpResp

	Where Used
	Course Plan DB output
2.4.3 Input

	Description
	Result set of createPlanQuery query

	Name
	AlarmChangedPlan

	Where Used
	2.4.4 Output
2.4.1 input

	Description
	Send alarms after inaccurate course plan changes

	Name
	setPlanInformationAlarmSystem

	Where Used
	2.4.2 Output
2.4.4 Input

	Description
	Enable Alarm at the beginning of course plan change process

	Name
	alarmNewPlan

	Where Used
	2.4.4 Output
2.4.3 Input

	Description
	Send alarms after inaccurate course plan creations

	Name
	newPlanInformationAlarmSystem

	Where Used
	2.4.3 Output
2.4.4 Input

	Description
	Enable Alarm at the beginning of course plan creations

	Name
	horizontal

	Where Used
	2.5.1 Output
2.5.2 Input

	Description
	Type of horizontal comparison

	Name
	Vertical

	Where Used
	2.5.1 Output
2.5.3 Input

	Description
	Type of vertical comparison comparison

	Name
	horzCompCurQuery

	Where Used
	2.5.2 Output
Curriculum DB input

	Description
	Send curriculum related queries

	Name
	horzCompCurResponse

	Where Used
	2.5.2Input
Curriculum DB output

	Description
	Result set of horzCompCurQuery

	Name
	horzCompPlanQuery

	Where Used
	2.5.2 Output
Course Plan DB input

	Description
	Send course plan related queries

	Name
	horzCompPlanResponse

	Where Used
	2.5.2 Input
Course Plan DB output

	Description
	Result set of horzCompPlanQuery

	Name
	vertCompCurQuery

	Where Used
	Curriculum DB Output
2.5.3 input

	Description
	Send curriculum related queries

	Name
	Curriculum info

	Where Used
	Curriculum DB output
2.5.3 input

	Description
	Result set of curriculum info query

	Name
	vertCompPlanQuery

	Where Used
	2.5.3 Output
Course Plan DB input

	Description
	Send course plan related queries

	Name
	Plan info

	Where Used
	Course Plan DB output
2.5.3 input

	Description
	Result set of vertCompPlanQuery query

	Name
	result

	Where Used
	2.5.3 output
2.5.4 input

	Description
	Vertical Comparison result that decides if alarm needs to be activated

	Name
	alarmInfo

	Where Used
	2.5.4 output
2.5.3 input

	Description
	Boolean value that states if alarm is activated

	Name
	absPurp

	Where Used
	2.5.1 output
2.6.2 input

	Description
	Boolean value that states if versioning will be done for abstract purpose data type

	Name
	Curriculum

	Where Used
	2.5.1 output
2.6.3 input

	Description
	Boolean value that states if versioning will be done for curriculum data type

	Name
	Course Plan

	Where Used
	2.5.1 output
2.6.4 input

	Description
	Boolean value that states if versioning will be done for course plan data type

	Name
	feedback

	Where Used
	2.5.1 output
2.6.5 input

	Description
	Boolean value that states if versioning will be done for feedback data type

	Name
	newApVersion

	Where Used
	2.6.2 output

Abstract Purpose DB input

	Description
	Send Abstract Purpose related queries for versioning

	Name
	getApVersionInfo

	Where Used
	Abstract Purpose DB output

2.6.2 Input

	Description
	Result set of newApVersion query

	Name
	newCurrVersion

	Where Used
	2.6.3 output

Curriculum DB input

	Description
	Send Curriculum related queries for versioning

	Name
	getCurrVersionInfo

	Where Used
	Curriculum DB output

2.6.3 Input

	Description
	Result set of newCurrVersion query

	Name
	newCpVersion

	Where Used
	2.6.4 output

Course Plan DB input

	Description
	Send Course Plan related queries for versioning

	Name
	getCpVersionInfo

	Where Used
	Course Plan DB output

2.6.4 Input

	Description
	Result set of newCpVersion query

	Name
	newSfbVersion

	Where Used
	2.6.5 output

Feedback DB input

	Description
	Send Feedback related queries for versioning

	Name
	getSfbVersionInfo

	Where Used
	Feedback DB output

2.6.5 Input

	Description
	Result set of newSfbVersion query

	Name
	getFeedbackAuth

	Where Used
	2.1.7 Output
2.7.1 Input

	Description
	Authentication to display Feedback data

	Name
	setFeedbackAuth

	Where Used
	2.1.7 Output
2.7.2 Input

	Description
	Authentication to set Feedback data, changing according to user type

