
Initial Design Report

For

Gambler Agent

Group Name ErikSoft
Taylan Işıkdemir 1560267

Alper Güngör 1560234

Volkan Çetin 1560663

 İlkcan Keleş 1560382

Content
1. Introduction

1.1. Problem Definition

1.2. Purpose

1.3. Scope

1.4. Overview

1.5. Definitions, Acronyms and Abbreviations

1.6. References

2. System Overview

3. Design Constraints

3.1. Design Assumptions, Dependencies and Constraints

3.2. Design Goals and Guidelines

4. Data Design

4.1. Data Description

4.2. Data Dictionary

5. System Architecture

5.1. Architectural Design

5.2. Description of Components

5.2.1. Game Playing Component

5.2.1.1. Processing Narrative For Game Playing Comp.

5.2.1.2. Game Playing Component Interface Description

5.2.1.3. Game Playing Component Processing Detail

5.2.1.4. Dynamic Behaviour of Game Playing Comp.

5.2.2. Game Logging Component

5.2.2.1. Processing Narrative For Game Logging Comp.

5.2.2.2. Game Logging Component Interface Description

5.2.2.3. Game Logging Component Processing Detail

5.2.2.4. Dynamic Behaviour of Game Logging Comp.

5.2.3. Log Parser Component

5.2.3.1. Processing Narrative For Log Parser Comp.

5.2.3.2. Log Parser Component Interface Description

5.2.3.3. Log Parser Component Processing Detail

5.2.3.4. Dynamic Behaviour of Log Parser Comp.

5.2.4. Learning Component

5.2.4.1. Processing Narrative For Learning Comp.

5.2.4.2. Learning Component Interface Description

5.2.4.3. Learning Component Processing Detail

5.2.4.4. Dynamic Behaviour of Learning Comp.

5.3. Design Rationale

6. User Interface Design

6.1. Overview of User Interface

6.2. Screen Images

6.3. Screen Objects and Actions

7. Libraries and Tools

8. Time Planning (Gannt Chart)

8.1. Term 1-2 Gannt Chart

9. Conclusion

1. Introduction
1.1. Problem Definition

The problem is the lack of AI applications that can model human players for turn

based games such as ‘King’. By mentioning ‘model’ , we intend to say that a computer agent

learns to play like someone who the agent takes him as model. This problem first arised from

the desire of humans to make computers impersonate humans in some way and to compete

with these computers.

1.2. Purpose

There are several purposes of the Gambler Agent Project:

The first one is to prove that an AI agent can learn how to play the ‘king’ game by

observing the game of a player who was the target of the agent to impersonate. This is like an

experiment because it may be impossible to model someone for this game.In case of failure,

the reasons will be explained. Otherwise, If the experiment, which has not been tried before,

becomes successful, the results will be sent to some conferences.

The second purpose is to overcome the lack of online games with an intelligent

learning agent. This is a desired purpose of a game by most of the players because people like

to see computers behaving like themselves. There are some games with learning agents like

chess, backgammon etc. However, there is no learning agent for the ‘king’ game which is too

complex and extensive to be succesfull.

1.3. Scope

The intelligent system for turn based games are very common nowadays. Most turn

based game developer companies design such a system. On the other hand there are not many

instances of learning system for turn based games which are partially observable. Observable

means all the game environment i.e moves of the opponents, evaluation of them is open to

each player. Tile and card games are partially observable. Players only know the cards or

tiles which are in their hands and thrown in previous turns.

 King is an example of partionally observable games. King is played by four people

and no teaming is allowed. At the end of the game players with positive points are considered

as winners. There are six type of negative hands which are explained below:

 No tricks – The aim is not to win tricks. The dealer plays any card and all the other

players must follow that suit unless they do not hold any card of that suit. The winner of the

trick is the highest card of the suit played at the start of the trick or the highest trump, if any

was declared for that hand. The winner restarts play with any card and so on until all the cards

have been played. Then, tricks of each player is counted. Each trick is worth 50 negative

points and the total for the hand is 650 negative points.

No Hearts – The aim is not to win tricks with Hearts. A player must not start a trick

with Hearts unless he holds no other suit. If a player cannot follow suit he can then play any

card, including Hearts. Each Hearts card is worth 30 points and the total for the hand is 390

negative points.

No Queens – The aim is not to win tricks with Queens. Each Queen is worth 100

points and the total for the hand is 400 negative points.

No Kings or Jacks - The aim is not to win tricks with Kings or Jacks. Each King and

Jack is worth 60 points and the total for the hand is 480 negative points.

