

EGGS ON THE DOOR

CENG 491

Detailed Design Report

Duygu ÇELİK -Engin ERTAŞ – Serap İNCE

2010

1 Introduction

1.1 Problem Definition
In the recent years millions all over the World have been using the Internet for different purposes. One of

the main objectives of Internet usage is communication and recently the video chat feature is the most

popularly used Internet application. Those applications not only used for business or education purposes

but also a popular tool for entertainment. In our market search we realized that people like to play online

games and video chat at the same time but a popular application which will satisfy this kind of interaction

is not present for more than two people at this moment. Which brings us to the aim of our project we plan

to create an environment that people can make video chat and play games at the same time our main goal

is to create an application which will serve for more than two people at the same time.

1.2 Purpose
The purpose of preparing this document is to explain complete design details of our project Audiovisual

Gaming Network. According to the standards determined by IEEE, the Software Design Report indicates

how the proposed software system will be structured in order to satisfy the requirements identified in the

Software Requirements Specifications document. To be more explanatory, it can be stated that the

objective of this document is to translate software requirements predetermined in SRS document into a

representation of software components, interfaces and data to be used as a guide later in implementation

phase of the project.

1.3 Scope
This detailed design report will mainly contain the general definition and features of the project, design

constraints, the overall system architecture and data architecture. Additionally, a brief explanation about

our current progress and schedule of the project will be provided in related sections. Design of the system

and subsystems/modules will be explained both verbally and visually by means of UML diagrams, in order

to help the programmer to understand all information stated in this document correctly and easily.

However, since every software design is open to changes and modifications, it is highly possible to make

changes during implementation and update SRS and SDD documents accordingly.

1.4 Overview
Readers get a clear understanding of the project and basic design choices by examining this detailed
design report. With the help of several UML diagrams, the modular architecture of the system is clearly
defined in the document. Which public methods that modules have are listed in class diagrams, indicating
the possible ways of interactions between modules.

1.5 Definitions and Abbreviations
CLI: Command Line Interface

GUI: Graphical User Interface

MPEG: Moving Picture Experts Group

H.261 : the video coding standard of the ITU

IDR : Initial Design Report

1.6 References
Westwater R., Furht B., “Real-Time Video Compression: Techniques and Algorithms.” America: Cruvel

Academic Publishers Group, 2006, np.

Ouaret M., Dufaux F., Ebrahimi T., “On Comparing Image and Video Compression Algorithms.“ Institut de

Traitement des Signaux Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,

Switzerland.

Balaško H., “Comparison of Compression Algorithms for High Definition and Super High Definition Video

Signals.” Audio Video Consulting Ltd., Karlovačka 36b, 10020 Zagreb, Croatia

Raghuveer A., Kang N., David H. C. “Techniques for Efficient Streaming of Layered

Video in Heterogeneous Client Environments.” Dept. of Computer Science & Engg. School of

Computer Science & Engg. Dept. of Computer Science & Engg , University of Minnesota Chung-Ang

University University of Minnesota Minneapolis, MN 55455 South Korea Minneapolis.

2 System Overview
Our target software has three main functionalities. The first functionality is supplying communication

between any group of people whose number of members does not exceed 6. In our system, this

communication is supplied with the help of direct IP connection. In order to make this facility available, we

are going to use some libraries of C# programming language and make use of fundamental network

algorithms.

The second functionality is providing the software users with the capability of involving in audiovisual

conversation. In order to reach that aim, we consider using some streaming algorithms that are explained

further in following sections. Also, since our system’s audiovisual ability is available to 6 people, we need

to decrease the streaming size. Therefore, in order to make sampling rate considerable, we will use some

compression algorithms. Moreover, to enhance the compressed video streams, we plan to use filter

algorithms mentioned in subsequent sections of our document.

The last functionality of our software is supporting many multi-player Java games which can communicate

with the software with the help of Game Play Interface. Therefore, after the software gets in use, Java

games could be classified as “supported” and “unsupported” with respect to their abilities to connect the

main software.

In order to make a not complex design to reach these aims, we are supposed to follow a modular

approach. Namely, dividing the system into some sub-modules with regards to different functionalities not

only ease the project development steps, but also helps us to make our product reliable, efficient and

consistent.

Our project is divided into two main modules (Network and GamePlay) which are clearly explained in

“Architectural Design” part.

3 Design Considerations

3.1 Design Assumptions, Dependencies and Constraints
Our project aims to entertain people in an audiovisual interactive environment. As a result, one of our

goals is to design a system that could not bother people by long response times, latencies and software

problems. Hence, system constraints are defined according to this platinum base.

Firstly, we aim to design a system which is capable of responding six people in a suitable time. We choose

not to exceed this player limit at our first version of software, since the greater the number of input

streams, the heavier the load on the network.

Secondly, each user has different bandwidth limitations. However, the total web cam streams are too big

to be received and to be sent, as 6 people are considered. Therefore, we need to reduce the amount of

data to keep the system consistent. To get over the limitation problems, we use compression algorithms in

order to handle 6 people on the system at the same time.

Thirdly, as we are multi-casting and working with the streams with different qualities, we should find a

solution which is suitable in that kind of heterogeneous inputs. To handle this problem, we used the

layered multi-casting streaming technique which serves best for our needs. Layered multi-casting

streaming divides the video into different layers by filtering, quantization and down-sampling. Then, a

basic low-quality image is sent to the receivers. On the computer of clients, with the help of filtering, the

images are decompressed. Next, according to the existing hardware and software system of the receiver,

the video is filtered and tried to be shown similar to the old quality. Using that kind of streaming

technique decreases the data load on the network. To sum up, our goal is to keep the system stable

without losing too much data during the compression and filtering processes, and keep the video in a

reasonable quality level.

3.2 Design Goals and Guidelines
Our first goal of design is to implement a system that communicates a few users consistently without

synchronization problems with suitable response time and image quality. After we manage to establish

the connection between users, we are going to embed the game play module in the system. The goal of

this module is to contain an interface which will be a powerful tool to connect different kinds of games to

the system. As an external game, we will implement the taboo game (which is the default game) in our

project. The reason why we have chosen this game is that it requires visual interaction between the

players during the game. Finally, if we have time, we will try to code different games for our system.

