
MIDDLE EAST

TECHNICAL UNIVERSITY

COMPUTER ENGINEERING

DEPARTMENT

Test Specification Report

● Myrzabek MURATALIEV – 1408665

● Serdar DALGIÇ – 1448570

● Ha im T MURTAş İ Ş – 1449149

● Bar YÜKSELış – 1449826

2/12

Table Of Contents

1. INTRODUCTION..3

1.1. Goals and Objectives..4

1.2. Scope of Document...4

1.3. Statement of Testing Plan Scope ..4

1.4. Major Constraints ..5

1.4.1. Time..5

1.4.2. Staff...5

1.4.3. Hardware...6

1.4.4. Software..6

2. TESTING STRATEGY AND PROCEDURES..6

2.1. Unit Testing...6

2.2. Data Testing..7

2.3. Integration Testing..8

2.4. Validation Testing...8

2.4.1. User Interface..9

2.4.2. Input Output Requirements...9

2.4.3. Parallel Approach..9

2.5. High – Order Testing...9

2.5.1. Performance Tests...9

2.5.2. Stress Tests..10

2.5.3. Alpha and Beta Tests...10

3. TEST RECORD KEEPING AND LOG...10

3.1. Test Report Forms...11

4. TESTING TOOLS AND ENVIRONMENTS..11

5. TESTING RESOURCES AND STAFFING..11

6. REFERENCES...12

3/12

1. INTRODUCTION

Wekarel is the parallel implementation of popular machine learning software

Weka, and focuses on achieving data and task parallelism while evaluating clusters.

Wekarel, compatible with 3.4 version of Weka, is first attempt when compared with

any conjugate software based on Weka. Details of the project can be found in final

design report[1].

1.1. Goals and Objectives

Our goals for testing the process of the project “Wekarel” are: achieving a bug-

free(as much as we can achieve), high performance and a consistent-to-standards

product. As a result of this, testing is one of the most important parts of our process.

Testing is always a challenging process, however it helps to deliver usable systems.

Starting from the project definition, in this report, we will describe the

procedures to test the components making up the system and the overall system as a

whole. The tests will verify that not only the system operates correctly, but also it

runs fast and is platform independent.

1.2. Scope of Document

This document briefly describes the testing process of the project “Wekarel”.

As in fact the testing process is continuous from the starting date of the project to the

end date, this document also includes some information about how the testing has

been done up till now in the project. However the main aim and scope of this

document is to present the testing plan for the remaining part of the project in which

the implementation is considered to be nearly complete.

1.3. Statement of Testing Plan Scope

Testing process of the project “Wekarel” includes unit testing, integration

testing, validation testing, performance testing, stress testing, alpha and beta testing.

4/12

Unit Testing: This testing strategy involves testing process of modules as if

they are standalone parts.

Data Testing: With that kind of testing, we guarantee the types of data our

application accepts.

Integration Testing: In that phase of testing, we mainly focused on the

integrability of the modules we have developed, their main relationships between

each of these modules and untouched parts of the Weka code.

Validation Testing: This test is applied to see if the requirement and

design goals are achieved.

Performance Testing: Includes testing of methods used to improve the

speed and the quality of the project.

Stress Testing: The test to see the maximum capability of the Wekarel and

its modules by means of data length,

Alpha Testing: Testing of Wekarel by someone other than the group

members, working on the same project.

Beta Testing: The test applied by end-users to reach a more stable version.

1.4. Major Constraints

We had several different constraints in our testing plan. For our project most

important constraint was time since we had to finish the final package on time while

we were testing our software. Another constraint of our testing plan was the number

of staff. We had 4 group members and it made difficult to do all tests in time. Since

our project could not work on a standard computer but a high performance computer

– NAR; we had to bow to the hardware constraints too.

1.4.1. Time

Since Wekarel should have been finished due to mid of June, time was the main

5/12

constraint for us. We had a schedule for the testing phase, therefore the deadlines of

each specific work were known beforehand. If we managed to obey the deadlines

according to schedule, our project was released after proper testing and in time.

1.4.2. Staff

All members of the testing process were just the 4 of the senior design project

group, which are also responsible for developing the main parts of the project. We

tried to overcome this problem with assigning Test-Responsibles to the parts that they

have not dealed with. However the lack of extra stuff in testing became a major

constraint for the testing process.

1.4.3. Hardware

The fundamental work here is being used on multicore machines. Due to

several reasons also related with the used software, the workplace of the testing

process has been limited to restricted to ssh-tunneling to NAR from department's

network.