No King of Hearts – The aim is not to get the King of Hearts. A player must not start a

trick with Hearts unless he holds no other suit. Important: The King of Hearts must be played

at the first legal opportunity, meaning when the holder cannot follow suit or at the first time

Hearts is used to open a trick. The King of Hearts is worth 320 negative points.

No last 2 tricks - The aim is not to win the last 2 tricks. Each of those tricks is worth

180 negative points and the total for the hand is 360 negative points.

There is also one positive hand which is named trump. Trump cards win against any

other suit but can only be played if the suit cannot be followed or if the trick started with the

trump suit. Between two or more trump cards the highest one wins. Each trick taken by a

player is worth 50 points and the total for the hand is 650 positive points.

1.4. Overview

The rest of this document contains an detailed description of the Intelligent and

Learning System for Turn Based Games and specific constraints. There will be more specific

details and information about the project content, system overview, design constraints, data

design, system architecture and planning.

1.5. Definitions, Acronyms and Abbreviations

DB: Database

AI: Artificial Intelligence

GUI: Graphical User Interface

ILSTBG: Intelligent and Learning System for Turn Based Games

API: Application programming interface

Http: Hypertext Transfer Protocol

UML: Unified Modelling Language

IEEE: Institute of Electrical and Electronics Engineering

AAAI Association for the Advancement of Artificial Intelligence

1.6. References

http://en.wikipedia.org/wiki/Artificial_neural_network

http://www.cs.cmu.edu/~tom/mlbook.html

http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

http://aima.cs.berkeley.edu/

http://en.wikipedia.org/wiki/List_of_software_development_philosophies

http://www.sciencenews.org/sn_arc98/7_18_98/bob1.htm

http://en.wikipedia.org/wiki/Support_vector_machine

2. System Overview

The system will have three main stages. First one is for collecting training data. There

will be some different types of agents and they will play against each other in diverse

combinations to make training data richer. The second one is the most important one. It is the

learning process. The training data obtained from first stage will be the source of learning

system while defining state-action pairs. That means an agent is going to use the pairs

determined in this part. The third one is the complete online ‘king’ game with all

functionalities of usual online games and additionally some new functionalities for agent

usage.

The training data collection part of the system is designed for creating the basis of the

learning system. To create a well-behaving learning system, one needs too much training data

which should be gathered from varying sources.

The learning system will be decomposed into parts too. Some techniques will be tried

and when any of them becomes successfull, that one will be used for the project. To

understand whether the learning is succesfull, test data will be collected from latest version of

learning agent. Afterwards this test data will be compared to the training data from first stage.

If they have same characteristics (percentage of same actions in same states), then it will be

considered as succesfull. The candidate algorithms for the time being are reinforcement

learning, neural network, support vector machines.

The complete ‘king’ game will be available online. It will look like other card games

and easy to use. There can be lots of agents in any table in the game. The agents are going to

communicate with their desicion function through a web service. The final state definition,

one of the succesfull ones that had been tried in stage two, will be sent as input and the output

is an action which agent is going to do.

The goal of the system is to show that learning is possible for the ‘king’ game.

3. Design Constraints

3.1. Design Assumptions, Dependencies and Constraints

Assumptions:

Learning phase for ‘King’ game may be unsuccesfull due to the properties of this

game. Since there are seven different games in the ‘King’ game and the game is not fully

observable, learning process in this limited time and processor number is a difficult task.

If this situation occurs,we will switch to the other game called ‘Okey’ which may be

easier to implement a learning system for.

Since Gambler Agent application is a web-based Project, there will not be any system

dependencies. It is enough to have the necessary plugins for the browser. We will make it

available for all browsers.

Constraints:

Reports during development phase of the project will be prepared according to

IEEEStd830. UML design and flow charts are going to take part in that phase. JavaDoc style

comments will be used for documentation of the source code. In the implementation phase

SVN is going to be used for accordance in development team. Any changes of DB schema

during implementation phase will be recorded and initial design will be updated accordingly.

3.2. Design Goals and Guidelines

The principles which are going to be considered in software development are:

- You ain’t gonna need it (YAGNI) : is the principle in extreme programming that

programmers should not add functionality until it is necessary. There is a quote for this

principle : "Always implement things when you actually need them, never when you just

foresee that you need them."

- Abstraction principle : is a basic dictum that aims to reduce duplication of information in a

program (usually with emphasis on code duplication) whenever practical by making use of

abstractions provided by the programming language.

