
Middle East Technical University
Department of Computer Engineering

Computer Engineering Design I
fall 2010

 Detailed Design Report

for

 The Ballmer Peak

1

Content
1 Introduction..4
1.1 Problem Definition...4
1.2 Purpose...4
1.3 Scope..5
1.4 Overview...5
1.5 Definitions , Acronyms and Abbreviations...6
1.6 References..7

2 System Overview..8

3 Design Considerations..10
3.1 Design Assumptions, Dependencies and Constraints ..10
3.2 Design Goals and Guidelines ...13

4 Data Design ..15
4.1 Inherited OpenCV Helper Data Structures.. 15
4.2 Data Description ...19
4.3 Data Dictionary ...29

5 System Architecture.. 35
5.1 Architectural Design ..35

5.2 Description of Components ...38
5.2.1 Object Recognizer Component...38

5.2.2 World Model Component..47

5.2.3 Graphic Component..53

5.3 Design Rationale..57

6 User Interface Design... .58
6.1 Overview of User Interface ...58
6.2 Screen Images ..61
6.3 Screen Objects and Actions ..70

7.Detailed Design...77
7.1.Object Recognizer Component..77
7.2.World Model Component...90
7.3.Graphic Component...96

8 Libraries and Tools...101

2

9 Time Planning (Gannt Chart)...104

10 Conclusion..105

3

1 Introduction

1.1 Problem Definition

Libraries are the most important places for the people who are reading books and doing
researches; that is to say, people who want to learn something new usually go to the libraries.

However, this process is not so easy that people waste a lot of time while searching what they
want. People have to spare considerably much time while searching for a book, or books that
s/he can like in a genre that s/he wants.

Moreover, the same situation happens for the people who knows exactly what they want,
namely search for a specific scientific magazine or specific book or even the books of a
specific author.

Since the current databases of libraries lead to the user only the correct floor of the library
and gives the correct bar-code of the shelf that the user is looking for, this waste of time is
inevitable. Also, A user who wants to read a book but does not have a decision on which book
to read has to take each book from the shelf, open each book and try to find some information
that may help her/him to decide.

Making the user's travel in the library more efficiently by recognizing objects namely the
shelfs, the books and even the librarian, after that showing information about the library
environment on user's screen using augmented reality concept is a perfect solution to these
kind of problems. Bookwiser is the application that leads the user to the correct place in an
reasonably rational time.

1.2 Purpose

This document includes initial design of Bookwiser Software Project.

The project uses augmented reality concept to make user get easily informed about the
organization of the library, namely the books, content of the books and also interact with the
librarian.

The project is essentially composed of three parts.

First part is the object recognition part which includes the shelf recognition, book recognition
and librarian recognition by using object detection techniques.

The second part is the interaction with the library database from which all the information
about a book is extracted.

The last part of the project is the GUI part which is going to show the modified video stream

4

augmented with information related to recognized objects on the camera, provide options for
user to choose the flow of the application and make user's experience in the library more
effective.

The intended audience is for this document is people who deal with further development of
Bookwiser.

1.3 Scope

The project is named "Bookwiser", since the application seems to know everything about
every book in the library, and helps user about books

Our project will be a augmented reality application for a library environment which works on
mobile devices. When a user starts the application, Bookwiser first enables the video in the
library. While the user is moving with the camera in the environment, Bookwiser will capture
data from environment.

The user may choose to search a specific book or decide just walk and get informed about
different kind of books in the library. In the first option the user gives the name of the book that
he/she wants to reserve and Bookwiser will guide the user in order to find the correct shelf
and the correct book. The other option is that the user has no idea about what he/she exactly
wants , therefore Bookwiser will guide the user that while user is walking around the library, it
will give information about the shelves and books that is in the predefined range of the
camera.

When Bookwiser comes up with a book shelf belonging to a specific kind of books, it will
detect the shelf by using object recognition in a predefined range. After the shelf detection &
classification, the project will inform the user about the content of the books in the shelf.

When Bookwiser recognizes a book, it will show the rating of the book to the user using
augmented reality and it will give detailed information to the user if the user wants. It will give
user choices like rating the book or reserving the book.

Moreover, there will be librarians in the library for further questions and they will be detected
using the predefined specifications. We think that people going to the library are mostly
wasting their time for searching the correct place of a book or deciding which book to read. So
that, Bookwiser very helpful to guide people in libraries.

1.4 Overview

The contents of this document consist of 9 basic parts:

• Introduction where the problem definition, scope, overview, definitions/abbreviations
and references are explained,

5

• System Overview where the general description of the system is provided,

• Design Considerations where the special design issues, dependencies, constraints,
goals and guidelines are noted,

• Data Design,

• System Architecture where the description of the program architecture is presented
by describing each of components,

• User Interface where the user perspective of the project is explained,

• Libraries and Tools,

• Time Planning where the Gannt Charts are presented,

• Conclusion where the all parts concluded

1.5 Definitions and Abbreviations
Already-recognized Object: An object that is recognized when the previous frame is
processed.

Augmented Reality: Term for a live direct or indirect view of a physical real-world
environment whose elements are augmented by virtual computer-generated sensory input
such as sound or graphics. For Bookwiser application, augmented reality represent the user
graphical output that shows the recognized object properties.

Bookwiser: Name of the project.

Camera: A device that provides a video stream

Candidate Object: An assumption of boundary areas for possible images on an image

COI: Color channel of interest in an image .

CPU: Hardware component also named as processor.

Filter: A sequence of image processing operations to enhance an image.

Frame: An image captured from the camera.

GPU: Graphics Processing Unit

GUI: Graphical User Interface

6

Image Processing: Image processing is any form of signal processing for which the input is
an image, such as a photograph or video frame. For Bookwiser application, image processing
is the process of generating information from video stream captured by user camera.

Library: Real building where books or other kind of documents are stored for public use.

Object recognition: Object recognition is the process of retrieving identifying information
about objects. Object recognition process is directly connected with image processing.

Object recognition range: The closeness of the camera to the real object which provides
enough detail to recognize the object.

ROI:Region of interest in an image

Video Stream: Video stream is the common name of Bookwiser's input and output format. It
consists of stream of real time images.

1.6 References

1. IEEE Std 830-1998: IEEE Recommended Practice for Initial/Detailed Design Requirements

2. Class Diagrams, IBM,
 http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/

3. Sequence Diagram, IBM
 http://www.ibm.com/developerworks/rational/library/3101.html

4. Component Diagram, IBM
 http://www.ibm.com/developerworks/rational/library/dec04/bell/

5. Data Flow Diagram, Wikipedia,
 http://en.wikipedia.org/wiki/Data_flow_diagram

7

2 System Overview

Bookwiser is a real-time image processing and augmented reality application for libraries. Its
main purpose can be described as assisting the library user in his/her library trip via a display
device. To be more precise, Bookwiser provides useful information about library objects which
are books, shelves and librarians.

To perform its task, Bookwiser processes the video captured by the camera frame by frame,
generates the object properties, retrieve context information for these objects from external
library database, manipulates the video according to these contextual and visual properties of
objects and displays the final modified video frames via a display device.

Since the information shown to the user is purely based on instant camera view, performance
is a crucial requirement for Bookwiser. What indicates the performance of the system is the
execution times of image processing and manipulation actions. It is better to say that,
Bookwiser can be classified as an augmented reality application more than a database driven
system.

The core of its design consists of image manipulation and object recognition. On top of this
core, there is the user interface which complements Bookwiser's functionality from the
aspects of usability and attractiveness.

Except from the internal object database, which is planned not to be an actual database
system, library database operations to get context information are almost completely out of
the scope of the design for two reasons.

• First reason can be described as the aim of the system, which is recognizing objects in
real time. Once the objects are recognized and identified by Bookwiser, desired
information can be retrieved by simply querying it.

• Second reason is the obvious system's independence of the database design. It is
nonsense to design an internal context database while there is already a well-
established library database.

From the aspect of software design, Bookwiser is a usable, reliable and crucially fast object
recognition and augmented reality visualization system by which the user can be able to
freely walk around the library without spending time for examining the books by
himself/herself.

Block diagram of the system is given below:

8

Diagram 2.1 – Block Diagram

9

3 Design Considerations
In this section, special design issues that should be considered during design and
development are stated.

3.1 Design Assumptions, Dependencies and
Considerations
3.1.1 Hardware related Assumptions, Dependencies and Considerations

● Bookwiser is designed to work on a portable device , including a camera, a display
screen, RAM , hard-disk and processor units , and a graphics card.

● The system is assumed to a work on a device with a minimum of 2.0 gHz Intel
processor and a minimum of 500 core GPU, no shared memory.

● The system is assumed to work on a device with a minimum of 20GB hard-disk and
1024Mb RAM.

● Bookwiser is assumed to operate on a device that is able to use wireless network
communication. Therefore the device should have a wireless communication device
and should be able to connect to a local network or the Internet.

● It is assumed that the system needs a minimum of 5.0 mega-pixels camera to feed
the system with images with necessary quality and detail to do object recognition.

● Bookwiser will not use external GPS or any other satellite/GSM based navigation
systems or devices to locate or recognize books / shelves.

● User will interact with the system via a keyboard.

3.1.2 Software related Assumptions, Dependencies and Considerations

● The system that Bookwiser will operate on should have a minimum version of Ubuntu
9.0 or Windows XP installed on it. The system should be suitable for QT and OpenCV
platforms.

● Bookwiser needs to communicate with the library database , therefore it is assumed
that the library database is open to Bookwiser and the library database is able to share
information via Internet or a local network. If there's a local network, also the library
should provide access to the network via wireless.

● There may be a need for creation of an extra table or a change in the existing table in
the library database for user registration and related user information if the library

10

database doesn't suit application needs. Otherwise, Bookwiser should not make any
changes on the structure of the library database in any cases.

● Bookwiser uses the library's own database to show data about recognized books. It
is assumed that book information exists in the library database is correct and
Bookwiser doesn't have to check the correctness of the data. The application itself is
not responsible for book information organization in the database.

3.1.3 Performance related Assumptions, Dependencies and
Considerations

● Bookwiser needs to assist the user during its travel in the library therefore the system
should respond to the user immediately. The object recognition work should be done in
near real-time and the overhead of this operation should be maximum 08-0.9 seconds
on the worst case.

● To get the information about recognized object from the library the system needs to
connect the library, because a wireless connection may take time , after an object is
recognized, the overhead of gathering information about the object can take longer. But
in the worst case it should take maximum 5 seconds on the worst case to gather the
information from library database and to show the user via the graphical user interface.

● Bookwiser should have the capacity to serve all the visitors in a library and because
each device that is provided for different users own a different instance of the system
scalability is not a problem, on the other hand, because the library database may not
be able to serve all Bookwiser users at the same time, connections to the database
should be made under the consideration of limits of the server of the library database.

● Bookwiser may not be able to detect objects from long distances, but the system
should be designed to at least recognize objects from the distances listed below:

 - Books : 2-2,5 meters.
 - Shelves : 4-6 meters.
 - Librarians : 3-5 meters.

