
Software Design Description for AJCON 
 

Page 1 of 77 
 

 

 

Software Design 

Description  

for 

AJCON, Applet to JSF Converter 

Version 2.0 

 

Prepared by 

Anıl Sevim 

Berkan KISAOĞLU 

Özge TOKGÖZ 

 

09.01.2011 



Software Design Description for AJCON 
 

Page 2 of 77 
 

Table of Contents 

1. Introduction         7 

  1.1. Problem Definition       7 

    1.2. Purpose         8 

    1.3. Scope         8 

    1.4. Overview         9 

    1.5. Definitions, Acronyms and Abbreviations    10 

    1.6. References        10 

2. System Overview         11 

3. Design Considerations        12 

     3.1. Design Assumptions, Dependencies and Constraints   12 

          3.1.1. Design Assumptions      12 

          3.1.2. Design Dependencies      13 

  3.1.3. Design Constraints      13 

   3.1.3.1. Time       13 

   3.1.3.2. Performance      14 

 3.2. Design Goals and Guidelines      14 

  3.2.1. Portability       14 

  3.2.2. Reliability       14 

  3.2.3. Correctness       14 

4. Data Design          14 

 4.1. Data Description        14 

  4.1.1. Data Objects       15 

   4.1.1.1. External Data Objects    15 

   4.1.1.2. Internal Data Objects     17 

  4.1.2. Data Models       17 

  4.1.3. Data Dictionary       17 

5. System Architecture        21 

 5.1. Architectural Design       21 

 5.2. Description of Components      22 

  5.2.1. UI Component       22 



Software Design Description for AJCON 
 

Page 3 of 77 
 

     5.2.1.1. Processing Narrative for UI Component  22 

    5.2.1.2. Interface Description of UI Component  23 

    5.2.1.3. Processing Detail of UI Component   23 

     5.2.1.3.1. ApplicationManager Class   24 

      5.2.1.3.1.1. Attributes    24 

      5.2.1.3.1.2. Methods    24 

     5.2.1.3.2. MainWindow Class    24 

      5.2.1.3.2.1. Attributes    25 

      5.2.1.3.2.2. Methods    27 

     5.2.1.3.3. ProjectWindow Class   28 

      5.2.1.3.3.1. Attributes    28 

       5.2.1.3.3.2. Methods    29 

      5.2.1.3.4. LogWindow Class    30 

       5.2.1.3.4.1. Attributes    30 

       5.2.1.3.4.2. Methods    30 

     5.2.1.3.5. MainAction Class    30 

       5.2.1.3.5.1. Attributes    31 

       5.2.1.3.5.2. Methods    31 

    5.2.1.4. Dynamic Behavior of UI Component   32 

   5.2.2. AppletExtractor Component     32 

    5.2.2.1. Processing Narrative for AppletExtractor Component 

            32 

     5.2.2.2. Interface Description of AppletExtractor Component 

            33 

    5.2.2.3. Processing Detail of AppletExtractor Component 33 

     5.2.2.3.1. ExtractionHandler Class   33 

       5.2.2.3.1.1. Attributes    33 

       5.2.2.3.1.2. Methods    34 

     5.2.2.4. Dynamic Behavior of AppletExtractor Component 34 

   5.2.3. JavaML Component      34 

    5.2.3.1. Processing Narrative for JavaML Component 34 

     5.2.3.2. Interface Description of JavaML Component 35 



Software Design Description for AJCON 
 

Page 4 of 77 
 

    5.2.3.3. Processing Detail of JavaML Component  35 

      5.2.3.3.1. JavaMLHandler Class   35 

      5.2.3.3.1.1. Attributes    36 

       5.2.3.3.1.2. Methods    36 

    5.2.3.4. Dynamic Behavior of JavaML Component  36 

    5.2.4. Translator Component      37 

     5.2.4.1. Processing Narrative for Translator Component 37 

    5.2.4.2. Interface Description of Translator Component 37 

    5.2.4.3. Processing Detailf of Translator Component  37 

      5.2.4.3.1. TranslationHandler Class   38 

        5.2.4.3.1.1. Attributes    38 

       5.2.4.3.1.2. Methods    38 

      5.2.4.3.2. ClassInfo Class    39 

       5.2.4.3.2.1. Attributes    39 

       5.2.4.3.2.2. Methods    40 

     5.2.4.4. Dynamic Behavior of Translator Component 41 

   5.2.5. Log Component       41 

    5.2.5.1. Processing Narrative for Log Component  41 

     5.2.5.2. Interface Description of Log Component  41 

    5.2.5.3. Processing Detail of Log Component   42 

     5.2.5.3.1. LogGenerator Class    42 

       5.2.5.3.1.1. Attributes    42 

       5.2.5.3.1.2. Methods    42 

     5.2.5.4. Dynamic Behavior of Log Component  42 

6. User Interface Design        42 

  6.1. Overview of User Interface      42 

  6.2. Interface Screens        44 

  6.3. Screen Objects and Actions      45 

   6.3.1. Screen Objects       45 

    6.3.2. Screen Actions and Relations     47 

7. Detailed Design         49 

  7.1. UI Component        49 



Software Design Description for AJCON 
 

Page 5 of 77 
 

   7.1.1. ApplicationManager Class     50 

    7.1.1.1. main( args String[]): void    51 

   7.1.2. MainWindow Class      51 

    7.1.2.1. initComponents( ) : void    52 

   7.1.3. ProjectWindow Class      53 

    7.1.3.1. initComponents( ): void     54 

   7.1.4. LogWindow Class       54 

    7.1.4.1. initComponents( ): void     55 

    7.1.5. MainAction Class       55 

    7.1.5.1. checkUpdates( ): void     56 

    7.1.5.2. run( ): void       56 

  7.2. Applet Extractor Component       57 

   7.2.1. ExtractionHandler Class      57 

    7.2.1.1. parseAndExtractApplet( ):void    59 

  7.3. JavaML Component        59 

   7.3.1. JavaMLHandler Class       60 

    7.3.1.1. startParse( ): void      61 

    7.3.1.2. getEnvironmentVariables( ): String    61 

  7.4. Translator Component        62 

   7.4.1. TranslationHandler Class      63 

    7.4.1.1. composeMemoryStructure( ): void    64 

    7.4.1.2. findEquivalences( ): void     64 

   7.4.2. ClassInfo Class        65 

    7.4.2.1. parseXMLAndClass( ): void     66 

  7.5. Log Component         66 

   7.5.1. LogGenerator Class       67 

    7.5.1.1. getSingletonLogger( ): org.apache.log4j.Logger  68 

8. Libraries and Tools         68 

  8.1. JavaML         68 

  8.2. Log4J         72 

  8.3. Jikes         73 

  8.4. Apache Tomcat        73 



Software Design Description for AJCON 
 

Page 6 of 77 
 

  8.5. Richfaces         73 

   8.6. Java Reflection API       74 

9. Change Log          75 

10. Time Planning         75 

11. Conclusion          77 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Software Design Description for AJCON 
 

Page 7 of 77 
 

1. Introduction 

This report intends to present complete design and progress of the Applet to Java Server 

Faces (JSF) Converter (AJCON) project, conducted by Team Teaplet. AJCON is supposed to 

be a software development tool which helps a software developer to migrate from 

Applet technology to JSF. This report explains complete descriptions of the proposed 

software system design. In this design document, general design architecture of the 

project will be enlightened and current project status will be indicated. 

1.1. Problem Definition 

Java Applets can provide web applications with interactive features that cannot be 

provided by HTML. When Java enabled browser is used to view a page that contains an 

applet, the applet’s byte codes are transferred to user’s system and executed by 

browser’s Java Virtual Machine (JVM). Nowadays, applet technology has become out of 

date due to some disadvantages:  

 It requires the Java plug-in. 

 Some organizations only allow software installed by the administrators. As a 

result, some users can only view applets that are important enough to justify 

contacting the administrator to request installation of the Java plug-in. 

 As with any client-side scripting, security restrictions may make it difficult or 

even impossible for an untrusted applet to achieve the desired goals. 

 Some applets require a specific JRE. This is discouraged. 

 If an applet requires a newer JRE than available on the system, or a specific 

JRE, the user running it the first time will need to wait for the large JRE 

download to complete. 

 Java automatic installation or update may fail if a proxy server is used to 

access the web. This makes applets with specific requirements impossible to 

run unless Java is manually updated. The Java automatic updater that is part 



Software Design Description for AJCON 
 

Page 8 of 77 
 

of a Java installation also may be complex to configure if it must work 

through a proxy. 

 Unlike the older applet tag, the object tag needs workarounds to write a 

cross-browser HTML document. 

Meanwhile, with new Java 2 Enterprise Edition (J2EE) technologies, same functional 

requirements can be met with less dependency. JSF is one of these technologies, but 

switching from Applet to JSF requires both lots of money and manpower. Also, it is really 

long-lasting to write a JSF based application which does the same work with Applet from 

scratch. Even though there are some converters that may help employees at 

intermediate levels, there is no existing service, which does this conversion.  

1.2. Purpose 

The purpose of this document is to explain compelete design details of AJCON project. 

As IEEE standards document indicates, the Design Report show how the proposed 

software system will be structured in order to satisfy the requirements identified in the 

Software Requirements Specifications document. In other words, it is aimed to translate 

software requirements defined in SRS document into a representation of software 

components, interfaces and data to be used later in implementation phase of the 

project. However, since every software design is open to changes and modifications, it is 

highly possible to make changes during implementation and update SRS and SDD 

documents accordingly.  

1.3. Scope 

This complete SDD will contain the general definition and features of the project, design 

constraints, the overall system architecture and data architecture, a brief explanation 

about our current progress and schedule of the project. With the help of UML diagrams, 

design of the system and subsystems/modules will be explained visually in order to help 

the programmer to understand all information stated in this document correctly and 

easily. 

 



Software Design Description for AJCON 
 

Page 9 of 77 
 

1.4. Overview  

This document encompasses a design model with architectural, interface, component 

level and deployment representations. Design model will be contained in this document, 

which will be used as a medium for communicating software design information, 

assessed for quality, improved before code is generated. Many graphical 

representations and verbal explanations were added to this document to achieve the 

goal of AJCON.  

This document is divided into subsections to make it more understandable. Those are:  

Section 2 contains general description about the system components.  

Section 3 contains the assumptions made during the design process, dependencies 

and other constraints. 

Section 4 contains general data structures that AJCON used.  

