2009

CEng 491

DSK4BRMS

INITIAL DESIGN REPORT

Yetkin KARIS

Metin BARIS

Erkan AKYOL
aaaaa ALSHANA

MOCKWARE




TABLE OF CONTENTS

1.

INTRODUCTION
1.1. PROJECT TITLE
1.2. MOTIVATION
1.3. PROJECT DEFINITION
1.4. PROJECT GOALS

REQUIREMENT ANALYSIS
2.1. SYSTEM REQUIREMENTS
2.2. FUNCTIONAL REQUIREMENT

ARCHITECTURAL DESIGN
3.1. MODULES
3.1.1. MANAGEMENT MODULE
3.1.2. EXECUTION MODULE
3.1.3. INTERACTION MODULE
3.2. DATA FLOW DIAGRAMS

3.2.1. LEVEL 0 DFD
3.2.2. LEVEL 1 DFD
3.2.3. LEVEL 2 DFD

3.3. STATE TRANSITION DIAGRAMS
3.4. ENTITY RELATIONSHIP DIAGRAMS

OO DIAGRAMS
4.1. USE CASE DIAGRAM
4.2. ACTIVITY DIAGRAMS
4.3. CLASS DIAGRAMS
4.4. SEQUENCE DIAGRAMS

LANGUAGE PATTERNS
USER INTERFACE DESIGN
PROCESS
7.1. TEAM STRUCTURE
7.2. PROCESS MODEL
7.3. GANTT CHART
CONCLUSION

REFERENCES



1. INTRODUCTION

1.1, PROJECT TITLE

We decided to name our project as BRules. ‘B’ is stand for business which is our

main concern in this project.
1.2. MOTIVATION

Business rules touch our lives in many interesting ways. They can dictate your
credit worthiness, what type of loan or insurance rate you qualify for or even why you
are overlooked for the last business class upgrade at the airport.

Driving these decisions is a new generation of business rules management
systems (BRMS) designed to automate decision making in enterprise IT applications.
These systems differ radically from the old 'expert systems' of yesteryear that failed
to catch corporate IT attention because they were too complex, expensive to run and

maintain and not business-user friendly.

Organisations are now starting to realise that a more hands-on approach is
needed. They are looking to a new breed of BRMS technology to empower workers
to write their own business policies as the competitive climate demands.

Today rules impact a huge number of target business applications ranging from
insurance adjudication, loan approval, claims processing, credit scoring,
product/service recommendations, order configuration and fraud detection. A typical
application implements between 100 and 1,000 rules. Complex rules are not only
difficult to code into applications, they are also a nightmare to maintain using

traditional coding.

There are a number of advantages gained by expressing business logic in
business rules and using the processing and management facilities included in
BRMS to work with them. One is cost and time savings - between 25% to 75% - over
the application lifecycle simply through a reduction in modification cycle times. BRMS
are simply more flexible. Changes can be made immediately to rules by business
whenever the need arises. In a traditional procedural coding implementation they



would have to understand the sequencing of rules programmed in the code, which is

incredibly time-consuming and expensive.

Another is consistency across all touch-points that use rules. In most cases a
corporation's business rules are defined in manuals or other documents, or possibly
not defined formally at all. Many organisations rely on business managers to interpret
company policies as business rules, which can be inefficient and lead to inconsistent
application of rules. This imperative becomes more important as organisations decide
to offer the same services and access to information over multiple channels of

communication: to customers, employees, or partners.

BRMS technology continues to mature, with attention now turning to the areas of
rules simulation and testing, as well as analytics. Since BRMS is a decision-enabling
technology it makes sense to use analytic techniques to optimise them using a
scorecard-like approach. For example, routing a customer with a glaring propensity to
churn to an experienced customer service agent, or determine if he or she is likely to
take up an offer if presented with a rebate incentive.

Rules are also starting to pique the interest of larger IT vendors such as
Microsoft, IBM, Oracle and SAP. When these companies start to invest more heavily
in rules-based business logic within their applications, industry pundits expect to see

a wave of sell-offs.
1.3. PROJECT DEFINITION

BRules is a domain specific toolset for business rule management. It consists of
three main parts namely Language, Engine and User Interface. We will use existing
rule languages to create our structure.