4. Data Models and Design

Since we do not have a database in our software, we do not have any complex relations between data and

objects. In this section, we are to explain the trivial data types of our software.

4.1 Network Settings & GamePlay Settings & Preferences
In our system, a user has the capability of changing some system features. This ability makes our software

much more user friendly.

These settings are going to be included in a single “settings.set” file. That file is supposed to contain each

setting on each newline.

In case of error in the setting file, default setting options are going to be chosen by our system.

4.2 Friend List
In our software, each user is capable of constructing his/her friend list. According to our design, this friend

list is going to be included in “friend.xml” file. This file is going to include “Friend” objects in the system.

We do not prefer using database here, since we think that a single user on each computer could not have

more than 10000 friends. Only an index file is adequate for such a case. This index file is named as

“index.dat”. Each line of file includes information only for one “Friend” object.

The system does not allow a friend list to have more than 10000 friend objects. Moreover, in case of file

errors, the system uses the blank friend list.

4.3 Chat Diaries & Game Results
A user may save her/his conversation details in external files. This ability is included in Graphical User

Interface of Network module. The details of each conversation are written to an external file whose name

is determined by the user. The external files of conservations are contained in “diary” sub-directory.

A user may save her/his game results also. Also this ability is included in GUI. The game result reports are

designed to be written by external games. However, a user must give permission to make the reports

written. The details of each game are included in an external file whose name is determined by the user.

The external files of conservations are contained in “results” sub-directory.

4.4 Extra Data Types

4.4.1 IP

As we know, a standart IP has a type like “a.b.c.d”. Here, a, b, c and d are unsigned integers ranging

between 1 and 255. Likely, our IP data type has such a structure.

IP:

unsigned int: a

unsigned int: b

unsigned int: c

unsigned int: d

4.4.2 Friend

“Friend” data type consists of three members with primitive data types:

IP: user_ip

char[20]: username

char[30]: notes

5 System Architecture

5.1 Architectural Design
Our Audiovisual Gaming Software is divided into two main modules: Network and GamePlay modules.

While Network module mainly focuses on the network communications between server and clients, video

streaming, compression and filtering, GamePlay module supports various games with the help of designed

interface.

Network is the key module of the system which is separated into four sub-modules: Streaming, Filter,

Compression and NetworkSettings.

GamePlay module is responsible for connecting with game executables designed for this software. There

are going to be many games supported by our product. Therefore, in order to link these games to the

software, we need a powerful interface in this module. There are two sub-modules of GamePlay:

GamePlayInterface and GamePlaySettings.

One of the most crucial parts of our software is compiled Java games supported by our software. By the

help of those, people may play enjoyable games during audiovisual conversation. Any game

communicating with GamePlayInterface module with correct interface messages are supported by our

software. As default game in our software, we include Taboo game to be played.

The overall scope of the project is given on Figure1.

Figure 1: Architectural Context Diagram

5.2 Description of Components

5.2.1 Network Module

Definition:

The purpose of this main module is to constitute a skeleton for our software. Network Module is one of

the two main modules in the system. It executes some crucial operations like filtering, streaming,

compressing and communicating with the user. Network module also uses these operations properly in

order to get the system synchronized in games and audiovisual conversations. Network module is divided

into five sub-modules in order to be executed less error prone, since we know that traditional design of

system components are more prone to system errors.

Responsibilities:

The main responsibility of the network module is to get the users to communicate with each other via

network connection. In order to reach that aim, TCP/IP protocols and communication libraries must be

used properly to get desired results. Network module must be designed so well that the disconnections

between users must be trivial in numbers. This reliability property is vital in our software, since we

propose a new type of enjoyable activities. Therefore, we cannot get the users to be nervous during use of

the program.

The second responsibility of the network module is to provide the users with audiovisual conferencing

ability. This property is the key property of our software. Without audiovisual abilities, we could not say

that we propose a new generation gaming network.

The last responsibility of the network module is to get users and the software connected via designed

graphical user interface.

Constraints:

In order to achieve the main responsibility of the module, which is providing reliable platform to users, we

need to put a constraint on the number of users. As we know that, P2P connection between large number

of users is problematic. For example, if we consider the game of “The Age of Empires II”, we can see that

only 8 people are supported to play the same game simultaneously. Likewise, in our project, we put the

connection limit as 6, which is smaller than the game's, since audiovisual connection is needed to be

established.

In order to achieve the second responsibility of the system, we need to use some compression techniques

in our software in order to support many users simultaneously, which leads the loss of quality in the

software.

Composition:

The module is divided into four sub-modules to make the software less error prone.

Uses/Interactions:

Since the network module is the main module and we consider this module as skeleton, we can think that

the network module is in interaction with the other main module GamePlay, its own sub-modules and the

users.

Resources:

This module uses mostly network resources in order to establish a communication. Also this module

requires the frequent use of CPU in order to achieve compression and filtering tasks.

Processing:

This module is not involved in direct processing of data. We consider this module as skeleton and general

interface of network sub-modules and users. The member functions are included in Section 7 of this

document.

5.2.1.1 Compression Sub-Module

Definition:

The purpose of this sub-module is to minimize the data before sending it to the remote computers. The

module produces small sized packages of data.

Responsibilities:

The main responsibility of this sub-module is to reduce the amount of data, before sending it through the

network without losing too many details. This sub-module is one of the vital pieces of the system with

regards to response/execution times of software. Namely, the load on the network the video quality, how

many people could be handled on the system is directly dependent on the compression sub-module. The

data flows through the network should be packed before being sent. All the data (images, chat data and

the data coming from the GamePlay module) is packed in this sub-module. To provide the efficient flow of

data, it is important to process the data in little time and reduce the size. Also the synchronization to be

provided and all the compressed data should be sent in correct order. In order to do this, the packages

created by the compression sub-module are numbered. The numbering system is also a safety precaution

against the failures of receiving packages. All the clients process the same numbered packages at the same

time. In case of one of the clients received the packages later than others and there are more than one

package to be processed, it processes the data which is being processed by the other clients, which

provides the system with synchronization, even if there are some latencies or faults in the network.