Section 5 contains the most important diagrams of the document. Class diagrams, 

data flow diagrams and sequence diagrams of components are stated in this section. 

Also a brief explanation about the classes is mentioned.  

 Section 6 contains the user interface design and some screenshots.  

Section 7 contains the detailed design issues and future works.  

Section 8 contains the libraries and tools that we will use.  

Section 9 contains the change LOG about the SRS.   

Section 10 contains the basic timeline of the project.  

Section 11 contains the conclusion of the SDD.  

Those sections and subsections of them are mentioned in the table of contents more 

precisely.  

 



Software Design Description for AJCON 
 

Page 10 of 77 
 

1.5. Definitions, Acronyms and Abbreviations 

SRS  Software Requirement Specifications 

SDD  Software Design Document 

AJCON  Applet to JSF Converter 

JVM  Java Virtual Machine 

JSF  Java Server Faces 

J2EE  Java 2 Enterprise Edition 

JavaML  Java Markup Language 

 

1.6. References 

[1] IEEE Recommended Practice for Software Design Descriptions 

[2] AJCON Software Requirements Specifications Document, v1.0 

[3] JavaML – A Markup Language for Java Sources, 

www.cs.washington.edu/research/constraints/web/badros-javaml-www9.ps.gz 

[4] Apache Log4j, logging.apache.org/log4j/ 

[5] Jikes, jikes.sourceforge.net  

[6] Apache Tomcat Wikipedia Page, Wikipedia.org/Apache_Tomcat 

[7] Richfaces Community, jboss.org/richfaces 

[8] Java Reflection API, http://download.oracle.com/javase/tutorial/reflect/index.html 

 

 



Software Design Description for AJCON 
 

Page 11 of 77 
 

 

2.  System Overview 

Main concern of the AJCON project is to help developers to make their work easy. For an 

applet project, converting it into a JSF project totally can be costly. With the use of 

AJCON, cost, man power needs and time needs of converting process can be decreased. 

It is not possible to convert all the projects with a rate of 100% correctness, but after the 

convert operation, little changes can raise the output of AJCON up.  

In this context, we designed AJCON in a manner stated in section 5 and 7.  

General description of the system drawn on the activity diagram stated below. Reactions 

defined on the user interface depends on the users actions, on the other hand, with the 

start of the conversion operation it is automated. User decides the operation will be 

done. Those operations can be adding/removing/selecting/deselecting/converting 

operations. Once converting operation starts, other related things done by AJCON like 

finding applets, parsing sources, displaying log information and etc.   



Software Design Description for AJCON 
 

Page 12 of 77 
 

 

3. Design Considerations 

3.1. Design Assumptions, Dependencies and Constraints 

3.1.1. Design Assumptions 

AJCON is a huge project to design and implement. Since we have approximately six 

months to finish, we are requested by Siemens EC to make some assumptions in order 

to narrow down project to a certain level. 

For complete design, our design assumptions can be stated as: 



Software Design Description for AJCON 
 

Page 13 of 77 
 

 This project runs on a Microsoft Windows platform (Vista or later), 

 JRE must be installed on running computer, 

 Application will be deployed to Apache Tomcat 6.0 or higher server, 

 Input Java project should be syntactically correct and runnable. 

 Input Java project should include at least one Applet class. 

 For final design, inputs will be an Applet embedded html file, but for 

now, we assume an Applet Desktop Application as input. Later, we 

will turn to web based ones. 

 For start, we will consider converting 8 basic Applet components to 

JSF. (See Section 4. Data Design) 

 We will use JavaML tool [3] for parsing Java source files. Although, 

this software product is stated to be working for every Java source 

file, we have to assume that JavaML works properly. It should 

generate a well-formed and correct XML file, which is a complete self-

describing representation of Java source code. 

 

3.1.2. Design Dependencies 

For complete design, our design dependencies can be stated as: 

 JSF will depend on Java SE 5 (or higher). 

 Software should run on a Microsoft Windows platform. 

3.1.3. Design Constraints 

3.1.3.1. Time 

Under the scope of CEng 491-492 courses, we have approximately six months to finish 

our projects. In order to meet deadlines, we have to obey our schedule strictly. As we 

mentioned in our SRS document, we will be following agile software development 

model. Since it is a step-by-step approach, it is a must to update requirements and 

solutions. According to the feedback we will take, we will improve the general design 

and process of our project. Thus, we are planning not to fall behind the schedule. 



Software Design Description for AJCON 
 

Page 14 of 77 
 

3.1.3.2. Performance  

For every software product, performance is an important criteria. Since AJCON project 

will be run by local clients at Siemens EC and there is no multi-user operation, we expect 

that conversion from Applet to JSF will end up at most in a few seconds. 

3.2. Design Goals and Guidelines 

3.2.1. Portability 

There will be an installer for AJCON that runs only on Microsoft Windows platform 

mentioned both in assumptions and dependencies. Although Java ML tool is written in 

C++, there is only a Microsoft Windows executable publicly available. We are planning to 

request a Unix platform executable from designer of Java ML tool. If we are able to 

access that executable, we will make AJCON project portable for every operating system 

since Java is a machine independent language and works on every platform. 

3.2.2. Reliability 

Software Reliability is the probability of failure-free software operation for a specified 

period of time in a specified environment. Responses and the work done by the system 

should be consistent.  

3.2.3. Correctness 

AJCON will work correctly if all the requirements and assumptions are met. It will give 

the same result regardless of time, environment, etc.  

 

4. Data Design 

4.1. Data Description 

We will keep our data in simple XML files; therefore converting those XML files into data 

structures in the memory is so simple. Several files are processed during the process of 

conversion and running of the system. Those are:  

 



Software Design Description for AJCON 
 

Page 15 of 77 
 

4.1.1. Data Objects 

4.1.1.1. External Data Objects:  

 User defined inputs 

 Project input files 

 Mapping.xml 

 javaml-2.dtd & javaml-2.xsd 

 ClassName.xml(Output of the JavaML) 

 Output files 

 Log files 

All the above files except from output files are required to run the system properly. 

ClassName.xml and output files are constructed during the conversion operation and 

they are not temporary files. We will keep them to compare the results of the output 

with the initial sources. Functionalities and structures of those files are described below. 

 

User defined inputs: 

User must define source project folder path and destination project folder path via GUI. 

These data are used to get all project files included in source project folder path and 

generate output JSF project files in destination project folder path. 

Project input files: 

Project input files will be specified in run time. With the use of GUI, user specifies the 

source folder path to get the files. All the files under the path of source folder are the 

project input files for the system. All the files will be searched and applet classes will be 

extracted among them.  

Mapping.xml 

<MappingElements> 

  <MapElement> 

   <Object> 

    <Applet> JButton </Applet> 



Software Design Description for AJCON 
 

Page 16 of 77 
 

    <JSF> h:Button </JSF> 

   </Object> 

   <Properties> 

    <Property type= “message”> 

     <Applet> addActionListener </Applet> 

     <JSF> action </JSF> 

     </Property> 

    <Property type= “message”> 

     <Applet> setText </Applet> 

     <JSF>  value </JSF> 

    </Property> 

    <Property type= “message”> 

     <Applet> repaint </Applet> 

     <JSF> rerender </ 

    </Property> 

   </Properties> 

 </MapElement> 

  <MapElement> 

   <Object> 

    <Applet> JCheckBox </Applet> 

    <JSF> h:selectBooleanCheckbox </JSF> 

   </Object> 

   <Properties> 

    <Property type=“message”> 

     <Applet> addActionListener </Applet> 

     <JSF> value </JSF> 

    </Property>  

   </Properties> 

  </MapElement> 

</MappingElements> 



Software Design Description for AJCON 
 

Page 17 of 77 
 

Mapping.xml file will be used as data storage for the applet components and the 

equivalences of these components in the JSF. In the run time all the data in this mapping 

file will be transformed into the memory for further operations.  

Above mapping file is an example-mapping file. At initial step, we will not only consider 

these two components stated in the example mapping file. We will try to convert other 

components also. All the components that we will try to convert are: 

 JButton 

 JCheckBox 

 JTextField 

 JTextArea 

 JComboBox 

 JLabel 

 JRadioButton 

 JList 

javaml-2.dtd & javaml-2.xsd 

javaml-2.dtd and javaml-2.xsd files are reference documents to grammar and lexer rules 

of JavaML. Both these file constructs the format of the parse and lex operation.  

Some parts of javaml-2.dtd and javaml-2.xsd files shown below to make it clear.  

Sample javaml-2.xsd:  

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

elementFormDefault="unqualified"> 

  <xs:attributeGroup name="location"> 

 <xs:attribute name="line" type="xs:string"/> 

  <xs:attribute name="col" type="xs:string"/> 

  <xs:attribute name="end-line" type="xs:string"/> 

  <xs:attribute name="end-col" type="xs:string"/> 

  <xs:attribute name="commentToken" type="xs:string"/> 

  <xs:attribute name="startToken" type="xs:string"/> 



Software Design Description for AJCON 
 

Page 18 of 77 
 

  <xs:attribute name="endToken" type="xs:string"/> 

  <xs:attribute name="idkind" type="xs:string"/> 

 </xs:attributeGroup> 

 <xs:group name="stmt"> 

  <xs:choice> 

   <xs:element ref="block"/> 

   <xs:element ref="local-variable-decl"/> 

   <xs:element ref="try"/> 

   <xs:element ref="throw"/> 

   <xs:element ref="if"/> 

   <xs:element ref="switch"/> 

   <xs:element ref="loop"/> 

   <xs:element ref="do-loop"/> 

   <xs:element ref="return"/> 

   <xs:element ref="continue"/> 

   <xs:element ref="break"/> 

   <xs:element ref="synchronized"/> 

   <xs:group ref="expr"/> 

  </xs:choice> 

 </xs:group> 

 <xs:group name="expr"> 

  <xs:choice> 

   <xs:element ref="send"/> 

   <xs:element ref="new"/> 

   <xs:element ref="new-array"/> 

   <xs:element ref="var-ref"/> 

   <xs:element ref="formal-ref"/> 

   <xs:element ref="field-ref"/> 

   <xs:element ref="field-access"/> 

   <xs:element ref="array-ref"/> 

  …  



Software Design Description for AJCON 
 

Page 19 of 77 
 

Sample javaml-2.dtd:  

<?xml version="1.0" encoding="UTF-8"?> 

<!ELEMENT anonymous-class (superclass?, implement*, (constructor | method | field | 

instance-initializer)*)> 

<!ATTLIST anonymous-class 

 abstract CDATA #IMPLIED 

 final CDATA #IMPLIED 

 synchronized CDATA #IMPLIED 

 line CDATA #IMPLIED 

 col CDATA #IMPLIED 

 end-line CDATA #IMPLIED 

 end-col CDATA #IMPLIED 

 comment CDATA #IMPLIED 

> 

<!ELEMENT arguments (((send | new | new-array | var-ref | formal-ref | field-ref | field-

access | array-ref | paren | assignment-expr | conditional-expr | binary-expr | unary-

expr | cast-expr | instanceof-test | literal-number | literal-string | literal-char | literal-

boolean | literal-null | this | super)))*> 

<!ELEMENT array-initializer (array-initializer | ((send | new | new-array | var-ref | 

formal-ref | field-ref | field-access | array-ref | paren | assignment-expr | conditional-

expr | binary-expr | unary-expr | cast-expr | instanceof-test | literal-number | literal-

string | literal-char | literal-boolean | literal-null | this | super)))*> 

<!ATTLIST array-initializer 

  length CDATA #REQUIRED 

> 

<!ELEMENT array-ref (base, offset)> 

…  



Software Design Description for AJCON 
 

Page 20 of 77 
 

Both of the javaml-2.xsd and javaml-2.dtd files are too long and complex files. It is not 

possible to put all the information in them. For further information, you may visit the 

website stated in the references section.  

