Karoshi

Detailed Design Report

MAP-MET [Map-Military Enhancing Technology]

Fatma Akinci
Ismail Can Coskuner
llker Argin
Meryem Sagcan

07.01.2011

L INTRODUCTION ...cciiiiiiinntitiiiiiiiinnttitiniisssannnesssssssssssssssesisssssssssesssssssssssssssssssssssssssssesssssssssnnssassssssssssnnnnnns 6

1.1 PROBLEM DEFINITION. ..cciuuttiiittteiiititesittee st e s ettt e e sttt e s s et e s s ab e e s aba e e s sba e e s e anb e s e semnaeeesnbeeeesnbaeesennneeesneeeeaas 6
L2 PURPOSE...ci it iiiiiieeee ettt e e e e e e e e e e e e e e et e e e e e e e e et e e et et et et et et et e e e e et et et et et et ee et eeeeeaerans 6
1.3 SCOPE ettt a e e a e s r e e s b r e e e eas 6
O 1PN 7
1.5 DEFINITIONS, ACRONYMS AND ABBREVIATIONSuvtieiiurirerairreesiretesanireresssneessanaeesssssesesesaeessanseesssnnasesanssesssanseesans 8
LB REFERENCES «.eieteteieietetieeeet ettt et ettt et ettt ettt et ettt e e et et et et e e et ee et aaetetaeeteeetetetetereteterererererereeerererererereeeeerenens 8
2 SYSTEM OVERVIEWuuuuiiiiiiiiiisssiiissssssssssssssssssssiissisiiisiiisisiisiiiiiiimiiismiimmmmimmmimmmmmmmmme. 8
3 DESIGN CONSIDERATIONScccttiiiiinnnniieriiiiissnnnneeenisssssssssneessassssssssssns 9
3.1 DESIGN ASSUMPTIONS, DEPENDENCIES AND CONSTRAINTS .vvvuuvuuuvuvusurarenesesssesssesssmsesesssens 9
I I = O ¢ 3 4 P UTI 9
3.1.2 Performance CONSELIINTSeeeueeesuieeiiiesie ettt ettt ettt e s et sat e et e st e ettt e sateenaseesaneenaneas 9
3.1.3 POrtaDility CONSEIQINTScueeveeieenieeeieee ettt ettt et et ettt sat e ettt s e et esaaeenaseesaneenanees 9
3.1.4 HOrdWare CONSEIAINTSc...ccovveeieieiieeiiiesieeett ettt sttt sttt sttt e e st esanesnanees 9
3.1.5 SOFtWAIe CONSEIQINES ..ottt ettt et ettt ettt et et e e st e e naeeesateebneenaeeennes 10
3.2 DESIGN GOALS AND GUIDELINES ...eteruuvreeeiureresaisreeesanrreessreeessssreeesasseessnseesssnnesesasneeesanssesssnesesesnsesesannneessaseessns 10
A DATA DESIGN ...iiiiiiiiiiiiiiiiiiiiiisiiiiiiisisiisissssssssssisssisssees 11
L D N ol {1 0 P 11
4.2 DATA DICTIONARY 1eueieeeieeeteeeeesesesesesesesesesesesasasesasasasasasasssssssasesssasasasesssasssesesesssesssssssssssasssssssasasssssssesasssesasasesess 11
W3 Y/ (XX Yoo T Lo o Lol e [L= PRSP 11
I A @ - T |V 1T~ PSP 11
T B A @ T |V 1 =TT o T o1 =T PSP 12

B € el s Tol (o o -SSP 13
4.2.2.1 Class GPSDALAcevuiriiiiiiiiiiiietet et bbb bbb s b e san e b en 13
4.2.2.2 Class GPSSIMUIATONcuiiiiiiiiiiiieiiiece ettt st sb e st b e s an e b s s e besanesreens 13

Ci R W Y (o o X o Tol o [o TSRS 14
L T B @1 - 13 Y - o PP PUUPPPPPPPNE 14
£.2.3.2 ClASS PIACE ...ttt ettt b et sttt h et b et e h e e bt et bt e e s he et e eh e et e sh e et e eheeetesaeenbeeanenreene 14
0 e T @1 - 113 I e T o TP RSP PUUUPPPPPRNE 15

VB 00 [T=1 o [l = Tol (o o =20 15
4.2.4.1 Class CameraControllErcoccviiiiiiiiiiiiiiiiict e st sr e 15

4.2.5 COMPULET ViSION PACKAGE.........ceeeeeieeeeeeiieeeeeeesee e ettt e esetea e e stteeasatta e e aesteaesasssaaesasssaesanseaessaneeen 15
4.2.5.1 Class COMPUEEIVISION ...uiiiiuriiiiiiiieeiiiie ettt esitteeesteeestbeeesbaeaassseeeesseeesssaeeaasteeesssseeesssseeasstseessseessssseesnssesennsne 15
£.2.5.2 ClaSS FramM@ ..cuuiuieieeiietieitet ettt ettt sttt h e a e sttt e e b e et e sb e et e eh e e st e sbeem b e e b e ea b e she e b e ehe et e sbe et e ehe e beeneenbe et enreene 16

B RN Yol ¢ =1=1 ¢ I oo Tol (o Lo 13U UUU ST 16
£.2.6.1 ClASS SCIEEN ...uviueieuteeiterte ettt ettt et et eate st e e s bt e ate s bt e a b e e beeatesbeeaseeheeaeesbeem s e ebeeabesae e b e eaeeabesbeenseebeebesaeenbeennentens 16
4.2.6.2 Class IMESSAZEBOXueeeueeeuiertrrtieestesteesteessteaseesseesseassseasseessseesseeanseesseesseessseesseesssesssesenseesssesssessseenseesnees 17

4.2.6.3 Class BUTEONBATciciiiiiiiiie ittt ettt e ee et e et e e st e e e saba e e e abeeeebbeeeesbaeeassaeeasbeeesasaeeestaeeasseeessseesnstneeannns 18

L R TV o o PP P PR 18
4.2.6.5 INTOIMATIONBAcutiieiiieeeet ettt et s b et s h e b e sb e et e s be et e s bt e b e saeebesbee b e ebe e besaeenbeeanenteene 19
VB RV AR C10) 1\Y, To TaTo [=1 gl o Tol (o o =200 USSP 20
4.2.7.1 Class GUIMENAZETc.uviiiiuiieieiiee ettt e eeitte e sttt esstteeesbteessabteesasbaeesbbeeesasteesasteeessbbeeesaseeesnstaeessseessnseeesnsseeesnne 20
4.2.7.2 Class CONTEXEIMANAZENcccuviiiiiireeeiiieeeeiteeeeiteeesaeeesetaeeesteeeassbeeeaesbesesssaeeasssaeeassseeesasaeeaassseesssesessseesnstneennsns 20
4.2.7.3 Class UserINteractioNIMANAZETccuuiiiiuiieiiiieeeiteeeeeteeeetteeesbeeesetbeeestseeessteeesssesesasaeaasssseessseeessseesnsnsesnnn 21
4.2.8 WireleSS PACKAGEeeeeieieieeeteeet ettt ettt ettt ettt et e e e sate e e enaee e 24
4.2.8.1 Class Wireless COMMUNICAIONccuiviiriiriiiiiitinieniteteee sttt sttt be st sb s be e resaee b sanesreene 24