3.1.4 Interface related Assumptions, Dependencies and Considerations

● The interface to interact with the camera is provided by OpenCV library that used by
the system. To gather information from the camera , Bookwiser will use OpenCV 's
camera methods and classes.

● Bookwiser uses a library's own database to gather user , book and shelf data. The
interface to communicate with the library database is dependent on library database's
architecture. Therefore the system should be designed flexible enough to able to
interact with different library databases.

11

3.1.5 Safety & Security related Assumptions, Dependencies and
Considerations

● The devices which Bookwiser is run on should be tested for health issues, the screen
 and the device components should obey the standards.

● The library database manipulations done by Bookwiser are limited by the library
constraints, book information addition/deletion/manipulation or access to other users'
information is not made by Bookwiser to protect library database from possible
misuse.

● Users' passwords and detailed information should not be shared with other users to
protect the system from illegal access.

● Before unrecoverable operations users should be asked if they are sure about the
operations.

● The library, according to it's own rules, may block a user's access to the system or
just book reservation functionality due to misuse of the system. The decision is library's
and only responsibility of Bookwiser is to inform the user via graphical interface.

3.1.6 Standards

● It is assumed that the library have adequate light sources around the objects

● It is assumed that shelves in the library are equally spaced with a minimum of 1
meters and they are placed parallel to each other.

● It is assumed that shelves in the library are standard and they have the same
height/width and shape. Shelves should have a color that can be differentiated
from the library environment and special marks on the shelves should be apparent
and proper enough to classify them.

● It is assumed that books are placed on the shelves with their front side facing the
camera and the user. The books are assumed to be placed with equal spaces
between them, a minimum of 10 centimeters. Books should have a color that can
be differentiated from the library environment and special marks on the books
should be apparent and proper enough to classify them.

● Librarians should wear a standard t-shirt with the same color and a specific
apparent shape on top-left of their t-shirts` front and back sides, making them
recognizable.

● The marks, values or features to recognize and classify books, shelves and
librarians should be predefined at the object recognition database. Bookwiser will
only recognize and classify objects with predefined marks , shapes and colors.

12

3.2 Design Goals and Guidelines
3.2.1 Usability & Real-time processing:

Bookwiser is a system that assists users actively during their tour in the library. Because the
user needs to be responded immediately during their tour, the system should react the
changes on the screen or inputs of user via graphical unit interface without losing time.
Otherwise the system can not be usable for library visitors.

This requirement brings the need that all the algorithms and structures in the system should
be implemented to work very efficiently. The object recognition work should be done in near
real-time and the overhead of this operation should be maximum 0.8-0.9 seconds on the
worst case.

3.2.2 Minimalism:

Bookwiser is a project with a main goal of helping its users; therefore, the user interface of the
system should be implemented in a way that it should not bother the user during his/her
travel in the library. The graphical elements on the screen that shown as a part of the
augmented reality concept should not be blocking the user's view , or disturbing the user.
These graphical elements should be designed to be minimalistic and should look natural.
User should always be able see the frames coming from the camera in a big part of the
screen so that user is always able to move or see the objects around him/her.

3.2.3 The KISS Principle :

All the components , data structures and methods in the design should be implemented in the
simplest way to serve the user the better. The main aim of Bookwiser is to create shortcuts for
everyday procedures of a library user, so features like getting book information, registering a
book etc. should do the maximum work with the least effort from the user. Use of different
features of the system should be very simple for the users to use.

The project should not make it more difficult to travel in the library rather that making it much
more simple for users.

3.2.4 Don't Repeat Yourself Principle :

To avoid repeats of parts of the system, the system is designed to use some core parts in
different sub-components of each components, using an object oriented approach.
Developers should stick to this property of the design and avoid duplicate system parts or
data structures to increase the performance of Bookwiser.

3.2.5 Principle of Good Enough :

Bookwiser project is designed with a strong consideration of principle of good enough.

13

Components and functionalities of all system parts are designed to be simple and they can be
seen as cores. These cores are suitable for further developments, or additions of extra
functionalities. Developers should obey this principle to make the system suitable for future
extentions.

14

4 Data Design

In this section, data elements are described and defined briefly.

4.1 Inherited OpenCV helper data structures

In this section all the related data structures to be used by the developer while using OpenCV
library are described.

Because other data structures inherit these helper structures to use OpenCV library efficiently,
understanding of OpenCV helper data structures are important to understand Bookwiser's
own data structures, components and methods better.

IplImage

Data structure to represent images.

int nChannels; Number of color channels (1,2,3,4)
int depth; Pixel depth in bits:

IPL_DEPTH_8U, IPL_DEPTH_8S,
IPL_DEPTH_16U,IPL_DEPTH_16S,
IPL_DEPTH_32S,IPL_DEPTH_32F, IPL_DEPTH_64F

int width; image width in pixels
int height; image height in pixels
char* imageData; pointer to aligned image data

Note that color images are stored in BGR order
int origin; 0 - top-left origin,

1 - bottom-left origin (Windows bitmaps style)
int widthStep; size of aligned image row in bytes
int imageSize; image data size in bytes = height*widthStep
struct _IplROI *roi; image ROI. when not NULL specifies image region to be

processed.
Char *imageDataOrigin; pointer to the unaligned origin of image data (needed for

correct image deallocation)

15

CvMat

2D Array

int type; elements type (uchar,short,int,float,double) and flags
int step; full row length in bytes
int rows, cols; dimensions
int height, width; alternative dimensions reference
union data; uchar* ptr; data pointer for an unsigned char matrix

short* s; data pointer for a short matrix
int* i; data pointer for an integer matrix
float* fl; data pointer for a float matrix
double* db; data pointer for a double matrix

CvScalar

Scalars

double val[4]; 4D vector

CvPoint

2D point with integer coordinates

int x; x-coordinate, usually zero-based
int y; y-coordinate, usually zero-based

16

CvPoint2D3F

2D point with floating point coordinates

float x; x-coordinate, usually zero-based
float y; y-coordinate, usually zero-based

CvSize

pixel-accurate size of a rectangle

int width; width of the rectangle
int height; height of the rectangle

CvSize2D32f

sub-pixel accurate size of a rectangle

float width; width of the rectangle
float height; height of the rectangle

17

CvRect

offset and size of a rectangle

int x; x-coordinate of the left-most rectangle corner[s]
int y; y-coordinate of the top-most or bottom-most rectangle corner[s]
int width; width of the rectangle
int height; height of the rectangle

CvSeq

Growable sequence of elements

int flags; miscellaneous flags
int header_size; size of sequence header
struct CvSeq* h_prev; previous sequence
struct CvSeq* h_next; next sequence
struct CvSeq* v_prev; 2nd previous sequence
struct CvSeq* v_next; 2nd next sequence
int total; total number of elements
int elem_size; size of sequence element in bytes
char* block_max; maximal bound of the last block
char* ptr; current write pointer
int delta_elems; how many elements allocated when the sequence grows

(sequence granularity)
CvMemStorage* storage; where the seq is stored
CvSeqBlock* free_blocks; free blocks list
CvSeqBlock* first; pointer to the first sequence block

18

CvSURFPoint

Detected SURF keypoint

CvPoint2D32f pt; position of the feature within the image
int laplacian; -1, 0 or +1. sign of the laplacian at the point.
int size; size of the feature
float dir; orientation of the feature: 0..360 degrees
float hessian; value of the hessian

More detailed information about the mentioned data structures and related
functions is available in OpenCV documentation at Official OpenCV page :

http://opencv.willowgarage.com/wiki/

4.2 Data Description

Our system Bookwiser, is transformed into files that contains classes. There are mainly three
data units in our system in a data description manner. These units are Input Controller,
Graphical User Interface Unit and Object Recognizer Unit. These units generate interfaces as
data structures to interact with other components. In addition to these, there are two libraries
and two external devices, a Camera and a keyboard, that Bookwiser is in a relationship with.

4.2.1 Library Database:

The Library Database and it is not directly related to our system, because, this is the
database where all book, shelf and user related, “object recognition independent” information
are kept in and this database is not a part of the design of Bookwiser. Organizing this
database is not a responsibility of the application, instead this external database is only used
to gather information except the registration and rating/reservation based user interactions.

• The data entities that assumed to be provided by the library database which will not be
modified by Bookwiser is listed below:

19

Books : table for book information
This table corresponds to the books in the library, it holds the information about the books in the library.

• BookID: integer
• BookName: text
• Author: text
• Rating: float
• BriefText: text

Diagram 4.1 – ER Diagram

20

Shelfs : table for shelf information
This table is needed to represent the shelfs in the library, it holds the information about
the shelfs in the library.

• ShelfID: integer
• Genre: text

Diagram 4.2 – ER Diagram

Librarian: table for librarian information
This table is needed to represent the librarians working in the library.

• LibrarianID: integer
• Name: text
• SurName: text

Diagram 4.3 – ER Diagram

21

• The only exception to this rule is where user registration, login and unregistration
processes. For these operations mentioned above, the tables and fields which a library
database should hold are listed and if they does not exist in a library database, they
should be added:

Enrollees: table for user information to be used in registration procedures
This table is needed in order to keep some basic information for library enrollees registered to the Bookwiser
system. There is only very necessary information about a library enrollee.

• UserId: integer
• Name: text
• SurName: text
• Job: text
• Gender: text
• Telephone: integer
• Address:text
• MailAdress: text

Diagram 4.4 – ER Diagram

22

Users: table for user information to be used in login procedures
This table is definitely needed in order to keep the information of the Bookwiser
Software System users in a safe manner.

• ID: integer
• Password: text
• PrefferedLanguage:
text

Diagram 4.5 – ER Diagram

• The relationships between the mentioned entities are represented as 3 different tables
on the database. FavoriteBooksOfUser and RecommendedBooksOfUser are able to
be changed by Bookwiser whereas BookInShelf relation can not be modified by
Bookwiser :

FavoriteBooksOfUser : A relationship between Books and Users
We have Books and Users. When a user rates a book highly it is added to the favorite
book of that user.

• BookID from Books
• ID from Users

Diagram 4.6 – ER Diagram

23

RecommendedBooksforUser : A relationship between Books and Users
The books that a user whether like or not can be guessed by some search on his favorite books, etc. Then, the
respective books and the user can be put in a relationship.

• BookID from Books
• ID from Users

Diagram 4.7 – ER Diagram

BookInShelf : A relationship between Books and Shelfs
The fact that a book stands on a specific shell is a relationship,and with the information of the shelf that the
book lays on, he genre of book also can be determined.

• BookID from Books
• ShelfID from Shelfs

Diagram 4.8 – ER Diagram

24

4.2.2 Internal Object Database:

The second library is the main library that Bookwiser uses, which is Internal Object Database.

The database is not in actual database form, instead a text file that contains book features
consequently. On the start of the application the database is loaded in the memory and used
from the memory.

The database keeps features for object recognition purposes.