- Don't Make Me Think : this principle's premise is that a good program or web site should let

users accomplish their intended tasks as easily and directly as possible.

- Team Software Process (TSP) : provides a defined operational process framework that is

designed to help teams of managers and engineers organize and produce large-scale software

projects of sizes beyond several thousand lines of code (KLOC). The TSP is intended to

improve the levels of quality and productivity of a team's software development project, in

order to help them better meet the cost and schedule commitments of developing a software

system.

- Reusability : is the likelihood a segment of source code that can be used again to add new

functionalities with slight or no modification. Reusable modules and classes reduce

implementation time, increase the likelihood that prior testing and use has eliminated bugs

and localizes code modifications when a change in implementation is required.

- Maintainability: is the ease with which a product can be maintained in order to:

• correct defects
• meet new requirements
• make future maintenance easier, or
• cope with a changed environment

4. Data Design

4.1. Data Description
4.1.1. Game Playing

The game playing part of project will include Lobby, Table, Game, Player ,Card data

objects.

Lobby object will be the topmost layer through other data objects. Lobby will

include the logged players and created tables. When a player joins a table then it will be

removed from Lobby object and transferred to Table object.

Table object will have a Game object and max four Player object. The players can

be either type of human or agent.

Game object will do the main job. Game object will include Card object.

This object will deliver the cards to players when game is started. This object also will keep

the game chart and point chart. The information of played game types are kept in the game

chart.

Player object will keep the array of delivered cards and his/her available game type

chart. In this object also players thrown cards and points wil be kept.

4.1.2. Keeping game logs

The data objects for this part of the project are Trainer, TrainingTable and the

following objects from the game playing part: Card, GameType, Player.

Trainer object behaves like a Main class, it is the start point and manages other objects

in the environment.

TrainingTable is a special kind of Table mentioned in the game playing part. This is

only for fixed game types and only agent players are playing the game, no human player.

After each game this objects saves the game log to a file in appropriate directory in the file

hierarchy which is described below.

Keeping game logs part of the project will supply game log files for further parts of

the project, from the games which agents play against each other. At the top of file hierachy

there will be seven (number of game types) directories all of which includes three more

directories which corresponds to agent types namely random-like agent, rule-based agent and

hybrid agent. These directories will be populated by the files from the games which are

played by agents. Since the games will be played on NAR machine, this file hierarchy must

be held in disc of NAR machine.

Each game log file will be a binary data file because of size constraints. The format of

this file is like the following:

“Cards” in each players' hand

“Thrown cards” and “score” update if any change

Repeat the last action 13 times.

An example of a game log file is at Fig-1.
0 eli: [DEUCE of CLUBS, KING of CLUBS, TEN of DIAMONDS, FIVE of SPADES, DEUCE of DIAMONDS, KING of HEARTS, QUEEN of HEARTS,

JACK of HEARTS, NINE of DIAMONDS, SEVEN of HEARTS, FOUR of CLUBS, SEVEN of DIAMONDS, EIGHT of HEARTS]

1 eli: [EIGHT of SPADES, ACE of HEARTS, JACK of SPADES, ACE of SPADES, FIVE of DIAMONDS, TEN of SPADES, SEVEN of CLUBS, FOUR of

HEARTS, NINE of SPADES, NINE of HEARTS, FIVE of CLUBS, JACK of CLUBS, SIX of CLUBS]

2 eli: [DEUCE of SPADES, FOUR of SPADES, ACE of DIAMONDS, DEUCE of HEARTS, JACK of DIAMONDS, QUEEN of CLUBS, TEN of CLUBS,

FIVE of HEARTS, FOUR of DIAMONDS, THREE of CLUBS, EIGHT of DIAMONDS, NINE of CLUBS, THREE of DIAMONDS]

3 eli: [SIX of DIAMONDS, TEN of HEARTS, ACE of CLUBS, SEVEN of SPADES, KING of SPADES, SIX of HEARTS, EIGHT of CLUBS, QUEEN of

DIAMONDS, THREE of HEARTS, QUEEN of SPADES, KING of DIAMONDS, SIX of SPADES, THREE of SPADES]