	Name
	createFeedbackAuth

	Where Used
	2.1.7 Output
2.7.2 Input

	Description
	Authentication to create Feedback data, changing according to user type

	Name
	getFeedbackQuery

	Where Used
	2.7.1 Output
Feedback DB input

	Description
	Send Feedback related queries to display Feedbacks

	Name
	setFeedbackQuery

	Where Used
	2.7.2 Output
Feedback DB input

	Description
	Send Feedback related queries to edit feedbacks

	Name
	createFeedbackQuery

	Where Used
	2.7.3 Output
Feedback DB input

	Description
	Send Feedback related queries to create Feedbacks

	Name
	gfbResp

	Where Used
	Feedback DB output
2.7.1 Input

	Description
	Result set of getFeedbackQuery query

	Name
	sfbResp

	Where Used
	Feedback DB output
2.7.2 Input

	Description
	Result set of setFeedbackQuery query

	Name
	cfbResp

	Where Used
	Feedback DB output
2.7.3 Input

	Description
	Result set of createFeedbackQuery query

	Name
	AlarmChangedFeedback

	Where Used
	2.7.4 Output
2.7.1 input

	Description
	Activate alarm after critical decrease in student success

	Name
	setFeedbackInformationAlarmSystem

	Where Used
	2.7.2 Output
2.7.4 Input

	Description
	Enable Alarm at the beginning of feedback change process

	Name
	alarmNewFeedback

	Where Used
	2.7.4 Output
2.7.3 Input

	Description
	Send alarms if student success is below critical value

	Name
	newPlanInformationAlarmSystem

	Where Used
	2.4.3 Output
2.4.4 Input

	Description
	Enable Alarm at the beginning of feedback creations

5. SYSTEM ANALYSIS AND MODELLING
5.1 Use Case Analysis

Common Use Case Scenarios

Use Case: Sign-up and Login

This use case will be applied in all groups. In that case new users will get username and password from the system. If they are signed in before they will enter username and password to log into the system. Correct username and password should be entered in order to log into the system.

Use Case: See curriculum

This user case is valid for teachers, managing groups and ministary staff. Ministary staff is able to select and visualize all the curriculums. The managing groups type users and teachers can only visualize the curriculums that are related with their departments.

Use Case: See course plan

This user case is valid for teachers and managing groups. The managing groups type users and teachers can only visualize the course plans that are related with their departments.
Use Case: See Student Feedbacks

This user case is valid for managing groups type users and ministary staff members. Managing group types users can only see the feedbacks that are given for their departments. Teachers are not allowed to see these feedbacks.
Use Case: Versioning
This user case is valid for all users. Users can version course plan, abstract purposes, student feedbacks and curriculums.
Ministry Staff Use Case Scenarios
Use Case: Create / Edit Abstract Purposes

In this use case ministary staff type use will create abstract purposes and store it into abstract purposes database, or edit the existing abstract purposes.

Managing Groups Use Case Scenarios

Use Case: Create / Edit Curriculums

In this use case managing groups type user will create curriculums or modify the existing ones. Managing group types users can only create and modify curriculums for their departments. These curriculums should fulfill abstract purposes.
Use Case: Create Expected Gains To Be Developed in Students

In this use case managing groups type user will select a curriculum created for his department. Then he will create the gains that are planned to be developed in the student after taking the courses related to selected curriculum.
Use Case: Horizontal Mapping Between Curriculums

In this use case managing groups type user will select a curriculum created for his departments and compare it with another curriculum that is created by other managing groups for fulfilling the same abstract purposes.
Teacher Use Case Scenarios

Use Case: Create / Edit Course Plan

In this use case teachers will create or modify course plans according to the curriculum maps defined before. While creating a course plan user will enter keywords and the program will make suggestions to the teacher. These keywords will be used for searching in the database system. The teacher can only create a course or modify plan for his department.
Use Case: Vertical Mapping Between Curriculum and Course Plan