This database contains:

• id of the book to match the book in the library database after recognition
• width and height of the sample image as integers for SURF matching procedure
• number of SURF features extracted from the sample image of the book
• KeyPoints as CvSurfPoint structures of OpenCV ,
• For each feature 128 SURF descriptors as floats,
• id fields as integers
• type fields as integers
• mean, median and standart deviation values on color histograms

The organization of the text file can be described as:

Internal Object Database

For each book:
<type> <BookId> <# of features> <Width> <Height> <Mean> <Median> <StDev>

For each extracted SURF feature: (Values from CvSurfPoint structure)
<x> <y> <laplacian> <size> <dir> <hessian> <descriptor 1 > <descriptor 2> ….............

….

….

25

4.2.3 Object Recognizer Component and World Interface:

Object Recognizer Component contains 4 major data structures:

Feature Contains information of detected object features
Position Contains information of detected object position
Object General structure for all information about detected information

including features and position of a book.
ObjectList List for detected objects in a frame

 Diagram 4.9 – Class Diagram

26

4.2.4 WorldModel Component and WorldRepresentation Interface:

World Model Component contains 6 major data structures:

Shelf Extends Object structure from the World Interface, also containing
information gathered from Library Database about shelves

Book Extends Object structure from the World Interface, also containing
information gathered from Library Database about books

Librarian Extends Object structure from the World Interface, also containing
information gathered from Library Database about librarians

ObjectTable Keeps List of Shelf, Book and Librarian data structures.
State Keeps information of application state at a moment
StateChart Stack of application states.

Diagram 4.10 – Class Diagram

27

4.2.5 Graphic Component and States Interface:

The graphic component doesn't contain any major data structure; on the other hand it
generates States Interface by creating a state due to user interaction and serves this to
WorldModel Component.

• To understand the data flow between components and the major sub
components the following data flow diagram can be followed.

 Diagram 4.11 – Data Flow Diagram

28

4.3 Data Dictionary

Since the approach in the Bookwiser is object-oriented, related data dictionary is composed
of data system entities, which are data classes and their related methods. The whole entities
and instances are separated according to component which belongs to, in an alphabetic
order.

Book

Holds all the information about the recognized books.

Data:
Inherits all data defined in the Object Class.
int id Holds the id number of the shelf
String name Holds the name of the book
int rating Holds the rating of the book
String author Holds the name of the author
Methods:
Inherits all methods defined in the Object Class.
int getId(void) Returns the id of the book
void setId(int) Sets the id of the book
void setName(String) Sets the name of the book
String getName() Returns the name of the book
String getAuthor Returns the name of the author
void setRating(int) Sets the rating of the book
int getRating(int) Returns the rating of the book

29

Feature

Holds the information for a detected object feature

Data:
CvSurfPoint kp; Extracted key point for detected feature
Float* dc; Surf descriptors array, with length 64 or 128

Librarian

Holds all the information about the recognized librarians.

Data:
Inherits all data defined in the Object Class.
int id Holds the id number of the shelf
String Name Name of the librarian
Methods:
Inherits all methods defined in the Object Class.
int getId(void) Returns the id of the librarian
void setId(int) Sets the id of the librarian
String getName() Returns the name of the librarian
void setName(String) Sets the name of the librarian

30

Object

Holds all the information related to object recognition process for a recognized object.

Data:
Position location Position information of an object.
Feature[] features List of detected Feature instances for an object
int type Type id of an object
int id Id of an object to match the object in library database
Methods:
Position getLocation() Returns the Position of an object.
Void setLocation(Position) Sets the Position of an object to the input Position
Feature[] getFeatures() Returns the list of Feature's of an object.
addFeature(Feature[]) Add's a new Feature to Object's Feature list
delFeature(int) Delete's the Feature from the list with the given index.

ObjectList

Keeps the list of recognized objects

Data:
Object[] objects List of detected objects.
Methods:
void removeObj(int id) Removes the Object from the objects list with given index
void addObj(Object) Adds the input Object to the list
int size() Returns the number of Object's in the list.

31

ObjectTable

Keeps the list of recognized and categorized objects

Data:
Object[] objects List of objects.
Methods:
void updateObject(Object) Updates the Object information
void insertObject(Object) Adds the input Object to the list
Void delObject(Object) Removes the Object from the list

Position

Holds the position information for an object

Data:
Float [] [] posinf Position information array consisting of floating point numbers. For

each corner an x and y float is included.
Methods:
Void SetPos(Float [] []) Updates the posinf data with the float array input.

Shelf

Holds all the information about the recognized shelves.

Data:
Inherits all data defined in the Object Class.
int id Holds the id number of the shelf
Methods:
Inherits all methods defined in the Object Class.
int getId(void) Returns the id of the shelf
void setId(int) Sets the id of the shelf

32

State

Keeps the information of state of the application in a moment

Data:
int type Integer that represents the type of the state
Methods:
int getType() Returns the type of the state
void setType(int) Sets the type of the state

StateChart

Stack of application states

Data:
State[] states Array of State elements.
Methods:
setState(State) Adds the state to end of the list
getState(State) Gets and the state at the end of the list
removeState(State) Removes the state at the end of the list

States <<interface>>

Interface provided by Graphic component for WorldModel Component

Data:
Bool mode Is search mode enabled?
Int[] operation List of operations to be done in the current state

33

World <<interface>>

Interface provided by Object Recognizer component for World Model component

Data:
IplImage frame Current frame image captured from the camera.
ObjectList objects List of recognized objects

WorldRepresentation <<interface>>

Interface provided by World Model component for Graphic component

Data:
StateChart states Stack of current program states.
ObjectTable object List of recognized and categorized objects

34

5 System Architecture

In this section a general description of the system architecture is given.

5.1 Architectural Design
From the most basic view, Bookwiser has a sequential way of operating. What it does is
simply processing an image, retrieving some info from image, enriching this graphical
information with some extra contextual information, combining them together in image and
showing the reconstructed image to the user.

This operating style is reflected onto the design as three components of the system:
• Object recognizer to process images and create abstract object models about the

library world.
• World model unit to compose a world view inside Bookwiser .
• And finally graphic unit to convert this abstract view to a graphical view for user.

Functionally, world model units needs object recognition unit to operate, graphic unit
needs world model unit to operate.

On the other hand, this style of abstraction -in its pure form- could not answer the
performance goals of the system. To achieve timing goals which described in the section 3, it
should be ensured that the system performs in predefined time limits. Performing this in a
sequential flow of events is unrealistic.

Thus, three main components of Bookwiser (object recognizer unit, world model unit, graphic
unit) should be designed as different threads which runs parallel and collaborates with each
other. Three components performs their tasks to achieve timing goals of the system with
synchronization.

Graphic unit has a higher priority than other two components since the main function of the
Bookwiser is to answer the needs of user quickly. Yet it is logical to allow other two units to
occupy the process time, because those two components have more processing weight.

While graphic units uses world model unit as a source of information, object recognizer unit
and world model unit proceed collaboratively to create a representative picture of world. They
identify the current world state one object at a time. In this way, Bookwiser can perform in its
time limits. According to world state and this time limits, world model unit arranges the tasks
of object recognizer unit. It can restrict the object recognizer unit with certain tasks or it can
assist the object recognizer with world state information.

These three components are shown in the below component diagram:

35

 Diagram 5.1 – Component Diagram

A brief explanation of the components are given:

Object Recognizer Component:

This unit operates directly on the digital image sequences captured by the camera. It uses its
own database to define objects. After every identification of a particular object-either a re-
identification with tracking or discovery of a new object- it sends this information to world
model unit and accordingly, it is assigned another identification task by the world model unit.
Its functionality can be particularly or completely cut off according to timing constraints or user
events.

World Model Component:

World model unit performs management tasks. All information gathered from the outside
sources-camera, library database and the user- comes to the unit, is classified and used to
produce an abstraction of world. It controls the working mechanism of object recognizer and
serves as a knowledge base to the graphic unit. The world representation sub-component can
be seen as a data table which arranged according to the object classifications and user inputs
which defines the state of the Bookwiser. The manager sub-component is the interface of the
world representation.

Graphic Component:

Graphic unit is responsible form every action which considers the user. These actions are
two-way. Giving information to the user and getting information from him/her. Giving

36

information means displaying the camera view with augmented contextual information. Video
composer is responsible for this task. Getting information is handled by input controller. User
inputs are classified and sent to related components. Note that user inputs are not processed
by the graphic unit. The graphic units functionality is restricted with maintaining the
connection between user and the Bookwiser.

37

5.2 Description of Components

5.2.1 Object Recognizer Component

In this section , an explanation for the Object Recognizer Component and the related class
and sequence diagrams are provided.

5.2.1.1 Processing Narrative for Object Recognizer Component

Object Recognizer Component can be described as the eye-brain channel of the Bookwiser
system. All the object recognition, tracking and classification process is completed inside this
component.

The component receives frames from the camera, filters the frame for a better quality image
and operates on this image.

The component first finds assumptions for borders of possible objects on the scene. Using
this assumptions , searches related areas of the image for SURF features. When an object is
recognized, adds the object to a global recognized object list so that other components can
use this available information to progress on their own duties.

Another responsibility of this component is to track already-recognized objects in the new
frame. When an object is recognized in a frame, on the next frame the object's position can
be changed or the object can be completely out of the scene. The component therefore
decides to update the position of the object instance on the global object list or remove the
object from the recognized object list.

This component has the heaviest load of the system and therefore is the most detailed
component of the Bookwiser.

5.2.1.2 Interface Description for Object Recognizer Component

Generally, it can be said that the component has relations with two main interfaces.

• As an input interface, the component uses OpenCV Library's CvCam class to interact
with the camera and to get sequences of frames. The detail of this interface will be
given in the Detailed Design section.

• Output interface for the component is named as World. Since the component gives a
description of the scene which the user is currently looking at to the system, using this
interface, the component shares a global recognized object list and the current frame
sent from the camera with the other components. Current frame and global object list ,
together implements the World interface for the use of other parts of the system.

38

5.2.1.3 Processing Detail for Object Recognizer Component

Object Recognizer Component describes the user's view to other components of the system.

• When a new frame is supplied by the camera , RecognitionHandler creates a
sequence of filters to enhance the input image. With different FilterHandler instances,
the image is enhanced for future operations.

• RecognitionHandler then calls the ObjectTracker . ObjectTracker looks at the
ObjectList and if any recognized Object instances exist from the previous frame,
ObjectTracker tries to find the new positions of objects in the frame.

• At this point ObjectTracker may find out that an object is no longer in the frame, than it
removes the related Object instance from the ObjectList . If not so, then ObjectTracker
updates the position information of the related Object instance in the ObjectList.

• When tracking operation is done, RecognitionHandler starts for a search of new
objects in the frame.

• First BoundaryFinder is called to find assumptions for borders of book, shelf and
librarian objects. BoundaryFinder may decide to remove some candidate objects it has
found if it detects that the candidate object is a duplicate of one of already-recognized
objects.

• The list of candidate objects than is used by ObjectRecognizer to find if they really are
one of the objects that in the object recognition database.

• If it decides that the candidate object is one of the known objects, than it prepares an
Object instance and adds it to ObjectList . If thats not the situation than the candidate
object is deleted.

