
1

2009
CEng 491

DSK4BRMS

Yetkin KARIŞ

Metin BARIŞ

Erkan AKYOL

Ghassan ALSHANA

MOCKWARE

INITIAL DESIGN REPORT

2

TABLE OF CONTENTS

1. INTRODUCTION

1.1. PROJECT TITLE

1.2. MOTIVATION

1.3. PROJECT DEFINITION

1.4. PROJECT GOALS

2. REQUIREMENT ANALYSIS

2.1. SYSTEM REQUIREMENTS

2.2. FUNCTIONAL REQUIREMENT

3. ARCHITECTURAL DESIGN

3.1. MODULES

3.1.1. MANAGEMENT MODULE

3.1.2. EXECUTION MODULE

3.1.3. INTERACTION MODULE

3.2. DATA FLOW DIAGRAMS

3.2.1. LEVEL 0 DFD

3.2.2. LEVEL 1 DFD

3.2.3. LEVEL 2 DFD

3.3. STATE TRANSITION DIAGRAMS

3.4. ENTITY RELATIONSHIP DIAGRAMS

4. OO DIAGRAMS

4.1. USE CASE DIAGRAM

4.2. ACTIVITY DIAGRAMS

4.3. CLASS DIAGRAMS

4.4. SEQUENCE DIAGRAMS

5. LANGUAGE PATTERNS

6. USER INTERFACE DESIGN

7. PROCESS

7.1. TEAM STRUCTURE

7.2. PROCESS MODEL

7.3. GANTT CHART

8. CONCLUSION

9. REFERENCES

3

1. INTRODUCTION

1.1. PROJECT TITLE

We decided to name our project as BRules. ‘B’ is stand for business which is our

main concern in this project.

1.2. MOTIVATION

Business rules touch our lives in many interesting ways. They can dictate your

credit worthiness, what type of loan or insurance rate you qualify for or even why you

are overlooked for the last business class upgrade at the airport.

Driving these decisions is a new generation of business rules management

systems (BRMS) designed to automate decision making in enterprise IT applications.

These systems differ radically from the old 'expert systems' of yesteryear that failed

to catch corporate IT attention because they were too complex, expensive to run and

maintain and not business-user friendly.

Organisations are now starting to realise that a more hands-on approach is

needed. They are looking to a new breed of BRMS technology to empower workers

to write their own business policies as the competitive climate demands.

Today rules impact a huge number of target business applications ranging from

insurance adjudication, loan approval, claims processing, credit scoring,

product/service recommendations, order configuration and fraud detection. A typical

application implements between 100 and 1,000 rules. Complex rules are not only

difficult to code into applications, they are also a nightmare to maintain using

traditional coding.

There are a number of advantages gained by expressing business logic in

business rules and using the processing and management facilities included in

BRMS to work with them. One is cost and time savings - between 25% to 75% - over

the application lifecycle simply through a reduction in modification cycle times. BRMS

are simply more flexible. Changes can be made immediately to rules by business

whenever the need arises. In a traditional procedural coding implementation they

4

would have to understand the sequencing of rules programmed in the code, which is

incredibly time-consuming and expensive.

Another is consistency across all touch-points that use rules. In most cases a

corporation's business rules are defined in manuals or other documents, or possibly

not defined formally at all. Many organisations rely on business managers to interpret

company policies as business rules, which can be inefficient and lead to inconsistent

application of rules. This imperative becomes more important as organisations decide

to offer the same services and access to information over multiple channels of

communication: to customers, employees, or partners.

BRMS technology continues to mature, with attention now turning to the areas of

rules simulation and testing, as well as analytics. Since BRMS is a decision-enabling

technology it makes sense to use analytic techniques to optimise them using a

scorecard-like approach. For example, routing a customer with a glaring propensity to

churn to an experienced customer service agent, or determine if he or she is likely to

take up an offer if presented with a rebate incentive.

Rules are also starting to pique the interest of larger IT vendors such as

Microsoft, IBM, Oracle and SAP. When these companies start to invest more heavily

in rules-based business logic within their applications, industry pundits expect to see

a wave of sell-offs.