Constraints:

The compression sub-module is directly related to the compression algorithms. The main constraint of the

sub-module is the compression ratio. The compression ratio is the ratio that we will minimize our data

accordingly. In this system, two algorithms will be used which are namely MPEG and H 261. The MPEG

format includes compressing the images with a ratio of 30:1 and H 261 compresses with ratio 50:1. On the

other hand, as the system uses filters, the data amount of the images will be reduced too. Therefore, after

compression, the images will be compressed more than those ratios. The second constraint is that the

compression process should not take too much time, and the images ought to be sent in a suitable

duration. The compression algorithms work on the client sides and on their own machines, so that the

host is not loaded to compress the data coming from the clients. In case of too much latency is caused by

the processes the quality of and the size of the images may be reduced to decrease the computation time.

Composition:

This sub-module is not divided into smaller sub-modules or components it consist of a main compression

module and all the work is done in this module.

Uses/Interactions:

The compression sub-module compresses the data and produces packages of compressed data. Before

the compression module process the image data is passed from filtering sub-module to reduce the data

size by means of noises and tiny details in the image. These processes can be called as the encoding period

processes. After the encoding period is finished, the encoded data is sent through the network. Then, in

the receivers’ computers, decoding part is started. The compressed image should be decompressed and a

fine quality image should be displayed on the users screen. The decompressed data is a basic quality

image because of the loss of details during the compression. In order to display the images in a finer

quality than the basic image, the images are again filtered in the receivers’ computers; therefore, the data

which comes as the streams is first processed by the compression sub-module for decoding and then, it is

sent to the filtering sub-module for further process. Those two sub-modules work in collaboration with

the compression sub-module.

Resources:

The resources used by this module are the processors used to handle the compression. Since the packaged

data is sent and it is not saved in computer, not too much memory space is required. In addition, the

encoding and decoding libraries of MPEG format and H261 format are used. During the compression, the

problems could occur on the decoding and encoding periods. Another race condition will be process speed

that may differ in the different client computers. Being aware of the heterogeneous system, we are

handling the images that flows on the network that are basic quality images not loading the processor too

much.

Processing:

There are two algorithms which can be used in the system: MPEG and H 261. The details of these

algorithms are given in section 7 of the document.

5.2.1.2 Streaming Sub-Module

Definition:

The streaming sub-module is responsible for sending and receiving data and providing the communication

of the host and the clients. The data flow on the network is done via streams. Image data, gaming module

data, chat data and also voice data are divided to streams and those streams are sent and received by the

host and the clients.

Responsibilities:

The streaming sub-module is responsible for the data flow on the network. The data which is processed by

the compression sub-module is sent to the streaming sub-module as packages after being compressed.

This sub-module provides the communication between the users by means of any kind of data that is

present in the system. The streaming module is also responsible for the synchronization of the system.

The packaged data should be sent in the correct order in order to provide sharing without too much

latency.

Constraints:

The bandwidth limitations of the network are the main constraint of the streaming sub-module. The

bandwidth limitations may change in different network systems. In our system, we plan to handle at most

6 people at same time. In accordance with bandwidth load on the system, the user number that system

handles may change due to the limit. The image quality changes with respect to the video device used in

the system. To fit the in the bandwidth limitations, images may be reduced in size before being sent or the

quality could be decreased by using some filters. However, that kind of operations brings complexity in the

process, and increases the processing time of every frame. Moreover, the quality of the images reduces

too much. To accomplish the system’s consistency before losing too much data our system may have to

handle less users in such a case.

Composition: The streaming sub-module does not have smaller sub-modules or components.

Uses/Interactions:

The streaming sub-module belongs to network module and it works in collaboration with the compression

and filtering sub-modules. Our system is a multi-layered multi-casting streaming system. The data is firstly

divided into different layers and after that all those layers are compressed by the compression sub-

module. The compressed layers are then sent to the receivers by the streaming module. Finally, in the

decoding part, in the receivers’ computers, the streams are handled by the compression and filtering

modules.

Resources:

The streams are created from the data of the chat system, gaming module, video and also the other

necessary information needed to provide system synchronization. To handle the multi-layered multi-

casting streaming, the C# streaming libraries will be used.

Processing:

The multi-layered multi casting streaming is used to send streams to more than one receiver at the same

time. In our system, the host receives all the inputs from all the clients and sends all the coming inputs to

other clients, which means that the host is the one accumulating all the data and serving it to clients. As

our system is a heterogeneous system, which means that the computer resources of every user is

different. To ensure that the system will handle the data the images, the basic quality of the images are

sent to all the users with the necessary information to increase the quality by means of difference frames

and filter information. The layers consist of this information to increase the quality one step further, if the

computation power of the system is enough to handle all the filters in time that will not disrupt the

synchronization with the other users. The details are given in section 7 of the document.

5.2.1.3 Filtering Sub-Module

Definition:

The purpose of the filtering sub-module is to reduce the size of the data produced from the videos by

using some techniques and algorithms before compression and streaming.

Responsibilities:

The filtering sub-module is responsible of reducing the noises in the video and the data amount on the

system and increasing the quality of the basic images received from sender on receivers’ computers.

Constraints:

According to the processor power and the complexity of the filtering algorithm, the process time in

filtering sub-module changes. As the system should work in real time, the complexity of the algorithms

should not be in a level to cause latencies in the system. As a result, after testing the filtering sub-module,

some of the filtering algorithms may be changed to stick to the time complexity.

Composition:

The filtering sub-module does not have any smaller sub-modules but it uses de-blocking filter, down-

sampling and quantization algorithms. The de-blocking filter is applied to blocks in decoded video to

improve visual quality and prediction performance by smoothing the sharp edges which can form between

macro blocks when block coding techniques are used. The filter aims to improve the appearance of

decoded pictures. Down-sampling could be done for every data which helps to represent the data in

smaller sizes.