Currently there are many tools to manage business rules such as ILOG, JDREW
and Mandarax. They have the ability to execute rules which are internal i.e. are not
have to interact with external databases, web services or other applications. Our aim
is to make a generic language and required engine which will also be able to send a

query to external sources and request response from external sources.



Users can define, classify and manage rules on the other hand they can send
queries to the engine and engine will respond according to defined rules. But the

main issue that we will working on is external servers that BRules interacts with.
1.4. PROJECT GOALS

When our project is done, we will like to have created a domain specific
language(DSL), a domain specific engine(DSE) and a domain specific toolkit(DST).

e User will be provided a graphical interface with a toolset.

The opening screen in our program will be flexible. According to type of the
user opening screen will be changed. All type of users will be able to manage or

execute rules without any coding. The toolset of our program will assist user.
e This program will provide a module for testing results.

The regular user will behave like a tester, so rule manager will. This user can

test result set of queries.
e The programmer will be able to extend rules.

New rules can be created, or deleted by rule manager. The program will be
flexible about managing rules.

¢ A powerful domain specific language will be created.

We will create a markup language that will be more generic than most present
markup languages. This language will have extra keywords and properties to connect

more sources.
e The program will be able to interact with external sources.

If the user needs to connect an external source, our program will supply this
property in a wide area of sources. Our engine will be able to be in touch with web
services, databases and some application programming interfaces. This is the most
powerful part of our program since most present markup languages do not support
this opportunity.



e The program that we will create will be able to be developed.

Developers can create new interactions with other sources by developing our
program. Since we want our program to be generic, it will be adaptable to most

development tools.



2. REQUIREMENT ANALYSIS

Interface Requirements

The business rule system in our program will interact with user,get information
from user and according to user’s requests the business rules will be executed or
managed including creating basic rules and composite rules and updating rules. So
our program will include external and internal interfaces. The external interface will be
available since we want user not to deal with exhaustive codes, so the user will have

a graphical user interface for managing business rules easily.
External Interface

The first part of our program is external user interface which is a graphical user
interface directly in touch with user. Our external interface will have log in part
according to authentication. This interface will have 2 different screens according to
authorisation of user. In this part there will be 2 type of users respectively regular
user and rule manager. When logged in as a regular user, the user will be redirected
to execution module. In this module the user will be able to send queries and get
response. When logged in as a rule manager, the user will be redirected to
management module. This user will be generaly the business analyst. Rule manager
will be capable of creating new basic rules, creating new composite rules from

existing ones, deleting existing rules, modifying, inserting and updating rules.

Internal Interface

In internal interface there will be three modules respectively management
module, execution module and interaction module. According to user’s requests the
business rules will be managed in management module which only the business
analyst will have permission to manage rules, or the rules will be executed in

execution module, or interact with fact set when necessary.

The business system in internal interface will have an architecture. This
system has a rule editor that provides a user interface, an inference engine that

applies the rules using its algorithms, a rule repository that saves information related



to the rule, a rule object model handler which controls over the rule object model,
the rule object model that express the rule class data, rule adapter that supply
an interface between rule editor and rule object model handler,rule repository

handler that control rule repository, and so on.

Fact Set
Client Side Server Side
Binding Binding
RDBMS
Business Logic
Request
DSE

Object

ﬁ
Rule Definition
User Interface n

Implementatio
+

? Composite Rule Definition
sponse

Cwn Faces

Web Services

Figure 1. General Architecture of BRules

Functional Requirements

Our program will have three main parts namely user interface, domain specific
engine and fact set.

User Interface:

This is the first part of our program which interacts with user. There will be a
graphical user interface which will have two types of users. According to authorisation

of user, this interface will be in touch with domain specific engine.