ClassName.xml 

ClassName.xml is the output file of JavaML. ClassName should be the class name that 

extends the Applet class. This xml file is automatically generated after JavaML’s run on 

Java source code files of the input Applet project. It conforms to javaml-2.dtd and 

javaml-2.xsd file structures. This file will be parsed with the help of Mapping.xml by 

Translator component. (Sample ClassName.xml file format is shown in section 8.1) 

Output Files 

Output files are JSF files that have been converted from input Applet project. 

4.1.1.2. Internal Data Objects 

Internal Data Objects for each component are shown in diagrams in section 5. 

4.1.3. Data Models 

AJCON project does not use database. Therefore, ER Diagram for database modeling is 

not drawn. For data modeling of the system, data flow diagram is supplied in section 

4.1.2. 

4.1.4. Data Dictionary 

AJCON project does not use database. Therefore, ER Diagram for database modeling is 

not drawn. For data modeling of the system, data flow diagrams drawn for components 

are supplied in section 5.2.  

 

 

 

 



Software Design Description for AJCON 
 

Page 21 of 77 
 

5. System Architecture 

5.1. Architectural Design 

 

Main concern of AJCON is to convert an Applet project to JSF project. For this purpose 

AJCON project composed of several components: Log Component, UI Component, 

Translator Component, JavaML component, Applet Extractor Component.  

Those components are interacting with each others. Some of them provide some 

interfaces to other ones, and some of them use the provided interface. Generally the 

interfaces provided by the other components are the methods of the classes in it.  

Above relations shows that Log component provides an interface to other components 

and all the other components uses it. By the same way, it is shown that UI Component 

uses all the interfaces provided in the system. All the existing interfaces and the 

relations between the components are on the diagram.   

 

 



Software Design Description for AJCON 
 

Page 22 of 77 
 

5.2. Description of Components 

Below there is the package diagram of the overall system. Each package/component will 

be described in subsections.  

 

5.2.1. UI Component 

5.2.1.1. Processing Narrative for UI Component 

This is the component which interacts with user. Since our project does not require lots 

of user interactions, this component is not complex structured. It has a simple interface 

and simple purpose. By this component, user can manage projects to be converted with 

add/remove/select/startConversion options.  



Software Design Description for AJCON 
 

Page 23 of 77 
 

At the beginning, “ApplicationManager” class which has the main function initiates the 

system and shows the user UI main window. Then, when user clicks the “New Project” 

button, “Project Window” will pop up. By selecting destination and source folder, user 

adds project to list of project to be converted in main window. User can manage the 

main window by adding or removing projects with this method and start the conversion 

of any project that he/she selects. After starting a conversion, user can watch the live 

continuation of conversion process from main window and see logs. 

5.2.1.2. Interface Description of UI Component 

 

5.2.1.3. Processing Detail of UI Component 

UI component consists of 5 different classes. 



Software Design Description for AJCON 
 

Page 24 of 77 
 

5.2.1.3.1. ApplicationManager Class 

This class has the main function of the project. It initiates run of the project and sets 

MainWindow. 

 

5.2.1.3.1.1. Attributes 

 public static MainWindow mainWin: This instance variable is set by 

Application Manager in main function of the project. 

5.2.1.3.1.2. Methods 

 public static void main (String[] args): This is the main function of the project. 

When the project runs, this function is called automatically. In this function, 

main window will be created and system will be initiated. 

5.2.1.3.2. MainWindow Class 

This is the window that the user can directly manage all conversion operations. This 

class extends javax.swing.JFrame class and uses javax.swing components for GUI. 



Software Design Description for AJCON 
 

Page 25 of 77 
 

 

5.2.1.3.2.1. Attributes 

 private int[] selectedProjects: This keeps id numbers of the projects that user 

selected. 

 private static ArrayList<MainAction> mainActionList: List of main actions for 

each project thread. 

 private static ArrayList<LogWindow> logWindowList: Keeps list of log 

windows that user wants to see. 



Software Design Description for AJCON 
 

Page 26 of 77 
 

 private javax.swing.JSeperator: Seperator between top-level labels and 

values. 

 private javax.swing.JPanel panel: Contains javax.swing GUI components. 

 private const javax.swing.JLabel labelProjectName: Constant header label, set 

as “Project Name” at first. 

 private const javax.swing.JLabel labelSourceFolder: Constant header label, 

set as “Source Folder” at first. 

 private const javax.swing.JLabel labelCreateDate: Constant header label, set 

as “Create Date” at first. 

 private const javax.swing.JLabel labelProgressBar: Constant header label, set 

as “Progress” at first. 

 private const javax.swing.JLabel labelSelected: Constant header label, set as 

“Selected” at first. 

 private javax.swing.JButton buttonNewProject: User can create a new project 

by pressing this button. 

 private javax.swing.JButton buttonRemoveProject: User can remove selected 

project(s) from the list by pressing this button. 

 private javax.swing.JButton buttonStartConversion: User can start 

conversions of the selected project(s) by pressing this button. 

 private javax.swing.JButton buttonViewLog: User can see log(s) of the 

selected project(s) by pressing this button. 

 private static ArrayList<javax.swing.JLabel> listProjectNames: This instance 

variable keeps names of the projects in the main window.  

 private static ArrayList<javax.swing.JLabel> listSourceFolders: This instance 

variable keeps source folder paths of the projects in the main window. 

 private static ArrayList<javax.swing.JLabel> listCreateDates This instance 

variable keeps creation dates of the projects in the main window.: 

 private static ArrayList<javax.swing.JProgressBar> listProgressBars: This 

instance variable keeps progress bar info of the projects in the main window. 

 private static ArrayList<javax.swing.JCheckBox> listCheckBoxes: This instance 

variable keeps checbox’s status for each project in the main window. 



Software Design Description for AJCON 
 

Page 27 of 77 
 

 private org.apache.log4j.Logger logger: This variable is used to log any kind of 

information inside this class. 

5.2.1.3.2.2. Methods 

 public MainWindow(): Constructor of the MainWindow class. 

 public void initComponents(): Initializes interface components. 

 public ArrayList<javax.swing.JLabel> getProjectNames(): Returns list of 

project names. 

 public ArrayList<javax.swing.JLabel> getSourceFolders(): Returns list of 

source folder paths of the projects. 

 public ArrayList<javax.swing.JLabel> getCreateDates(): Returns list of creation 

dates of the projects. 

 public ArrayList<javax.swing.JProgressBar> getProgressBars(): Returns list of 

progress bar info of the projects. 

 public ArrayList<javax.swing.JCheckBox> getCheckBoxes(): Returns list of 

check box’s statuses of the projects. 

 public ArrayList<LogWindow> getLogWindows(): Returns list of log windows 

that user wants to see. 

 private void buttonNewProjectClickedAction (java.awt.event.ActionEvent evt, 

MainWindow mw): When user clicks “New Project”, information related to 

project taken from project window is used as parameter and this function is 

called. 

 private void buttonRemoveProjectClickedAction (java.awt.event.ActionEvent 

evt): When user clicks “Remove Project”, this function is called. 

 private void buttonStartConversionClickedAction (java.awt.event.ActionEvent 

evt): When user clicks “Start Conversion”, this function is called. 

 private void buttonViewLogClickedAction (java.awt.event.ActionEvent evt): 

When user clicks, log window(s) open and shows log info to user. 

 

 



Software Design Description for AJCON 
 

Page 28 of 77 
 

5.2.1.3.3. ProjectWindow Class 

This is the class that lets user add a new project with a new window. This class extends 

javax.swing.JFrame class and uses javax.swing components for GUI. 

 

5.2.1.3.3.1. Attributes 

 private javax.swing.JPanel panel: The panel that keeps objects in project 

window together. 

 private javax.swing.JButton buttonChooseSource: Button that is used for 

choosing source folder. 

 private javax.swing.JButton buttonChooseDestination: Button that is used for 

choosing destination folder. 

 private javax.swing.JButton buttonConfirmProject: Button that is used for 

confirming project conversion. 

 private javax.swing.JTextField textFieldProjectName: Text field object that is 

used for entering project name . 



Software Design Description for AJCON 
 

Page 29 of 77 
 

 private javax.swing.JTextField textFieldSourceDirectory: Text field object that 

is used for entering source directory. 

 private javax.swing.JTextFiled textFiledDestinationDirectory: Text field object 

that is used for entering destination directory. 

 private javax.swing.JLabel labelProjectName: Label of project name, that is 

“Project Name”. 

 private javax.swing.JLabel labelSourceDirectory: Label of source directory, 

that is “Source Directory”. 

 private javax.swing.JLabel destinationDirectory: Label of destination 

directory, “Destination Directory”. 

 private MainWindow superWindow: Reference for main window object 

instance. 