• After then RecognitionHandler asks for a new frame from the camera and the whole
process starts again.

A more detailed explanation of the flow of the component and the details for the methods and
algorithms of the component are left for the Detailed Design section.

The relationships between mentioned classes can be seen in the Class Diagram for Object
Recognizer Component below.

39

 Diagram 5.2 – Class Diagram

40

5.2.1.4 Dynamic Behavior of Object Recognizer Component

Image Filtering:

When the RecognitionHandler gets a new frame from the camera , first image filtering is
done.

• RecognitionHandler creates a FilterHandler instance and initializes it with a call to
setFilter() method.

• If the initialization is successful then the frame is sent to the FilterHandler via the
enhance(IplImage) method.

• After the enhancement operations image is returned back to the RecognitionHandler.

• The sequence is repeated for all filters defined by RecognitionHandler

Detailed information of filters that will be used in this part will be given in the Detailed Design
section.

 Diagram 5.3 – Sequence Diagram

41

Object Tracking :

After the filtering operations are done, object tracking is activated.

• RecognitionHandler , for each already-recognized object initializes an ObjectTracker
instance with init(IplImage) method.

• After the initialization is done, startTrack(Object) starts the tracking operations. With
getFeatures() method.

• ObjectTracker gets features from the related Object instance.

• ObjectTracker initializes a FeatureMatcher instance with a call to initFeature(Feature[])
method

• During initialization FeatureMatcher initializes a ObjDbaseMngr via a
dbSetConn(String) call for object database operations.

• With a call to match(IplImage,Object) function, FeatureMatcher requests object
features from the ObjDbaseMngr with getObj(int) and returned features are used to
identify the position and orientation of the object.

• If it is not null , the new returned Position is used to update the Object instance's
Position element with setLocation(Position) call.

• If the returned Position is null then the Object is deleted from the ObjectList with a call
to removeObj(int).

Tracking algorithms that used in this part will be explained in the Detailed Design section.

42

 Diagram 5.4 – Sequence Diagram

43

Candidate Object Boundary Finding:

After Object Tracking is done, a search for new objects is started.

• RecognitionHandler initializes BoundaryFinder with init(IplImage) call.

• There are 3 methods that starts BoundaryFinder to search for candidate objects :
FindBook() , FindShelf() and FindLibr() . The mentioned methods search for possible
boundaries for books, shelves and librarians respectively and each method applies a
different algorithm for possible boundaries of objects.

• For each found possible boundary a candidate Object is set .

• A list of found candidate objects are returned to the RecognitionHandler.

Algorithms for finding possible boundaries used in this part will be explained in the Detailed
Design section.

 Diagram 5.5 – Sequence Diagram

44

Object Recognition:

• After candidate Objects are found, ObjectRecognizer is initialized by
RecognitionHandler with a call to the method init(IplImage, Object[], ObjectList) .

• MatchSurfFeatures() method for each candidate Object starts a recognition process.

• ObjectRecognizer initializes a FeatureMatcher for each candidate object with
initFeature(Feature[]) call.

• FeatureMatcher sets a database manager, ObjDbaseMngr with dbSetConn(string) call.

• When these operations are done succesfully , matchCan(IplImage, Object) function
makes the FeatureMatcher compare features of the candidate Object with features in
the object database after getting them from database with a call to the getObjInCat(int)
method of ObjDbaseMngr .

• The matched candidate Object, is filled with known features with the
addFeature(Feature) call and its Position is set via SetLocation(Position) method.

• After the candidate Object is transformed into an Object the Object is sent back to
ObjectRecognizer .

• ObjectRecognizer adds the Object to ObjectList with addObject(int) call.

• If the candidate Object is not matched with any object records in the database, the
candidate Object is deleted.

Feature matching algorithms will be explained in detail in the Detailed Design section.

45

 Diagram 5.6 – Sequence Diagram

46

5.2.2 World Model Component

In this section , an explanation for the World Model Component and the related class and
sequence diagrams are provided.

5.2.2.1 Processing Narrative for World Model Component

World Model Unit is the main system component in the Bookwiser. World Model Unit is the
system that collects all information from all components and sum up them to the user by the
Graphic Unit because it connects the Object Recognizer Unit and Graphic Unit together.

World Model Unit is mainly the spine of the Bookwiser that all the components and data flow
are controlled in this unit. All the information that flows in the application from the user to the
user again should interact with this component.

The object information comes from the Object Recognizer Component. All the information
about the detected objects like books, shelfs and the librarian, are controlled in this
component. The objects detected by the Object Recognizer Component, comes to the World
Model Component. Now, this information has no meaning to the application because the
recognized objects should be processed and filled with related information. For this purpose,
World Model Component retrieves context information from the Library Database. Using the
existing information in the database, World Model Component fills in the information fields of
recognized objects . The object detection part is actually completed in this unit in this manner.
After these operations , Bookwiser will show the related information to the user by Graphic
Component.

On the other hand this component also keeps track of user-intercation based state changes.
Different states of different user choices are stored and processed via this unit. According to
different inputs from the user, the output that will be sent to the Graphic Component is
manipulated in this component.

As a conclusion it can be said that this component is the brain of the Bookwiser system.

5.2.2.2 Interface Description for World Model Component

The interfaces in the World Model Component is not related with the user directly. Instead the
two input interfaces of the component interacts with the Object Recognizer Component and
the Graphic Component , and the output interface only interacts with the Graphic Component.

• The interface “World” is the input interface for interactions with Object Recognizer
Component.

• The interface “States” is the input interface for interactions with Graphic Component.

• Moreover, “WorldRepresentation” is the output interface to the Graphic Component.

47

5.2.2.3 Processing Detail for World Model Component

An algorithmic description for the World Model Component as follows:

1) The information comes from the Object Recognizer Component to the World
Model Manager Component.

2) After, “setConn” function is called and returned by true, Context Information
coming from the Library Database is brought to the ObjectManager class in order to
be combined with the information coming from the Object Recognizer Component.

3) Step2 is repeated whenever the information coming from Object Recognizer
Component is updated.

4) Mode updates information comes from the Graphic Component to the World
Model Manager Component.

5) Step4 is repeated when the user changes the state of the system or select one of
the modes by the input controller such as Search Mode and FreeWalk Mode.

6) When a book, shelf or librarian is chosen by the user, incoming states from the
Graphic Component are stored in the state bank of the component.

7) Output of the component is manipulated by the changes on the states.

The detailed explanation of the methods used for mentioned operations is left for the Detailed
Design section.

48

 Diagram 5.7 – Class Diagram

49

5.2.2.4 Dynamic Behavior of World Model Component

In the World Model Unit, the interactions between the components is explained not in a very
detailed manner, but in an initial detailed design manner.

After the information coming from the Object Recognizer Unit is processed firstly in the
WorldManager class. WorldManager class interacts with two basic classes namely:
ObjectManager and StateChart.

Object Management:

• WorldManager interacts with two basic classes, namely: ObjectManager and
StateChart. These classes implements an interface called WorldRepresentation.

• ObjectManager interacts with the library database manager ,
LibraryDBaseManager and ObjectTable .

• The interaction between the ObjectManager and ObjectTable is processed after
the interaction between ObjectManager and LibraryDBaseManager is established.
This sequence is clearly shown in the diagram.

• ObjectManager 's interaction with the ObjectTable is established, the specific
objects comes to the interaction. Since our objects are mainly books, shelves or
librarians, Book, Shelf and Librarian classes are inherited from the Object class.

• ObjectTable gathers information from the Book, Shelf and Librarian instances by
using their specific methods.

50

 Diagram 5.8 – Sequence Diagram

51

State Management:

Now, it's time for the second class that the WorldManager interacts with, namely,
StateChart. The following explanations and related sequence diagram as follows:

• WorldManager Unit interacts directly StateChart class.

• A State instance is created in order to answer the state changes in the Bookwiser.

• When a State is expired, the state is removed from the StateChart via removeState() call.

Diagram 5.9 – Sequence Diagram

52

5.2.3 Graphic Component

In this section , an explanation for the Graphic Component and the related class and
sequence diagrams are provided.

5.2.3.1 Processing Narrative for Graphic Component

This is the third component of Bookwiser Software Project. Graphic Unit is the component
that directly interacts with the user. This component does not process on anything, but just
controls the button clicks,the user interface and the functionalities that directly lies between
the user and the system without any calculation like updating the rate of some book or
reserving some book.
Graphic Unit consists of three parts; video composer, input controller and graphical user
interface, respectively.

5.2.3.2 Interface Description for Graphic Component

The interfaces that Graphic Component has is with the second main component of
Bookwiser System, World Model Unit and with the Library Database.

• The Video Composer subcomponent of Graphic Component interacts with the World
Model Component via WorldRepresentation interface as an input interface. This
subcomponent combines the contextual and visual object information taken from World
Model Component and the video stream captured by the camera. So, it must interact
with the second main component.

• The second interface also is with second main component and is an output interface
called States. Since handling the buttons is one of the missions of Graphic
Component, also sending the states for different user choices to the World Model
Component is its duty.

• The last interface that the Graphic Component deals with is with the library database.
When there is a need of an direct on the update the Graphic Unit handles it. The
updates can be reserving, unreserving or rating a book.

5.2.3.3 Graphic Unit Processing Details

Video Composer:
Video composer is the simplest section of the Graphic Unit component. The Video Composer
unit combines the captured video stream by the camera with the object information coming
from the World Model Unit. The combined video is sent to the GUI to be translated to the user.

Input Controller:
Input controller is based on two subunits: Screen Based Action Handler and Record Based
Action Handler, namely.

53

Screen Based Action Handler:
Screen Based Action Handler subunit is responsible for the button-click handles and mode
changes.

There are two button-click handles concerning the screen information: displaying detailed
information for a selected shelf and displaying detailed information for a selected book. World
Model Unit is informed about these button-clicks to process the objects as required.The mode
changes also are handled in this subunit. Whenever the mode is changed (the mode can be
free-walk mode or search mode) the World Model Unit is informed.

Record Based Action Handler:
Record Based Action Handler is related to the direct database updates, which there is two of
them : reserving a book and rating a book.

The Record Based Action Handler subunit directly connects to the library database to update
the rate or the reservation information of some book according to the information coming from
user.

Graphical User Interface:

Graphical User Interface is the subcomponent of Graphical Unit that directly interacts with the
user.It directly deals with the user's demands and process according to those.

Also, this subcomponent takes the composed video coming from the Video Composer Unit
and displays that to the user.

Diagram 5.10 – Class Diagram

54

5.2.3.4 Dynamic Behavior of Graphic Component

Choosing Objects:

• handleButtons(1,shelfID) method of GUI instance is calling displayShelfInfo(shelfD)
method of ScreenBasedActionHandler instance which is going to request the
information about the given shelf.

• handleButtons(2,bookID) method of GUI instance is calling displayBookInfo(bookID)

method of ScreenBasedActionHandler instance which is going to request the
information about the given shelf.