Domain Specific Engine:

All rule related operations will be done in this part. When user wants to do
operations using graphical interface, this request will be granted in this part and make
operations such as executing or managing rules according to information coming
from user. This part will also have rulebase and its own facts. While making rule
related operations, program will interact with its own fact set or external fact set such

as web services, some application programming interfaces if necessary.
Fact Set:

This part is the last part of our program. This fact set will include web services,
some application programming interfaces, relational database management
system(RDBMS), and domain specific engine’s own facts. Our engine will interact
with this part if necessary according to granted information from user.

Our program will get information from user, make C++ binding to make
operations in our domain specific engine for business rules management. If the user

is a regular user:

e There will be a log in screen.

e When user log in as a regular user, there will be an execution screen for
the user.

e Regular user will send queries using a graphical interface.

e The query will be got with C++ binding and verified in domain specific
engine.

e By using query, our program will get initial rule.

e By forward chaining, all related rules will be evaluated and according to
corresponding facts.

e |f our domain specific engine’s own facts are sufficient for evaluating,
our program will use C++ binding to use facts inside domain specific
engine.

e |f our own fact set is not sufficient to evaluate rules and extra fact set is
needed, our program will interact with some external fact set among

web services, application programming interfaces or relational



database management systems where the corresponding facts for the

rule in.
If the user is a rule manager:

e Also called as business analyst.

e This user will already have authorisation as much as regular user
have and will be able to send queries to program.

e After logging in as a rule manager, the user will see a management
screen.

¢ Rule manager will use a toolset in management screen.

e This toolset will enable rule manager to create basic rules, create
composite rules from existing rules, delete existing rules, modify
and update rules.

e Domain specific engine will gather information with C++ binding
from the user.

e Then the request will be verified such that the user can create a rule
that does not exist or can delete a rule that exists, and so on.

e To make rule related operations, domain specific engine(DSE) will
interact with only rule repository.

e If creation or update needed, domain specific engine will do
corresponding operations and update rule repository.

e If deletion needed, the corresponding rule will be found in rule
repository and will be deleted by our domain specific engine. So on
rule repository will be updated.

10



3. ARCHITECTURAL DESIGN

3.1. MODULES
BRules engine is composed of Manager, Executor and Connector Module.
3.1.1. MANAGER MODULE
Management module has 3 classes. These classes are:
e Parser
e Analyzer
e Organizer

Parser gets the rule or fact input in xml format and sends it Analyzer module right

after checking validity and changing format of input.

Analyzer gets FormattedRule from Parser and by combining it with data from
rulebase it gives a RuleSet(family tree of rule).

Organizer should take the RuleSet and insert it into right place and in right form

to Rule Repository and if needed it makes changes in other rules.
3.1.2. EXECUTOR MODULE

This module has 4 classes. These classes are:

Query_Listener

e Recognizer

Trigger
e Engine

Query_Listener is responsible for getting queries from the user. It checks the

query and send int to Recognizer.

Recognizer convert the Verified_Query into Logic which has a tree-like data
structure.

11



Trigger is for getting corresponding rules from rulebase, ask for related data from

Connector module, and fire the Engine.

Engine is the heart of the structure. When it is fired it finds the result of query. We
will use Rete algorithm or forward chaining to achieve this process.

3.1.3. CONNECTOR MODULE

This module is responsible for connection and data transfer from external

sources and has 2 classes which should be extended.
e Solver
e Adapter

Solver is to define the needed data from external sources and determine the

server or source to be connected.

Adapter makes a connection between our Engine and external source and gets
required data.

12



3.2.

3.2.1.

DATA FLOW DIAGRAMS

LEVEL 0 DFD

13



B2l

STEULISYHT

/5@\\\

—_— ] 1aadlx
mwg%% C|

safyg mﬁﬁ.&_mm

1asn)

guh.ufllllullﬁlh

3.2.2. LEVEL 1 DFD

14



IEEUEp]

In

1adsy

2FE

[ Hb.nmmm.

Ias])

3.2.3. LEVEL 2 DFD

15



Executor Module

$sanpery -

BB

BN

&

LT
amEtry

Aoy TzZm20037]

y

%,

asEOAT
Ay —

JaTE)Er]
A1anpy

Loy —

16



Description This data is an instance of a class that will be our logical item like
conditions and rule products(under maintenance).