1.3. PROJECT DEFINITION

BRules is a domain specific toolset for business rule management. It consists of

three main parts namely Language, Engine and User Interface. We will use existing

rule languages to create our structure.

Currently there are many tools to manage business rules such as ILOG, JDREW

and Mandarax. They have the ability to execute rules which are internal i.e. are not

have to interact with external databases, web services or other applications. Our aim

is to make a generic language and required engine which will also be able to send a

query to external sources and request response from external sources.

5

Users can define, classify and manage rules on the other hand they can send

queries to the engine and engine will respond according to defined rules. But the

main issue that we will working on is external servers that BRules interacts with.

1.4. PROJECT GOALS

When our project is done, we will like to have created a domain specific

language(DSL), a domain specific engine(DSE) and a domain specific toolkit(DST).

• User will be provided a graphical interface with a toolset.

The opening screen in our program will be flexible. According to type of the

user opening screen will be changed. All type of users will be able to manage or

execute rules without any coding. The toolset of our program will assist user.

• This program will provide a module for testing results.

The regular user will behave like a tester, so rule manager will. This user can

test result set of queries.

• The programmer will be able to extend rules.

New rules can be created, or deleted by rule manager. The program will be

flexible about managing rules.

• A powerful domain specific language will be created.

We will create a markup language that will be more generic than most present

markup languages. This language will have extra keywords and properties to connect

more sources.

• The program will be able to interact with external sources.

If the user needs to connect an external source, our program will supply this

property in a wide area of sources. Our engine will be able to be in touch with web

services, databases and some application programming interfaces. This is the most

powerful part of our program since most present markup languages do not support

this opportunity.

6

• The program that we will create will be able to be developed.

Developers can create new interactions with other sources by developing our

program. Since we want our program to be generic, it will be adaptable to most

development tools.

7

2. REQUIREMENT ANALYSIS

Interface Requirements

The business rule system in our program will interact with user,get information

from user and according to user’s requests the business rules will be executed or

managed including creating basic rules and composite rules and updating rules. So

our program will include external and internal interfaces. The external interface will be

available since we want user not to deal with exhaustive codes, so the user will have

a graphical user interface for managing business rules easily.

External Interface

The first part of our program is external user interface which is a graphical user

interface directly in touch with user. Our external interface will have log in part

according to authentication. This interface will have 2 different screens according to

authorisation of user. In this part there will be 2 type of users respectively regular

user and rule manager. When logged in as a regular user, the user will be redirected

to execution module. In this module the user will be able to send queries and get

response. When logged in as a rule manager, the user will be redirected to

management module. This user will be generaly the business analyst. Rule manager

will be capable of creating new basic rules, creating new composite rules from

existing ones, deleting existing rules, modifying, inserting and updating rules.

Internal Interface

In internal interface there will be three modules respectively management

module, execution module and interaction module. According to user’s requests the

business rules will be managed in management module which only the business

analyst will have permission to manage rules, or the rules will be executed in

execution module, or interact with fact set when necessary.

The business system in internal interface will have an architecture. This

system has a rule editor that provides a user interface, an inference engine that

applies the rules using its algorithms, a rule repository that saves information related

8

to the rule, a rule object model handler which controls over the rule object model,

the rule object model that express the rule class data, rule adapter that supply

an interface between rule editor and rule object model handler,rule repository

handler that control rule repository, and so on.

Figure 1. General Architecture of BRules

Functional Requirements

Our program will have three main parts namely user interface, domain specific

engine and fact set.

User Interface:

This is the first part of our program which interacts with user. There will be a

graphical user interface which will have two types of users. According to authorisation

of user, this interface will be in touch with domain specific engine.

9

Domain Specific Engine:

All rule related operations will be done in this part. When user wants to do

operations using graphical interface, this request will be granted in this part and make

operations such as executing or managing rules according to information coming

from user. This part will also have rulebase and its own facts. While making rule

related operations, program will interact with its own fact set or external fact set such

as web services, some application programming ınterfaces if necessary.

Fact Set:

This part is the last part of our program. This fact set will include web services,

some application programming interfaces, relational database management

system(RDBMS), and domain specific engine’s own facts. Our engine will interact

with this part if necessary according to granted information from user.