5 SYSTEM ARCHITECTURE........cccoiiiiiiiiiiiiiiiiiiiisiiiisiisisissnns 24
5.1 ARCHITECTURAL DESIGN ... iteiittitiiee et eeeitiiese e e e eeettiaeeeeeeetetaua e eeseeeaasananeeeeeeassaansseeeeanasnnnseeeeessssnnnnseeeennssnnnnenens 24
5.2 DESCRIPTION OF COMPONENTS ...uuvtuvuuuseussssssesssnns 25
I I 1V =X X Yo [4 o O PR RPIPPPPI 27
5.2.1.1Processing narrative for component MESSAZINEGcccueereerierrieeiiienienieenre ettt e s st e saresreesmneeneens 27
5.2.1.2 Interface Description for component MESSAZINGcc.eevveerrerrieriiienieeieerreertee st et e st sreesreesaresreesrneeseens 28
5.2.1.3 Processing Detail for component MESSAZING........cccuiiieiuiieeiiiieeiiieeeciteeesteeesitreeesreeeesateeeesareeesabeeesnateeesnnaeas 28
5.2.1.4 Dynamic Behavior for component IMESSAZINGeevveereeriernieniiienieeieesieeesreesre e e st esseesreesanesneesaneeseens 28
5.2, 2 GPSeeeeeeeeeeeeeeeeeeeeeee ettt ettt ettt ettt et et tateaarananane 29
5.2.2.1 Processing narrative for COMPONENT GPScccviiiiiiiiiiiiie ittt e et sia e s sebae e ssatee s s tseessabeesssteessnsaeas 29
5.2.2.2 Interface Description fOr COMPONENT GPScc.uiiiiiiiieee ettt et see et eebeesaeeeteesaaeeseesnaeeseean 29
5.2.2.3 Processing Detail for COMPONENT GPSocciiiiiiiieeiecree sttt e e beesaeeete e saaeeseessaeenseean 30
5.2.2.4 Dynamic Behavior for COMPONENt GPS..........ooiieiiiiiiieeenieeee ettt ettt be et e e s b e saneenee s 30
I 11V Lo |« RO PPPPPPPPPPPRE 31
5.2.3.1 Processing narrative for COMPONENT IMIAP ...uciiiiiiiiiiiieiiiiie ettt siteessteeesite e e siaeessebeesssstaessssseessabeessnsseessnseeas 31
5.2.3.2 Interface Description fOr COMPONENT IMAPceiuiiiiiieriieiee st eree et ste et e et e seeeeste e ebeeseeeeteesnaeeseesseeenseens 32
5.2.3.3 Processing Detail for COMPONENT IMAP ..c..eiiiieiiiiiiecieeree sttt ste e e et seeeeteesnaeeseesnaeenneenn 32
R 0 1 =1 o 33
5.2.4.1 Processing narrative for CoMpoNent CAMEIaccuveeuiereeiiieerieecieeseeeeeeeseeeseeeseeesseesseesseeeteesnseeseesneeensenas 33
5.2.4.2 Interface Description for COMpPONENt CamMEIa........cueiiriiiieiiiieiiieeeeiee e et e st e esbeeessraee e s sebeeesbaeesssseessnsaeas 33
5.2.4.3 Processing Detail for COMpPoNENt CAMEIAcovueriiieeiieree e ecee et see et e et eseee e e e seesaeeeteesnaeeneesnaeesenas 33
5.2.4.4 Dynamic Behavior for COMpPOoNeNnt CamEra.......cciceeeieereeiieerieeciteseteeteeseeeseeesneeesteeeseesseeeteesnseeseesseeensenas 34
5.2.5 COMPUEET VISION ...eevveeeeeieiiiee ettt e ettt e e s ettt e e e s ettt e e e s ssaabattaaessssssssttaaaasssasssssteneaeesas 34
5.2.5.1 Processing narrative for component COMPULET ViSION.......c.eeiieecuierieeieerieesieesieeseeesteeseeeseeesseeesneesseeenseess 35
5.2.5.2 Interface Description for component COMPULET ViSIONcuviiiiiiiiiiiiiiiiiieesiieeeeeeeeree s e ssree s sseeeeesaeneas 35
5.2.5.3 Processing Detail for component COMPULEr ViSIONccueevieirieeciierieeieeseeeseesteese e te s e seeesnaeesneesneeenseeas 35
5.2.5.4 Dynamic Behavior for component COMPULEr VISIONceccueerieeciienieeieeeee e ste e e s e seeesaeesnae e sneeenseeas 36
R I Y o £ =T 37
5.2.6.1 Processing narrative for COMPONENT SCrEEN........ccciuiiiiiiiiieeiie ettt e et e s eesbee e e satee e s tbeeesabaeessseassnsaeas 37
5.2.6.2 Interface Description for COMPONENT SCIEENcccuiiiiiiiiieiiie ettt e esree e ste e e s b e e e sbae e sebeeaensaeas 38
5.2.6.3 Processing Detail for COMPONENT SCIEEN.......coviiiiiieeeeeee ettt e et see e e e te st e e te e enaeeseesseeenseeas 38

I I A LU 1LY, I 11 Lo [=1 SO PP PSP PPPOPPPPPOPPPPPRE 39

5.2.6.1 Processing narrative for component GUI IMANAGENc.ceeveeruieeiiieiieeiieeseeesieeseeesseesseeseeesseessseesseessseensenns

5.2.6.2 Interface Description for component GUI Manager

5.2.6.3 Processing Detail for component GUI IMANAZETeiieuiieeiiiieciiee ettt ettt sive e eeveeeesrae e e s ave e e sabaeesnaseaeennaeas 40
5.2.7.4 Dynamic Behavior for the component GUIMANAZETcecueeeuieeiiieiieeiieeseeesteesteesseessseeseeeseeessseesseessseensenas 41

5.2.8 WireleSSCOMMUNICALIONc.eovueeeieiieiiieiieeiieeeeee ettt ettt nne s 41

6 USER INTERFACE DESIGN......cccetiueiiiiiiiinnineeiiiiiiinnsnessisssiiissssssssssssimssnes 42
6.1 OVERVIEW OF USER INTERFACEcetiiutteeiiureteseireeesaisteessreeesssmseeesessaeessamatessssbeeesannaeeesnsaeessanaeesesnrasesannneeesanseeseas 42
5.2 SCREEN IMAGES ...c.uteuteeureerenieenteesteestt et estesteesbe e bt e s e sasesebesasesbee s bt e nbe e st eaeteaeeebe e b e e s e eareeasesmnesbeesreenbeenseenreennens 43
6.2.1 Sending Message from Command Center to MoDbile DEVICE..............cccccureeeceeeeeciireeeiieaesiieeessienenns 43
6.2.2 Default User Interface for MODIlE DEVICEcoccueeroueeeieeesieieieesieeeieeseese et 44
6.2.3 Default User Interface for Mobile Device with Hidden Componentscccccvueeeevvveesiieneeesivenaanns 45
6.2.4 User Interface for Mobile Device With ChANGiNG COIOIScceccuveeeeccieieesiiieeesiieeeesiieeesiiaeaeesraaaens 46
6.2.5 Brightness/Contrast Adjustment 0N MODBile DEVICE..............cccccvrcvrveeesieiesiesiesiesiesiesieieiesesie e 47
6.2.6 Reading MesSage 0N MODIIE DEVICEcccueeeeeveeeeeieieeeiieeeeeieeeetceaaesitaaaaessaeeestaeaesissaeesssesanans 48
6.3 SCREEN OBJECTS AND ACTIONSvteutteuttenteeuteeueesteenteesesatesssesstesseesseesseenstenstemeesseesseenseensesssesssesseesneesseesseensesnseans 48
7 DETAILED DESIGNcuuutiiiiinniiiissnneiiisnneiisssneeiesssnessssssnesssssneesesssnessessssesssssssesesssnesssssssesesssnsssssssnesssssnsesesssnsene 50
T 1 IMIESSAGING ...eenviiurieirieitesiee st et e sat et et ettt sr e e bt e bt e r e sea e san e saee s aeesa e eaa e et s e ae e eme e s b e e r e e r e e anesanesanesreesaeenneenneenneens 50
Y 0 [L] ol 11 o] DSOS PUUR 50
B 0 11 (o) PSR 50
7.1.3 RESPONSIDIIEIES ..ot e e e et e ettt e e ettt e e sttt e s asteaessteaessstaaeanseaasnsseaessnsnassansenenn 50