5.2.1.3.3.2. Methods 

 public ProjectWindow (MainWindow mw): Constructor of ProjectWindow 

class. Sets mw:MainWindow as its super class object. 

 private void initComponents (): Initiates object’s project window 

components. 

 private void buttonChooseSourceClickedAction (java.awt.event.ActionEvent 

evt): Event handler for clicking “Choose Source” button. 

 private void buttonChooseDestinationClickedAction 

(java.awt.event.ActionEvent evt): Event handler for clicking “Choose 

Destination” button. 

 private void buttonConfirmProjectClickedAction (java.awt.event.ActionEvent 

evt): Event handler for clicking “Confirm Project” button. 

 private void textFieldSourceDirectoryStateChangedAction 

(java.awt.event.ActionEvent evt): Event handler for text field source 

directory. 

 

 



Software Design Description for AJCON 
 

Page 30 of 77 
 

5.2.1.3.4. LogWindow Class 

This class shows log information that it takes from Logger object and shows it to user. 

This class extends javax.swing.JFrame class and uses javax.swing components for GUI. 

 

 

5.2.1.3.4.1. Attributes 

 private javax.swing.JPanel panel: The panel that keeps objects in log window 

together. 

 private javax.swing.JTextArea logInformation: Text area field for log 

information. 

 private MainAction action: Reference for main action object instance. 

 private String projectName: Shows name of the project that are being logged. 

5.2.1.3.4.2. Methods 

 public LogWindow (String pn, MainAction act): Constructor of LogWindow. 

 private void initComponents(): Initiates log window components. 

5.2.1.3.5. MainAction Class 

When user clicks “Start Conversion”, one instance of this class is instantiated for every 

project and it starts to run. This class also extends Thread and implements Serializable 

because it uses a multi-threaded approach for every single project run. It lets user to 

convert several projects at a time. 



Software Design Description for AJCON 
 

Page 31 of 77 
 

 

5.2.1.3.5.1. Attributes 

 private String sourcePath: Keeps project source path. 

 private StringBuffer logBuffer: The StringBuffer object for logging 

continuously. 

 private int progress: Keeps percentage of the project. Between 0-100. 

 private boolean logWindowOpened=false: Boolean value for log window. If 

open, it is updated in real-time. 

 private LogWindow logWindow=null: Reference for LogWindow object 

instance. 

 private MainWindow mainWindow: Reference for MainWindow object 

instance. 

 private org.apache.log4j.Logger logger: Singleton object reference for only 

one Logger object instance. 

5.2.1.3.5.2. Methods 

 public MainAction (MainWindow mw, String sourcePath): Constructor of 

MainAction class. 

 private void setLogAppender(): Initiates format of the logger and type of 

buffer for project.  



Software Design Description for AJCON 
 

Page 32 of 77 
 

 public void checkUpdates(): Refreshes the screens. 

 public void run(): Function that is needed to be called for thread’s start. 

5.2.1.4. Dynamic Behavior of UI Component 

 

5.2.2. AppletExtractor Component 

5.2.2.1. Processing Narrative for AppletExtractor Component 

AppletExtractor Component is responsible from finding java sources that extends 

JApplet class. When the MainAction class is invoked from the user interface, MainAction 

class constructs an ExtractionHandler in Applet Extractor Component. This component 

searches the project folder into the deep, and looks all the files in the folders. 

Component notes down the source files that extend JApplet.  

 

 



Software Design Description for AJCON 
 

Page 33 of 77 
 

5.2.2.2. Interface Description of AppletExtractor Component 

 

5.2.2.3. Processing Detail of AppletExtractor Component 

AppletExtractor component has only one class: ExtractionHandler. 

5.2.2.3.1. ExtractionHandler Class 

 

5.2.2.3.1.1. Attributes 

 private MainAction action: Reference to an instance of MainAction class. 



Software Design Description for AJCON 
 

Page 34 of 77 
 

 private ArrayList<String> appletSourcePaths: When the class finds a source 

pushes the file path to list.  

 private org.apache.log4j.Logger logger: Singleton object reference for only 

one Logger object instance. 

5.2.2.3.1.2. Methods 

 public ExtractionHandler (MainAction ma): Constructor of ExtractionHandler. 

 public ArrayList<String> getAppletSourcePaths(): Getter method for field 

appletSourcePaths. 

 public void parseAndExtractApplet():Looks into to deeps of project folder to 

find source files, which extends JApplet. 

5.2.2.4. Dynamic Behavior of AppletExtractor Component 

 

5.2.3. JavaML Component 

5.2.3.1. Processing Narrative for JavaML Component 

JavaML Component is responsible from lexical analysis and tokenizing the source files. 

After the process of Applet Extractor Component finishes, MainAction class inititates a 

JavaMLHandler object. JavaMLHandler object gathers the paths of the source files, 



Software Design Description for AJCON 
 

Page 35 of 77 
 

which extends JApplet, from the ExtractionHandler object. After gathering those paths 

runs Jikes over them.  

5.2.3.2. Interface Description of JavaML Component 

 

 

5.2.3.3. Processing Detail of JavaML Component 

JavaML component consists of only one class: JavaMLHandler. 

5.2.3.3.1. JavaMLHandler Class 

 



Software Design Description for AJCON 
 

Page 36 of 77 
 

5.2.3.3.1.1. Attributes 

 private ArrayList<String> appletSourcePaths: Gathered path information from 

the ExtractionHandler object.  

 private MainAction action: Reference to MainAction instance.  

 private org.apache.log4j.Logger logger: Singleton object reference for only 

one Logger object instance. 

5.2.3.3.1.2. Methods 

 public JavaMLHandler (ArrayList<String> appletSourcePaths, MainAction act): 

Constructor for JavaMLHandler class.  

 public String getEnvironmentVariables (): Gets the environment variables 

defined on the system to look for JDK path.  

 public void startParse(): Runs JavaML/Jikes over the files.  

5.2.3.4. Dynamic Behavior of JavaML Component 

 



Software Design Description for AJCON 
 

Page 37 of 77 
 

5.2.4. Translator Component 

5.2.4.1. Processing Narrative for Translator Component 

Translator component uses output of JavaML component – that is ClassName.xml, 

related ClassInfo object instances and Mapping.xml file in order to generate output files. 

In this design, we will use Java Reflection API and ClassInfo objects in our design. More 

information can be found about Java Reflection API at Section 8.6. 

This component is going to be instantiated at MainAction class and be triggered from 

there. 

5.2.4.2. Interface Description of Translator Component 

 

 

5.2.4.3. Processing Detail of Translator Component 

Translator component contains two classes: TranslationHandler and ClassInfo.  

 

 

 



Software Design Description for AJCON 
 

Page 38 of 77 
 

5.2.4.3.1. TranslationHandler Class 

 

5.2.4.3.1.1. Attributes 

 private ArrayList<ClassInfo> listClassInfo: Keeps ClassInfo object instances. 

 private MainAction action: Reference for MainAction object instance. 

 private ArrayList<String> appletSourcePaths: Keeps paths of java class files 

which extends JApplet class. 

 private org.apache.log4j.Logger logger: Singleton object reference for only 

one Logger object instance. 

5.2.4.3.1.2. Methods 

 public TranslationHandler (ArrayList<String> appletSourcePaths, MainAction 

act): Constructor for TranslationHandler class. 

 public void composeMemoryStructure (): Generates ClassInfo objects in 

memory. 

 private void findEquivalentJSF (String filename): Uses Mapping.xml to 

compare and generate output JSF tags. 

 private void write2JSF (String filename): Output stream writer for output JSF 

files. 

 public void findEquivalences(): Interface for MainAction class. Calls 

findEquivalentJSF and write2JSF. 



Software Design Description for AJCON 
 

Page 39 of 77 
 

5.2.4.3.2. ClassInfo Class 

 

5.2.4.3.2.1. Attributes 

 private String sourcePath: Path of the source file which extends JApplet.  

 private List<Java.lang.reflect.Method> methods: Method list of the source 

file which extends JApplet. 

 private List< Java.lang.reflect.Field> fields: Field list of the source file which 

extends JApplet. 

 private List< Java.lang.reflect.Constructor> constructors: Defined 

constructors on the source file which extends JApplet. 

 private List< Java.lang.Class> interfaces: List of the interfaces that class 

implements. 

 private String superClass: Name of the super class.  

 private String type: Type of the class:Abstract… 

 private String visibility: Accessibility of the class: public, private 

 private String packageName: Package of the class.  



Software Design Description for AJCON 
 

Page 40 of 77 
 

 private String[] imports: Imported packages of the java source.  

5.2.4.3.2.2. Methods 

 public ClassInfo (String sourcePath): Constructor for the class ClassInfo.  

 public void parseXMLAndClass(): Parses the output of the JavaML and class 

with Java Reflection API.  

 public String getSourcePath(): Getter method for the field “sourcePath”. 

 public List<Java.lang.reflect.Method> getMethods(): Getter method for the 

field “methods”. 

 public List<Java.lang.reflect.Field> getFields(): Getter method for the field 

“fields”. 

 public List< Java.lang.reflect.Constructor> getConstructors(): Getter method 

for the field “constructor”. 

 public List< Java.lang.Class>  getInterfaces(): Getter method for the field 

“interfaces”.  

 public String getSuperClass(): Getter method for the field “superClass”. 

 public String getType(): Getter method for the field “type”.  

 public String getVisibility(): Getter method for the field “visibility”. 

 public String getPackageName(): Getter method for the field “packageName”. 

 public String[] getImports(): Getter method for imports field.  

 

 

 

 

 

 

 

 

 

 

 



Software Design Description for AJCON 
 

Page 41 of 77 
 

5.2.4.4. Dynamic Behavior of Translator Component 

 

5.2.5. Log Component 

5.2.5.1. Processing Narrative for Log Component 

Log component is responsible from only logging. There will be only one logger while the 

system is running. Logger Component will be accessible from all the other components 

to log appropriate information. Logger will be configured to log different places for each 

project. It will log into a file named projectName.log and also, it will produce logs on the 

screen.  

Apache log4j library will be used while logging.  

5.2.5.2. Interface Description of Log Component 

Log component is not a complex component and there is no complex data flow over the 

component. Data flow of the Log component described in other components data flow 

diagrams.  

 



Software Design Description for AJCON 
 

Page 42 of 77 
 

5.2.5.3. Processing Detail of Log Component 

Log component consists of only one class: LogGenerator. 

5.2.5.3.1. LogGenerator Class 

 

5.2.5.3.1.1. Attributes 

 private static org.apache.log4j.Logger logger: Singleton logger object.  

5.2.5.3.1.2. Methods 

 public org.apache.log4j.Logger getSingletonLogger(): Getter method for the 

“logger” field. 