In this case teachers will select a course plan and compare it with the curriculum that is defined by the managing groups for the selected course. After this mapping the system will detect the missing points between the curriculum and the course plan. The teacher can select the course that is created for his department for mapping purposes.
Use Case: See Gain Providence of Curriculum to The Student

In this case teachers will see skill providence of the curriculum to the students. By this information we have planned to make the teacher to see the crucial points of the curriculum aims to teach students more clearly. Again the teacher can only visualize skill providences assigned for his department.
Inspector Use Case Scenarios
Use Case: Insert Student Feedback

In this case inspectors will insert the student feedbacks to the system.

Use Case: See Student Feedback

In this use case inspectors will see the feedbacks that are collected from students to the system.

Ministry Staff Use Case Diagram

[image: image22.emf]Signup &

Login &

Logout

Create & Edit

Abstract

Purpose

See

Curriculum

See Student

Feedbacks

Ministry

Staff

Versioning

Figure 5.1 – Ministary Staff Use Case
Managing Group Use Case Diagram

[image: image23.emf]Signup &

Login &

Logout

Create & Edit

Curriculum

See Course

Plan

See Student

Feedbacks

Managing

Group

Horizontal

Mapping

between

Curriculums

Create

Expected

Gains

See Abstract

Purposes

Versioning

Vertical Mapping

between

Curriculums and

Plans

Figure 5.2 – Managing Group Use Case
Teacher Use Case Diagram

[image: image24.emf]Signup &

Login &

Logout

See

Curriculum

Create & Edit

Course Plan

See Expected

Gains

Teacher

Horizontal

Mapping

between Course

Plans

Versioning

Vertical Mapping

between

Curriculums and

Plans

 Figure 5.3 –Teacher Use Case
Inspector Use Case Diagram

[image: image25.emf]Signup &

Login &

Logout

Insert

Student

Feedbacks

See Student

Feedbacks

Inspector

Figure 5.4 – Inspector Use Case
5.2 Sequence Diagrams
Sign up Login Logout Module:

[image: image26.emf]loginLogout

Signup

dataAccess

Object

User

Database

1. sendUserRequest

Actor

2. checkUser

resultSet

3. getUserData

resultSet

4. createAccount

userInfo

5. sendUserData

userInfo

6. logout

result

7. sendLogoutRequest

result

mainPage

Figure 5.5 – Sign up Login Logout Module Sequence Diagram
Abstract Purpose Module:

[image: image27.emf]abstract

Purpose

Database

Actor

abstract

Purpose

Versioning

decide

1. sendRequest

absPurpPage

resultSet

2. absPurpVersion

3. saveNewVersionRequest

Figure 5.6 – Abstract Purpose Module Sequence Diagram
Curriculum Module:

[image: image28.emf]course

Plan

dataAccess

Object

coursePlan

Database

1. sendUserRequest

Actor

2. getPlan

resultSet

3. getPlanData

resultSet

4. setPlan

planInfo

5. sendPlanData

planInfo

6. createPlan

newPlan

7. sendnewPlan

newPlan

planPage

alarm

System

planInfo

newPlan

Figure 5.7 – Curriculum Module Sequence Diagram
Course Plan Module:

[image: image29.emf]course

Plan

dataAccess

Object

coursePlan

Database

1. sendUserRequest

Actor

2. getPlan

resultSet

3. getPlanData

resultSet

4. setPlan

planInfo

5. sendPlanData

planInfo

6. createPlan

newPlan

7. sendnewPlan

newPlan

planPage

alarm

System

planInfo

newPlan

Figure 5.8 – Course Plan Module Sequence Diagram
Comparison Module:

[image: image30.emf]horizontal

Comparison

vertical

Comparison

curriculum

Database

Actor

alarm

System

decide

coursePlan

Database

1

.

s

e

n

d

U

s

e

r

R

e

q

u

e

s

t

c

o

m

p

a

r

i

s

o

n

P

a

g

e

3. horzComparison

2. vertComparison

horzCompResult

vertCompResult

resultSet

4

.

g

e

t

H

o

r

z

C

u

r

r

I

n

f

o

resultSet

5. getHorzPlanInfo

6

.

g

e

t

V

e

r

t

C

u

r

r

I

n

f

o

7. getVertPlanInfo

resultSet

resultSet

Figure 5.9 – Comparison Module Sequence Diagram
Versioning Module:

We divided sequence diagram of Versioning Module into 4 parts for visual simplicity concerns.