Diagram 5.11 – Sequence Diagram

Choosing Modes:

• chooseMode(true,ID) method of GUI instance is calling activateSearchMode (ID)
method of ScreenBasedActionHandler instance which is going to request an alert
when the location of the book with the given ID is in the vision of the user. The system
mode is in search mode.

• chooseMode(false,ID) method of GUI instance is calling activateFreeWalkMode ()

method of ScreenBasedActionHandler instance which is going to change the mode
of the system to free-walk mode. In this situation the argument 'ID' is not used, is
ignored.

55

Diagram 5.12 – Sequence Diagram

Record Updates:

• handleButtons(3,bookID) method of GUI instance is calling
updateReservationInformation (bookID) method of RecordBasedActionHandler which
is going update the reservation possession of the book with the given bookID.

• handleButtons(3,bookID,9,5) method of GUI instance is calling updateRate
(bookID,9.5) method of RecordBasedActionHandler which is going to update the rate
of the book with the given bookID and with the given rate, 9.5 in this sequence
diagram.

56

 Diagram 5.13 – Sequence Diagram

5.3 Design Rationale
The abstraction of three components is directly arisen from the need to handle three external
elements which system interacts:camera,user and library database. Object recognizer and
graphic unit are exactly designed for handling two of them.

World model unit on the other hand is not designed for handling library database. Although it
use library database to get contextual information, this is only a realization of its function. The
idea that creating a world model for library reduces complexity of the system greatly and
provides a basis for all sub-components of the system when they perform their tasks
according to world state. Upon this architecture, it is possible to improve Bookwiser's
functionality and enhancing its capability with extra services.

57

6 User Interface Design

In this section user interface design details are provided.

6.1 Overview of User Interface
Bookwiser's user interface is the most critical unit from user's perspective. All the interaction
between Bookwiser and user is done through user interface. Main job of user interface is
showing the user the video stream enhanced with extra information. It is also responsible for
capturing user actions such us mode selection, book selection etc.

Since the nature of Bookwiser as a visual product, the interface has to be designed to make
product attractive, easy to use and functional. Functionality is exclusively important to
Bookwiser can perform its assisting tasks fullfilly. In that manner, interface screen modes are
designed based on user requirements. There are five basic screen classes where all screens
are grouped. Five classes are created according to the similarity between screen
environments. All sub-screens which belong to same class can be seen as same screen with
different options. These five classes are

Log-in screen: These screen class includes inital screen modes. User connects ,or chooses
not to connect, Bookwiser system from these screens. Video display is off. Four states of
these screen classes are

Log-in
Log-out
Register
Unregister

Library Tour screen: After connecting the system, user is directly passed to the library tour.
Video display shall be started to be shown. In these screens Bookwiser shall try to find
objects in the environment and give notification to the user about these objects. A very small
amount of information about context of objects will be shown to the user. Six states of these
screen classes are

Free-walk mode
Search mode
Librarian recognition enable
Recognizing shelves
Recognizing books
Recognizing librarian

Information screen: These are the screens where different types of contextual information
and some extra functionality are provided about particular object which user chooses. Five
states of these screen classes are

Request shelf info
Book selected
Rate the book

58

Detailed book info
Detailed author info

Reservation screen: This a special class of screens which only designed for reservation
transactions. The reason these screens are aparted from information screens is that the user
will have a reservation profile and shall be able to edit his/her reservations easily. There is no
multiple states in reservation screen in a visual manner. However, there are three actions all
of which can be performed by clicking particular buttons:

Reserve the book
Extend a reservation
Cancel a reservation

Help screen:This is also a special class where the users demanding for help are directed.
Help topics shall be displayed and user shall be able to select a topic.

A state diagram for entire user interface is below. Sub-screens and transtions between
them are also included in the diagram:

59

Diagram 6.1 – State Diagram for User Interface

60

6.2 Screen Images
Screen shots of prototype user interface are given in this section:

Log-in:

61

Log-out:

Register:

62

Unregister:

Freewalk Mode:

63

Search Mode:

Librarian Recognition Enable:

64

Recognizing Shelves:

Recognizing Books:

65

Recognizing Librarian:

Request Shelf Info:

66

Book Selected:

Rate the Book:

67

Detailed Book Info:

Detailed Author Info:

68

Reservation:

Help:

69

6.3 Screen Objects and Actions
In general there are two types of objects in Bookwiser interface: Interactive objects and
visual-only objects. As the names suggest, interactive screen objects are those which user
can perform an action through and visual-only objects are those which user can see in the
screen but not interact. There are three states of an interactive screen object: focused, active
and off.An off interactive object can be seen in the screen but it is not currently available. This
is the case where the object is actually belongs to the screen but because of the options it is
displayed as dim. A focused object is the candidate for a possible selection for an action. It
can be distinguished from other interactive objects by its highlight. An active object is an
object which can be selected but not focused. User should focus it using directional keys. An
example of three different states of an interactive object is shown in the figure:

All screen actions are based on interactive screen objects and there is a general screen
action mechanism in the interface. User shall be able to select the interactive objects which
are not in off state. To select an object, first it should be focused. For that purpose, input
device of the system needs to have special direction keys. A focused object can be selected
using a special key in the input device assign to do select action. State transitions shown in
the state diagram are either performed by selecting related interactive screen objects or
changing the camera view.

Screen objects are explained as follows:

Number 1
Name Entry Field
Type Interactive
Description Entry fields are used for entering textual information such as

password and username.
Including Screens Log-in,Registration,Search Mode
Instance

70

Number 2
Name Selection Button
Type Interactive
Description Selection buttons are used to perform particular selection actions.

Generally, they trigger a state transition between different screen
classes such as logging out from library tour.

Including Screens All screens
Instance

Number 3
Name Option Button
Type Interactive
Description Selection buttons are used to enable particular options. Differently

from selection buttons they do not change the screen class.
Including Screens All library tour screens
Instance

71

Number 4
Name Special Selection Button
Type Interactive
Description Special selection buttons has a similar job to the normal selection

buttons. However their mechanism is similar to option buttons. A
special selection button triggers the opening of a special window
for its representing action. Deselecting the button again reverse the
state back.

Including Screens All screens for help button, only information screens for other
buttons

Instance

Number 5
Name Notifications, Notification marks
Type Visual-only
Description This objects are displayed to inform user about recognized objects.

A notification mark is shown nearer to a object in video and a
notification with texture is shown in main window.

Including Screens Shelf detected,Book detected,Librarian detected
Instance Notification:

Notification
Mark:

72

Number 6
Name Information window
Type Visual-only
Description Information windows are typically used for displaying contextual

information about selected objects. User should request the
information. These windows are transparent not to avoid user view.

Including Screens Request shelf info,Request detailed book info,List books of the
author

Instance

73

Number 7
Name Selecting arrows
Type Interactive
Description Selecting arrows are used for one purpose: To focus on differen

objects in the video display. One left and one right arrow is
displayed when multiple objects are recognized.

Including Screens Recognizing shelfs, recognizing books, all information screens and
reservation screen

Instance

Number 8
Name Rating Stars
Type Visual-only
Description A special type of objects which are used for showing ratings of the

books.
Including Screens Recognizing books, select book, rating book, request detailed book

info, list books of the author,reservation
Instance

74

Number 9
Name Object Boundary
Type Visual-only
Description Object boundaries shows the focused recognized objects(books,

shelves, librarians). For three types of objects, object boundaries
are displayed with different colors.

Including Screens Recognizing books, recognizing librarian, recognizing shelves and
all information screens.

Instance

75

Number 10
Name Information boxes
Type Visual-only
Description Information boxes are used to combine similar screen objects in

the main window. Objects inside them can be interacted but
information boxes are visual-only.

Including Screens All screens
Instance

76

7 Detailed Design
7.1 Object Recognizer Component
In this section detailed design of Object Recognizer Component is provided.

7.1.1 Classification

Object Recognizer Component can be described as a subsystem of the application. Object
Recognizer Component itself is not a class but contains several classes which work as data
processors or data structures.

The reason behind why several data structures are not defined as simple structs but instead
as classes is to make the design let the future extensions on the functionality of the
component be easily implemented.

Object Recognizer component is responsible of all the object recognition procedure of
Bookwiser . To achieve its goal the component mainly uses the interface provided by
OpenCV library and makes all other components free from OpenCV calls, sending only the
current frame captured from the camera and position and id's of recognized objects to other
components. This approach makes integration of different components and also integration of
OpenCV related work with interface operations done under QT platform easier.

7.1.2 Definition

As stated in the Requirements Specification Document's “Functional Requirements” section,
Bookwiser application needs to recognize objects in the view of its user and give information
about the objects recognized to the user. What this component accomplishes in the design is
to recognize which known objects are in the view of user, so that the system can tell the user
about the information it knows about these objects.

At this point, Object Recognizer Component can be described as the eye-brain channel of the
Bookwiser system.

When the application starts, Object Recognizer Components starts capturing frames from the
camera which can be described as the eye of the system and processes information coming
from this frame.

The component , tries to find candidate objects with pre-defined methods and using its own
database, tries to find what objects are on the screen. When the component is sure about the
recognized objects, it informs the World Model component, the brain of the system, about
detected objects.

As it can be seen, this component simply tries to recognize objects from a frame, or tracks
them in the frame, and lets other components use the information it extracts from the
captured image from the camera.

77

7.1.3 Responsibilities

In general, the main responsibility of the component is to recognize objects in the view of the
user and prepare a list of recognized objects in the frame for other components to use and
another responsibility is to update the position information of already recognized objects due
to position changes caused by the movement of the camera by the user.

To give more detail; it can be said that there are 6 main responsibilities of this component:

1) Capture the current frame from the camera.
2) Enhance the captured image for better processing.
3) Track the already-recognized objects from the previous frame in the new frame and

update their position information for the other components.
4) Find candidate areas on the frame which resembles known object types; Books, Shelfs

or Librarians.
5) Detect if candidate objects are really one of known objects or not, and state which

known object it is
6) List the latest information of recognized objects for other components to use.

When this component finishes its job, the information of objects in the view of the user should
be ready for other components to use.

It can be said that responsibilities of this component isn't directly related for the user, since
the work this component does only affect other components of the system; on the other hand,
actually this component is the most important part of the system because all the non-
functional requirements affecting the users which are stated in the Requirements
Specification, are dependent on the performance of this component.

• Accuracy of object recognition done in this component directly affects the “Reliability “
requirement stated in the SRS. If this component doesn't recognize an object correctly
or recognized an object as another object, this gives false results for the user which
reduces the reliability of the software.

• “Usability” of the software is dependent of the speed of this component. If the process
of object recognition for a frame takes too long, the latency between capturing the
frame and showing the information about the object to the user may bother the user
because the user is actually moving in the real time in the library and wants to see the
items in the library in real-time. If this aim is not accomplished the Bookwiser software
can not be used.

78

7.1.4 Constraints

• The camera should give images with enough quality and should not be used by other
software so that whenever this component wants it can reach the camera.

• Because a camera captures 24 frames per a second as a standard, the recognition
time for a frame should be fast enough to finish processing these frames in one
second, +0.3 seconds can be seen as an acceptable error time.