Uses/Interactions:

The filtering sub-module works in corporation with the filtering and streaming sub-modules. The filters are

processed on the image before and after the compression period. In the encoding process, the data is

filtered to reduce the size and then it is sent to the compression and filtering sub-modules. In the receivers

side, the filtering module works on their own. The received data is passed from filters, after decoding is

done to increase the quality of the images.

Resources:

The filtering algorithms have mathematical computations generally, and they are done in ALU of the

processors. Therefore, the higher the computational power of the processors the faster the filtering

operations is done. As the filters process the images frame by frame, the operation does not require too

much memory use or an external database.

Processing:

The filtering sub-module uses the de-blocking filter. The details of filter and other techniques are listed in

Section 7 of the document.

5.2.1.4 Network Settings Sub-Module

Definition:

Network Settings module includes the settings for network connection between the system and remote

users.

Responsibilities:

This sub-module is responsible for applying to the system some network choices like compression detail

ratio and maximum number of users that can connect.

This sub-module has to cooperate with the other sub-modules of the network module.

Constraints:

No constraints exist.

Composition:

No sub-modules exist.

Uses/Interactions:

This sub-module is in interaction with other sub-modules of Network module, and in direct relationship

between the settings of whole main module.

Resources:

This sub-module does not need any big amount of system resources.

Processing:

This sub-module neither does nor needs any specific algorithms. Only set and get methods are defined.

Member functions are described in Section 7 of the document.

5.2.2 GamePlay Module

Definition:

This module is the one of the main modules of the system providing the software the ability of executing

many multi-user turn-based games. Therefore, this module includes a specific interface, a setting module,

many supported games and interface functions for network connections.

Responsibilities:

The main responsibility of this module is to get the system to execute many supported external Java

games. In order to reach that aim, GamePlay module consists of a fast interface having 10-12 interface

functions.

The second responsibility of this module is to get the game data transferred from external games to the

other remote computers via Network main module in order to arrange turns in turn-based games.

The last responsibility of this module is to embed downloaded games to the software, which help the

system to execute the game properly.

Constraints:

The main drawback of this interface design is that the software could not execute the Java games not

having interface commands in it. Therefore, in order to operate properly, it is a must for games to connect

to the system via designed interface.

The second drawback is that this module supports only one game to be played at the same time. If a user

does not end a game, he/she cannot start a new one.

Composition:

This main module has two sub-modules which inherits some methods of this main module.

Uses/Interactions:

The module interacts with external games via designed interface, and communicates with Network

module via member functions. All the game data must be sent to Network module in order to be

delivered.

Resources:

The module mostly uses CPU resource in order to execute the external Java games. However, the amount

that is needed is not so much. Therefore, any computer could easily execute this module's operations.

Processing:

Since the module's aim is mainly to be the part of the skeleton of software, no specific algorithms are used

directly in this module. Member functions are defined in Section 7 of this document.

5.2.2.2 GamePlaySettings Sub-Module

Definition:

GamePlaySettings module includes the settings for network connection between the system and remote

users.

Responsibilities:

This sub-module is responsible for applying game choices to the games that are to be played. There are

some game choices like sound and visual options to be considered.

Constraints:

No constraints exist.

Composition:

No sub-modules exist.

Uses/Interactions:

This sub-module is in interaction with other sub-modules of GamePlay module, and in direct relationship

between the settings of whole main module.

Resources:

This sub-module does not need any big amount of system resources.

Processing:

This sub-module neither does nor needs any specific algorithms. Only set and get methods are defined.

Member functions are described in Section 7 of the document.

5.2.2.3 GamePlayInterface Sub-Module

Definition:

GamePlayInterface module includes the interface functions that a game uses in order to communicate

with the software. By the help of this interface, the system could support many turn-based external Java

games.

Responsibilities:

The main responsibility of this sub-module is to connect external games via designed interface correctly. If

this sub-module cannot be reliable and produces some errors, the external games could not be executed

properly. Moreover sometimes, synchronization problems may occur.

Constraints:

In order to reach this interface aim, our sub-module includes basic 10-12 functions to be used by games. If

a game wants to communicate with our software, the game must use these command line functions

properly.

The second constraint of this module is that only one game can interact with the software via this

interface

Composition:

No sub-modules exist.

Uses/Interactions:

This sub-module is in interaction with other sub-modules of GamePlay module, and in direct

communication with the external Java games.

Resources:

The sub-module mostly uses CPU resources to function properly. However, no extensive use of CPU is

needed, which makes our software portable to any kind of standards of system resources.

Processing:

This module uses a standard command line parser in order to communicate. This parsing algorithm is

really simple and is not computationally complex. Which member functions and external interface

commands that the sub-module have is described in Section 7 of the document.

6 User Interface Design

6.1 Overview of User Interface
For our software, the type of user interface that will be implemented is a graphical user interface that will

provide users with effective operation on the software. While designing the GUI, several criteria are taken

into consideration to increase the usability and user friendliness of the GUI as much as possible. For

instance, the system should always keep users informed about their state through appropriate feedback

written in a suitable part of the GUI. Moreover, in case of an error occurs, GUI helps users to recognize,

diagnose and recover from errors. In addition to this a help documentation will be available through the

GUI menu. Additionally, system uses the platform conventions, i.e., the system does not oblige users to

wonder whether different words, situations, or actions mean the same thing.

The system functions designed to answer all the needs of the users are listed below. They are mainly

grouped into two: One group of functions stands for general operations, and the other includes the

system functions.

 6.1.1 General System Functions

 Select Game

Users are able to select the games that have been embedded into system already. The system

function Select Game initializes the system state according to the chosen game. The properties such

as, the number of users, the game board interface, etc, are set depending on selected game via the

Select Game system function.

 List Existing Conversations

A user, in case of not he/she does not prefer to create his/her conversation, can join existing

conversations. The List Existing Conversations system function displays the sessions that have already

been created.

 Start Conversation

It is used to start a conversation. User using this functionality turns out to be Host.