5.2.5.4. Dynamic Behavior of Log Component 

All the other components send log information after all the operations by done the 

component. So there is no need to show the sequence of the flow in this section. Any 

component can log any time.  

6. User Interface Design 

6.1. Overview of User Interface 

In this project, there will be no complex user interfaces, because this tool will be a single 

developer tool. So, we designed our interfaces in that manner.  

Our designed user interfaces provide some facilities to users. When the user starts to 

use the system, main window stated in part 6.2 welcomes the user. 

Capabilities of the main window are to:  

 Operate over the existing projects 



Software Design Description for AJCON 
 

Page 43 of 77 
 

o Remove an existing project 

o Select an existing project 

o Deselect an existing project 

o Start conversion of selected projects 

o View log information of selected projects 

 Add new project 

All those operations mentioned above are the directly user related operations. Actions 

of the user will be converted to system functions related to that action.  

This project does not contain a main window only. According to user actions, some 

other pre-defined user interfaces will appear on the window. When the main window is 

opened and the user wants to add a new project, another user interface will appear 

which is stated in 6.2.  

Capabilities of the “Project” window are to:  

 Select a project folder 

 Select a destination folder 

 Confirm project details 

Another window that can be seen via main window is log information window. 

Capabilities of the “Log” window are;  

 Display real time information about the project being converted.  

All the information stated above is directly from the users perspective. In addition to 

those, there are some other internal operations that invoke the user interface. 

According to the conversion process user interface shows the percentage of the 

conversion.   

 

 

 



Software Design Description for AJCON 
 

Page 44 of 77 
 

 

6.2. Interface Screens 

 

Main Window 

 

 

 

Project Window 

 

 



Software Design Description for AJCON 
 

Page 45 of 77 
 

 

Log Window 

 

6.3. Screen Objects and Actions 

This part includes objects on the screen interfaces and the actions linked to that objects. 

6.3.1 Screen Objects 

For the main window:  

 Panel: Panel is to group other objects in the window. There will be only one 

panel to group objects.  

 Buttons 

o buttonNewProject: This button is to add a new project to convert.  

o buttonRemoveProject: This button is to remove an existing project. 

o buttonStartConversion:  This button is to start conversion operation 

of selected projects.  

o buttonViewLog: This button is to view log information.  

There are actions linked to those buttons. All the actions are stated below in section 

6.3.2.  



Software Design Description for AJCON 
 

Page 46 of 77 
 

 Labels 

o labelProjectName: Label for the project name.  

o labelSourceFolder: Label for the source project folder.  

o labelCreateDate: Label for the creation date of the project.  

o labelProgressBar: Header label for the progress bars.  

o labelSelected: Header labels for the checkboxes defined below.  

Those labels are the headers. According to the existing projects, there will be some 

other labels related with each project under above header labels.   

 Progress Bars: Progress bars are to show the status of the conversion 

operation.  

 Check Boxes: Checkboxes are to select or deselect a project to operate on it. 

 Separator: Separates the headers from the project information.   

Progress bars and Check boxes can be more than one according to existing projects. Also 

there are some actions linked to those checkboxes.  

For the project window:  

 Panel: Panel is to group other operations on the window.  

 Buttons 

o buttonChooseSource: This button is to opens a standard dialog 

window to select the source folder.  

o buttonChooseDestination: This button is to opens a standard dialog 

window to select the destination folder.  

o buttonConfirmProject: This button is to confirm project details stated.  

 Text Fields 

o textFieldProjectName: This text field is for to specify project name. It 

is a disabled field and automatically generated with the selected 

source directory.  

o textFieldSourceDirectory: This text field is to specify source directory. 

It is an enabled component and also automatically generated with the 

selection of source directory.  



Software Design Description for AJCON 
 

Page 47 of 77 
 

o textFieldDestinationDirectory: This text field is to specify destination 

directory. It is an enabled component and also automatically 

generated with the selection of destination directory.  

There are actions defined on the objects. Those actions are described in section 6.3.2.  

 Labels 

o labelProjectName: Label for the textFieldProjectName .  

o labelSourceDirectory: Label for the textFieldSourceDirectory.  

o labelDestinationDirectory: Label for the textFieldDestinationDirectory.  

For the log : 

 Panel: Panel is to group another objects together.  

 TextArea: TextArea component is to show log information about the process.  

6.3.2 Screen Actions and Relations 

Defined actions for the interfaces stated below.  

For the “Main” window:  

 Actions of Buttons 

o buttonNewProjectClickedAction: Action performed when the 

buttonNewProject button clicked on the main window. Opens 

“Project” window stated in section 6.2.  

o buttonRemoveProjectClickedAction: Action performed when the 

buttonRemoveProject button clicked on the main window. Removes 

the selected project from the list of existing projects.  

o buttonStartConversionClickedAction: Action performed when the 

buttonStartConversion button clicked on the main window. Starts the 

main operation conversion of the selected projects.  

o buttonViewLogClickedAction: Action performed when the 

buttonViewLog button clicked. Opens  “log” window, which is stated 

in section 6.2.  



Software Design Description for AJCON 
 

Page 48 of 77 
 

o checkboxStateChangedAction: Selects or deselects a project from the 

existing projects.  

For the “Project” Window:  

 Actions of Buttons 

o buttonChooseSourceClickedAction: Action performed when the 

buttonChooseSource button clicked in the “Project” window. Action 

opens a dialog window that contains the system directories to choose 

source folder.  

o buttonChooseDestinationClickedAction: Action performed when the 

buttonChooseDestination button clicked in the “Project” widow. 

Action opens a dialog window which contains the system directories 

to choose destination folder.  

o buttonConfirmProjectClickedAction: Action performed when the 

buttonConfirmProject button clicked in the “Project” window. Action 

closes the current “Project Window” and adds the new project to list 

of existing projects in the main window.  

o textFieldSourceDirectoryStateChangedAction: Action performed 

when the state of the textFieldSourceDirectory changed. State of the 

textFieldSourceDirectory object changes with if any user enters a text. 

With the change of the state of textFieldSourceDirectory 

textFieldProjectName field will be automatically generated.  

Below, there is a state diagram which summarizes user interface states with respect 

to user actions. This diagram is similar to diagram drawn in section 2, but here is only 

related to user and only UI states are shown. 



Software Design Description for AJCON 
 

Page 49 of 77 
 

 

 

7. Detailed Design 

In this section, system architecture of AJCON which is explained in section 5 will be 

covered lastly and most important points about design will be detailed. While doing this, 

main components and their classes and most important functions will be handled. (See 

Section 5.2 Package Diagram) 

7.1. UI Component 

(See Section 5.2.1 for UI Component related diagrams.) 

Classification: Package 

Definition: Purpose of this package is to hold classes that is used in interactions with 

users logically together. 



Software Design Description for AJCON 
 

Page 50 of 77 
 

Responsibilities: This class is responsible from all interactions with user. Responsibility 

of this package will be explained in detail by responsibilities of ApplicationManager, 

MainWindow, ProjectWindow, LogWindow and MainAction classes. 

Uses/Interactions: This component uses interface of the Log component (i,e. subroutine 

getSingletonLogger()) for the purpose of logging. Since Log component import the 

org.apache.log4j package, UI Component also uses it. Component provides an interface 

to the user.  

Processing: Component initiates the system and gets prepared everything for the user 

to let him/her pick a project and start conversion. Every user-based event processed and 

according to these events, all actions are handled in order to make system ready for a 

conversion. 

Interface/Exports: The set of services provided by this component is specified by its 

classes, ApplicationManager, MainWindow, ProjectWindow, LogWindow and 

MainAction, and their subroutines. 

7.1.1. ApplicationManager Class 

Classificiation: Class(See class diagram at Section 5.2.1.3.1) 

Definition: Purpose of this class is to initiate run of the project. 

Responsibilities: This class has the main function of the project. When main function is 

called by the system, it is responsible from creating main window and initiating the 

system. 

Constraints: There is no time, memory, processor limitiation. To make the class active, 

user need to run the project. 

Uses/Interactions: This class only interacts with MainWindow class. It creates main 

window of the project and calls its initComponents() function.  

Processing: ApplicationManager class simply instantiates a MainWindow object instance 

and calls its initComponents() function. After calling this method, main thread ends but 

since there is a MainWindow object instantiation that runs on a JFrame thread, that 



Software Design Description for AJCON 
 

Page 51 of 77 
 

windows still stays live for user interactions. Because of this reasong, when main thread 

dies, system does not halt and keeps working. 

Interface/Exports: This class does not provide interface or export anything to any other 

component. 

7.1.1.1 main( args: String[] ):void 

Classification: Function 

Definition: Purpose of this function is to initiate the system. It is called automatically 

when project is run. 

Constraints: There is no time, memory or process limitation. 

Uses/Interactions: This function uses MainWindow class interface in order to call its 

initComponents() method. 

Processing: When system is run, main function is called immediately and everything 

starts from this function. After creating a MainWindow instance, main thread dies but 

the other thread continues on. 

7.1.2. MainWindow Class 

Classification: Class(See class diagram at Section 5.2.1.3.2) 

Definition: Purpose of this class is to hold everything related to main window and its 

actions. 

Responsibilities: Its behavior in AJCON system is initiated by ApplicationManager class. 

Class holds all graphical components in main window (labels, buttons, panel, separator, 

progress bar, check boxes etc). It also handles all actions included in main window, 

which are new project, remove project, start conversion, view log and check box state 

change. User can start and do many conversions from MainWindow with the help of 

multiple threads running on different conversions. In addition to these, this class is 

responsible from logging everything happened to the user. 



Software Design Description for AJCON 
 

Page 52 of 77 
 

Constraints: There is no time, memory, processor limitation. To make the class active, 

program should be run and main function should start properly. 

Uses/Interactions: This class extends javax.swing.JFrame class and uses 

javax.swing.components for GUI. This class also uses the interface provided by the Log 

component. Subroutine of Log component getSingletonLogger() is used to set class local 

private field logger to static singleton logger object. Its interaction with Log components 

leads to the creation of a list of log windows and main actions for every single thread 

that is created during multiple conversions.  

Processing: This class simply stores the information every project to be converted. Once 

a user does an action, its related action handler is triggered. When user clicks New 

Project button, buttonNewProjectClickedAction is called and a ProjectWindow class 

object is instatiated. When user clicks RemoveProject button, 

buttonRemoveProjectClickedAction is called and every check box near to projects is 

controlled and clicked ones are removed. When user clicks Start Conversion, every check 

box near to projects is controlled and every clicked project is started to be converted on 

a different thread. When user clicks View Log, every check box near to projects in 

controlled and log info of every project is shown to user. All LogWindows objects are 

also kept as an instance variable, logWindowList:ArrayList<LogWindow>. 