########## turn 0 #######

Game Type: KUPAALMAZ

startingPlayer: 0

gainer Player: 3

0 has thrown card: DEUCE of CLUBS

1 has thrown card: SEVEN of CLUBS

2 has thrown card: QUEEN of CLUBS

3 has thrown card: ACE of CLUBS

########## turn 1 #######

Game Type: KUPAALMAZ

startingPlayer: 3

gainer Player: 2

3 has thrown card: SIX of DIAMONDS

0 has thrown card: TEN of DIAMONDS

1 has thrown card: FIVE of DIAMONDS

2 has thrown card: ACE of DIAMONDS

########## turn 2 #######

Game Type: KUPAALMAZ

startingPlayer: 2

gainer Player: 1

2 has thrown card: DEUCE of SPADES

3 has thrown card: SEVEN of SPADES

0 has thrown card: FIVE of SPADES

1 has thrown card: EIGHT of SPADES

########## turn 12 #######

Game Type: KUPAALMAZ

startingPlayer: 0

gainer Player: 0

0 has thrown card: EIGHT of HEARTS

1 has thrown card: SIX of CLUBS

2 has thrown card: NINE of CLUBS

3 has thrown card: THREE of SPADES

########## hand is finished #######

0. player point : -270

1. player point : -120

2. player point : 0

3. player point : 0

Figure 1. Example Log File

4.1.3. Forming state action pairs

Forming state-action pairs part of the project will consist of database which is a set of

tables. The log files from the previous part will be parsed and inserted into corresponding

database table. Main tables are State, GameType, Action, AgentType. There will be one

relation called ActionOf connecting these tables. The database schema is like the following

ER diagram.

Figure 2: ER diagram of state-action DB

4.2. Data Dictionary

Action : is a database table which is the output of ActionOf relation.

ActionOf : is a relation in database which connects State, GameType, AgentType

and Action tables.

Agent : is a Java class representing AI agents and extending Player class

AgentType : is a database table which keeps different type of agents.

Card : is a java class. There are 4 suits and 13 ranks for each suit.

Game : is a java class representing the whole game.

GameLogFile: is a special formatted binary file to keep logs.

GameType : is a database table which keeps seven different game types.

HumanPlayer: is a Java class representing human players and extending Player class.

Inserter: is a Java class which updates the state-action DB whenever needed.

Lobby : is a java class holds the list of active tables and players.

Player : is a java abstract class which is extended by all player classes.

Reader: is a Java class which parses game log files and sends necessary

information to Inserter object.

State : is a database table which keeps hand, currentCars, pastCards and a

unique id attributes.

Table : is a Java class in which a game object and four player objects are held.

Trainer: is a Java class, manages game logging part by creating TrainingTable

objects.

TrainingTable:is a Java class which is a special kind of Table object.

5. System Architecture

5.1. Architectural Design

Our system will have a modular structure in which functionality of the system is

divided into subsystems. There will be four components to accomplish the system's goals

shown in Figure 3.

Figure 3: Component Diagram of The System

First component of the system is the main system in which the game 'King' is played.

This subsystem will consist of many classes namely; Lobby, Table ,Game, Player, Card,

GameType, AvailableGameTypes, PlayerFactory. Player class is an abstract class which is

extended by HumanPlayer and agent classes. Second component of the system is the one

which collect game logs from the games played amongst our rule-based and hybrid agents and

write them to the files using the first subsystem. This subsystem gives us the opportunity to

keep logs in one determined file format. For this reason, operations on these files will be

simpler. Third component of the system is responsible for parsing the game logs and

transferring the data represented in the files to the database according to some constraints. The

output of this system will be directly used in our agents' learning phase and to keep training

data in the database provides us to use the database queries. After training data is created, the

final subsystem will be ready to run to complete the learning phase. In this component, a

suitable learning algorithm will be implemented and some data structures and some

mathmatical models will be used to make this implementation easier.

5.2. Description of Components

5.2.1. Game Playing Component

This is the topmost layer of the system. All components will be combined into this

component to make users play 'King' however they want i.e against human player or against

agents.

Figure 4: Class Diagram of Game Playing Component

5.2.1.1. Processing Narrative For Game Playing Component

Game playing component stands for the complete online ‘King’ game system. The

component is responsible for user actions. These actions are logging in, logging out, creating

a table, chatting with other players, checking game scores, joining to a table, editing account

information. These actions will be available through website, and user information will be

kept in a secure database. All kinds of exceptions such as the unexpected server crashes,

player’s exit during a game, problems in database which contains agents’ look up tables will

be handled by this component. This component is also responsible for the game rules. For

instance when playing No Hearts, the players can not play hearts before a heart is thrown onto

another suit.

5.2.1.2. Game Playing Component Interface Description

The components’ input interfaces are the events that users trigger. Such events are

mouse clicks, keyboard entries etc. The output interface is the graphical user interface which

is accessible via web browsers. The figure 13-14 is an example of the game playing

component’s gui. The details are explained in Chapter 6.