17



Description Data is a needed data from connector to find from to complete
engine stage

18



Manager Module

19



RZAETY

TIZMER I

WA —————— o
\.\.\.\k\u\ ALropzodayg apyg

.
&
G
&
o

T F

15

sy peReied
Ay —

20



21



Description Organized ruleset to be inserted to rulebase and extra data to change
organization(will be seperated in next phase)

22



Connector Module

E:jﬂ'_‘ul‘[lﬂﬂ

/

1saubal B

Adapted request

Adapter

Datg Faw Data

Executor

23



Incoming raw data from external

24



3.3. STATE TRANSITION DIAGRAMS

Idle
o wait for query
Entering Cuery
lenvi
Searching Denying
) Tnkhowt
search databasze to find Tncorrect value

initial rule

Fule Found

FProcessing

find the query result

Fecord Found

Verifying

verify the result

Idle

watting for next query

25



Idle

waiting for session
(update, add, delete etc)

Processing

opening session

Idle

watting for input

Denying
Verifying
Incorrect value
verify input
Frocessing Checking
update rule repository check consistency

Idle

watting for next query

26



4. 00 DIAGRAMS

4.1. USE CASE DIAGRAM

- —
s
\ Ty "\_\—%
)
“ s
S
\ T
b —
N -~
By,
o)
e
Y
~
"
x

Send Query

Save Query

27

Load Query

New Query




Create Fule

o

A, Update
’:’"I - Fulebase
[ W]
w s
"?I i
~ =7
Ty M o
&, s
AN i
~ | P
™~ -
%
> ~ users.
éf_uﬁﬁs? - — ~ — Compose
- Fules
“Expe
g \
3 o
&5 NG
[ 73
ity \%
s 1
A
\ -
Inactivate
Eule
Delete Rule

28



4.2. ACTIVITY DIAGRAMS

Expert Session

W Check Rule Validation )

[nvatid Rule] [V alid Fule]

{C_nmpﬂe-ti:me Erra 1 Farze Bule '
1 Test Rule

Eﬂ%ﬂss]

FRun—time Erru:lr) C Ifisett Fule )
A
&

e Expert enters a rule or fact to the program. When rule is received it is checked
for validation and if it is valid to be a rule program continue running,

terminating (compile time error) otherwise.
e Program will parse the valid rule and test it in next step.
e |[f testis failed then program gives run time error if not continue.

e Then rule will be inserted and rulebase is organized accordingly.

29



User Session

Recesve Ouety

Check Quersy
Validation

Check Engine
Aurailabilitsy

[Itrvalid Chaety)

Crive Error Recogrize

Corresponding
[nitial Fule

Obtaiting
Meeded Data

Ewaluating
Rale

Mo Mext Rule]

@ f Return Result

30



Users (or testers) may write a query (with our specifications) or load a saved
query in our interface and get the result of the query visually as a table like SQL
tables. Below is the description of the path that our program will follow.

e When query entered the program will check the validity of the query and
the engine. If it is a valid query and engine is available then program will

continue to execute query otherwise it gives an error and terminate.

e Valid query will be recognized by the program and a rule or a ruleset will
be obtained from rulebase to initiate the engine.

e After engine was initiated it starts to iterate until there are no rule will be

executed.

e The output will be the result of the query.

31



4.3. CLASS DIAGRAMS

Execution Module

Recognizer

-query: Query_Listener
-conditions: Priority _List
-results:class Trigger

invoke_Trigger():void
get_Listener():void
set_conditions (Query):void

Engine

-fire: class Trigger

+rete()string data

Query_Listener

-Raw_Query:string
-Query :<Hement>

+get_query():string
+convert_query(string A): <Element>
+send_query():void

Trigger

-ule: class Rule
-data: string
-data_spec: string
-condition: string

+connect(string A): string C
+get_rule(condition):void

Rule

32



Management Module

Parser

-conditions:string
-thens:string

+parse(string rule)