A B 80T OO 50
7.0.5 COMPOSITION c.ccvvveeeveieiiieiiieieieieeetetttetet ettt ettt ettt ettt te ettt ettt et et e se s et e seaetetasesanetesennnesennnnnnnnn 51
70,6 USES/INEEIACTIONS ... eeeee et e ettt s et e e st e s e eat e e s et e e ssasetesaaastassassesssarstasssseessanseess 51

A B <o | o S 51
O R o o Yol =X X [1o PP PPPUPPPPPPPPPPPPPRE 52

W B B [=T o [ol =y 4 = Lo XSRS 52
T2 GPS. ettt s h e Rt et R et R et Rt e Rt et e n e e nesaeesaeenreenre e reenneen 52
YA O (o X Tole 1 1 o £ F OO USSR 52

7. 2.2 DESINITION ..ottt ettt e e ettt e e e e ettt e e e e e e et eaaaeeaaatsssaaaaeesaasssssaasaeesasssssanaaaenas 52
7.2.3 RESPONSIDIILIES .c.veveeeeeeee et ee et e e ettt e et e e et e e et e e et e e e sttt s esassteasassesasasseaesansesensnsenenn 53

7. 2.4 CONSEIAINTS ..ccoiiiiiiiiiiieieie ettt ettt ettt ettt ettt e et e s an e e e sttt e s s aatb b e saianeessanseeeas 53
YN 0o 4] e o XY 1 (o] ¢ H PP PURPPPRPPPPPPPPR 53
7.2.6 USCS/INEOIACTIONS ...vvvveeeeeeeeeeieeeeeeeeeeeieeeeeeeeeaeeeee s e e eeesaet et eessesssssasttesssesssssssesasssesassssstesssessssrasseesssens 53
G A =Yoo =S 53
W o o Yol =X X [1o PPN 54

7. 2.9 INTITACE/EXPOILS ...oeveeeeeeeeeteeeeeete e st e ettt e s e e et e s taeeaseestaessaesseasasesaataasasessassasseseasseesesesssssesans 54

7.3 ClASSIfICOTION ...ttt ettt e s et e st e et e st e s seeste e s st e saseananeenas 54
Y I 0 =] 1 T1 1 Lo SRR 54
7.3.3 RESPONSIDIIILIESvvveeeaeeeeeeee e tee et e e ettt e ettt e e et e e e ettt e et e e e s tseaeasssaaeassssaaansseaeasssssesassenann 54
7.3.4 CONSEIAUNTS ..ttt ettt ettt e st e e et e s st e e st e s s aite e e s aaneessanseeeas 55
7.3.5 COMPOSITION ..ttt et e e e e ettt e e e e e sttt e e e e e saasbstteeaeeessaustsaneaeenas 55
7.3.6 USCS/INEOIACTIONS ..vvvveeveeeeeeeiieeeeeeeeeeeeeee e eeeeetetete s e e esesaettteessesesssatbtesssasasssssesesssesassssstesssessssssseeseseses 55
7.3.7 RESOUICES ...ttt ettt et ettt sttt sttt e et e s e aa et e sttt e s s aate e e s aaneeesanseeeas 55
7.3.8 PrOCESSING ..ttt ettt ettt ettt sttt st ettt st e e et e st e e s e s 57
7.3.9 INTITACE/EXPOILS ..vveeeeveeeeeeeeeeeeete e st e et e ettt e e se e st eease e e etaessaessaeeasesetsassessatsaesesessaeaseseasssesresens 57
TZh CAMERA ..ottt et et st s bt s bt e s bt et et e at e e bt e e bt e bt e a bt e et e e a b e e b e e eh e e AR e e bt e a bt e a et SRt e eh e e b e e bt e a bt e a bt sabenheesheenhee bt e bt enneans 57
7. 4.1 ClASSIfICOION ...ttt ettt ettt st e s e st e st e st e s bt e s seesateesaseasseananeenas 57
742 DESINIEION ...ttt ettt ettt s e st e s e st e st e et e st e st e nte e e neesbeenneena 57
7.4.3 RESPONSIDIILIES ...ttt e et e ettt e et e e ettt e e e et e e e e taeaeatseseestsaaeaasssaaassesenssssaaeassenann 57
74 CONSEIQUNTS oottt ettt e ettt e e e e e sttt e e e e e sttt e e e e e s asssbteaaeesssasssbeaaaaesssassstseneasenas 57
7.4.5 COMPOSITION ...ttt ettt ettt e ettt e s st e e st e e st esasneeesanneeens 58
7 8.6 USES/INEOIACTIONS ...vvvveeeeeeeeeieseeeeeeeee e e e eee ettt te s e s esese et esssesasstatbtesssesasasasssasssesassssstesessssssssseesesenas 58
A =Yoo = TP 58
T8 PrOCESSING ..ceveeeeiiiiieeeeeeeeieee e e e e eeet et e e e s e sttt e e s e e sttt e e e e e e sasbst e e e e s sssassstteaeesessasstaaaeseessasstteneesenas 58
7. 4.9 INEQITACE/EXPOILS ..eeeeeeeeeeeeeeee e ettt e ettt e et e et estaaeease e e etaeease e s sseeasesesaaeasessatsaeaseseassaesessasssesesens 58
7.5 COMPUTER VISION 1.uuttiiiiiuiiiiiiitie ittt sttt et s a e b e e s s ab e e e s ab b e e s s bb s e e s sab e e e s e bb e e e sanaaeessabaeeeeas 58
YA 0 [X} ol 11 o F SR 58
YA 0= T4 Lo PSR 59
7.5.3 RESPONSIDIIILIESovvveeeeeeiieeiee ettt e ettt e e ettt e e e e e e st a e e eesa e tsssaaaaaeeassssssassaasseesssssanaaaanas 59
7.5.4 CONSEIINTS....c..oviiiiiiiiiiiiiiiccit ettt ettt et sttt e s b e e ssesaseesasae e 59
7.5.5 COMPOSIEION .ottt ettt ettt e e ettt e e e e e sttt e e e s s sssbstteaaessssasstaaassssssssstneneesenas 59
7.5.6 USES/INTEIACTIONS ... ettt e ettt e e et e ettt e st e e e sttt e s et e s s et e s eatstasaaseassananeeas 59
7.5.7 RESOUICES ...ttt ettt ettt ettt ettt st e et e sttt e e st e s e aate b e s aitneeessseeeas 59
YR o o Yol =X [o [PSPPI 60
A N [T=Tg o [ol =y 4 = e Lo XSRS 60
530 2= = PP PO PPN 60
Y 0 [X} ol [1 o S 60
0= 111 Lo 60
7.6.3 RESPONSIDIIILIESvveveeeeeeiieeiee ettt ettt e e e ettt e e e e e e ettt eaaeeaaatsssaaaaeesaasssssssaaesesssnssenaaaeans 60
7.6.4 CONSTIAINTS ..ccoviiiiiiiiieieie ettt ettt ettt sttt e et e s ettt e e sttt e s e sate b e saaaneassasneeeas 60
7.6.5 COMPOSITION .ottt sttt s et et et e sesesesesesesesesesasesesesesesesenenenenenens 61
7.6.6 USES/INTEIACTIONS ...ttt ettt e e et e e ettt e et e e e ettt e s et e s s et e s eatstasesaneassanseesas 61
7.6.7 RESOUICES ...ttt ettt ettt ettt e ettt ettt e et e sttt e e sttt e s e aate b e s ananeeesanseeeas 61