5.2.1.3. Game Playing Component Processing Detail

This component itself does not have an important algorithmic implementation. The

important points of the implementation is handling of the events that user trigger and the

game rules. The synchronization amongst players is also another key issue for this

component.

5.2.1.4. Dynamic Behavior of Game Playing Component

The data objects which are described in Chapter 4.1 in game playing section explained

the interactions between the classes of the component. The sequence diagram, use case

diagrams one of which for human player and the other one for agent player, and the activity

diagram are provided below in Figure 5-6-7 in order to visualize the interactions.

 Figure 5 : Use case for Human Player

Figure 6 : Use Case for Agent Player

Figure 7 : Activity Diagram For Game Playing

Figure 8: Sequence Diagram of Game Playing Component

5.2.2. Game Logging Component

This component is responsible for keeping the logs of the games. Game logging

component will be used for two purposes: to collect data from agent games for learning phase

and to collect data from human players' game for updating learning data.

Figure 9: Class Diagram of Game Logging Component

5.2.2.1. Processing Narrative For Game Logging Component

Game logging component stands for the part of the project which will make agents

play amongst themselves and writing the game data to the files in the format which is

mentioned in chapter 4. This will give us the opportunity to transfer the data from these files

to the database afterwards.

5.2.2.2. Game Logging Component Interface Description

There are not any graphical user interfaces in this component. However; the files

which are created by this component will be used by the third component.

5.2.2.3. Game Logging Component Processing Detail

 This component does not have any algorithm implementation. The component only

includes the game rules to make agents play correctly and a file format which uses less space

in order to make the component more efficient.

5.2.2.4. Dynamic Behavior of Game Logging Component

The data objects which are described in keeping game logs section explained the data

operations inside the component. The sequence diagram is provided below in Figure X in

order to visualize the interactions.

Figure 10: Sequence Diagram of Game Logging Component

5.2.3. Log Parser Component

This component’s job is totally related with the Game Logging component. Game

Logging component is going to run for approximately a month on a multiprocessor

environment. Therefore enough data will be obtained for Learning component.

Figure 11: Class Diagram of Log Parser Component

5.2.3.1. Processing Narrative For Log Parser Component

The main job of Log Parser Component is to parse the game log files and insert them

to a database accordingly. The ER diagram of the database is given in Figure 123. Each log

file will has 13x4 rows to be inserted to the db. Because every card played by each of four

player is another state-action pair. And each player has 13 cards in the begining. So it leads to

52 different state for each log file. In future different parsers and different db schemas can be

considered in case of any difficulties for implementing learning agents.

5.2.3.2. Log Parser Component Interface Description

There is not any GUI for this component. It will be a background process. Input is the

log files from Game Logging component and output is the database tables.

5.2.3.3. Log Parser Component Processing Detail

Since the log files will be pile file, there is no need for indexing and search in the files.

The process will be straightforward reading from files. And after each move of each player in

the file, one new row will be inserted to the actionOf relation in the db. If the corresponding

row is already in the table some attributes will be updated such as points, occurence.

5.2.3.4. Dynamic Behavior of Log Parser Component

The data objects which are described in chapter 4 explained the interactions between

the classes of the component. The sequence diagram is provided below in Figure 9 in order to

visualize the interactions.

5.2.4. Learning Component

This component is the final step for creating intelligent agents. Our previous agents

were also intelligent but their intelligence were restricted with their implementation. On the

other hand the learning agents will allways continue to learn and play accordingly.

5.2.4.1. Processing Narrative For Learning Component

There is no distinct ways of machine learning. Especially for this kind of learning

project almost nothing is strictly definite. Some algorithms from supervised and unsupervised

learning will be tried. Supervised learning is the task of inferring a function from supervised

training data. A supervised learning algorithm analyzes the training data and produces an

inferred function. Unsupervised learning is a class of problems in which one seeks to

determine how the data are organized. Many methods are based on data mining methods used

to preprocess the data. The state-action database formed by Log Parser component is going to

be used as training data samples and several algorithms are going to be used to achieve a level

of learning.

5.2.4.2. Learning Component Interface Description

The state-action database is going to be used as input of this component. If it comes

out that there is not sufficient information for learning. Log parser component will be revised

accordingly and designed again.

Since this is the final component of the project, the output, which is an intelligent and

learning agent, will be directly used by Game Playing component.