Connector Module

Analyzer

-parsed_rule:class Parser
-ruleset:class Rule

+analyze():void

Organizer

-rule:class Rule
-tulebase:string

+connect_rb():void
+organize_rules():void

33




Solver

Trigger

-class Tngger
-server: string

find_server():void

Adapter

-server: string
-data: string

connect_server():void
get_data():void

5. GRAPHICAL USER INTERFACE

DESIGN

34




Username |ﬁ-‘«na|y it
Pazsword |

Chooze Module

[pen |

Manaiement

Figure 6.1- Login to Brules

According to authentication of user, the user can login to one of BRules’s
modules.

There are two modules (screens) can be opened according to the user’s choose.

In general,in these two screens are Management Module which user can
insert,delete,update,and create new rules and Execution Module which the user can
request and be respondend a rule set as a table by the engine .

35



0 BRies e WARAGENENT MODULE

‘ Options

Mew Rule
Delete Rule
Insert Rule

Update Rule

Browse |

The program have four options ,namely , New Rule, Delete Rule, Insert Rule, and
Update Rule.

At the above picture, when clicked on New Rule option , corresponding menu and a
toolset menu will be opened. In the corresponding menu , users can browse rules
and select them to compose them or users also can directly create a rule by using

toolset.

Select |

36

Mew Rule |

Figure 6.2- Create New Rule in Management Module of Brules




“BRules MAMAGEMENT MODULE

Mew Rule

Delete Rule Browse |

Insert Rule

Update Rule

Figure 6.3- Delete Rule in Management Module of Brules

MANAGEMENT MODULE

Mew Rule

Delete Rule Brovse |
Insert Rule

Update Rule

Figure 6.4- Insert Rule in Management Module of Brules

37



The above two pictures illustrate deleting a rule from Rule Base and inserting an
existing rule to the Rule Base.

1) BRules MANAGEMENT MODULE

Mew Rule First Rule | Second Rule

Delete Rule Browse |

Inzert Rule

Update Rule

Figure 6.5- Update Rule in Management Module of Brules

Update Rule option in the Management Module make the user be capable of
updating an existing rule in the Rule Base. After the detailed design these options
and modules will be developed.

38



EXECUTION MODULE

Execute
Load Query

Save Query
Reset

Result Set
I I

|

Figure 6.6- Execution Module of Brules

With Execution Module, users can test and make queries to get a result set as a table.

This module has three main part , namely, Options, Query, and Result Set.The users will
write a query with our specific markup language ,MML to the Query part and get the result
back at the Result Set part of Execution Module.

39



6. PROCESS MODEL

The most important elements that define a process are process model and

team organization choices. They are explained below in detail.
6.1. TEAM STRUCTURE

The most proper team organization category for our group is Democratic
Decentralized (DD).

Our reasons to choose DD are:
e Consensus plays an important role in our decision making process
e We have no permanent team leader
e Every member of the team should understand how things are handled
e Communication is horizontal
¢ We have coordinators for tasks, namely rotating task coordinators, but these

coordinators may change as tasks change

6.2. PROCESS MODEL

After discussing among group members, we decided to use waterfall software
model depending on the characteristics of our project. This software model was the
most suitable one for our project since in this model software evolution proceeds
through an orderly sequence of transitions from one phase to the next in order.
Furthermore, time constraints had affects to choose this model since there is a strict
schedule with deadlines that is given at the beginning of the project.

Waterfall model was best matched model with our case. No overlap or iteration is
allowed during any period of the process. After a phase is completed we will not turn
back for large scale modifications. This classic model has been widely characterized
as both a poor descriptive and prescriptive model of how software development "in-
the-small" or "in-the-large" can or should occur. Alternatively, the most criticized

property of waterfall model is the absence of evolutionary approach and supplying

40



the product only after all the phases are over. But in the implementation phase we

will provide several prototypes in order to get rid of the mentioned disadvantage.