Our program will get information from user, make C++ binding to make

operations in our domain specific engine for business rules management. If the user

is a regular user:

• There will be a log in screen.

• When user log in as a regular user, there will be an execution screen for

the user.

• Regular user will send queries using a graphical interface.

• The query will be got with C++ binding and verified in domain specific

engine.

• By using query, our program will get initial rule.

• By forward chaining, all related rules will be evaluated and according to

corresponding facts.

• If our domain specific engine’s own facts are sufficient for evaluating,

our program will use C++ binding to use facts inside domain specific

engine.

• If our own fact set is not sufficient to evaluate rules and extra fact set is

needed, our program will interact with some external fact set among

web services, application programming interfaces or relational

10

database management systems where the corresponding facts for the

rule in.

If the user is a rule manager:

• Also called as business analyst.

• This user will already have authorisation as much as regular user

have and will be able to send queries to program.

• After logging in as a rule manager, the user will see a management

screen.

• Rule manager will use a toolset in management screen.

• This toolset will enable rule manager to create basic rules, create

composite rules from existing rules, delete existing rules, modify

and update rules.

• Domain specific engine will gather information with C++ binding

from the user.

• Then the request will be verified such that the user can create a rule

that does not exist or can delete a rule that exists, and so on.

• To make rule related operations, domain specific engine(DSE) will

interact with only rule repository.

• If creation or update needed, domain specific engine will do

corresponding operations and update rule repository.

• If deletion needed, the corresponding rule will be found in rule

repository and will be deleted by our domain specific engine. So on

rule repository will be updated.

11

3. ARCHITECTURAL DESIGN

3.1. MODULES

BRules engine is composed of Manager, Executor and Connector Module.

3.1.1. MANAGER MODULE

Management module has 3 classes. These classes are:

• Parser

• Analyzer

• Organizer

Parser gets the rule or fact input in xml format and sends it Analyzer module right

after checking validity and changing format of input.

Analyzer gets FormattedRule from Parser and by combining it with data from

rulebase it gives a RuleSet(family tree of rule).

Organizer should take the RuleSet and insert it into right place and in right form

to Rule Repository and if needed it makes changes in other rules.

3.1.2. EXECUTOR MODULE

This module has 4 classes. These classes are:

• Query_Listener

• Recognizer

• Trigger

• Engine

Query_Listener is responsible for getting queries from the user. It checks the

query and send int to Recognizer.

Recognizer convert the Verified_Query into Logic which has a tree-like data

structure.

12

Trigger is for getting corresponding rules from rulebase, ask for related data from

Connector module, and fire the Engine.

Engine is the heart of the structure. When it is fired it finds the result of query. We

will use Rete algorithm or forward chaining to achieve this process.

3.1.3. CONNECTOR MODULE

This module is responsible for connection and data transfer from external

sources and has 2 classes which should be extended.

• Solver

• Adapter

Solver is to define the needed data from external sources and determine the

server or source to be connected.

Adapter makes a connection between our Engine and external source and gets

required data.

13

3.2. DATA FLOW DIAGRAMS

3.2.1. LEVEL 0 DFD

14

3.2.2. LEVEL 1 DFD

15

3.2.3. LEVEL 2 DFD

16

Executor Module

17

Name Query

From User

To Query_Listener

Description Data that is sended as input to our program. It is sended by User

Name Verified_Query

From Query_Listener

To Recognizer

Description This data is qualified to be query for input of our program.

Name Logic

From Recogniser

To Trigger

Description This data is an instance of a class that will be our logical item like

conditions and rule products(under maintenance).

Name Request

From Trigger

To Rulebase(Repository)

Description This data asks a rule from rulebase

18

Name Rule

From Rulebase

To Engine

Description This data is our rule object that asked by trigger for engine to iterate

Name Data

From Connector

To Engine

Description Data is a needed data from connector to find from to complete

engine stage

Name Data_Request

From Trigger

To Connector

Description It is a query-like data that will be recognized by connector

19

Manager Module

20

21

Name Rule

From Expert

To Parser

Description String-like data with keywords and it is nested

Name Rulebase_Request

From Parser

To Rulebase(repository)

Description Data that asks for rulebase and it is string type

Name Formatted_Rule

From Parser

To Analyzer

Description Rule class data created by parser from input rulestring,it is verified.