Interface/Exports: This provides interface to ProjectWindow class.  Every 

ProjectWindow instance keeps the reference of MainWindow in order to save changes 

at main window and go back there properly. For each ProjectWindow instance, there 

will be only one reference to main window in total. 

7.1.2.1. initComponents() : void 

Classification: Function 

Definition: Purpose of this function is to init graphical components and other instance 

variables in main window. It creates labels, buttons, checkboxes etc. This function also 

initiates mainActionList, logWindowList and configures logger object. 

Constraints: There is no time, memory or process limitation. 



Software Design Description for AJCON 
 

Page 53 of 77 
 

Uses/Interactions: This function does not use any interface of any other component.  

Processing: When main function of ApplicationManager is executed, an instance of 

MainWindow is created and initComponents() function is called. After its execution, 

components are initiated. 

7.1.3. ProjectWindow Class 

Classification: Class(See class diagram at Section 5.2.1.3.4) 

Definition: Purpose of this class is to hold all the information about the window that is 

created when adding a new project to AJCON system. In other words, it is called “New 

Project Window”. 

Responsibilities: Its behavior in AJCON system is initiated by MainWindow class. Class 

holds all graphical components (text fields, labels, buttons, panel etc) and a reference to 

main window. It is basically responsible from adding a new project with all its 

information to the system properly. After adding a project, it should save changes at 

main window and return back there properly. 

Constraints: There is no time, memory, processor limitation. To make the class active, in 

main window, user should click New Project button and buttonNewProjectClickedAction 

function should be triggered. 

Uses/Interactions: This class uses the interface provided by MainWindow class. In order 

to save changes to main window, after creating a new project, main window should be 

updated. 

Processing: This class simply stores the information of a new project to be converted. 

When user clicks “New Project” button from main window, a ProjectWindow instance is 

instantiated and shown to the user. User can specify the source and destination paths of 

projects, enter a new project name and finally click “Confirm Project” button. If user 

click on the source path text field, buttonChooseSourceClickedAction is triggered and a 

new browse window is created in order to let user specify the folder. It is same for 

destination folder selection. After specifying every information, user can click “Confirm 

Project” button and buttonConfirmProjectClickedAction is triggered. 



Software Design Description for AJCON 
 

Page 54 of 77 
 

7.1.3.1. initComponents() : void 

Classification: Function 

Definition: Purpose of this function is to init graphical components and other instance 

variables in project window. It creates text fields, labels, buttons etc. 

Constraints: There is no time, memory or process limitation. 

Uses/Interactions: This function does not use any interface of any other component.   

Processing: When user clicks “New Project” button from main window, an instance of 

ProjectWindow is created and initComponents() function is called in order to initiate all 

components inside this window.  

7.1.4. LogWindow Class 

Classification: Class(See class diagram at Section 5.2.1.3.4) 

Definition: Purpose of this class is to hold log information that is taken from Logger 

object and show it to the user.  

Responsibilities: Its responsibility includes showing log information of a single project to 

the user. It also holds a reference to current project’s MainAction object instance. 

Constraints: There is no time, memory, processor limitation. To make the class active, 

user should click “View Log” from main window. 

Uses/Interactions: This class uses the interface provided by MainAction class since it 

should log every action to the user. Other than that, this LogWindow object instance is 

kept inside an ArrayList of LogWindow in main window, which is 

logWindowList:ArrayList<LogWindow>. 

Processing: When user clicks “Start Conversion” from main window, for every project, 

there is a different LogWindow instance kept inside logWindowList array list. With the 

help of MainAction reference inside LogWindow instance, every action is logged to the 

user to logInformation:javax.swing.JTextArea text field. When user clicks, “View Log” 

from main window, user is able to see this log window. 



Software Design Description for AJCON 
 

Page 55 of 77 
 

Interface/Exports: This class does not provide any interface to any other component. 

7.1.4.1. initComponents() : void 

Classification: Function  

Definition: Purpose of this function is to initialize graphical components and other 

instance variables in log window. It creates panel and text field, sets project name and 

reference to MainAction object. 

Constraints: There is no time, memory or process limitation. 

Uses/Interactions: This function does not use any interface of any other component.   

Processing: When user clicks “Start Conversion” button from main window, an instance 

of LogWindow is created and initComponents() function is called in order to initiate it. 

7.1.5. MainAction Class 

Classification: Class (See class diagram at Section 5.2.1.3.5) 

Definition: Purpose of this class hold all the information about the conversion process of 

a project.  

Responsibilities: Its behaviour in AJCON system is initiated by UI Components’ 

buttonStartConversionClickedAction method. Class holds the necessary information 

about the conversion process, such as log information, percentage of conversion. Also, 

this class is responsible from the configuration of logger object.  

Constraints: There is no time, memory, processor limitation. To make the class active, 

run() method should be called.  

Uses/Interactions: This class uses the interface provided by the java.lang.Thread and 

interface Serializable, because at a time more than one conversion operation should be 

handled and all the operations should be thread safe. This class also uses the interface 

provided by the Log component. Subroutine of Log component getSingletonLogger() is 

used to set class local private field logger to static singleton logger object. 



Software Design Description for AJCON 
 

Page 56 of 77 
 

Processing: This class simply stores the information comes from the logger object. Once 

the logger is configured for this MainAction class, it starts to store the log information in 

the private field logBuffer and stores the percentage of the conversion operation in the 

progress field. Also, each checkUpdates function call refreshes the UI and provides real 

time log information when new log information arrives.  

Interface/Exports: This class provides the private fields logBuffer and progress to UI 

Component to inform the user about the conversion process. For each project existing, 

there will be a unique MainAction class, and they will carry the specific information 

about the projects to other components.  

7.1.5.1 checkUpdates( ): void 

Classification: Function 

Definition: Purpose of this function is to refresh user interface when new log 

information arrives or progress of the conversion changes.  

Constraints: There is no time, memory or process limitation. 

Uses/Interactions: This function does not use any interface of any other component.   

Processing: When any of the components logs information or changes the status of the 

progress it will immediately call that function via the object. With the execution of the 

function, opened windows will be refreshed instantly.  

7.1.5.2 run( ): void 

Classification: Function 

Definition: Purpose of this function is to start the execution of a Thread. Since the class 

MainAction extends java.lang.Thread, execution of the thread will be mention with the  

run() function.   

Constraints: There is no time, memory or process limitation. To call the function, there 

should be at least one project selected and Start Conversion button should be clicked.  



Software Design Description for AJCON 
 

Page 57 of 77 
 

Uses/Interactions: This function overrides the function run() which is defined in the 

library java.lang.Thread.    

Processing: When user selects projects and clicks the Start Conversion button, 

MainAction objects existing in the system about the selected projects will call the 

function run() to start the process. With the execution of the run() function, several 

threads can be run at the same time.  

 

7.2. Applet Extractor Component 

(See Section 5.2.2 for Applet Extractor Component related diagrams.) 

Classification: Package 

Definition: Purpose of this package is to hold applet extraction related classes logically 

together. 

Responsibilities: Responsibility of the package will be defined by the responsibility of 

the class: ExtractionHandler.   

Uses/Interactions: This component uses interface of the Log component (i,e. subroutine 

getSingletonLogger()) for the purpose of logging. Since Log component import the 

org.apache.log4j package, Applet Extractor Component also uses it. Component also 

provides an interface to the UI component.  

Processing: Component processes the input source path to find classes that extends 

Applet. Component will search every subfolders and processes .java files under input 

source folder.  

Interface/Exports: The set of services provided by this component is specified by its 

class ExtractionHandler and its subroutines. 

 7.2.1. ExtractionHandler Class 

Classification: Class (See class diagram at Section 5.2.2.3.1) 



Software Design Description for AJCON 
 

Page 58 of 77 
 

Definition: Purpose of this class is to find classes which extend Applet under the source 

folder.  

Responsibilities: Its behaviour in AJCON system is initiated by MainAction class’s run() 

method. After that, it is responsible for finding applet class source paths. 

Constraints: In the input source folder path, there will be at least one .java file which 

extends java.swing.JApplet class. There is no time, memory, processor limitation.  

Uses/Interactions: This class uses the interface provided by the Log component. 

Subroutine of Log component getSingletonLogger() is used to set class local private field 

logger to static singleton logger object. This class also uses static unique MainAction 

class object for one project and its checkUpdates() method. By this way, when logging 

the process detail, it can append its own log info to the MainActin object’s logBuffer. 

Meanwhile, it provides its functions to UI component because in MainAction class, the 

class object instances are created and class functions are used to extract applet classes.  

Processing: Gathers the input source folder path from the UI component. Accesses to 

the input source folder path and finds .java files. Then; it defines the files that will be 

sending to the JavaML component. In this process, this component opens all .java files 

and picks the classes that extend java.swing.JApplet class. By this way, it is aimed to find 

all classes that include a graphical user interface component. In further stages, only 

these extracted classes will be processed and converted to JSF components. 

Interface/Exports: This class provides extracted classes, which extends 

java.swing.JApplet, to the JavaML component as data. These extracted class source 

paths are hold in private field appletSourcePaths which is list of strings and provided 

with getAppletSourcePaths() subroutine. Before that, parseAndExtractApplet() function 

is provided to UI component such that it can extract these applet classes. 

 

 

 

 



Software Design Description for AJCON 
 

Page 59 of 77 
 

7.2.1.1 parseAndExtractApplet( ): void 

Classification: Function 

Definition: Purpose of this function is to find all .java files and classes that extends 

java.swing.JApplet class in order to find used graphical user interface components in the 

input Applet project. 

Constraints: In the input Applet project, there must be at least one .java file and a class 

that extends java.swing.JApplet class. There is no time, memory or process limitation. 

Uses/Interactions: This function uses the interface provided by the log component. 

Processing: It gathers the input source path from the UI component. To do this, it uses 

the MainAction field. It accesses the source folder path and finds .java files.  It searches 

deeps of the folder path and opens all the files. Then, it sets the related field 

appletSourcePaths field according to the results. While doing this, it also uses the logger 

field to log some information to the UI component. If any exception or error occured, it 

is also logged without violating remaining process of the system. 

  

7.3. JavaML Component 

(See Section 5.2.3 for JavaML Component related diagrams.) 