 Join

User may prefer to join an existing game instead of creating ones on her/his computer. Join system

function handles that case during system progress.

 Invite

Additional users may be invited to an existing conversation. The invitation can be sent by the host to

the users who have not joined any game session yet.

 Respond to Invitation

Invited user may or may not attend to the game to which she/he has been invited. Respond to

Invitation system function returns the information whether or not the invited user will join the game.

 Set Minimum Number of Players

Sets the required number of players value to predetermined default value.

 Get Minimum Number of Player

This system function returns the default number representing the minimum number of players in

order for the host to start the game.

 Set Maximum Number of Players

By sending invitations to users or accepting the demands of the users who wants to join the game, the

maximum number of the players can be changed. Set Maximum Number of Players system function

handles the situation.

 Get Maximum Number of Players

This system function returns the current maximum number for a particular conversation.

 Open up Camera View Window for the User

For each newcomer user a sub-window where the user’s camera view is displayed is opened up. The

size and orientation of this window is determined according to the number of users who have joined

the game at that time.

 Leave Conversation

Users, except the host, can leave the session they have been joint. Hosts are not allowed to leave the

session unless they are not received the approval from the other participants.

More detailed explanations given in the related parts.

 End Conversation Demand

In case of the user who wants to leave the conversation is the host for the current conversation,

he/she has to make the others know that the session will end. The End Conversation Demand system

function operates together with another system function, namely Respond to End Conversation

Demand.

 Respond to End Conversation Demand

 Respond to End Conversation Demand system function returns the information whether or not

participants approved the host’s demand to end the conversation.

 Start Game

After the conversation is established between all participants by joining to existing conversation or

accepting the invitations, users may start to play. Start Game system function can only be used by

the Host of conversation.

 Respond to Start Game Demand

Before the game is started by the host, the clients respond him/her to give the information whether

they will join or not. Depending on the result of this system function, a new game is started or not.

 End Game

End Game system function enables the host to terminate the current game. This system function

requires the approval of the end game demand by the clients.

 Respond to End Game Demand

Like the Respond to Start Game Demand case, this system function also operates to inform the

participants, in case the host demands to end the current game. The current game is ended according

to the return value of this function.

 Send Chat Message

There will be an area visible to all users, via which all the players can chat each other. Send Chat

Message function provides group based communication in written case.

 Send Personal Message

Users are capable of sending messages only to the ones that they choose. A call to Send Personal

Message function prompts the chat feature for only the chosen users.

 View Chat Diary

Logs of chats are kept by the system. The public logs can be accessed by all the users of a certain

session, however, the personal chat logs are made visible only to the participants of that conversation,

as it is supposed to be.

 Show Chat Details

Some details, such as, when the conversation was done, who were the participants, etc, are kept by

the system and these data are obtained via the Show Chat Details function call.

 Delete Chat

The logs of chats are deleted when demanded via the Delete Chat system function.

 View About Us

This parts includes information about our group ‘Eggs on the Door’, members, and the project.

 View Help Contents

A manual will be made available to users to help them while using the software.

 Download Game

This system function exists for the users to get the executable of the software.

 Communicate with Us

Via this system function, the users communicate with us, the members of Eggs on the Door.

 Learn Self IP

Undertaking the task, the host may need to know his/her IP to supply some users with this data and

make them connect to his/her conversation. The function call Learn Self IP gives this opportunity to

the users in some cases, if they demand this.

 Find in Text

Users can search their logs and chats via Find in Text system call.

 6.1.2 Taboo-Related System Functions

Since we are going to visualize our software on Taboo game, we indicate some system functions that

are required to solve the Taboo- related issues. The following ones are called only in case of the

chosen game is Taboo.

 Change Current Card

Users are allowed to change the cards that they want to skip. Pressing the change card button calls

this system function.

 Show Remaining Time

This system function is periodically called after the stopwatch is set by a user, which indicating that

the time is started for the player trying to explain the word.

 Pause Stopwatch

In case of users press the pause button, this system function is called in order to keep the remaining

time for the user.

 Resume Stopwatch

When the pause button has already pressed ones, meaning that the time is paused for that player’s

turn, pressing that button again calls Resume Stopwatch system function to start the stopwatch where

it has been stopped.

 Mark Card as Correct

When one of the teams correctly guesses the word that one of their players has been trying to depict

that card is needed to be marked as correct in order to be added to the points of the team.

 Mark Card as Taboo

In case of the player depicting the word written in the current card, uses one of the taboo word

accidentally, the Mark Card as Taboo system function is called by pressing taboo button.

 Activate Drawing Mode

When the players turn is to depicting the word by drawing, the user presses draw button, calling the

Activate Drawing Tool system function.

 Activate Puppet Performing Mode

When the players turn is to depicting the word by using the puppet, the user presses puppet button,

calling the Activate Puppet Performing system function.

 Activate Default Mode

By pressing default button and thereby calling the Activate Default Mode system function, the player

exits the puppet or the drawing mode.

 Drag Puppet

After activating puppet performing mode, the Drag Puppet system function is called when the puppet

is moved by the player.

 Draw

Draw system function is called in order to use the functionality in drawing mode.

 6.2. Screen Images

Figure 28: Initial window

Figure 29: Taboo Game GUI

Figure 30: Save Game Results GUI Figure 31: Save Chat Results GUI

6.3. Screen Objects and Actions
By system functions expressed above the GUI buttons are controlled. In that sort, the objects composed of

the GUI parts.

7 Detailed Design

7. 1 Network Module

Network Module Attributes:

 Ip: Ip is an integer which keeps the is of the user

 user_name: User name is a string which keeps the user name information

 func_state: EKSİK

 no_of_players: Is the number of players which will join in the game that integer is kept to arrange

the user interface and the gaming module accordingly.

 active_players: Active players is the integer to keep the number of players currently active on the

system.

 Current_game_id: Current game id is the integer which is kept to keep track of the games

currently played.