Name Rulebase

From Rulebase

To Analyzer

Description Root of a family rule tree can be used for reaching rule nodes.

22

Name RuleSet

From Analyzer

To Organizer

Description A family rule tree for inserting and organizing rulebase

Name Organize

From Organizer

To Rulebase

Description Organized ruleset to be inserted to rulebase and extra data to change

organization(will be seperated in next phase)

23

Connector Module

Name Condition

From Executor

To Solver

Description This data is to create server and Data information

Name Data_Request

From Solver

To Adapter

Description Data that carries server and data information

24

Name Adapted_Request

From Adapter

To External

Description The data request that can be recognized by externals

Name Raw_Data

From External

To Adapter

Description Incoming raw data from external

Name Data

From Adapter

To Executor

Description Needed data in known format to complete execution

25

3.3. STATE TRANSITION DIAGRAMS

26

27

4. OO DIAGRAMS

4.1. USE CASE DIAGRAM

28

29

4.2. ACTIVITY DIAGRAMS

ExpertExpertExpertExpert SessionSessionSessionSession

• Expert enters a rule or fact to the program. When rule is received it is checked

for validation and if it is valid to be a rule program continue running,

terminating (compile time error) otherwise.

• Program will parse the valid rule and test it in next step.

• If test is failed then program gives run time error if not continue.

• Then rule will be inserted and rulebase is organized accordingly.

30

UUUUserserserser SessionSessionSessionSession

31

Users (or testers) may write a query (with our specifications) or load a saved

query in our interface and get the result of the query visually as a table like SQL

tables. Below is the description of the path that our program will follow.

• When query entered the program will check the validity of the query and

the engine. If it is a valid query and engine is available then program will

continue to execute query otherwise it gives an error and terminate.

• Valid query will be recognized by the program and a rule or a ruleset will

be obtained from rulebase to initiate the engine.

• After engine was initiated it starts to iterate until there are no rule will be

executed.

• The output will be the result of the query.

32

4.3. CLASS DIAGRAMS

Execution Module

Query_Listener

-Raw_Query:string

-Query:<Element>

+get_query():string

+convert_query(string A): <Element>

+send_query():void

Recognizer

-query: Query_Listener

-conditions: Priority_List

-results:class Trigger

invoke_Trigger():void

get_Listener():void

set_conditions(Query):void

Trigger

-rule: class Rule

-data: string

-data_spec: string

-condition: string

+connect(string A): string C

+get_rule(condition):void

Rule

Engine

-fire: class Trigger

+rete():string data

33

Management Module

Parser

-conditions:string

-thens:string

+parse(string rule)

Analyzer

-parsed_rule:class Parser

-ruleset:class Rule

+analyze():void

Organizer

-rule:class Rule

-rulebase:string

+connect_rb():void

+organize_rules():void

Connector Module

34

Solver

-class Trigger

-server: string

find_server():void

Adapter

-server: string

-data: string

connect_server():void

get_data():void

Trigger

5. GRAPHICAL USER INTERFACE

DESIGN

35

Figure 6.1- Login to Brules

According to authentication of user, the user can login to one of BRules’s

modules.

There are two modules (screens) can be opened according to the user’s choose.

In general,in these two screens are Management Module which user can

insert,delete,update,and create new rules and Execution Module which the user can

request and be respondend a rule set as a table by the engine .

36

Figure 6.2- Create New Rule in Management Module of Brules

The program have four options ,namely , New Rule, Delete Rule, Insert Rule, and

Update Rule.

At the above picture, when clicked on New Rule option , corresponding menu and a

toolset menu will be opened. In the corresponding menu , users can browse rules

and select them to compose them or users also can directly create a rule by using

toolset.

37

Figure 6.3- Delete Rule in Management Module of Brules

Figure 6.4- Insert Rule in Management Module of Brules

38

The above two pictures illustrate deleting a rule from Rule Base and inserting an

existing rule to the Rule Base.

Figure 6.5- Update Rule in Management Module of Brules

Update Rule option in the Management Module make the user be capable of

updating an existing rule in the Rule Base. After the detailed design these options

and modules will be developed.