Classification: Package 

Definition: Purpose of this package is to hold JavaML usage related classes logically 

together. 

Responsibilities: Responsibility of the package will be defined by the responsibility of 

the class: JavaMLHandler.   

Uses/Interactions: This component uses interface of the Log component (i,e. subroutine 

getSingletonLogger()) for the purpose of logging. Since Log component import the 

org.apache.log4j package, JavaML Component also uses it. Component also provides an 

interface to the UI component.  



Software Design Description for AJCON 
 

Page 60 of 77 
 

Processing: Component processes the applet source paths taken from AppletExtractor 

Component by using JavaML. Detailed process will be explained in JavaMLHandler class 

processing. 

Interface/Exports: The set of services provided by this component is specified by its 

class JavaMLHandler and its subroutines. 

7.3.1. JavaMLHandler Class 

Classification: Class (See class diagram at Section 5.2.3.3.1) 

Definition: Purpose of this class is to execute JavaML command to output JavaML XML. 

Responsibilities: Its behaviour in AJCON system is initiated by MainAction class’s run() 

method. After Applect Extractor Component’s process is finished, it is time for JavaML 

component. It is responsible for parsing applet source paths and extract detailed parse 

XML which is shown in data section 4. 

Constraints: There will be at least one applet class ,which extends java.swing.Japplet, 

extracted from Applet Extractor Component. Moreover, there should be JavaML 

grammar files such as .dtd and .xsd files (explained in section 4). These data files are 

necessary for JavaML to parse java source according to these rules. Except them, there is 

no time, memory, processor limitation.  

Uses/Interactions: This class uses the interface provided by the Log component. 

Subroutine of Log component getSingletonLogger() is used to set class local private field 

logger to static singleton logger object. This class also uses static unique MainAction 

class object for one project and its checkUpdates() method. By this way, when logging 

the process detail, it can append its own log info to the MainActin object’s logBuffer. 

Meanwhile, it provides its functions to UI component because in MainAction class, the 

class object instances are created and class functions are used to get JavaML output. 

Processing: After applet source paths are extracted, these are given to JavaML class 

object in its constructor. After that, firstly, in MainAction class, startParse() function is 

called. And in this function, firstly getEnvironmentVariables() subroutine is called. 

Environment variables are taken for JavaML over Jikes compiler execution. Then, JavaML 



Software Design Description for AJCON 
 

Page 61 of 77 
 

command is executed and JavaML already parses java source files (applet classes) and 

give results to its XML files which are on the same directory as applet classes. 

Interface/Exports:  This class provides JavaML output(s), to Translator component as 

data. These JavaML output(s) are hold in XML files. Before that, , startParse() function is 

provided to UI component such that it can start JavaML parser execution. 

7.3.1.1. startParse(): void 

Classification: Function 

Definition: Purpose of this function is to start JavaML parse operation with the 

command 

   jikes.exe +ux -classpath JDK_PATH\jre\lib\rt.jar ClassName1.java ClassName2.java ... 

Constraints: In order to execute JavaML over Jikes compiler, it is necessary to get 

environment variables. Therefore, firstly they are obtained by 

getEnvironmentVariables() call in this function. Moreover, it is assumed that JavaML 

over Jikes compiler will work correctly. There is no time, memory or process limitation. 

Uses/Interactions: This function uses the interface provided by the log component. 

Processing: Since this class object is constructed with applet class paths, they are ready 

for processing. Firstly, with getEnvironmentVariables() call, environment variables are 

taken as a string and it is parsed according to JavaML execution. Then, command will be 

constructed with applet source paths and executed with the help of java.lang.Runtime 

and java.lang.Process objects. In the bakcground, JavaML already parses source files and 

creates parse XML files. While doing this, it also uses the logger field to log some 

information to the UI component. If any exception or error occured, it is also logged 

without violating remaining process of the system. 

7.3.1.2. getEnvironmentVariables(): String 

Classification: Function 

Definition: Purpose of this function is to get environment variables such as JDK path 

from the user computer. 



Software Design Description for AJCON 
 

Page 62 of 77 
 

Constraints: it is assumed that necessary environment variables are set in user’s 

computer environment. There is no time, memory or process limitation. 

Uses/Interactions: This function uses the interface provided by the log component. 

Processing:  It will read from system files to get environment variables. After that, it will 

write their paths to string. While doing this, it also uses the logger field to log some 

information to the UI component. If any exception or error occured, it is also logged 

without violating remaining process of the system 

 

7.4. Translator Component 

(See Section 5.2.4 for Translator Component related diagrams.) 

Classification: Package 

Definition: Purpose of this package is to hold translation related classes logically 

together. 

Responsibilities: Responsibility of the package will be defined by the responsibility of 

the class: TranslationHandler.   

Uses/Interactions: This component uses interface of the Log component (i,e. subroutine 

getSingletonLogger()) for the purpose of logging. Since Log component import the 

org.apache.log4j package, Translation Component also uses it. Component also provides 

an interface to the UI component.  

Processing: This component uses JavaML output(s). After process these files, it will give 

meaning to details and with the help of mapping XML, and it will find eqivalent JSF 

components/code fragments for applet classes. And then write them to destination 

paths with keeping other unprocessed source files. Detailed process will be explained in 

TranslationHandler class processing. 

Interface/Exports: The set of services provided by this component is specified by its 

class TranslationHandler and its subroutines. 



Software Design Description for AJCON 
 

Page 63 of 77 
 

7.4.1. TranslationHandler Class 

Classification: Class (See class diagram at Section 5.2.4.3.1) 

Definition: Purpose of this class is to translate applet classes to JSF ones. 

Responsibilities: Its behaviour in AJCON system is initiated by MainAction class’s run() 

method. After JavaML Component’s process is finished, it is time for Translation 

component. It is responsible for finally translate applet sources to JSF files (.xhtml and 

.java files) which run in the manner of applet classes. However, since there can be no 

%100 conversion, some applet source paths will be kept as well while some JSF 

equivalances are created. 

Constraints: There should be JavaML outputs for applet classes. Furthermore, mapping 

XML should be prepared before according to format given in section 4. Except them, 

there is no time, memory, processor limitation.  

Uses/Interactions: This class uses the interface provided by the Log component. 

Subroutine of Log component getSingletonLogger() is used to set class local private field 

logger to static singleton logger object. This class also uses static unique MainAction 

class object for one project and its checkUpdates() method. By this way, when logging 

the process detail, it can append its own log info to the MainActin object’s logBuffer. 

Meanwhile, it provides its functions to UI component because in MainAction class, the 

class object instances are created and class functions are used to be able to perform 

translation. 

Processing: After JavaML output(s) are created, in MainAction class, TranslationHandler 

object is created and applet source paths also given to it. Then, firstly, 

composeMemoryStructure() function is called. Java Reflection API an JavaML output’s 

parse results are merged to compose structures in memory. After that, for each applet 

file, mapping/translation is done with the help of mapping XML and logic of the mapping 

algorithms.  



Software Design Description for AJCON 
 

Page 64 of 77 
 

Interface/Exports:  This class provides final JSF and java files in the destination paths. 

Before they are created, composeMemoryStructure() and findEquivalences() functions 

are provided to UI component. 

7.4.1.1. composeMemoryStructure(): void  

Classification: Function 

Definition: Purpose of this function is to compose memory structures to make 

translation easy. 

Constraints: JavaML output XML’s for each applet class file should be generated before 

this function call. There is no time, memory or process limitation. 

Uses/Interactions: This function uses the interface provided by the log component. 

Processing: Firstly, it will create ClassInfo instances for each applet source (give 

appletSourcePaths to constructors). Then for these ClassInfo objects, 

parseXMLAndClass() calls are done separately. By this function, ClassInfo object’s are 

fulfilled with memory structures for each applet class. With the help of getter functions 

of ClassInfo, these structures can be accessed. While doing this, it also uses the logger 

field to log some information to the UI component. If any exception or error occured, it 

is also logged without violating remaining process of the system. 

7.4.1.2. findEquivalences(): void  

Classification: Function 

Definition: Purpose of this function is to find equivalence JSF’s for applet classes. 

Constraints: JavaML output XML’s for each applet class file should be generated before 

this function call. Furthermore, mapping XML should be prepared before according to 

format given in section 4. There is no time, memory or process limitation. 

Uses/Interactions: This function uses the interface provided by the log component. 

Processing: After memory structures are created (ClassInfo object list) with 

composeMemoryStructure() function, this function is called in the MainAction class. 



Software Design Description for AJCON 
 

Page 65 of 77 
 

Within that function, for each applet class, findEquivalentJSF(String fileName) and 

write2JSF(String fileName) functions are called by giving applet source paths indicating 

which source is mapped. findEquivalentJSF function uses ClassInfo object for this applet 

class. Using Mapping.xml and mapping algorithms, it will generate JSF tags and 

necessary java code fragments. After that stage,  write2JSF function write these partially 

equivalent JSF related codes to files. Destination paths are taken from its own 

MainAction class. While doing this, it also uses the logger field to log some information 

to the UI component. If any exception or error occured, it is also logged without 

violating remaining process of the system. 

7.4.2. ClassInfo Class 

Classification: Class (See class diagram at Section 5.2.4.3.2) 

Definition: Purpose of this class is to hold java class details in memory as structures. 

Responsibilities: Its behaviour in AJCON system is initiated by TranslationHandler class’s 

composeMemoryStructure() method. It is responsible for getting details of applet source 

files from JavaML outputs and Java Reflection API, and putting them in memory in more 

organized manner for easy access.  

Constraints: There should be JavaML outputs for applet classes. There is no time, 

memory, processor limitation.  

Uses/Interactions: This class uses Java Reflection API and JavaML outputs. Therefore, 

only interaction can be proposed for JavaML component, but after its process.  

Processing: With the call of composeMemoryStructure() of TranslationHandler class in 

MainAction class, ClassInfo objects are created for each applet source. Then, 

parseXMLAndClass() function is called within composeMemoryStructure(). With this 

function, all necessary details of one java source file are obtained and set to local fields 

methods, fields, constructors, interfaces, superClass, type, visibility, packageName, 

imports. 



Software Design Description for AJCON 
 

Page 66 of 77 
 

Interface/Exports:  This class provides methods, fields, constructors, interfaces, 

superClass, type, visibility, packageName, imports to TranslationHandler class. 

TranslationHandler class can acces them through getter’s of them provided by this class.  