Network Module Methods:

 int GetPlayercount(): Get player count is the method which returns the number of active players.

 int getPlayerOrder(int player_id): Get player order method returns the integer value of the order

which is the user plays in the game.

 bool setPlayerPositions(string string): set player positions method sets the positions of the

players on the game board according to the string value (which is the current order) it takes as the

argument and returns true if the operation is successful false if it fails.

 bool setGameWİndow(int coord_x , int coord_y , int width , int height): Sets the position of the

game window on the user interface and returns true if it operates successfully false otherwise.

 bool startGame(): Start game method starts a game returns true if it is successful false otherwise.

 bool cancelStart(): This method cancels the start operation which is explained above returns true

if it is successful false otherwise.

 string getRemoteActivity(int player_id): This method gets the activity of the other players playing

the game and invokes other methods. EKSİK

 bool sendActivity(string activity): send activity method sends the activity of the player to the

other players according to the string it takes as the argument. There are different activities

defined in the system.

 bool EndGame(): Ends a game which is currently played returns true if operation is successful false

otherwise.

 bool startConversation(): starts a conversation with the other users returns true if the operation

is successful false otherwise.

 bool endConversation(): ends the conversation with the other users returns true if the operation

is successful false otherwise.

 bool join(ip host_ip): join operation takes an ip value and creates a connection with that host

(owner of the ip) returns true if the operation is successful false otherwise.

 bool invitePlayer(ip player_ip): takes an ip value as the argument and sends an invitation to join

the conversation or game to the owner of the ip.

 bool leaveConversation(): if a user wants to leave a conversation this method is called and the

user is deactivated in the conversation window and the connection is closed.

 bool respondInvitation(): when an invitation is received by a host the user can choose to join or

ignore the invitation and this method is called when a user is responded to an invitation. The host

is informed by that method. This method returns true if the operation is and successful false

otherwise.

 bool respondLeaveConversation(): When a user wants to leave a conversation and calls the leave

conversation method in the host side this method is called and the host responds to that action

and closes the connection with that user. This method returns true if the operation is and

successful false otherwise.

 bool disableCamera(): disables the webcam. This method returns true if the operation is and

successful false otherwise.

 bool EnableCamera(): enables the webcam. This method returns true if the operation is and

successful false otherwise.

 bool startGame(int game_id): starts a chosen game according to the game_id. This method

returns true if the operation is and successful false otherwise.

 bool respondStartGame(): respond start game is the method which is invoked when the host

called the start game method in the client sides the this method is called and the game is started if

all the users are ready to play. This method returns true if the operation is and successful false

otherwise.

 bool respondEndGame(): This method is called when the host calls the end game method the

clients call that method to respond the end game action. This method returns true if the operation

is and successful false otherwise.

 bool sendPM(): EKSİK This method returns true if the operation is and successful false otherwise.

 bool sendChat(string message): That method gets the message to be sent as a string argument

and send it to the host after processing the message is shown on the screen. This method returns

true if the operation is and successful false otherwise.

Figure 32: Class Diagram – Member Functions

Friend List Attributes:

 Friend_list : Friend[] : This attribute keeps the friends of the user which are added as the contacts

as a list.

Friend List Methods:

 bool addUser(ip : user_ip , notes: string , username : string): adds a friend with its IP and

username to the friendlist of the user.

 bool deleteUser(ip: user_id): Takes an IP value as the argument and deletes the friend ,which is

owner of the ip, from the friendlist of the user.

 bool updateUser(ip : user_id notes : string , username : string): Updates the information of an

already added friend of the user in the friend list according to the given arguments to the method.

 bool sortByUserName(): Sorts the friendlist of the user according to the username string values.

 bool sortByIP(): Sorts the friendlist of the user according to the IP values of the friends in the

friendlist.

Figure 33: Class Diagram – Network Module System Functions for Friend List

Logs & Diaries Window Attributes:

 Game_play_diary : It is the diary that the information of the played games by the user is kept.

 Chat_diary : It is the diary that the logs of the user are kept.

Logs & Diaries Window Methods:

 diary viewGamePlayDiary(): Returns the diary that the game results are kept.

 result showGameResult(): returns the result kept in the gameResultDiary.

 bool deleteGameResult(): deletes the game result in the gameResultDiary.

 diary viewChatDİary(): Returns the chat diary of the user.

 details showChatDetails(): displays the details in the chat diary.

 bool deleteChat(): Deletes the chat in the diary

Figure 34: Class Diagram – Network Module System Functions for Logs & Diaries

Miscellaneous Auxiliary Functions Attributes:

No attributes

Miscellaneous Auxiliary Functions Methods:

 window viewAboutUs(): directs the user to the aboutUs window.

 contents viewHelpContents(): displays the contents on the user interface.

 window downloadGames(): directs the user to the window that the currently downloadable

games are displayed.

 communicateWithUs(): directs the user to the page that they can send e-mails to the admins.

 ip learnSelfIP(): returns the ip of the user.

Figure 34: Class Diagram – Network Module System Functions for Miscellaneous Auxiliary Needs

7.1.1 Compression Sub-Module

Technical Details

Compression

Compression is one of the most important fields of video processing. Sending the data without losing too

much detail is a difficult problem to handle. In our project, as our aim is to design a platform which is

going to respond up to 6 people, the less data we send, the less load on the network we have.

Also there are some other constraints to be handled so the ideal compression technique should produce

levels of compression rivaling MPEG without objectionable artifacts. These constraints can be expressed in

three sentences:

1. Can the system be played back in real time with inexpensive hardware support?

2. Can the system perform under network overload or on a slow platform?

3. Can the system be compressed in real time with inexpensive hardware support?

In the system, according to the bandwidth limitation, the frames we can be sent per second is limited. At

that moment, the compression algorithms are needed to send the data in compressed format. There are

different compression algorithms which serves different needs. They can be categorized in two forms as

lossless and lossy compression algorithms. In our implementation, we will work with the lossy

compression algorithms. There are two compression algorithms which will be used in the project in future.

Either the one which serves our needs best will be chosen or the both of them may be used in the future.