[image: image31.emf]curriculum

Database

Actor

curriculum

Versioning

decide

1. sendRequest

currPage

resultSet

2. currVersion

3. saveNewVersionRequest

Figure 5.10 – Versioning Module Sequence Diagram 1

[image: image32.emf]coursePlan

Database

Actor

coursePlan

Versioning

decide

1. sendRequest

planPage

resultSet

2. planVersion

3. saveNewVersionRequest

Figure 5.11 – Versioning Module Sequence Diagram 2

[image: image33.emf]student

Feedback

Database

Actor

student

Feedback

Versioning

decide

1. sendRequest

sfbPage

resultSet

2. sfbVersion

3. saveNewVersionRequest

Figure 5.12 – Versioning Module Sequence Diagram 3

[image: image34.emf]abstract

Purpose

Database

Actor

abstract

Purpose

Versioning

decide

1. sendRequest

absPurpPage

resultSet

2. absPurpVersion

3. saveNewVersionRequest

Figure 5.13 – Versioning Module Sequence Diagram 4

Feedback Module:

[image: image35.emf]student

Feedback

dataAccess

Object

feedback

Database

1. sendUserRequest

Actor

2. getSfb

resultSet

3. getSfbData

resultSet

4. setSfb

sfbInfo

5. sendSfbData

sfbInfo

6. createSfb

newSfb

7. sendnewSfb

newSfb

sfbPage

alarm

System

sfbInfo

newSfb

Figure 5.14 – Feedback Module Sequence Diagram
5.3 ER Diagram

[image: image36.png]users

o

\

ministry

I
managing_gro|
wp.

teacher

inspector

abstract_purpose

curriculum

course_plan

student_feedbac

Figure 5.15 – ER Diagram

For simplicity, we decided to list the attributes of the entities separately:

Users: id, name, surname, address

Additions to managing group: region, courseID

Additions to teacher: region, schoolID, courseID

Additions to inspector: region

course_plan: planID, region, schoolID, year, courseID, teacherID, degree, version

curriculum: currID, region, year, version

abstract_purpose: absPurpID, absPurpStatement, courseID, version

student_feedback: sfbID, region, schoolID, teacherID, year, degree, version
6. GANTT CHART

First Term

[image: image37.png]Weekly Gantt Chart

Initial Design Report
Detailed Design Report
Final Presentation Preparation |

Final Preparation |

Prototype Demo Preparation
Prototype Demo |

[image: image38.png]

Second Term

[image: image39.png]Weekly Gantt Chart

Database Implementation
Signup / Login / Logout module
Abstract Purpose module
Curriculum module
Course Plan module
Versioning module
Comparison module
Student Feedback module

Final presentation

[image: image40.png]16 [317 [sns [19 [0 [2 [22 [s [2 [s [e [37 [s ac [an | a7z [| wis | s | e [arr | im | s [arsn | [sz [aras [arss [rss [anss [z [4ms [arse

[image: image41.png]2 [122 [w723 [2 [vas [arze [[vzn [aas [asso | s [z [s [s [s [e [sir [rm [s [a0 [sons [na [as [as [[s [snnr [s [svas [o [sz [[s [e

[image: image42.png]25 | 528 5128 3725 [s030 [sr31 [e [o2 [@ [s s s [[an | s [[ouo [erns [oma [anns [erse

63

_1291047517.bin

_1291053862.bin

_1291055253.bin

_1291055257.bin

_1291055258.bin

_1291055259.bin

_1291055254.bin

_1291055255.bin

_1291053864.bin

_1291055251.bin

_1291053859.bin

_1291053861.bin

_1291053746.bin

_1291053858.bin

_1290985310.bin

_1291047511.bin

_1291047514.bin

_1290985488.bin

_1290985549.bin

_1290985360.bin

_1290981506.bin

_1290981833.bin

_1290974679.bin