YR B o o Yol =X X [1o PP PPPPPPPPPPPPPPPPPPPPPIRE 61

YA R N a1 =T (o Tol=Y 4 3 q Yo g XSS 61

7.7 GUIIVIANAGER ...t utteuteeutesieesttesteeste et et sateshe e s bt e bt e st e s e sasesaeeshee s beesb e e st eae e eae e ebe e b e e st ea s e easesmnesmeesbeenbeenneenreennens 62

YA N0 [L ol [1 fo] F SRS 62

7.7.2 DESINIEION ...ttt ettt sttt s et s e st s bt e et e st e st e steenneeea 62

7.7.3 RESPONSIDINILIES ...ttt sttt ettt e st e st e st e e neesseaeaneenas 62

G 8113 S 62

7.7.5 COMPOSITION ..ttt ettt ettt e e e ettt e e e e e sttt e e e e e s aaatsttaeaeeessaustaaeaaeenas 62

7.7.6 USCS/INTOIACTIONSc.evveeeveeeeeeeeeeeeeeeeeeeieeeetteeeeaeeetaeeetsseesesseseeessssesseesessesssssessasssesssseasssesssssasesensesens 63

A =Yoo =T 63

Y R o (o Tol =X X [1o PP P PP PPPPPPPPPPPPPPPPPPIRE 63

W A N 01 =T o Tol= 4 3 q Yo g XSS 64

8 LIBRARIES AND TOOLS......cccciiutiiiinneiiisnneiiisnneiisssneeiesssneisssssneissssseesesssnessssssnesssssnsesssssnsssessssesssssnsesesssnssssssnns 65
8.0 G ettt ettt h e b bt e bttt a b e e b e e e b e e e b e e bt e bt e a et e ae e eh e e eb e e bt e bt e e bt e besheesheenheenne e bt enneen 65
L2 IMATLAB ..ttt s s s s st s et n st nnnnnnnntn 65
8.3 OPENQ YV .ttt h s e s s s s s st s st e et s st nannbnnnen 65
8.4 QT (FRAMEWORK) 1.uvvteuvteeueeenuteenseeesteeesuaeessseesseeesuseessseessseessseesssesssseesssesssseessseessseesssessssesssseessseesssesssseessseesssess 65
BLSJAVAIMIE .ttt h bbbt et h e bbbt et e a bt e at e e bt e bt e bt e b e ea b e eabesheesheesheenbe e bt enneens 66
8.6 JAVA IMIICROEMULATOR. c...ceveiteiteenttett ettt ettt ettt st s st s et e sateat e e e e sme e s b e e n e e reenesanesanesaeesaeenneenneenneens 66
8.7 TRANSMISSION CONTROL PROTOCOL (TCP) wvveeeeuirieeeeiieeectieeeesiteeeeeitteeeetteaeeeataeeeenssaeesnssasaessssessessseesansneeesnssesanns 66
TR Lol PPN 67

O TIME PLANNINGcotiiiititiiiittiiiiiteiiiseteiiiseneiissneeiesssnessssssnesssssseesesssnessssssnesesssssesessanessssssnesesssnsesesssnssssssnne 67
9.1 TERM 1 GANTT CHART ..coetiitiiitenteentt ettt et s et e e st seneseneshe e s reesaeen e eae s eae e eme e s b e e st e bt e st eanesanesaeesaeenneenneenneens 67
9.2 TERM 2 GANTT CHART 1ttiutiteiiitite ittt ettt saa e s et s bt e e s eba e e sb bt e s s b b e e e s e bbb e e s bbb e e s saba e e s s bb s s e sannaeeesbaeeeeas 68
10 CONCLUSIONcoiiiiueriiisnteiiisneeiissseeiesssseesesssnesssssssesssssseesessasessessssesssssssesssssstesessssessssssnesssssnsesesssnsesessanense 68

1 Introduction

1.1 Problem Definition

Most of the mobile devices, today, have a static user interface which does not
respond to any environmental change or user's motion. One may have difficulties in
seeing the screen content and using the device when light conditions change or
he/she moves. When soldiers are taken into consideration, they are often in motion
and they occur to be in places such that the light quantity in the environment is low.

Current map viewer applications, which run on mobile devices, used in military
have static buttons, menus and texts whose sizes do not change. The colors of the
map shown on the screen do not change, neither. This kind of static user interface of
current map applications creates a big problem for the soldiers.

The final product will be a mobile map application with dynamic user interface
and therefore will be a solution to difficulty of use of current map applications used for

military purposes.
1.2 Purpose

This Software Design Document (SDD) aims to provide a description of the
software product in order to give the developers a guidance of the architecture of the
software. The document details how the software requirements should be
implemented in a way that the structure of the system explained satisfies the
requirements mentioned in Software Requirements Specification. The components of

the product and their properties will be clearly explained.
1.3 Scope

This document contains a complete description of the design of MAP_MET. All
the components and their functions of the product are explained in the document.

The intended audiences are code developers of the product. Hence, this report will

serve as a guideline throughout the development of the Project.

1.4 Overview

The following chapters and their contents are:

Chapter 2 is System Overview that includes a general description of the
overall system and its design. The benefits and the differences of the product
from the similar products are explained in this chapter.

Chapter 3 is Design Considerations mentions the issues related to design. The
constraints that affect the design of the architecture of the software and the
use of the final product. Any design goals and principles that form the software
of the system is also clarified here.

Chapter 4 is the Data Design that lists any data used for the system to
properly work. The data stored, managed, or manipulated are listed with their
descriptions, types and attributes.

Chapter 2 is a Deployment Diagram that shows the physical nodes on which
the system resides. This allows a clear explanation of where each design
entity will reside. No design unit may straddle two nodes but must have
components on each, which collaborate to accomplish the service.

Chapter 5 is the System Architecture. This is the heart of the document. It
specifies the design entities that collaborate to perform the functionality of the
system. Each of these expresses the services that it provides to the rest of the
system. To clearly explain the design a component diagram for the software is
drawn and all the packages and their classes in them are shown in the
package diagrams.

Chapter 6 explains the content of the user interface. It shows the screen view
of the application and clarifies how each screen object functions. The
screenshots of the user interface are also included in this chapter.

Chapter 7 lists the libraries and tools that will be used in development process.
Chapter 8 includes Gantt chart illustrating the start and finish dates of the
terminal elements and summary elements of the project.

Chapter 9 concludes the report.

1.5 Definitions, Acronyms and Abbreviations

SDD: Software Design Description
DDR: Detailed Design Report
MAP_MET: Map Military Enhancing Technology

Java ME: Java Micro Edition

1.6 References

[1] http://opencv.willowgarage.com/wiki/

[2] http://www.java.com/tr/

[3] http://www.mathworks.com/

[4] http://www.eclipse.org/

[5] http://gt.nokia.com/products/
[6] Kozierok, C. (2005). The TCP/IP guide : a comprehensive, illustrated Internet

protocols reference. San Francisco: No Starch Press.

2 System Overview

MAP_MET is a kind of military map viewer application with additional
functionalities. MAP-MET is capable of detecting user’'s motion and environment’s
light condition. This provides the system with adaptable map visualization system and
dynamic user interface. The goals of such a product will be:

e Increase readability when user in motion by hiding details and rarely used
buttons, enlarging font sizes, zooming in map, and remarkable coloring of
important text.

e Increase visibility in light condition change by adjusting brightness and
contrast according to illumination, adjusting colors of map, application
background, buttons and text regarding their visibility of human visual system.