MPEG

The most of the video compression algorithms takes the video and divides it into images that are not

moving and make the compression in a similar manner with the image compression algorithms. In fact, as

we are sending those images continuously on the network to more than one people, we need a better

compression algorithm. Therefore, compared to the algorithms works, in this manner MPEG compression

algorithm is more advantageous. The main advantage is that MPEG algorithm divides the image into

different segments. After that, it detects the motion in the images, which means that the segments which

do not contain any motion from beginning to the end are not sent in every frame. The motion is detected

on the segments, and the parts containing the motion and changes according to that motion are

compressed and sent. The technique may be explained with the following image:

Figure 35: Segments of video used in MPEG

The segment which is shown as stripes stands still during the video, so they are still segments and are not

needed to be sent in each frame. On the other hand, the man in the frames moves, and the segments

which include the man image contains motion. Those motions are detected and the segments containing

the motion are sent in each frame.

In our project, the backgrounds of the users during the conferencing are likely to be constant so that

compression algorithm is likely to work fine in our situation.

Figure 36: Motion detection in MPEG

Here, in the following figure, level 0 data flow diagram of compression is shown, which indicates our steps

of processing.

Figure 37: DFD diagram of compression module level 0

H.261 / H263

H.261 is video coding standard published by the ITU (International Telecom Union) in 1990. It was

designed for data rates which are multiples of 64Kbit/s, and is sometimes called p x 64Kbit/s (p is in the

range 1-30). These data rates suit ISDN lines, for which this video codec was designed for.

The coding algorithm is a hybrid of inter-picture prediction, transform coding and motion compensation.

The data rate of the coding algorithm was designed to be able to be set to between 40 Kbits/s and 2

Mbits/s. The inter-picture prediction removes temporal redundancy. The transform coding removes the

spatial redundancy. Motion vectors are used to help the codec compensate for motion. To remove any

further redundancy in the transmitted bit stream, variable length coding is used.

H.261 supports two resolutions, QCIF (Quarter Common Interchange format) and CIF (Common

Interchange format).

The video multiplexer structures the compressed data into a hierarchical bit stream that can be universally

interpreted. The hierarchy has four layers:

1. Picture layer: corresponds to one video picture (frame)

2. Group of blocks: corresponds to 1/12 of CIF pictures or 1/3 of QCIF

3. Macro blocks: corresponds to 16x16 pixels of luminance and the two spatially corresponding 8x8

chrominance components.

4. Blocks: corresponds to 8x8 pixels

The basic approach to H. 261 Compression is summarized as follows:

Decoded Sequence

Frame types are CCIR 601 CIF (352x288) and QCIF (176x144) images with 4:2:0 sub-sampling.

Two frame types: Intra-frames (I-frames) and Inter-frames (P-frames)

I-frames use basically JPEG

P-frames use pseudo-differences from previous frame (predicted), so frames depend on each other.

I-frame provides us with an accessing point.

 Protocol Structure - H.261: Video Coding and Decoding (CODEC)

3 6 7 8 12 17 22 27 32bits

SBIT EBIT I V GOBN MBAP QUANT HMVD VMVD

● SBIT - Start bit. Number of most significant bits that are to be ignored in the first data octet.

● EBIT - End bit. Number of least significant bits that are to be ignored in the last data octet.

● I - INTRA-frame encoded data field. Set to 1 if this stream contains only INTRA-frame coded blocks

and to 0 if this stream may or may not contain INTRA-frame coded blocks.

● V - Motion Vector flag. Set to 0 if motion vectors are not used in this stream and to 1 if motion

vectors may or may not be used in this stream.

● GOBN - GOB number. Encodes the GOB number in effect at the start of the packet. Set to 0 if the

packet begins with a GOB header.

● MBAP - Macro block address predictor. Encodes the macro block address predictor (i.e., the last

MBA encoded in the previous packet). This predictor ranges from 0-32 (to predict the valid MBAs

1-33), but because the bit stream cannot be fragmented between a GOB header and MB 1, the

predictor at the start of the packet can never be 0.

● QUANT - Quantizer field. Shows the Quantizer value (MQUANT or GQUANT) in effect prior to the

start of this packet. Set to 0 if the packet begins with a GOB header.

● HMVD - Horizontal motion vector data field. Represents the reference horizontal motion vector

data (MVD). Set to 0 if V flag is 0 or if the packet begins with a GOB header, or when the MTYPE of

the last MB encoded in the previous packet was not MC.

● VMVD - Vertical motion vector data (VMVD). Reference vertical motion vector data (MVD). Set to

0 if V flag is 0 or if the packet begins with a GOB header, or when the MTYPE of the last MB

encoded in the previous packet was not MC.

7.1.2 Filtering Sub-Module

As we are compressing the videos when sending and decompressing them after receiving there are some

artifacts occur during these processes. To reduce those artifacts and improve the quality of the video we

use de-blocking filter. The filtering part of the video process can be optional or it can be implemented

both in the encoding and decoding part of the processing. According to the quality of the videos we had

and we needed in our project, we may choose to implement the filters both in the encoding and decoding

or we may just use it on the decoding part. In the implementation, we will use the de-blocking filter which

is suitable for MPEG and H261 formats.

The De-blocking Filter

The filtering sub-module uses the de-blocking filter.

A de-blocking filter is applied to blocks in decoded video to improve visual quality and prediction

performance by smoothing the sharp edges which can form between macro blocks when block coding

techniques are used. The filter aims to improve the appearance of decoded pictures.

The de-blocking filter is used both in MPEG format and H261 format. It takes part in both the encoding

and decoding process. As the filter is used in both processes, the in-loop effects of the filter is taken into

account, and the side effects could be reduced. What filter does is to de-block the data which is divided

and packed into blocks during the encoding processes. It uses reference macro-blocks for prediction.

During the encoding period, the strength of the filter can be chosen or it can be switched off completely. If

the filter is not switched off, the filter strength is chosen according to the coding modes of adjacent

blocks, quantization step size, and the steepness of the luminance gradient between blocks. There are

luma and chroma planes of each frame. The luma planes are made of the pixels which represents the

lightness and the chroma planes are made of the pixels which represents the color value of the frames.