5.2.4.3. Learning Component Processing Detail

As stated in 5.2.4.1 , supervised and unsupervised machine learning algorithms will be

tried to correctly model the agents namely random-like, rule-based and hybrid agents which

are already implemented. Artificial Neural Networks (ANN) or Support Vector Machines

(SVN) are going to be used to implement learning part. ANN is appropriate to use with both

supervised and unsupervised learning. SVN is for supervised learning and also for statistical

classification.

Artificial neural networks (ANNs) are essentially simple mathematical models

defining a function f: X → Y or a distribution over X or both X and Y, but sometimes models

are also intimately associated with a particular learning algorithm or learning rule. An

illustriation of ANN is given in Figure XX.

Figure 12: Artificial Neural Network

5.2.4.4. Dynamic Behavior of Learning Component

The data objects will be described in detailed design report which shows internal

interactions between classes of this component.

5.3. Design Rationale

This decomposition is choosed because of some considerations. First one is to have a

rich and easy to manipulate training data set. This has to be available before starting the

learning part. So design of the game logging and log parser components are well defined and

conceived. Second one is to have a complete game playing component before starting

anything. So things that are definitely necessary for game, became obvious. And the design of

other components are effected by this knowledge possitively.

Some different decompositions are also possible. However this one seemed the most

reasonable among other decompositions because other ones were not suitable for some design

principles which are obeyed by the project designers.

6. User Interface Design

6.1. Overview of User Interface

Game window : It will be opened as 480X640 and it will have option for users

to make window full screen.

Chat Box: Chat box will be available for the players who are on the related table.

Buttons:There will be a few buttons that have different functionalities like adding an agent,

opening information table,starting game.

Timer:The timer keeps the track of the time after game started.

Information Table:The information table show information about the players their scores and

game status.

6.2. Screen Images

General Interface:

Figure 13: Game Window

Score Table:

Figure 14: Information Table

6.3. Screen Objects and Actions

Register : New users can register to the system by filling the required form.

Login : Users have to login in order to join the game. After logging in, a user can use other

functionalities.

Join Table: Users can join any existing tables which is not full.

Create Table : Users can create table and wait for other players, if they do not want to join an

existing table.

Add Agent : If a user wants to play against the game bots, he can simply add an agent with a

chosen level.

Chat : Users can easily chat with other users through our chatbox.

Check Game State : Users may want to see the status of the game during playing. It is enough

to click button in order to see the scores.

Dismiss Agent : If a user wants to add a new human player, he can easily dissmiss the agent

from table.

7. Libraries and Tools

ActionScript : It is a script language and it is used primarily for the development of websites

and software targeting the Adobe Flash Player platform. We will use it to implement interface

of game.

Java SE 1.6 : is a widely used platform for programming in the Java language. We will

use it for developing main features of the Agent

JDBC : is an API in Java programming language that defines how a client may

connect to a database. It provides methods for querying and updating data in a database.

MySQL : is a relational DB management system that runs as a server providing multi-

user access to a number of databases.

Netbeans : is an integrated development environment (IDE) for developing with Java.

SmartDraw : is a tool that is used for drawing Gannt Chart and ER diagram.

Umbrello : Umbrello handles all the standard UML diagram types.

Web Service : is typically an API that is accessed via http and executed on a remote

system, hosting the requested service.

Weka : is a collection of machine learning algorithms for data mining tasks. The

algorithms can either be applied directly to a dataset or called from your own Java code.

Weka contains tools for data pre-processing, classification, regression, clustering, association

rules, and visualization. It is also well-suited for developing new machine learning schemes.

Weka is open source software issued under the GNU General Public License.

8. Time Planning (Gannt Chart)

There is no strict deadline dates for phases but the complete system is going to be

finished until June. To distribute the workload equally during the Project development, the

following schedule may be followed.

• Design and implementation of various agents End of January

• Collecting training data and classification of data Mid of March

• Defining states and trying different machine learning algorithms End of April

• Testing and Integration Mid of June

8.1. Semester 1-2 Gannt Chart

Figure 15: Gannt Chart

9. Conclusion

In conclusion, the Gambler Agent Project will be a world wide, sensational Project for

AI and Machine Learning field. If the final learning agent can model the training data, later on

it will be able to model the best ‘king’ players in the world. It will be a great opportunity for

human players to play against the Gambler Agent and most famous players are going to desire

to challenge with Gambler Agent.The experiment of Gambler agent project will give a result

that can be positive or negative.However the experiment result will be published as an

academic article and will be sent to some artificial intelligence conferences.Also this project

will be used in some online game contests.