Moreover, our application can work on mobile device with a single camera and
CPU that has limited computation power. Similar application that use camera needs
powerful CPU to achieve image processing operations. Since we will do these
complex operations in the server machine, our application can be used in wide

variety of mobile devices.

http://opencv.willowgarage.com/wiki/
http://www.java.com/tr/
http://www.mathworks.com/
http://www.eclipse.org/
http://qt.nokia.com/products/

3 Design Considerations

3.1 Design Assumptions, Dependencies and Constraints

3.1.1 Time Constraints

This project is a senior student project, given by the department of Computer
Engineering. So the schedule and timing is determined and strict. After this report
there will be a certain deadline for a final decision report and a prototype must be
accomplished in a month. The main implementation of the project will be done in
second term. A task distribution and the needed time duration for these tasks are
decided in this document. Gantt chart of the project is given in the Project Schedule
section.
3.1.2 Performance Constraints

The most important operations that affect performance of the system will be
computer vision operations. Because of this fact, we handle these operations at
server machine that has powerful CPU than mobile device has. Communication
between mobile device and server is achieved with wireless communication protocol.
Since project does not involve designing a new hardware and network protocol, the
system will be limited by capacity of current hardware implementations.
3.1.3 Portability Constraints

Since the mobile side of the application is developed using Java ME, it can be
used most of the mobile devices which support Java ME. Another constraint for
mobile device which this system is set up on, the device must have a touchscreen
due to overall system is developed considering input type as touchscreen.

Server side of the application is developed using C++ and Matlab, therefore it
can be ported any server which provides basic Matlab and C++ support easily.
3.1.4 Hardware Constraints

Server Device

e Server must have an adequate processor for heavy computer vision
operations. (At least 2.0 GHz Intel or AMD Processor.)

e Server must be connected to internet.

e Server must have an adequate RAM capacity for computer vision operations.
(At least 512 Mb DDR2 Memory.)

e An Apache HTTP server must present on server to provide data transition.

9

Mobile Device

e Mobile device must have a Wi-Fi connection.

e Mobile device must have a touchscreen.

e Mobile device must have a camera.

e Mobile device must have a color screen with at least 12-bit color resolution
(4096 colors).

e Mobile device must support HTTP connection.

e Mobile device must have an adequate RAM capacity for map processing (At
least 512 Kb)

3.1.5 Software Constraints

Server Device

e This application can run on all distributions of Linux, MS Windows 95/98, MS
Windows NT/2000/XP, 32-bit and 64-bit MS Windows Vista, 32-bit and 64-bit
Windows Seven, 32-bit and 64-bit, Windows Server 2003/2008.

e Since Matlab is used for computer vision operations, Matlab must be set up on
the server device.

e Apache HTTP Server must be installed and running.

Mobile Device

e This application can run on all operating systems that support Java ME.

3.2 Design Goals and Guidelines

Since mobile devices have not CPU powerful enough, the image processing
tasks are handled by the server which is a computer that can handle complicated
image processing tasks. This situation changes the design. Speed gain is achieved
by this way to increase the performance of the product. However, to do that another
hardware is added to the design and wireless communication with the server is
required.

To keep the design simple, the data transactions between the server and the
mobile device is reduced. Only the data required for image processing tasks and
messaging tasks (between the user in the server side and mobile device user) are
transacted between the server and mobile device and the other data are kept on the

mobile device. By this way, database access is not needed.

10

Data types coming from the server according to the image processing results
are primitive. This also increases performance by reducing the complexity of the data
types transferred.

4 Data Design
4.1 Data Description

There is no database in the system. However some necessary storage is done in xml
files. These files include:

e File of messages: This file is stored on the server side. It contains numbered
message texts to be sent to the user on the mobile device side. Message
class in 5.2.1 in Messaging package is constructed using the message texts in
this file.

e File of troops: This file contains the coordinates, types and names of the
troops. Troop class in 5.2.3 in Map package is constructed by reading this file.

e Place file: The file includes the names and coordinates of the places. Place
class is constructed by reading this file.

Other than the files, the frames captured by the camera of the mobile device are
the most important data manipulated. These frames are created in the mobile device
and sent to the server to be evaluated. Computer Vision package in section 5.2.5
gets these frames via wireless communication and constructs objects of Frame class
using the incoming frames.

4.2 Data Dictionary

The overall system consists of seven packages and each package has several
classes in it. Packages, classes in these packages and the data stored in classes are
explained in sections below.
4.2.1 Messaging Package
4.2.1.1 Class Message
Attributes:

e String sender: This field keeps the name of the sender of the message object.
If the sender does not set this field it is set as “Command Center” as default.

e Date date: This attribute keeps the date and time information.

11

String message: The message which is sent to the remote device is kept in

this field of the Message object as a string.

Methods:

void set_sender(String) : this method takes a string as an argument and sets
the sender field with this argument.

String get_sender (): this method returns the sender field, and it does not take
any argument.

void set_date(Date): this method takes a Date object as an argument and sets
the date field with this argument.

Date get_date (): this method returns the date field, and it does not take any
argument.

String get_message (): this method returns the message text, and it does not

take any argument.

4.2.1.2 Class MessageController
Attributes:

File* messages: This is a file which includes all messages. User selects one of
these messages via GUI.

Message currentMessage: this field is set when the user selects one of the
messages. The return value of this selection process is currentMessage

object.

Methods:

MessageController (fileName): it is the constructor of the MessageController
class. It takes a file name as an argument and initializes the messages
attribute.

void set_currentMessage(Message): it takes a Message object as an
argument, and put this object to the currentMessage field.

Message get_currentMessage (): it returns the currentMessage field of the

MessageController class.

12

4.2.2 GPS Package

4.2.2.1 Class GPSData
Attributes:

int longitude: longitude information of the place.

int latitude: latitude information of the place.

int altitude: altitude information of the place.

int speed: speed information of the user, it is coming from the Computer Vision

package.

Methods:

GPSData (int longitude, int latitude, int altitude, int speed): it is the constructor
of the GPSData class. It initializes the corresponding fields by its arguments.
void set_longitude(int): It sets the longitude attribute of the object.

void set_latitude(int): It sets the latitude attribute of the object.

void set_altitude(int): It sets the altitude attribute of the object.

void set_speed(int): It sets the speed attribute of the object.

int get_longitude(): It returns the longitude value of the object.

int get_latitude(): It returns the latitude value of the object.

int get_latitude(): It returns the altitude value of the object.

int get_speed(): It returns the speed value of the object.

4.2.2.2 Class GPSSimulator

Since the mobile device used in this project does not have GPS hardware,

GPSSimulator is developed to simulate the GPS part.
Attributes:

File* GPS_file: it keeps all locations. It is assumed that the user moves on
these locations respectively. The time when the user change location is
calculated by using the speed of the user.

GPSData [] data: all locations are taken from the file and they are put into this
'data’ array.

GPSData currentData: the current location of the user.

Methods:

GPSSimulator (string fileName): It takes a file, in which all locations are listed,

as an argument. And this constructor initializes the GPSData array.

13

GPSData get_currentData (): it returns the information about the place at
where the user is assumed to be.
void update_currentData(): it changes the place information in the currentData

with the next coordination of the user.

4.2.3 Map Package

4.2.3.1 Class Map
Attributes:

int latitude: it keeps the latitude information

int longitude: it keeps the longitude information

char[latitude][longitude][3] RGB: this is a RGB array which has three
dimension and keeps the red, green, and blue intensity values of each pixel.
int zoom_level:it keeps the information about the zooming. The details on the
map are changed according to this zoom_level and this field changes
according to the movement of the user.

Place[] places: it keeps all Place objects which can be shown or hidden on the
map according to the user request and the environmental condition.

Troop[] troops: it keeps all Troop objects, they can be shown or hidden

according to the user request and the environmental changes.

Methods:

void set_zoom_level(int): this method takes an integer as an argument and it
sets the zoom_level attribute.
void adjust_RGB_Array(char[latitude][longitude][3]): this function takes an rgb

array, and it changes the RGB attribute according to this argument.