• It is assumed that object features which makes Bookwiser able to recognize the
objects are already available in the internal object database. When a new book, shelf
or librarian is added to the library, the features of the object is also added to the
internal object database as in the specified formats in section 4.

• It is assumed that the library have adequate light sources around the objects so that
objects can clearly seen otherwise object recognition can't be made.

• It is assumed that shelves in the library are equally spaced with a minimum of 1
meters and they are placed parallel to each other. This way a shelf can be seperated
from another shelf and be recognized.

• It is assumed that books are placed on the shelves with their front side facing the
camera and the user. The books are assumed to be placed with equal spaces
between them, a minimum of 10 centimeters. Books should have a color that can
be differentiated from the library environment and special marks on the books
should be apparent and proper enough to classify them.

• Librarians should wear a standard t-shirt with the same color and a specific
apparent shape on top-left of their t-shirts` front and back sides, making them
recognizable.

• As an exception , if the recognition lasts too long from unforeseen circumstances the
program should quit recognition process and just pass the frame to other components
to make to program continue its work.

• The component should detect if theres a shelve / group of shelves in the current
frame from a distance of 3-4 meters .

• The component should detect if theres a book / group of books in the current frame
from a distance of 2-2,5 meters

• Bookwiser should detect if theres a librarian in the current frame from a
distance of 3,5-4 meters .

79

7.1.5 Composition

There are 8 major subcomponents as a part of the Object Recognizer component.

1) RecognitionHandler:

RecognitionHandler works like the brain for this component. This sub-component
synchronizes the work of other sub-components, analyzes and synthesizes the data coming
from other components and processes resulting data to share with orher components of the
main system.

All the frame capturing, image filtering, object tracking, candidate are finding and object
recognizing process is controlled via this sub-component.

2) FilterHandler:

This sub-component interacts with the RecognitionHandler only, gets the captured frame from
the RecognitionHandler and applies specified filtering operations on the image. After the
filtering operations are done the filtered and enhanced image is returned back to the
RecognitionHandler:

3) BoundaryFinder:

To be able to finish the object recognition procedures in a fast way, this component is used.
First some candidate areas are found, and these areas are matched from the database so
processing time is decreased. This sub-component is activated by the RecognitionHandler
sub-component and roughly determines the areas that are possible to be a known-object.
This component finds areas that similar to known objects. Candidate areas for Librarians,
shelves and books are detected with separate algorithms, built with specific properties of
these objects.

After this component finishes its work it returns possible areas to the RecognitionHandler
component for further processing.

4) ObjectRecognizer:

ObjectRecognizer sub-component is the sub-component that tries to match the features of the
candidate objects with the known object features in the internal object database.

RecognitionHandler activates an ObjectRecognizer instance for each candidate area, and this
sub-component gets features of the candidate Object and Using the FeatureMatcher sub-
component matches features of the canidate object with the known object features in the
database. If a successful match occurs, then pushes the recognized object to the recognized
objects list.

80

5) FeatureMatcher:

FeatureMatcher is a low-level sub-component that used by 2 different sub-components
ObjectRecognizer and ObjectTracker.

What FeatureMatcher does is gets an Object's features and tries to match the features of the
object with known object features in the internal object database and share the results with
the parent sub-component.

6) ObjDbaseMngr:

The main aim of this sub-component is to manage the information coming from the internal
object database. It takes the information from the database in the memory and converts it to
one of known data structures for other sub-components to use.

This sub-component can be used by more than one sub-component.

7) ObjectTracker:

This sub-component is again activated by the RecognitionHandler and the main aim is to
track the already-recognized objects in the new frame. When some objects are detected in a
frame on the next frame is highly possible that these objects are in the frame again, so there's
no need to spend time on trying to recognize the same object again.

This sub-component selects some good features of the object to track from the previous
frame and on the current frame watches the position changes of these features and therefore
determines the new position of the object.

So this sub-component is useful to reduce the processing time of the main component and is
highly important.

8) ObjectList:

This sub-component is where the recognized objects are stored. This sub-component is again
managed by different sub-components . ObjectTracker uses this sub-component to see what
objects are recognized in the previous frame and also this sub-component is used by other
main components of the system to get information about the recognized objects.

Class diagram of the component describing relations between sub-component classes can be
viewed in Diagram 5.2 in 5th section.

81

7.1.6 Uses/Interactions
• The component interacts with the camera using OpenCV's CvCam methods to get the

current frame from the camera.

• This component is used by WorldModel component, WorldModel component uses the
information about recognized objects provided by this component.

• To do this ObjectRecognizer component provides an interface called “World” ,
implemented by the IplImage captured from the camera and ObjectList sub-
component.

• WorldModel component's Librarian, Book and Shelf sub-components inherits the
Object sub-component because they extend the information provided by Object class.

Diagram 7.1 Class Diagram

82

7.1.7 Resources

• The system is assumed to work on a device with a minimum of 20GB hard-disk and
1024Mb RAM. Because object features keeps a space and the component works with
the images, matrices and features, the component uses memory intensively.

• The system is assumed to a work on a device with a minimum of 2.0 GHz Intel
processor and a minimum of 500 core GPU, no shared memory. To make the
component work fast as required, the speed of the graphics card and processor is
critical for performance criteria.

• It is assumed that the system needs a minimum of 5.0 mega-pixels camera to feed
the system with images with necessary quality and detail to do object recognition.

There are no race conditions or deadlock situations expected since this is the only component
works with the camera and also the device the Bookwiser works on is a dedicated device and
no other softwares besides the operating system works on the device.

Only memory shortage can cause problems because of the other component's uses . The
situation is solved with threading and Object Recognizer component should have the highest
priority for scheduling.

Several Sub-components of the component, namely FeatureMatcher and ObjDbaseMngr are
also threaded so matching for different objects are done simultaneously so waiting time for an
object to be recognized doesn't affect other object's recognition and if the procedure for
recognition of an object passes behind the maximum time and recognition process is
canceled other objects can still be recognized.

7.1.8 Processing

As explained in the 5th section main aim of the component is to recognize objects.
First the component captures a frame from the camera, filters the frame for a better quality
image and operates on this image.
The component first tracks already-recognized objects in the new
frame. When an object is recognized in a frame, on the next frame the object's position can
be changed or the object can be completely out of the scene. The component therefore
decides to update the position of the object instance on the global object list or remove the
object from the recognized object list.

After that the component finds assumptions for borders of possible objects on the scene.
Candidate areas are tried to match with known objects and when an object is matched object
is said to be “recognized” and added to the recognized object list.

After all these procedures are done, the component checks the new frame.

83

 Chart 7.1 – Flow Chart

The component generally uses OpenCV library for its operations. A developer should have
the information about OpenCV:

OpenCV naming conventions

• Function naming conventions:

84

 cvActionTargetMod(...)

 Action = the core functionality (e.g. set, create)
 Target = the target image area (e.g. contour, polygon)
 Mod = optional modifiers (e.g. argument type)

• Matrix data types:
 CV_<bit_depth>(S|U|F)C<number_of_channels>

 S = Signed integer
 U = Unsigned integer
 F = Float

 E.g.: CV_8UC1 means an 8-bit unsigned single-channel matrix,
 CV_32FC2 means a 32-bit float matrix with two channels.

• Image data types:
 IPL_DEPTH_<bit_depth>(S|U|F)

 E.g.: IPL_DEPTH_8U means an 8-bit unsigned image.
 IPL_DEPTH_32F means a 32-bit float image.

• Header files:
 #include <cv.h>
 #include <cvaux.h>
 #include <highgui.h>

Operations that are done by this component are:
1) Capturing a frame:

To capture a frame from the camera RecognitionHandler uses OpenCV's CvCam methods:

85

• CvCapture* capture = cvCaptureFromCAM(0); // this method initializes the
capturer of OpenCV

• IplImage* frame = cvQueryFrame(capture); // after the initialization to capture a
frame this method should be called to capture a frame.

2) Image Filtering:

After capturing a frame , the image is enhanced. RecognitionHandler sets the
FilterHandler for a enhancement method and applies the filter on the IplImage using this
sub-component.

The specific filtering methods are not given , because different filtering methods can be
applied due to the quality of the camera used and lighting conditions of the library
environment.

Different OpenCV filtering methods are listed on the documentation at the official
OpenCV page :

“Image Filtering”:

http://opencv.willowgarage.com/documentation/cpp/image_filtering.html

The sequence diagram for Image Filtering Process can be seen in Diagram 5.3 in section 5

3) Candidate Object Boundary Finding:

After Object Tracking is done, a search for new objects is started.
RecognitionHandler initializes BoundaryFinder with init(IplImage) call.

There are 3 methods that starts BoundaryFinder to search for candidate objects :

 FindBook():
 To find candidate areas that can be books is determined via several methods:

• By observation it can be easily seen that books are generally consisting of
rectangles. Therefore rectangle areas can be inspected for book matching. To
determine rectangles:

- Thresholding on separate color channels of the images are used.

86

- By finding contours on the image via OpenCV's cvFindContours() method areas
are detected.

- Angles between corner points are examined and if all the angles are near 90
degrees, to be more precise if the sine values of all the angles are lower than 0.3,
then the are can be seen as a rectangle.

-Too small or too large rectangle areas are ignored.

 -To find rectangles more easily Background/Foreground segmentation is done. To

 do this “cvaux.h” library is used.

 cvCreateGaussianBGModel(frame) method of OpenCV creates a Gaussian

 statistics model to statistically determine background and foreground colors.
 When the camera moves the model is updated via cvUpdateBGStatModel() call

 and using the information of previous frame and the current frame the foreground
 objects are thresholded . bgmodel->foreground IplImage gives the foreground
 objects thresholded.

 FindShelf():
 To find candidate shelf areas same algorithm as book recognition is used except

that color information is used to detect shelf areas, by color thresholding.

 FindLibr():
 -To find candidate librarian objects a people detection algorithm is used. Histogram

 of oriented gradients are used to detect human postures.
 - OpenCV makes it easier to use this method with peopleDetector() and

 HOGDescriptor's are extracted from the image using peopleDetector of openCV
 with the call

 HOGDescriptor hog;
 hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());

 - And the rectangle area around the people is returned as the candidate areas.

More detailed information about HOG Descriptors are available at Wikipedia :

“Histogram of oriented gradients”:

 http://en.wikipedia.org/wiki/Histogram_of_oriented_gradients

As a result;
• For each found possible boundary a candidate Object is set .
• A list of found candidate objects are returned to the RecognitionHandler.

87

The sequence diagram for Candidate Object Boundary Finding Process can be seen in
Diagram 5.5 in section 5

4) Object Recognition:

After candidate Objects are found, ObjectRecognizer is initialized by
RecognitionHandler with a call to the method init(IplImage, Object[], ObjectList) .

MatchSurfFeatures() method for each candidate Object starts a recognition process.
 -Candiate areas returned are set as Region of Iterest with OpenCV call cvSetImageROI()
 -On these areas Surf features are extracted with cvExtractSURF() method.