The filter operates on both of those planes on the edges of each 4×4 or 8×8 transform block.

Two types of de-blocking are presented in following charts:

Macro Block Coding

Figure 38: Inter Block Coding

Figure 39: Intra Block Coding

7.1.3 Streaming Sub-Module

Attributes:

 active_users:ip[10]: Keeps the ip addresses of the currently active users in an array.

 no_of_users: int : Keeps the number of currently active users.

Methods:

 stream getUserStream(ip: user_ip):

 string getRemoteActivity(int: player_id):

 bool sendActivity(string: activity):

 void startStreaming():

 void endStreaming():

Figure 40: Class Diagram – Streaming Module

Streaming Techniques

Bit Stream Structure

Layered Multi-cast Streaming

As we will receive videos from the client side in different qualities, we have heterogeneous multi-cast

sessions. To come over with that problem, we choose the layered multi-cast streaming method. In layered

approach, the raw video is encoded into o set of cumulative (or non-cumulative) layers. The basic layer

contains the essential video information with a low basic quality and a set of enhancement layers are used

to improve the quality of the received video on client sides. In the MPEG-4 coding, which will be used as

our compression format in the project, coding layers can be obtained by applying Temporal scaling, Spatial

scaling of fine Granularity scaling. The set of layers are sent over separate multi-cast groups. A receiver

joins first the basic layer to obtain the basic video quality and then adapts the rate depending on the

capabilities by joining or leaving the enhancement layers. Depending on the set of joined layers,

heterogeneous receivers will obtain different video quality. By using that streaming approach we intend to

solve the deletion of response time due to the different hardware and software equipments of the users.

In addition the commands given by the players during the game the changes on the game interface the

outputs of the functions the communication between the players is also sent by the streams. The video

sequences and the function outputs will be sent as numbered packages to the receivers. On the receivers

side if there are any problems in receiving the package or processing by communicating with the other

players and processing the same data package with them the system is tried to be synchronized.

7.1.4 Network Settings Sub-Module

Attributes:

 Network_settings: Setting :

Methods:

 setting getNetworkSettings():

 bool setNetworkSettings(Setting: setting):

Figure 41: Class Diagram –NetworkSettings

7.2 GamePlay Module

Attributes:

No attribute.

Methods:

 int getPlayerCount() : The number of players is a system requirement since the positions of the

displays are determined according to this number. This system function returns the number of

player to serve the mentioned purpose.

 int getPlayerOrder(int: player_id):

 bool setPlayerPositions(string: string): The positions of the players on the game window are

determined by means of the return value of getPlayerCount system function. setPlayerPosition

system function returns false if any exception is encountered.

 bool setGameWindow(int coord_x, int coord_y, int width, int height): When the game is started

by a user, this system function is called to handle the action.

 bool startGame(): Users start the game by means of this system call.

 bool cancelStart(): In case of the user starting the game wants to cancel the game, this system

function is called.

 string getRemoteActivity(int player_id):

 bool sendActivity(string: activity):

 bool endGame(): When the game is exited, this system function handles the requirements to end

the game.

 bool startGame(int: game_id): This system function is called when the users press the button

start game.

 respondStartGame(): This system function provides the coordination between GamePlay Module

and Network Module in case of an attempt to start a game.

 respondEndGame(): Similar to respondStartGame system function, this system function provides

the coordination between GamePlay Module and Network Module in case of an attempt to end a

game.

 Figure 42 : Class Diagram- GamePlay Module

7.2.1 GamePlaySettings Sub-Module

Attributes:

 gameplay_settings: GameSett: Keeps the current game’s settings in a suitable data structure.

Methods:

 GameSett getGamePlaySettings(): Returns the gameplay settings for the current game.

 bool setGamePlaySettings(GameSett: settings): Sets the currently played game’s settings.

 Figure 42: Class Diagram- GamePlay Settings

7.2.2 External Game Interface

Attributes:

 Last_orders: string[10]:

Methods:

 int getPlayerCount() : The number of players is a system requirement since the positions of the

displays are determined according to this number. This system function returns the number of

player to serve the mentioned purpose.

 int getPlayerOrder(int: player_id):

 bool setPlayerPositions(string: string): The positions of the players on the game window are

determined by means of the return value of getPlayerCount system function. setPlayerPosition

system function returns false if any exception is encountered.

 bool setGameWindow(int coord_x, int coord_y, int width, int height): When the game is started

by a user, this system function is called to handle the action.

 bool startGame(): Users start the game by means of this system call.

 bool cancelStart(): In case of the user starting the game wants to cancel the game, this system

function is called.

 string getRemoteActivity(int player_id):

 bool sendActivity(string: activity):

 Figure 43: Class Diagram- External Game Interface

7.3 Activity of System Functions – Sequence Diagrams

Figure 44: Start Conversation System Function

Figure 45: End Conversation System Function

Figure 46: Join System Function

Figure 47: End Session System Function

Figure 48: Invite System Function

Figure 49: Start Conversation System Function

Figure 50: Join System Function

Figure 51: End Game System Function

Figure 52: Send Chat Message System Function

Figure 53: Send PM System Function

8 Libraries and Tools
Public MSU video filters

MSU video quality measurement tools

C# streaming libraries

.Net streaming libraries

Java for external games

OpenGL for GUI

MS Silverlight for GUI

9 Time Planning (Gannt Chart)

9.1 Term 1 Gannt Chart

9.2 Term 2 Gannt Chart

10 Conclusion

The initial design report is one of the crucial steps of our project. The designs we have made and wrote in

the SRS document are strengthened by the theoretical and practical information. The difficulties we may

encounter during the process and possible solutions are determined. In accordance, we shaped our

project and chosen to use technologies and algorithms which we believe to be helpful and efficient to deal

with those problems. Moreover, the IDR is like a guideline for further detailed design of our project. As we

made clear the main aspects of our project choose some algorithms and software technology to for

development of our project.

To conclude, this initial design report will be the guideline of our project this year.