4.2.3.2 Class Place
Attributes:

int latitude: it keeps the latitude of the Place object.

int longitude: it keeps the longitude of the Place object.

int altitude: it keeps the altitude of the Place object

boolean isVisible: it determine that the place information is going to be visible
or not.

double distance: it is the distance between the place where user wants to see

information about, and he current location of the user.

14

Methods:

void set_visible(): it changes the value of the isVisible. If it is already true, it

makes it false or if it is already false, it makes it true.

4.2.3.3 Class Troop
Attributes:

int latitude: it keeps the latitude information of the place at which the troop is.
int longitude: it keeps the longitude information of the place at which the troop
is.

int size: it keeps the number of the people in the troop.

string name: the name of the troop is kept in this field.

string type: it specifies that the troop is air force, army force or marine forces.
boolean is_visible: it is set to one if troops are shown, it is set to zero if they
are not shown.

boolean is_enemy: it is to decide the troop is enemy troop or ally troop.

Methods:

void setVisible(): this function does not take an argument, because, it negates

the value in the isVisible field.

4.2.4 Camera Package

4.2.4.1 Class CameraController

This class is just responsible for capturing image and it has no attribute.

4.2.5 Computer Vision Package

4.2.5.1 Class ComputerVision
Attributes:

int velocity: it is one of the return values of the image processing task, it is set
with the velocity information extracting from snapshots.

int luminosity: it is the other return value of the image processing task, it is set
with the environmental light condition information extracting from the
snapshots.

Frame][] frame: it keeps all frames (snapshots) coming from the mobile device.

It sends them to the evaluate frames function one by one.

Methods:

15

void evaluate frames(): it takes frames from the ‘frame’ attribute of itself and
process them and set the velocity and luminosity fields.
void update_frame_buffer(Frame[]): it updates the frame buffer with the new

frames coming from the remote mobile device via wireless.

4.2.5.2 Class Frame
Attributes:

int height: it keeps the height value of the snapshot (frame).
int weight: it keeps the width value of the snapshot (frame).
char[height][width][3] rgb_values: it is an array of char type, it has three
dimension. Height and width is to keep all pixels and 3 are to keep red, green,

and blue intensity values of each pixel.

Methods:

Frame (int height, int width, char rgb[][][]): it is the constructor of the Frame
class. It creates a new instance whose attributes are height, width and rgb
(0.

void set_height(int): it sets the height attribute of the object.

int get_height(): it returns the value of the height attribute.

void set_width(int): it sets the width attribute of the object.

int get_width(): it returns the value of the width field.

void set_rgb_values(char[][][]): it sets the rgb array of the object.

char[][][] get_rgb_values(): it returns the rgb array of the object

4.2.6 Screen Package

4.2.6.1 Class Screen
Attributes:

int brightness: it is the value for the brightness of the screen.

int contrast: it is the contrast value of the screen.

Color color: background color of the screen.

Map map: the map part which is shown. The map part is decided according to
the user's current position.

InformationBar info_bar: this InformationBar object is used to show information

about the place whose information is needed by the user.

16

e ButtonBar button_bar: The button_bar is a ButtonBar object and it keeps all
buttons on it.

e MessageBox message_box: A message is shown on the screen if any
message is sent from the server side. This object keeps that message.

Methods:
e void set_brightness(int): it sets its argument to the brightness field.
e void set_contrast(int): it sets its argument to the contrast field.
e void set_color(Color): it sets its argument to the Color object in the class
e int get_brightness(): It returns the brightness value of the object.
e int get_contrast(): It returns the contrast value of the object.
e Color get_color (): It returns the Color value of the object.
e InformationBar get_infoBar (); It returns the infoBar field of the object.
e ButtonBar get_buttonBar (); It returns the buttonBar field of the object.
e MessageBox get messageBox (): It returns the messageBox value of the
object.
e int get_contrast(): It returns the contrast of the object.
4.2.6.2 Class MessageBox
Attributes:
e int fontSize: it specifies the font size of the message when it is shown on the
screen. It changes according to the environmental changes.
e String message: It keeps the text which is going to be shown on the screen.
e boolean isVisible: it is a boolean which decides the message text is shown or
not.
e Color color: It is the color of the text. This field also changes while
environmental luminosity changes.
Methods:
e void set_fontSize(int): It update the fontSize field which changes the font size
of the messages shown on the screen.
e int get_fontSize(): It returns the fontSize value as a return parameter.
e void set_message(String): It sets the message attribute to a string which is
going to be shown on the screen.

e String get_message (): It returns the message text as a string.

17

void set_visible(bool): it arranges the visibility of the MessageBox object.
bool get_visible(): It returns the boolean value inside the isVisible attribute.
void set_color(Color): It sets the color field by a Color object.

Color get_color (): It returns the color field.

4.2.6.3 Class ButtonBar
Attributes:

int size: the size of the buttons is important for context aware user interface
design. Buttons are scaled according to this size information.

boolean isVisible: it specifies the visibility of the bar. If isVisible is true then the
button bar is drawn on the screen. If it is false, the button bar is not shown.
Button [] buttons: it is an array of Button objects which are shown if the
ButtonBar is opened.

Color color: It is the color of the ButtonBar.

Methods:

void set_size(int): It sets the size field with its argument.

int get_size(): It returns the size of the Button object.

void set_visible(bool): It sets the visibility of the object.

bool get_visible(): It returns a boolean which represents the object is visible or
not.

void add_button(Button): It adds the given Button object to the buttons field
which is an array of Button objects.

Button get_button (int id): It returns the Button object whose index in the array
is equal to the argument of the function, id.

void set_color(Color): It sets the color of the object.

Color get_color (): It returns the color field.

4.2.6.4 Button
Attributes:

int size: It is the size of the button. It changes according to the user movement.
boolean isVisible: it is used when drawing buttons on the screen. If isVisible
attribute of an object is true, then this button is drawn, if it is false, then the

button is not drawn on the screen.

18

int priority: Each Button object has a priority value. This priority helps the
application decide which buttons are shown on the screen and which ones are
listed under one button when environment condition changes.

Color color: It is the color of the button.

Methods:

void set_size(int): It sets the size field to its integer argument.

int get_size(): It returns the value of the size field.

void set_visible(bool): It changes the visibility of the object.

bool get visible(): It returns the information about the buttons are visible or
not.

void set_priority(int): It sets the priority field to the its argument.

int get_priority(): It return the priority of the object.

void set_color(Color color): It sets the color of the buttons.

Color get_color (): It returns the color of the button.

4.2.6.5 InformationBar
Attributes:

int fontSize: it is the font size of the text which is shown.

string information: it is the string which is going to be shown on the
InformationBar.

int zoomLevel: it is also shown in the InformationBar. It gives the user
information about the zoom-level of the map.

boolean isVisible: if this field is true, the information bar is shown and if it is
false, the bar is not shown on the screen.

Color color: it is the color of the information bar.

Methods:

void set_fontSize(int): It sets the fontSize of the InformationBar object.
int get_fontSize(): It returns the fontSize of the object.
void set_information(String):

String get_information():

19

4.2.7 GUIManager Package

4.2.7.1 Class GUIManager
Attributes:

contextMngr: it is a ContextManager object. It is used to access methods in
ContextManager class and to get information coming from the ComputerVision
component via ContextManager class.

interactionMngr: this is an InteractionManager object; it is used to access
methods in UserinteractionManager and to get information coming from the

User via UserInteractionManager class.