1.4.4. Software

We are using PJ library for parallelization parts of the project. However, due to

constraints related to PJ, we were not able to run our test schemas on distributed

computing over mutiple computers/cores except NAR. This constraint also affected

us in terms of Hardware constraints.

2. TESTING STRATEGY AND PROCEDURES

2.1. Unit Testing

While developing our project by proceeding module by module, we are making sure

that every module is processing correctly so that when these modules are combined,

we can be sure that there are no problems in the basement. We believe that the

6/12

modules can work in harmony more easily by proceeding in this bottom up manner.

All the modules are tested in a black box manner, by observing the input that is

provided to the module and the output or the effect produced as a result. If a problem

occurs during black box testing and it can be handled, we are also planning to make

use of white box testing.

2.2. Data Testing

The generic file type which Weka uses is ARFF (Attribute-Relation File Format) ,

and has these specifications:

i. The name of the relation should be specified at the first line, following the tag
“@relation”.

ii. The name of each attribute should be indicated at the following lines,
following the tag “@attribute”. The data type of the attribute (real, nominal,
etc.) should also be denoted at that line.

iii.Each data (Instance object) should be written at the lines followed by the tag
“@data”.

@RELATION iris

 @ATTRIBUTE sepallength NUMERIC

 @ATTRIBUTE sepalwidth NUMERIC

 @ATTRIBUTE petallength NUMERIC

 @ATTRIBUTE petalwidth NUMERIC

 @ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}
@DATA

 5.1,3.5,1.4,0.2,Iris-setosa

 4.9,3.0,1.4,0.2,Iris-setosa

 4.7,3.2,1.3,0.2,Iris-setosa

 4.6,3.1,1.5,0.2,Iris-setosa

 5.0,3.6,1.4,0.2,Iris-setosa

 5.4,3.9,1.7,0.4,Iris-setosa

 4.6,3.4,1.4,0.3,Iris-setosa

Figure 1 : Sample ARFF file contents

7/12

Most of the methods we have parallelized use the ARFF file as the dataset, and

we drew up the built-in datasets and the one we have generated so that they all obey

the specifications of an ARFF file. Additionally, some classes in which low – level

parallelization is provided (such as Utils class under weka.core package) do not use

the specific ARFF file, since they do not deal with the Instances objects. In these

cases, only the “data” part of the ARFF file had been taken into consideration, and we

assured that the data would be given in that form.

2.3. Integration Testing

During the development, one of the main integration testing was conducted

when PJ library was integrated to the project. When integration was completed, PJ's

interaction with rest of the project was tested. Every time, a module with PJ related

methods is integrated to the project, simple integration testing is conducted.

Additionally, PJ library has many easy to use testing methods which were

implemented in constructing PJ library itself and some of them are really helping us

also in integration testing part. Besides, all defined classess of Weka code aquires

main function which enables us to test all methods implemented in that class. Many

small but cardinal mistakes were discovered and eliminated during integration

testings. For example, in one of the testings it was detected that K-Means algorithm

was not running properly as one of the parallelized methods of Utils package also

defined Comm variable. Shortly, integration testing is an important test that all new

modules have to pass.

2.4. Validation Testing

Validation Testing is the different set of activities which ensures that the

software that we are developing is traceable to the requirements that we have already

stated in our requirement analysis report. Validation Testing is the responsibility of

the tester, and all the tests done in block box testing will be treated as validation tests.

Since we do not have a specific test group we tried to simulate this situation in low

8/12

level. Parts being developed by one of us also tested by the other ones. We have

stated requirements validation below:

2.4.1. User Interface

We have planned to have a graphical user interface for project that we are

developing. However later since we have seen that is not in our main focus. We left it

to be (may be) developed after our project duration as an open source. So we could

not do any test on that issue.

2.4.2. Input Output Requirements

We have already know about input output specifications of weka. So while

developing wekarell we also tried to obey weka's input output specifications. We

have done our test for ARFF file type.

2.4.3. Parallel Approach

During all parts of our development process, we needed to keep in mind how a

parallel program works. That notion has also helped us choosing and eliminating

development tools for our project. The main argument of parallel development is

speed-up. Our test shows us that although for test files with small amount of data we

have a low speed-up; we could increase speed-up by using larger dataset files. Since

that speed-up is one of our main concerns, it was effective for us to choose which

modules should be parallellized.