7.4.2.1. parseXMLAndClass(): void 

Classification: Function 

Definition: Purpose of this function is to parse JavaML output ClassName.XML and parse 

source file with Java Reflection API to get main fiels like method names, interface name 

etc. Then, merge these information to create java class structures. 

Constraints: JavaML output XML’s for specified applet class file should be generated 

before this function call. There is no time, memory or process limitation. 

Uses/Interactions: This function uses the interface provided by the log component. 

Processing:  Firstly, Java Reflection API is used. It will give the method names, fields 

declared in source class, implemented interfaces etc. main details. Then these names 

are used to parse JavaML output XML parsing and get more detailed information about 

these names. Details are set to local fields methods, fields, constructors, interfaces, 

superClass, type, visibility, packageName, imports whenever detail is obtained. 

 

7.5. Log Component 

(See Section 5.2.5 for Log Component related diagrams.) 

Classification: Package 

Definition: Purpose of this package is to hold Logging related classes logically together. 

Responsibilities: Responsibility of the package will be defined by the responsibility of 

the class: LogGenerator.   

Uses/Interactions: Log component imports the org.apache.log4j package for logging 

utiliy.  



Software Design Description for AJCON 
 

Page 67 of 77 
 

Processing: Component appends the log information sent by the other components.  

Interface/Exports: The set of services provided by this component is specified by its 

class LogGenerator and its subroutines. 

7.5.1. LogGenerator Class 

Classification: Class (See class diagram at Section 5.2.5.3.1) 

Definition: Purpose of this class is to log information sent by the other components to a 

related field. 

Responsibilities: Its behaviour in AJCON system is initiated by MainAction class’s run() 

method. After calling MainAction class’s run() method, components can send log 

information to logger object at any time. Acquired log information will be appended to a 

field.  

Constraints: There is no time, memory, processor limitation for LogGenerator class. Only 

constraint is that there will be only one LogGenerator object in the whole system 

(singleton object).   

Uses/Interactions: This class does not use any interface provided by other components. 

Meanwhile, it provides its functions to other components because in MainAction class, 

there exists a logBuffer to log and all the other components will send information to log.  

Processing: With the start of the system, singleton logger object will be created and this 

class will only provide the created singleton object. Other logging functionalities will be 

made via this logger object. Logger object will be an instance of org.apache.log4.Loggerj 

class. All the functions provided by the org.apache.log4j.Logger class.  

Interface/Exports: This class provides an instance of org.apache.log4j.Logger to other 

components. Other components access to this component with the service 

getSingletonLogger() provided by Log Component.  

 

 



Software Design Description for AJCON 
 

Page 68 of 77 
 

7.5.1.1. getSingletonLogger(): org.apache.log4j.Logger 

Classification: Function 

Definition: Purpose of this function is to return the reference of the logger object of the 

system. If there exists no logger object in the system, it will create one, and then it will 

return the created logger object references.   

Constraints: There exists no constraint.  

Uses/Interactions: This function uses the interface provided by org.apahce.log4j.Logger. 

Processing:  It will look for the static field logger in the class. If there exists a logger 

object, it will return with the reference of the object. If not, it will create an instance of 

the org.apache.log4j.Logger and then returns with the reference of the newly created 

object. If any exception or error occurred, it is also logged without violating remaining 

process of the system. 

 

8. Libraries and Tools 

8.1. JavaML [3] 

The Java Markup Language (JavaML) [4] builds a bridge between Java and XML. It 

generates a self-describing representation of Java source code. Its nested representation 

in XML-based syntax directly reflects the structure of software artifact. It has many 

advantages because since XML is a text-based representation, it still keeps the classical 

source representation. XML files are also very easy to parse with external Java parsers ( 

Apache Xerxes DOM, SAX etc.) 

JavaML is defined by document type definition (DTD) in [4]. In JavaML, concepts such as 

methods, superclasses, message sends and literal numbers are all directly represented in 

the elements and attributes of the document contents. The representation reflects the 

structure of the programming language in the nesting of the elements. 



Software Design Description for AJCON 
 

Page 69 of 77 
 

In our project, we will use JavaML in order to parse Java source code and generate 

corresponding XML file. It will enable us to see hierarchical structure of Java classes and 

create mapping file. 

In order to understand the concept, lets look at the sample Java code. 

import java.applet.*; import java.awt.*; 

public class FirstApplet extends Applet  

{ 

 public void paint(Graphics g) 

 { 

  g.drawString(“HelloWorld!”,25,50); 

 }    

 

}  

 

 

 

<?xml version="1.0" encoding="UTF-8"?>  

<!DOCTYPE java-source-program SYSTEM "java-ml.dtd"> 

 

<java-source-program name="FirstApplet.java">  

  <import module="java.applet.*"/>  

  <import module="java.awt.*"/>  

  <class name="FirstApplet" visibility="public"> 

    <superclass class="Applet"/>  

    <method name="paint" visibility="public" id="meth-15"> 

      <type name="void" primitive="true"/>  

      <formal-arguments> 

        <formal-argument name="g" id="frmarg-13">  

          <type name="Graphics"/> 

        </formal-argument> 

      </formal-arguments>  

      <block> 

        <send message="drawString">  

          <target> 

            <var-ref name="g" idref="frmarg-13"/> 

          </target> 

          <arguments>  

            <literal-string value="HelloWorld!"/>  

            <literal-number kind="integer" value="25"/>  

            <literal-number kind="integer" value="50"/> 



Software Design Description for AJCON 
 

Page 70 of 77 
 

          </arguments>  

        </send> 

      </block> 

    </method> 

  </class> 

</java-source-program> 

 

 

Hierarchical structure of the corresponding XML file can be seen in the figures below: 

 



Software Design Description for AJCON 
 

Page 71 of 77 
 

 



Software Design Description for AJCON 
 

Page 72 of 77 
 

 

 

8.2. Log4J[4] 

In order to decrease the size of the code in the project, we have decided to use Apache 

Log4J[4] for Logger component. With log4j it is possible to enable logging at runtime 

without modifying the application binary. The log4j package is designed so that these 

statements can remain in shipped code without incurring a heavy performance cost. 

Logging behavior can be controlled by editing a configuration file, without touching the 

application binary.  

 

Logging equips the developer with detailed context for application failures. One of the 

distinctive features of log4j is the notion of inheritance in loggers. Using a logger 



Software Design Description for AJCON 
 

Page 73 of 77 
 

hierarchy it is possible to control which log statements are output at arbitrarily fine 

granularity but also great ease. This helps to reduce the volume of logged output and 

the cost of logging. 

 

The target of the log output can be a file, an OutputStream, a java.io.Writer, a remote 

log4j server, a remote Unix Syslog daemon, or many other output targets. 

 

8.3. Jikes[5] 

Jikes is a compiler that translates Java source files into the byte coded instruction set 

and binary format. We know that java is also a Java compiler that Sun provides free with 

its SDK. However, Jikes has some advantages that make it a valuable contribution to the 

Java community. It is open source and strictly Java compatible. Its performance is high 

and also its dependency analysis concept provides two very useful features: incremental 

builds and makefile generation. In order to use JavaML, it is a must to use Jikes compiler 

because JavaML library is integrated to Jikes compiler and comes with it.  

8.4. Apache Tomcat[6] 

Apache Tomcat is an open source servlet container developed by the Apache Software 

Foundation. Tomcat implements the Java Servlet and the JavaServer Pages (JSP) 

specifications from Sun Microsystems, and provides a pure java HTTP web server 

environment for Java code to run. We will use Apache Tomcat in order to test the 

output of our conversion operation. It is needed for testing JSF outputs to ensure their 

correctness. 

8.5. Richfaces[7] 

RichFaces is an open source Ajax enabled component library for JavaServer Faces (JSF), 

hosted by JBoss.org. It allows easy integration of Ajax capabilities into enterprise 

application development. We will use Richfaces components for mapping Applet 

components to JSF ones. 

 

http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Ajax_%28programming%29


Software Design Description for AJCON 
 

Page 74 of 77 
 

8. 6 Java Reflection API[8] 

Reflection is commonly used by programs which require the ability to examine or modify 

the runtime behavior of applications running in the Java virtual machine. This is a 

relatively advanced feature and should be used only by developers who have a strong 

grasp of the fundamentals of the language. With that caveat in mind, reflection is a 

powerful technique and can enable applications to perform operations which would 

otherwise be impossible. 

 Extensibility Features: An application may make use of external, user-defined 

classes by creating instances of extensibility objects using their fully-qualified 

names. 

 Class Browsers and Visual Development Environments: A class browser 

needs to be able to enumerate the members of classes. Visual development 

environments can benefit from making use of type information available in 

reflection to aid the developer in writing correct code. 

 Debuggers and Test Tools: Debuggers need to be able to examine private 

members on classes. Test harnesses can make use of reflection to 

systematically call a discoverable set APIs defined on a class, to insure a high 

level of code coverage in a test suite. 

Drawbacks of Reflection 

 Performance Overhead:  

 Security Restrictions:  

 Exposure of Internals 

 

 

 

 

 

 



Software Design Description for AJCON 
 

Page 75 of 77 
 

9. Change LOG 

There are some changes so far with respect to Software Requirement Specifications. 

 

SDD version 1.0 (this document) SRS version 1.0 

User can understand that conversion is 
completed by looking at the progress bar’s 
%100 value 

Reference sections are 2.2 “Product 
Functions” and 3.2.1.6 for 
conversionCompleted() product function 

 
Our system will run only on Microsoft 
Windows platform (Vista or later) 

Reference sections are 2.3 “Constraints, 
Assumptions and Dependencies” and 
3.3.4.2.1 “Adaptability” for working platforms 
(OS) 

 
Parser and Lexer component are combined 
into JavaML component 

Reference sections are 2.1 “Product 
Perspective”, 2.2. “Product Functions”, 3.2.3. 
“Lexer Component Functions”, 3.2.4. “Parser 
Component Functions” related to Lexer and 
Parser component 

 

 

10. Time Planning (Gantt Chart) 

Gantt chart about time planning and project management is stated in next page.   



Software Design Description for AJCON 
 

Page 76 of 77 
 

 



Software Design Description for AJCON 
 

Page 77 of 77 
 

11. Conclusion 

In this document, design considerations for project AJCON were dealt with. How our 

system work, how our system was decomposed, how these components work, their 

design architecture and connections, data design and flows were stated both by UML 

diagrams and by explanations. Moreover, user interactions were determined through 

user interfaces design. Libraries and tools which will be used during system 

development and operation were presented.  