Methods:

void configureButtons(): It configures the buttons on the button bar. It
increment the size of the buttons and it only draws the buttons which have
higher priorities, other buttons listed under one button, the user can access
them if he/she wants. It does not take an argument, it uses contextMngr and
interactionMngr objects to decide the buttons. Also, the colors of the buttons
are configured.

void configurelnfoBar(): It configures the information bar. It increments the font
size of the text if the user in motion. If the information bar is not used for a
while, it hides the bar.

void configureVisibility(): It decides the visibility constraints.

void configureMessage(): If the user is in motion, this function just takes the
important parts of the message which is written in the file between *** and ***,
It decides the text which is going to be shown and the color of the text.

void configureMap(): It configures the Map object by changing its colors to
sustain the visibility, and the details on the map to sustain the usability. It can
change the current colors to the more visible ones based on the environment
condition. It also reduces the details on the map. It can show or hide the

enemy and ally troops, name of the places according to the user's movement.

4.2.7.2 Class ContextManager
Attributes:

int velocity: this field keeps the information about the user's velocity.

20

e int luminosity: this attribute has the information about the environment
luminosity.

e int threshold_velocity: it is a threshold value for the velocity. It is used when
the user interface changes according to the user's movement.

e int threshold_luminosity: it is a threshold value for the luminosity. It is used
when the colors of the user interface changes according to the environment
luminosity.

Methods:

e void configureButtons(): It configures the buttons on the button bar. It
increment the size of the buttons and it only draws the buttons which have
higher priorities, other buttons listed under one button, the user can access
them if he/she wants. It does not take an argument, it uses contextMngr and
interactionMngr objects to decide the buttons. Also, the colors of the buttons
are configured.

e void configurelnfoBar(): It configures the information bar. It increments the font
size of the text if the user in motion. If the information bar is not used for a
while, it hides the bar.

e void configureVisibility(): It decides the visibility constraints.

e void configureMessage(): If the user is in motion, this function just takes the
important parts of the message which is written in the file between *** and ***,
It decides the text which is going to be shown and the color of the text.

e void configureMap(): It configures the Map object by changing its colors to
sustain the visibility, and the details on the map to sustain the usability. It can
change the current colors to the more visible ones based on the environment
condition. It also reduces the details on the map. It can show or hide the
enemy and ally troops, name of the places according to the user's movement.

4.2.7.3 Class UserInteractionManager

If the user wants to arrange some attributes manually, his/her requests are delivered
to the GUIManager class via this UserinteractionManager class. (i.e., when the user
is not in motion, he/she may not like the zoom-level of the map and he/she may want
to adjust this property.)

Attributes:

21

int preferred_zoomLevel: it is the requested zoom level by the user.

int preferred_brightness: it is the requested brightness value by the user.

int preferred_contrast: it is the requested contrast value by the user.

boolean wantMessageBox: if the user wants to see the message box again,
he/she has to request this from the device manually. This field holds the user's
request.

boolean wantinfoBar: if the user wants to see an information about a place,
he/she requests this from the device manually. This field holds the user's
request.

boolean wantButtonBar: Buttons are hidden as default. This field holds the
user's request about whether he/she wants to use buttons or not.

boolean wantEnemies: it holds the information about whether the user wants
to see enemies or not.

boolean wantAllies: it holds the information about whether the user wants to
see allies or not.

boolean wantPlaceNames: it holds the information about whether the user

wants to see place names on the map or not.

Methods:

void zoomIn/Out(int): It takes the zoom-level from the user and send this
request and the data to the GUIManager.

void changeBrightness(int): It takes the brightness value from the user and
deliver this request and the data to the GUIManager.

void changeContrast(int): It takes the contrast value from the user and give it
to the GUIManager to adjust the screen according to this information.

void showMessage(bool): If the user wants to see an old message, this
function takes his/her request and deliver it to the GUIManager.

void showInformation(bool): If the user needs to see a place information which
is not seen on the screen because of the user's movement, his/her request is
sent to the GUIManager by this method.

void showButtonBar(bool): If the user wants to use buttons, he/she needs to

open the button bar. His/her request is sent to GUIManager by this method.

22

e void showEnemies(bool): If the user wants to see the place of the enemy
troops, this is provided by the GUIManager and it needs to communicate with
this method to be able to notice the request.

e void showAllies(bool): If the user wants to see the place of the ally troops,
this is provided by the GUIManager and it needs to communicate with this
method to be able to notice the request.

e void showPlaceNames(bool): the user can show or hide the place names.
Actually, this information is shown as default, but according to the user's
movement, they can be hidden by the contextManager. This method takes the
user's request. And send it to the GUIManager.

e int get _preferred_zoomLevel():It returns the zoomLevel which the user wants.

e int get preferred_brightness(): It returns the brightness value which the user
wants.

e int get_preferred_contrast(): It returns the contrast value which the user wants.

e bool isMessageWanted(): It returns a boolean which reveal whether the user
wants to see the messages or not.

e bool isinfoWanted():It returns a boolean which reveal whether the user wants
to see an information about a place or not.

e bool isButtonsWanted(): It returns a boolean which reveal whether the user
wants to see buttons bar or not.

e bool isEnemiesWanted(): It returns a boolean which reveal whether the user
wants to see the enemy troops or not.

e bool isAlliesWanted(): It returns a boolean which reveal whether the user
wants to see the ally troops or not.

e bool isPlaceNamesWanted(): It returns a boolean which reveal whether the
user wants to see the names of the places or not.

These properties are arranged by the GUI Manager according to the information

extracted from the snapshots by the Computer Vision component. This component
just provides the user extra power. If the user is not satisfied with the revised user

interface, he/she can adjust it.

23

4.2.8 Wireless Package
4.2.8.1 Class Wireless Communication
Attributes:
This class is just an interface to send and get data packages. It has no
attribute.
Methods:
e bool send data(TCP Package): this method is actually implemented in
classes which wants to send package; because; Wireless is an interface.
e void get_data(TCP Package): this method is actually implemented in classes
which wants to get package; because; Wireless is an interface.

5 System Architecture

A description of the program architecture is presented here.
5.1 Architectural Design

MAP-MET has seven main components namely Messaging, Computer Vision,
PC-Computation Unit, Wireless, Mobile Device-Computation Unit, Camera and MAP-
MET Application.

After the application is started, firstly, the camera of the mobile device takes
snapshots continuously. These snapshots are sent to the server side from Mobile
Device-Computation Unit via Wireless component. PC-Computation Unit delivers
them to the Computer Vision component.

In the server side, Computer Vision component processes snapshots and
extracts movement and luminosity information. After extracting this information, they
are wrapped in the server side and they are sent from PC-Computation Unit via
Wireless component. After this package is received by Mobile Device-Computation
Unit and it is unwrapped, it is delivered to the MAP-MET Application component. This
component decides the user interface properties such as fonts of the texts, size of
the buttons, zoom level of the map, context of the screen according to the movement
information and it adjusts colors on the screen according to the luminosity
information. The details about how MAP-MET Application and other components
work will be explained in Detailed Design Report.

Messaging component has message objects in it, wraps the message chosen

by the sender and sends the package to the mobile device via Wireless component.

24

After unpacking process, the message is shown on the screen by MAP-MET

Application component.

Messages
:

<<use>>

GUI =1 Wireless ‘

Messaging N <<hardware>>
<<software>> ~ " \OS‘ = I
.~ =
PE-computation R _ . > ‘ I\"v‘éré-lfl?Sf,
A Unit) Leerace.)
4
? <<hardware>> A

1
]
SELN 1
Computer Vision ; :
<<software>> |
1

Mobile Device-computation
Unit

<<hardware>>
0S|
O, S
- Camera
MAP-MET <<hardware>>
Application
GUI <<software>>
Figure 5.1

5.2 Description of Components

The package diagram included below intends to show object-oriented nature
of the basic software components of the whole MAP-MET System. The project has
two main packages, namely, Server package and Client package. The Server
package includes Messaging, Computer Vision and Wireless Communication
packages. In the Client package, there are Wireless Communication, GUI Manager,
Camera, Screen, GPS and Map packages.

Since implementation of the project will be mainly done using C++ and Java
Micro Edition programming languages, software packages are arranged suitably with

25

Server

Object-Oriented way of coding. All packages import the necessary classes and
packages as indicated by the diagram.