2.5. High – Order Testing

Moreover we are planning the following high level tests for the project Wekarel:

2.5.1. Performance Tests

In order to obtain a reliable value of the speed – up and the running time of the

algorithms we have parallelized, we have executed these parallel algorithms

9/12

numerous times and took the mean value of the running time of these executions into

consideration. Also, since Weka is a data mining tool, we should deal with large

amounts of data, therefore conduct the tests usually with data larger than 1M.

Working with large amount of data also provided us a higher speedup in the

parallelization.

2.5.2. Stress Tests

We have tested parallelized algorithms with extreme amounts of data, and there

were cases that the Java Virtual Machine crashed due to the insufficiency of its heap

size. Even if we modified the arguments of the virtual machine to increase its

maximum permitted heap size, we could not avoid the crash. This problem is purely

Java and JVM related; it has nothing to do with our parallelized codes.

2.5.3. Alpha and Beta Tests

All the tests done during the development of Wekarel are counted to be in the

scope of Alpha test. As inherent to Beta tests, main testers are expected to be

customers. But, in our project it is difficult to say that it has a specific customer. All

testers are expected to have enough understanding of Weka tool and parallel

programming concepts. Additionally, uniqueness of requirements is making it

impossible to conduct testing on this project modules for customers. In other words,

in order to conduct a testing, person must have an access to multi processing systems

like NAR and this system must have all important libraries like PJ. As a result of

these obstacles in Beta testings we were unable to conduct it in our testing phase.

Alpha tests are the only tests conducted throughout development of the project.

3. TEST RECORD KEEPING AND LOG
As our testing process is taking along with the development process and the

testing staff is restricted to the team members, these facts have also affected the

record keeping and logging processes.

10/12

3.1. Test Report Forms

We didn't design any kind of special forms for testing and getting feedback for

testers (alpha and beta). We use scicomp google group for general communication

between the team members, and this group also reveals as a bug tracking tool and

feedback receiver for the testing members. The reason why the team has decided to

do so is the general behavior of the inherited project Weka, which has no bug-

tracking system but a users mailing – list. Responsible group members have already

been tracking the users mailing list and after the release of Wekarel, as the project will

be related to Weka project and users would be conducting via Weka users mailing –

list, possible feedbacks and testing records are expected to be reached from this list.

Another reason why no types of testing forms are created is the limitation of

the testing process only to the development members. All developers were already

reporting the results of their white box tests and no need for individual testing forms

has appeared during the testing process.

4. TESTING TOOLS AND ENVIRONMENTS
● Eclipse jee-ganymede-SR2-linux-gtk-x86_64 : For Java Code

Developing and debugging.

● Weka 3-4-14 Tests : Using Black box and beta tests that are already

written for Weka Tool.

● PJ Tests : Using Black box and beta tests that are already written for

Parallel Java(PJ) Library.

5. TESTING RESOURCES AND STAFFING
The only resource required for testing is a PC that has the capability of SSH

tunneling and X forwarding to HPC Machine NAR, in which eclipse can be run and

allow the possible conditions for the environment to test.

As the development process weren't seperated in sharp lines between the team

11/12

members, the testing process has the properties too. The point that has been noted is

assigning the testing processes of the developed modules to the members who are not

involved in the coding of these development parts. So that more individuals have the

chance to take an eye on the code and this situation allows the testing process to be

staffed in a strong way.

6. REFERENCES
[1] http://senior.ceng.metu.edu.tr/2009/scicomp/docs/SciComp_FinalDesign_v0.2.pdf

12/12

http://senior.ceng.metu.edu.tr/2009/scicomp/docs/SciComp_FinalDesign_v0.2.pdf

	1. INTRODUCTION
	1.1. Goals and Objectives
	1.2. Scope of Document
	1.3. Statement of Testing Plan Scope
	1.4. Major Constraints
	1.4.1. Time
	1.4.2. Staff
	1.4.3. Hardware
	1.4.4. Software

	2. TESTING STRATEGY AND PROCEDURES
	2.1. Unit Testing
	2.2. Data Testing
	2.3. Integration Testing
	2.4. Validation Testing
	2.4.1. User Interface
	2.4.2. Input Output Requirements
	2.4.3. Parallel Approach

	2.5. High – Order Testing
	2.5.1. Performance Tests
	2.5.2. Stress Tests
	2.5.3. Alpha and Beta Tests

	3. TEST RECORD KEEPING AND LOG
	3.1. Test Report Forms

	4. TESTING TOOLS AND ENVIRONMENTS
	5. TESTING RESOURCES AND STAFFING
	6. REFERENCES