The extracted features are sent to FeatureMatcher and FeatureMatcher sets a database
manager, ObjDbaseMngr with dbSetConn(string) call. This database manager gets features
from each book entry and FeatureMatcher tries to match the features using NearestNeighbor
Method.

More detailed information about Nearest Neighbor feature matching is available at
Wikipedia :

“Scale invariant feature transform: Feature matching and indexing”:

 http://en.wikipedia.org/wiki/Scale-
invariant_feature_transform#Feature_matching_and_indexing

• When object features are matched correctly, Object instances are created and added to the
recognized object list, ObjectList for future uses.

The sequence diagram for Object Recognizing Process can be seen in Diagram 5.6 in
section 5

5) Object Tracking:

To track objects , some features of known objects are chosen by looking at their sizes and
positions. Features near corner points are followed in the next frame and position changes
are inspected.

88

RecognitionHandler , for each already-recognized object initializes an ObjectTracker
instance with init(IplImage) method. After the initialization is done, startTrack(Object) starts
the tracking operations. With getFeatures() method. ObjectTracker gets features from the
related Object instance. And featureMatcher finds the choosen features in the image.

The change in position for different features result with the new position and orientation of the
object in the image.

The sequence diagram for Object Tracking Process can be seen in Diagram 5.4 in section 5

7.1.9 Interface / Exports

The component as a result of all its duties creates an interface called World.
World interface consists of the image of the current frame and the list of recognized objects,
namely ObjectList .
This interface is provided to World Model component , so that World Model component is now
informed about the recognized objects and their positions on the current frame image. Therefore
World Model component can update context information about the recognized objects from the library
database.

89

7.2.World Model Component:

7.2.1.Classification
This model is a subsystem that consists of classes.

7.2.2.Definition:
The purpose of this component is mainly coordinate all of the components and make them
work properly in a way of coordination. Since world model component has so many
interactions with object recognizer component and graphic component, it mainly controls the
information that flows in the Bookwiser application. So, semantic meaning of this component
has a great importance among other components. For example, a major mistake in the
graphic component affects only the graphic component and its operation. On the other hand,
even a minor mistake in the world model component can cause a collapse of whole operation
in the application.

7.2.3.Responsibilities
The main responsibilities of this component can be explained by the following steps:

◦ Coordination of the general classes that defined in the component, such as
ObjectManager, WorldManager, LibraryDbaseManager.

◦ Coordination of the data classes that defined in the component, such as
ObjectTable, StateChart (in the interface of WorldRepresentation), Librarian, Book,
Shelf (inherited from the Object data class) and State.

The roles of this component play parts in the application related with the feature matching.
So, this component interacts with the internal object database directly. For this reason, it
provides finding features of the detected object in the object recognizer component, having
comparisons these features with the internal object database in a sufficient fast time with a
reasonably efficient algorithm and giving the results to the graphic unit. This is the basic
component that “real-time” operations are provided to the clients of the application.

7.2.4.Constraints
 Constraints for world model component can be listed as follows:

◦ Bookwiser needs to communicate with the library database , therefore it is assumed
that the library database is open to Bookwiser and the library database is able to share
 information via Internet or a local network.

◦ Bookwiser uses the library's own database to show data about recognized books.
 This database, called internal object database, locates in this component. So, world model
component has to have the capacity of this library.

◦ Since, internal library is directly interacted in this component, the feature matching
algorithms should be very fast in order to display the result to the user in real-time.

◦ The input coming from the object recognizer component should be in a form of
containing features:set of float numbers.

◦ The input coming from the internal object database in the form of string.
◦ Book, Shelf and Librarian classes should be inherited from the Object class in order

90

to use the same class for features and position detection in object recognizer
component.

7.2.5.Composition
This component consist of 6 data classes, namely ObjectTable, StateChart, Shelf, Book,
Librarian, State, and 3 general classes, namely ObjectManager, WorldManager and
LibraryDbaseManager.

◦ Shelf class is used to old information about detected shelf/shelves. A Shelf object is
recognized by its id and the methods getId and setId are used for this purpose.

◦ Book class is used to hold information about detected book/books. A Book object
contains number of fields such as id, name, author and rating. The set methods in
the Book class are used to change the current state of the field and the get
methods are used to get the value of that field.

◦ Librarian class is used to hold information about the detected librarian people in the
library. The fields name and id are necessary for the comparison after object
recognition has been completed. A Librarian object is the result of object detection
in the object recognizer part because librarians are recognized by their specific
costumes and id cards, no face detection algorithms are used in this part.

◦ Shelf, Book and State classes are inherited from the Object class. The meaning of
the use of Object class is not to interact with the specific objects, instead to interact
with the general objects in terms of locations and features which will be accessed
directly.

◦ State class is used to hold the information about the current state. Only type field is
necessary to identify what the state of Bookwiser is. State objects currently refer to
the modes of the application such that select a book mode or free walk mode when
the application is started and used by the user actively.

◦ ObjectTable class is used to create tables from the finite number of objects in the
current state. The methods of this class is used to insert new objects, update this
table or list the object specified in the table.

◦ Similarly, StateChart class is used to hold all information about the current state in a
table form. Also, it is possible to add a new state, update current state or remove
the state from the table.

◦ LibraryDbaseManager class is provided to control the elements retrieved from the
library. The purpose of the retrieving those elements from the library is actually the
main purpose of this component. That is to say, the features of the detected objects
coming from the object recognizer component is compared with the
elements/features retrieved from the library.

◦ The information obtained by the class of LibraryDbaseManager is brought to the
other important class, which is ObjectManager. ObjectManager class controls the
objects in the ObjectTable class by the information coming from
LibraryDbaseManager class. “arrangeObj” method is managed to hold these kind of
operations.

◦ The spine of world model component is the class named WorldManager. All the
information about objects, modes(states) and their updates and any possible
changes are gathered in this class. Transfer of information between components is
managed by the send methods of this class.

91

7.2.6.Uses/Interactions
World Model component is the spine of the application. So that, it directly interacts with the
two other components. Any side effect in object recognizer component directly affects the
process on world model component because the features of the detected objects are
retrieved from the object recognizer component. Moreover, after the matching process is
completed in the world model component, the information is sent to the graphic component.
So, any side effect coming from outside, namely database, or a corruption in the world model
component directly affects the graphic component.
Bookwiser system is designed in an object oriented manner. So that, it has so many classes,
which can be either superclass or subclass. The interactions between them can be stated as
follows by the use of class diagram of world model component referenced by Diagram 5.7,
World Model Component Class Diagram:

◦ Object class is the superclass of the Book, Shelf and librarian classes. Book, Shelf
and Librarian classes are mainly used in world model component, however their
general fields such as feature and position are used in object recognizer
component.

◦ There are two classes that hold tables about lots of objects and states, one is
stated for Object class, and the other is stated for State Class.

◦ ObjectTable and StateChart classes implement an interface, called
WorldRepresentation in order to flow a general information between components.

7.2.7.Resources
 Any and all sources that are managed, affected or needed by the world model component
can be listed as follows:

◦ A database is the basic resource needed by this entity. This database is used for
the matching process. This database includes float numbers that have a meaning
with the corresponding feature and position information. As mentioned in the
constraints part, there is a time limit in this relationship between internal object
database and input coming from object recognizer component to the world model
component. Retrieving the matched information from the internal database needs
reasonably quite time. So that, efficient algorithms should be used in order to deal
with this limit and those algorithms are described in the processing part.

◦ A software library, namely OpenCV, is needed for this component. High qualities of
OpenCV and its useful relationship with Qt, which is needed in the graphic
component to create the graphical user interface of the Bookwiser, makes the
OpenCV the best choice for the application. So that, how the possible
disconnections between graphic component and world model component is
resolved by the giving path for the Qt in the OpenCV.

7.2.8.Processing
 The algorithm is used how the world model component performs its duties to fulfill its
responsibilities can be described as follows:

◦ The information comes from the Object Recognizer Component to the World Model
Manager Component.

92

◦ After, “setConn” function is called and returned by true, Context Information coming
from the Library Database is brought to the ObjectManager class in order to be
combined with the information coming from the Object Recognizer Component.

◦ Step2 is repeated whenever the information coming from Object Recognizer
Component is updated.

◦ Mode updates information comes from the Graphic Component to the World Model
Manager Component.

◦ Step4 is repeated when the user changes the state of the system or select one of
the modes by the input controller such as Search Mode and FreeWalk Mode.

◦ When a book, shelf or librarian is chosen by the user, incoming states from the
Graphic Component are stored in the state bank of the component.

◦ Output of the component is manipulated by the changes on the states.

Relevant time for this algorithm for the world model component can be estimated as 1
second. There are 24 frames needed to process in a 1 second video frame. Since
Bookwiser should provide real-time operations, world model component gains a great
importance on time complexity. For this reason, the matching operation can be in the
late at most half of the process time.

Relevant space for this component should be enough to hold the library database.
Since this library database has an efficient storage of features and positions of
detected objects, this is mainly not a problem for the application.

7.2.9.Interface/Interactions
 All services that are provided by world model component can be listed as follows:

◦ Resources: LibraryDbaseManger is the resource of the world model component.
▪ LibraryDbaseManger: This is a class entity used to retrieve the information

about detected objects. It has two methods, namely setConn and getElmInfo.
SetConn method is used to return a boolean value that is either a connection
established between library and other methods or not. sentConn gets a string
parameter which has a meaning of the element. getElmInfo method is used to
return a string that corresponds the element used in ObjectManager class in the
process of matching. LibraryDbaseManager I referenced by the Diagram 5.7
World Model Component Class Diagram.

◦ Data: Shelf, Book Librarian, Object, State StateChart, ObjectTable classes are the
basic data classes of Bookwiser.
▪ Shelf Book and Librarian classes are used to define and match the specific

objects detected by the camera. They have some methods in common, such as
getId and setId. Since each object is defined by their unique ids, an integer type,
namely id is used in these methods. Id fields can be changed by the use of setId
method and obtained by the use of getId method for all these 3 classes.

▪ Book class has name, rating and author fields in order to specify the further
information about a Book object matched in this component. They have all get
and set methods that can be used change the value of the parameter and obtain
the value of that parameter.

93

▪ Librarian also has name and id fields and their get set methods to specify a
Librarian object.

▪ ObjectTable class holds a table that consists of Objects. This class implements
an interface with the other table located in StateChart class. ObjectTable class
has three methods each of which is used to modify the table. insertObject,
updateObject and listObject all have a parameter of Object and used to
respectively insert a new object to the table, update the values of an object
specified by the parameter and list the information about object specified in the
parameter. ObjectTable is directly interacted with Book Shelf and Librarian
classes in a form of one to many relation. That means lots of Book, Shelf and
Librarian objects can be created and hold in ObjectTable class.

▪ State class has a field named type in order to access the state object uniquely.
get and set methods are used to process the access operation.

▪ StateChart class hol a table which consists of State objects. This class
implements an interface with the other table located in ObjectTable class.
StateChart class has three methods each of which is used to modify the chart.
getState, setState and removeState, all have a parameter of State and used to
respectively obtain the state given in the parameter from the chart, update the
values of the state specified by the parameter and deletes the state from the
chart specified in the parameter. StateChart is directly interacted with State
class in a form of one to many relation. That means lots of State objects can be
created and hold in StateChart class.