Feasibility Study

Requirement
Analysis and
Specification

Design and
Specification

Coding and
Module Testing

Integration and
System Testing

Delivery and
Maintenance

Figure 1 - Modified Waterfall Model

41



6.3.

GANTT CHART

42



“_ or | -aorani | aoezian NOLLYINIZN 91
5 | awoceel | aooeiani WOIS30 3115 B3N §1
sl | woogien | evactsit KOLLYHYAFHS JdAL010N] b1
| BT | SRS SNLLEIN 10BN £1

I 4 BIOZSIT | 00EEN] LH0d34 40 NOISHIA L5V FIT
5 BT | BIOEATT | NOLLWIHINIA KOIS30 NI I

m ! BO0E/BET | BOOETETL WIS 105 TeHTY It
i i f ANOF/ETITT | ADOTAT/ZT S31NA0W 40 MA1 T
i BOOT/ TET | BNORATT LA0d3H 40 ANTLLAD TIT

Tr | Epare | BIOTATAT 140438 WOIS30 NI T

01 | soopiEniEr | Aozl | NOILYEYG3Nd 3400008 TILINY

L] 1| BOOR/OLAET | ADOZ/GIET ONLLIIW LA05HIIAY 0T

¢ |sbosionizl | suociel | 1MDD3Y 30 NOTSHIA LSV L

1 | smoddicl | Buocian FIN03HIS 3L 04N i't

b | E00pdie | Buogiaiel DHITIA0W 96

[ Lo 00RLET | amRdE WDI530 108 WILIND 56

== 5 QPOEAET | SMOR/ET | 7300 DNILEDAANS 40 NBTS3D | ¥6

3 AOOEARTT | aloni 13008 3102 40 NO1530 '

4 S00L/5211 | B00EETIIT NIYHLSNOD BNINISID (4]

1 ROTBTITT | A00E/AT/TT LHOAZH 40 INTLNG T

7t | anoriatizn | anorstiL 140438 NETS10 WILINY 6

1 | spopiann ] anogdinie DHIL3IM L405H3ALY B

P | EOOZ/IAT | SNOCTLL]  LMOATH 4O NOISHIA LSVT ot

5 |oognn| Avozle 1I00H TYHOLLIKNA gL

b | EIOHOLIT| S00Z/ETD | T300W TYHDIAYHIRHYLYD 5

5| mooesain | eeed i WIL5AS DNINTHY3LID

T SO0F// 201 | AOGE/PE/0T HIHVASIH LIV VW 'L

[ O LHOAFH 40 IHTLLND e

W7 | BOCETAT| BOOZ/CTAOT | LMO4TH STSATYRY INTHIHINDAN L

1| s0og/tgion | suoz/oeior GNILIIM LDSHIELY B
oz | snorisedon | avopision HONV3S3H INHIIN] 5 |

¢ | =oozionon | scoz/oion LH043 WS0d0Hd

_ ; £ | suoeion | seod HIHw3s3h J1d0L  E

L [ O0L/EIDT | do0eEes ouINNY I E

§ | so0¢seis | HOO/1A | JTdOL DNILETES ONY ONIdnOEY
wwi | et | man | s | el | e | s | e | v | owm ..Eﬂ ov/m | g/ | exion | ozfor | ensor | efor | stfs vogzing i g el saquny

LYVHI LINY9



] S002/08/5 | BD0Z/02/4 NOLLYLNIS3IHd 1

i I | o1 | so0efezfs NOLLVZIWILD 11
P — YT | 600Z/bT/S %_xam_e 1531 W3LSAS 10| 01

| 1 S00Z/0E/0 | BOOZ/AE! 9NILIIW 1405HIEAT 6
e . s | soozszie | oozl anLLsaL 2]
] Bl | eboz/ugse | s002/elit NOLLYINIWITHT 4]
. £ BODTIET/Y | BO0T/TT ¥ HIUYIS WHLIHO09TY 8