39

Figure 6.6- Execution Module of Brules

With Execution Module, users can test and make queries to get a result set as a table.

This module has three main part , namely, Options, Query, and Result Set.The users will

write a query with our specific markup language ,MML to the Query part and get the result

back at the Result Set part of Execution Module.

40

6. PROCESS MODEL

The most important elements that define a process are process model and

team organization choices. They are explained below in detail.

6.1. TEAM STRUCTURE

The most proper team organization category for our group is Democratic

Decentralized (DD).

Our reasons to choose DD are:

• Consensus plays an important role in our decision making process

• We have no permanent team leader

• Every member of the team should understand how things are handled

• Communication is horizontal

• We have coordinators for tasks, namely rotating task coordinators, but these

coordinators may change as tasks change

6.2. PROCESS MODEL

After discussing among group members, we decided to use waterfall software

model depending on the characteristics of our project. This software model was the

most suitable one for our project since in this model software evolution proceeds

through an orderly sequence of transitions from one phase to the next in order.

Furthermore, time constraints had affects to choose this model since there is a strict

schedule with deadlines that is given at the beginning of the project.

 Waterfall model was best matched model with our case. No overlap or iteration is

allowed during any period of the process. After a phase is completed we will not turn

back for large scale modifications. This classic model has been widely characterized

as both a poor descriptive and prescriptive model of how software development "in-

the-small" or "in-the-large" can or should occur. Alternatively, the most criticized

property of waterfall model is the absence of evolutionary approach and supplying

41

the product only after all the phases are over. But in the implementation phase we

will provide several prototypes in order to get rid of the mentioned disadvantage.

Figure 1 ‐ Modified Waterfall Model

42

6.3. GANTT CHART

43

44

45

7. CONCLUSION

At the beginning of the project we didn’t know anything about the project. After

making so much research we improved our knowledge about the project and got

idea about the case. From beginning to now we gained too much experience and

improved our skills.

We had a great motivation for initial design report. After checking our early

works, especially in requirement analysis report, we saw our missing parts. We

fulfilled our lack of knowledge by doing so much research. Especially finding

corresponding classes and methods was very hard and diagrams took most of our

time. Keywords was also a big deal. Creating user interface also took much time.

However, we believe that we overcomed all problems and did a good job.

We are much aware of th signifigance of initial design since it is the main step

to detailed design. So we did our best while working on initial design and created this

document. We changed some parts in our plans that we did before while preparing

requirement analysis report. We know that this initial design report reflects our idea

and knowledge about the project better than early works. Although having some

small problems in some details of project, we are now confident about the project.

46

8. REFERENCES

RuleML Homepage, Realize your knowledge, September 2008.

URL:http://www.ruleml.org/

jDrew Homepage, A Java Deductive Reasoning Engine for the Web, January 2004

URL:http://www.jdrew.org/jDREWebsite/jDREW.html.

CLIPS: A Tool for Building Expert Systems, May 2008

URL:http://clipsrules.sourceforge.net/

Jess, the Rule Engine for the Java Platform, November 2008

URL:http://herzberg.ca.sandia.gov/

Business Rules Management System, Enterprise Decision Management: Visual Rules, 2008

URL: http://www.visual-rules.com/business-rules-management-enterprise-decision-

management.html? utm_source=GoogleAd&utm_medium=PPC&utm_content=G_W-

Klicker_BRMS&utm_campaign=G_W-Klicker&gclid=CLqe3IfJyJcCFUwb3godU0cUSA

Business Rules Engine, Microsoft Corporation, 2008

URL: http://msdn.microsoft.com/en-us/library/aa561216.aspx

IBM Education Assistant-WebSphere software, November 2008

URL: http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?

topic=/com.ibm.iea.wpi_v6/wpswid/6.0/BusinessRules.html

CodeProject: Externalize your business rules, May 2007

URL: http://www.codeproject.com/KB/dotnet/BRMS.aspx

Jboss Drools, How do Jboss projects work together? 2008

URL: http://downloads.jboss.com/drools/docs/4.0.3.15993.GA/html/index.html