The relationships between these classes and their methods are clearly shown in the
sequence diagrams of world model component, referenced in 5.8 and 5.9 sequence
diagrams; World Model Component.

◦ Types: Interface (WorldRepresentation), database (string), id (int), name (string),
rating (int), author (string), type (int), objects (Object []), states (State []) are the
main types used in all methods and classes of world model component. These
types used as parameters and return values of methods and those relationships
can be seen in 5.7 class diagram of world model component.

◦ Subroutines: ObjectManager and WorldManager classes can be described as
subroutines of the world model component because all the basic operations are
processed using these classes and their methods. arrangeObjInfo is a method that
used to establish a relationship between LibraryDbaseManager and ObjectTable.

94

Diagram 7.2-World Model Component Class Diagram

◦ Exceptions: In this service, possible exceptions that may occur are explained. Exceptions
occur when the world model component of Bookwiser application operates an abnormal
process. For the data classes and their methods, there are possible “not found” exceptions
may occur, especially in get methods. In the ObjectTable and StateChart classes, there
may be “null reference” exceptions because of the allocating space for the object table
and/or state chart.

95

7.3 Graphic Component

Diagram 7.3-Class Diagram of Graphic Component

7.3.1.Classification
The Graphic Unit is a subsystem of the Bookwiser System which interacts with the World
Model Unit and the user himself/herself.

7.3.2.Definition
 The purpose of this component is to interact directly with the user for every action. These
actions are two-way. Giving information to the user and getting information from him/her.
Giving information means displaying the camera view with augmented contextual information.
Getting information is handled by input controller. User inputs are classified and sent to
related components. (The button clicks) Note that user inputs are not processed by the
graphic unit.
The button clicks were described in Bookwiser SRS document Use Case Diagram. (page 11)

7.3.3.Responsibilities
 The main responsibility of this component is to compose the object information coming from
World Model Unit with the objects captured in the video coming from the camera and forward
the process to the World Model Unit as the user requires through the button clicks.

96

7.3.4.Constraints
The constraints for the Graphic Unit are that:

– The Graphic Unit must be in touch with the World Model Unit without some serious
time-delay in order to get and send the information accurately.

– The Graphic Unit must be in touch with the library database without some serious time-
delay in order to get the required information accurately.

– The input coming from the World Model Unit- corresponding to the object
information(book, shelf, librarian information) must be given in an appropriate order as
to be placed correctly on the captured video captured by the camera.

– The video captured by the camera must be received without any serious time-delay in
order to place the object-information (shelf, book & librarian information) correctly on
the video to display it to the user.

– The “Display Book Information” button click cannot be active when there is multiple
shelfs in the user's vision, in other words the selection of a book must be available.

– The “Rate the Book” option cannot be active when there is multiple shelfs in the user's
vision, in other words the selection of a book must be available.

– The “Reserve the Book” option cannot be active when there is multiple shelfs in the
user's vision, in other words the selection of a book must be available.

– If the user wants to be alerted when the book he/she is searching for is in his/her vision
the “Search Mode” must have been chosen.

– The “Display Shelf Information” button click cannot be active when there is no shelf in
the user's vision, in other words the selection of a shelf must be available, and it is
required that the user must have at least one shelf in his/her vision.

7.3.5.Composition
The Graphic Unit has been composed by 4 subcomponents:

1-) Video Composer:

The purpose of the Video Composer is to compose the video captured by the camera
with the object information, specifically shell, book, librarian etc. in order to forward the
composed video to the user.

The main responsibility of this component is to compose the object information coming
from World Model Unit with the objects captured in the video coming from the camera.

2-) Screen Based Action Handler

The purpose of the Screen Based Action Handler component is to handle the screen
updates.

The responsibilities of the Screen Based Action Handler can be seen in two parts:
Firstly, it is responsible for the user mode changes: whether the mode is free-walk

mode or the search mode. The Screen Based Action Handler has to announce the World

97

Model Unit about the mode change.
Secondly, it is responsible to display the shelf and book information. When the user

has some shelfs (one or multiple, but at least one) in his vision and require the information
about one specific shelf the Screen Based Action Handler announces the World Model Unit
about that requirement. In a similar way; when the user has some books (one or multiple, but
at least one) in his vision and require the information about one specific book the Screen
Based Action Handler announces the World Model Unit about that requirement.

3-) Record Based Action Handler

The purpose of the Record Based Action Handler component is to handle the book
record updates in the library database.

The responsibilities of the Record Based Action Handler can be seen in two parts:
Firstly, when the user wants to rate a book that he is selected from his vision, the

Record Based Action Handler connects to the library database and update the rate of that
book according to the user's request.

Secondly, when the user wants to reserve a book, he had selected in his vision, the
Record Based Action Handler connects to the library database and update the reservation
information of that book according to the user's request.

4-) GUI

The purpose of the GUI component is to directly interact to the user in order to handle
user's requests appropriately.

The responsibilities of the GUI component can be examined in two parts:
Firstly, it is responsible to transmit the button clicks to the regarded components in

order to process as required by the user.
Secondly, it is responsible to display the information of the objects in the user's vision

in a user-friendly manner.

7.3.6.Uses/Interactions
 The Graphic Unit interacts mainly with three separate sections: the user himself/herself, the
database library and the World Model Unit. The detailed interaction can be explained in terms
of subcomponents more clearly:

1-) Video Composer:

Video Composer deals with the World Model Manager Unit subcomponent of World
Model Unit & the camera capturing the video.

The Video Composer composes the object information coming from the World Model
Manager Unit with the video captured by the camera.

2-) Screen Based Action Handler

Screen Based Action Handler deals with the World Model Manager Unit subcomponent

98

of World Model Unit.
 Screen Based Action Handler informs the World Model Manager Unit about the mode

updates and the requests of the users to display information about a book or about a shelf.

3-) Record Based Action Handler

Record Based Action Handler deals with the library database, only.
Record Based Action Handler updates the rate or reservation information in the

database library according to the user's demands.

4-) GUI

The GUI subcomponent of the Graphic Unit is dealing only with the user
himself/herself.

The GUI subcomponent displays the final video to the user and checks on the user
requests via button clicks.

7.3.7.Resources
The resources that Graphic Unit needs are:

Library Database:

The Graphic Unit needs library database in order to update the information related to
the rate and reservation information of the book.

Camera:

The Graphic Unit needs camera in order to put the relevant object information onto the
video captured by the camera.

7.3.8.Processing
The processing can be explained in terms of components more clearly:

1-) Video Composer:

void composeVideo(Object object, float frame[]) : Overwrites the frame composing
with the object information coming from World Model Unit.

2-) Screen Based Action Handler:

void displayBookInfo (int bookID) : Announces the World Model Unit that the
detailed information of the book with the bookID is requested to be displayed on the screen.

void displayShelfInfo (int shelfID): Announces the World Model Unit that the

99

detailed information of the shelf with the shelfID is requested to be displayed on the screen.
void activateSearchMode (int bookID) : Announces the World Model Unit that the

user mode is to be set up to the “Search Mode” and the book with the bookID is to be
searched.

void activateFreeWalkMode() : Announces the World Model Unit that the user mode
is to be set up to the “Free Walk Mode”.

3-) Record Based Action Handler:

void updateReservationInformation(int bookID) : Updates the book information
given with the bookID as reserved in the library database.

void updateRate(int bookID, float rate): Updates the book rate given with the bookID
according to the given rate in the library database.

4-) GUI:

void displayVideo(): Displays the updated video frame by the Video Composer. This
method is called by the Video Composer in order to warn the GUI that the video is updated
and is to be displayed.

void handleButtons(int button,int bookID,float rate): Handles the button clicks.
According to the given button click calls the required methods. It can be seen in the following
sequence diagrams:

Sequence Diagram 7.3.1

100

Sequence Diagram 7.3.2
void chooseMode (bool mode, int searchedBook): Changes the mode according to

the user's request. It can be seen from the following sequence diagram:

Sequence Diagram 7.3.3

101

7.3.9.Interface/Exports
The Graphic Unit component can be seen as a subsystem of the Bookwiser interacting only
with the World Model Unit, the user, the camera & the library database, basically.

The inputs that the Graphic Unit subsystem needs are that the video captured by the
camera & the object information sent by the World Model Unit.

The outputs that this subsystem generates are the updates on the library database, the
button click information sent to the World Model Unit & the final video frame that the user
needs to see in his vision.

The exceptions that the Graphic Unit throws are in the following situations:
• If there is no book selected & the user requests a displaying detailed information of

some book.
• If there is no book selected & the user requests an updating rate some book.
• If there is no book selected & the user requests a reservation of some book.
• If there is no shelf selected & the user requests a displaying detailed information of some

shelf.

8 Libraries and Tools
In this section, used libraries and tools are described.

1. OpenCV:
In the Bookwiser project, OpenCV library is used for the object detection part. OpenCV is an
open source computer vision library in C/C++. Since it is optimized and intended for real-time
applications, it is very applicable to use in Bookwiser which is a real-time augmented reality
application. Bookwiser is designed to be platform independent in a way that it will work on the
mobile devices. Independence of operating system/hardware or window-manager, OpenCV is
the best choice for our purpose. Moreover, it provides a generic image/video loading and
both low and high level of API.

OpenCV has considerably high quality features that provides so much easiness to the
developers:

1. Image and video I/O (file and camera based input, image/video file output)

2. Various dynamic data structures (lists, queues, sets, trees, graphs)

3. Basic image and video manipulation processing such as filtering, edge detection, corner
detection, sampling and interpolation, color conversion, morphological operations,
histograms, image pyramids.

4. Structural analysis (connected components, contour processing, distance transform,
various moments, template matching, Hough transform, polygonal approximation, line fitting,
ellipse fitting, Delaunay triangulation)

5. Camera calibration (finding and tracking calibration patterns, calibration, fundamental
matrix estimation, homography estimation, stereo correspondence)

102

6. Motion analysis (optical flow, motion segmentation, tracking)

7. Object recognition (eigen-methods, HMM).

For all the reasons listed above, Bookwiser uses the OpenCV.

2. QT Tool:
For the graphical user interface of Bookwiser, QT tool is used.

QT brings many advantages as portability, predefined interface with OpenCV and useful built-
in tools for GUI development.

103

9 Gannt Chart

104

10 Conclusion
Bookwiser is a valuable project that will both serve the users and the owners of the system in
a positive way, being a innovative idea and aiming to create a more comfortable environment
for its users.

The project should be developed in a complete understanding of the facts behind the need for
the project, the importance of the results of the project and should be considered as a part of
the instinct that creates the need of progress.

All the design details stated in this document is the result of a mixture containing innovative
thinking, analytic approach and a proper analysis of users' needs; therefore, developers
should not forget that these details have a critical importance for all elements of all levels in
the project as a whole.

All the design details stated in this document should give the developers a design mainframe
with some details.

105