r — 4 g1 | GO0Z/6T/% | GOOT/TTY G Lmﬁﬂ S

| I BOOZ/ETfE | HDOZ/ILY 9NILITW 1405HIEAY L

l E BO0E/TT/Y | BOOEA Y ANILSAL £9

e 21| eooelad | sooEiEf NOLLYLNIWITdHI 79

- £ abEienst | ooozivils HIHVES HHLTHGDTY L&

[ L AL e NOLLIVH3LNI 40 ZEEE%LHHJ ¥

) . u | BULESSE | bUlerR _ UNILEAW LAUSHANRD &
. 5 s002/02/6 | B00Z/RLIE INILSAL £y
. = 71| GOORMTESE | 600ZMGE NOLLYINAWI1dMI (4
. £ | sooeiafe | sovzisi HOWY3S WHIDMOOW | T

Bt BODZIYTIE | BOOZ/S/E MOILNIA¥T 46 NOTLYLN uﬂ_w.,_._mﬁ__“_ ¥

| 1 ROOZ/LAE | BOOE/Y/E ONILIIW 140SHIEAD £

[ 5 BODE/9/E | GODT/T/E ON1LSAL ET

L — 2l BOOZ/EE | sbozfale HOTLYLNIWITdMI 44

| £ 600T/6T/T | 6O00Z/AT/T HIUYIS WHLTHO9TY L4

Bt BOUCIOE | BUDEAI ANTHIOVNYH _.n_zEEzmﬂ_u.m_ﬂ ¢

; 08 | G00Z/L/S | GO0Z/AL/Z | STINGOWENS 40 NOLLYINIWAIAWI 1

62/ 81/ T1/s v/ i ozir i 9y 0E £T/E a1/g 6/E /e 91/t | woneing pug Hels LR ANy

LYVHD LLINVD




7. CONCLUSION

At the beginning of the project we didn’t know anything about the project. After
making so much research we improved our knowledge about the project and got
idea about the case. From beginning to now we gained too much experience and

improved our skills.

We had a great motivation for initial design report. After checking our early
works, especially in requirement analysis report, we saw our missing parts. We
fulfilled our lack of knowledge by doing so much research. Especially finding
corresponding classes and methods was very hard and diagrams took most of our
time. Keywords was also a big deal. Creating user interface also took much time.
However, we believe that we overcomed all problems and did a good job.

We are much aware of th signifigance of initial design since it is the main step
to detailed design. So we did our best while working on initial design and created this
document. We changed some parts in our plans that we did before while preparing
requirement analysis report. We know that this initial design report reflects our idea
and knowledge about the project better than early works. Although having some

small problems in some details of project, we are now confident about the project.

45



8. REFERENCES

RuleML Homepage, Realize your knowledge, September 2008.
URL:http://www.ruleml.org/
jDrew Homepage, A Java Deductive Reasoning Engine for the Web, January 2004

URL:http://www.jdrew.org/iDREWebsite/]DREW.html.

CLIPS: A Tool for Building Expert Systems, May 2008

URL:http://clipsrules.sourceforge.net/

Jess, the Rule Engine for the Java Platform, November 2008

URL:http://herzberg.ca.sandia.gov/

Business Rules Management System, Enterprise Decision Management: Visual Rules, 2008

URL: http://www.visual-rules.com/business-rules-management-enterprise-decision-
management.html? utm_source=GoogleAd&utm_medium=PPC&utm_content=G_W-
Klicker_BRMS&utm_campaign=G_W-Klicker&gclid=CLqe3IfJyJcCFUwb3godUOcUSA

Business Rules Engine, Microsoft Corporation, 2008

URL: http://msdn.microsoft.com/en-us/library/aa561216.aspx

IBM Education Assistant-WebSphere software, November 2008

URL: http://publib.boulder.ibm.com/infocenter/ieduasst/v1lrlmQ/index.jsp?
topic=/com.ibm.iea.wpi_v6/wpswid/6.0/BusinessRules.html

CodeProject: Externalize your business rules, May 2007

URL.: http://www.codeproject.com/KB/dotnet/BRMS.aspx

Jboss Drools, How do Jboss projects work together? 2008

URL.: http://downloads.jboss.com/drools/docs/4.0.3.15993.GA/html/index.html

46