Server and Client packages represent the main agents of the project. They
both communicate with each other, using Wireless Communication packages of their
own.

Messaging and Computer Vision packages which are in Server package
import from Wireless Communication package since they both use methods of
Wireless Communication package to send/get information to/from Client package.

GUI Manager, Screen and Camera packages which exist in Client package
import from Wireless Communication package since they all use methods of Wireless
Communication package to send/get information to/from Server package.

GUI Manager Package imports from Screen package because it refreshes
screen according to user adjustments and information coming from Server.

Screen package imports from Map package since there is always a map
shown on the screen. To be able to manipulate map, it needs to access the methods
and attributes of the Map package.

Map package imports from GPS package since user location is shown on the
map according to GPS value. Moreover, zooming operation is done based on user

location.

—cne—m]

— GUI Manager
Wireless Communication

Messaging "
\ :
4% |
Wireless Communication . \ !
1) 1
R] | Screen !
] \ \V
Camera | 3
— N
Computer Vision 5 '
1
|
|
|
GPS Map |
WV

Figure 5.2

26

5.2.1 Messaging

Diagram for Messaging Component:

Messaging

Message

-sender: String
-date: Date
-message : String

+set_sender (String): void
+get_sender (void): String
+set_date(Date) : void
+get_date(void) : Date
+get_message(void) : String

! ly <<interface>>
[Wireless Communication
5 - +send_data(data:TCPpackage) : bool

+ get_data(veid) :TCPpackage

MessageController

-messages:File *

-currentMessage : Message <<interface>>

GUI

+ MessageController (filename : String) "
+ set_currentMessage{ message : Message)
+ get_currentMessage(void) : Message

+processClick(x:int, y:int) : void

Figure 5.3

5.2.1.1Processing narrative for component Messaging

This package provides sending message from command center (server) to a
remote mobile device (client). On the server side, all messages are kept in a file.
Firstly, this package wants server side user to select a message via graphical user
interface. The user has an option to arrange sender field. Before sending the
message, date and time information is also attached. After that, the message is

wrapped and the Messaging Package sends it via Wireless Communication Interface.

27

5.2.1.2 Interface Description for component Messaging

There are two types of input for Messaging package. First input is a file
keeping all messages and the second one is the information about which message is
selected by the server side user. If the user wants to set the sender field, name of the
sender can be another input for the Messaging component. The only output of this
component is a packed message object.
5.2.1.3 Processing Detail for component Messaging

After the user opens this messaging application, the MessageController class
takes a file that keeps messages as an input and lists all of these messages on the
screen. The user needs to select a message from this list. After the user select a
message, MessageController gets the message corresponding to the number of the
message selected by the user from file and creates a message object. The default
sender of the message is defined as “Command Center” unless the user specifies it
manually. When the user clicks on the send button, the date and time information is
added and the created message object is wrapped. Finally, the package is sent to
the remote device via Wireless Communication component.

5.2.1.4 Dynamic Behavior for component Messaging

| MessageControlle urrentMessage: Message] v Wireless

Figure 5.4

28

5.2.2 GPS

Diagram for the component GPS

‘ GPSData
-longitude : int
[-latitude : int
| -altitude : int E = GPSSimulator
| -speed : int n l]
[epe AT % R e PR P A RS r -GPS _file : File*
‘ +GPSData(lor g‘[tudc.mt, latitude:int,altitude:int, speed:int)) -data[]: GPSData[]
| + set_longitude(longitude: int): void = -currentData : GPSData
+get_longitude(void) : int
+set_latitude(latitude:int): void +GPSSimulator (filename: String)
| +get_latitude(void) : int +get_currentData() : GPSData
set_altitude(altitude:int):void -update_currentData(void):void
[+get_altitude(
+set_speed(speed:int) : void
+get_speed(void) : int
Figure 5.5

5.2.2.1 Processing narrative for component GPS

This component is used for finding the location of the user. This information is
necessary for the GUI Manager component. It refreshes the map by taking the place
of the user as the center. In other word, when the zoom level of the map is changing
or when the application starts, the user coordinate must be the center. In addition, to
calculate the distance between the user and the enemy or ally troops, this information
is needed again.
5.2.2.2 Interface Description for component GPS

Since there is not GPS hardware on the mobile device used in the project,
GPS is simulated by this component. This component has two classes, namely,
GPSData and GPSSimulator. There is only one input which GPS component takes
from the other components. This input is speed information of the user and it is taken
from the Computer Vision component. It is used to simulate the GPS hardware.
Three outputs of the GPS component are longitude, latitude and altitude information
of the place where the remote user is and these outputs are sent to the GUI Manager

component.

29

5.2.2.3 Processing Detail for component GPS

After the user starts the application, before displaying the screen content, the
first place information in the GPSData file in the GPSSimulator class is taken and it is
assumed that the user is at that place. After that, the speed information is taken. If
speed information is not zero, the division of the distance between the user’s
coordinates and the next coordinate in the file by speed gives the time that the user’s
coordinates changes. When these tasks are done, GUlI Manager Component takes
the new location and assumes that the user is at this place.

5.2.2.4 Dynamic Behavior for component GPS

l main:Application

T
1
|
I
N

cm:GPSSimulator

~filename..
apsd:GPSData

new

) - ol - - - -

[
loo - '
P . latitude, altitude, longitude
get_currentData

o

new

update_currentData

Figure 5.6

30

5.2.3 Map

Diagram for the component Map

Map

Map
latitude : int
Place longtitude : int
t RGB[]1[1[] : char[latitude][longtitude][3]
name : string zoom_level : int
latitude : int places[] : Place[]
longtitude : int bj m troops[] : Troop[]
distance : double
is_visible : boolean + setZoom_level(zoom_level : int) : void
+getZoom_level(void) : int
+ setVisible(visible : boolean) : void e s setLatitude(latitude : int) : void
+ getVisible(void) : boolean r " +getLatitude(void) : int
+ setName(name : string) : void + setlLongtitude(longtitude : int) : void
+ getName(void) : string +get_Longtitude(void) : int
+ setlatitude(latitude :int) : void + setRGBvalues(colors : char[][][]) : void
+ getlatitude(void) : int +getRGBvalues(void) : char[][][]
+ setLongtitude(longtitude : int) : void + setPlaces(places : Place[]) : void
+ getLongtitude(void) : int +getPlaces(void) : Place[]
+ setDistance(distance : double) : void +getPlace(index : int) : Place
+ getDistance(void) : double + setTroops(troops : Troop[]) : void
+getTroops(void) : Troop[]
+getTroop(index : int } : Troop
o
[n|
Troop
latitude : int
longtitude : int
size : int

name : string
type : string
is_visible : boolean
is_enemy : boolean

+ setVisible(visible : boolean) : void

+ getVisible(void) : boolean

+ setEnemy(isEnemy : boolean) : void
+ getIsEnemy(void) : boolean

+ setName(name : string) : void

+ getName(void) : string

+ setType(name : string) : void

+ getType(void) : string

+ setlLatitude(latitude :int) : void

+ getlLatitude(void) : int

+ setLongtitude(longtitude : int) : void
+ getLongtitude(void) : int

+ setSize(size : int) : void

+ getSize(void) : int

Figure 5.7

5.2.3.1 Processing narrative for component Map

This component deals with the map drawn on the screen. When the user
starts application, he/she sees a map whose center is the location of the user. This
map component has to have information about places and the ally and enemy troops
because if the user wants to get information about a place or to see the places of
other troops, the map must provide this information. In addition, as the light condition
changes, the Map component adjusts the color on the map according to the
information sent by the GUI Manager component.

31

5.2.3.2 Interface Description for component Map

There are three classes in Map component which are Place class, Troop
class, and Map class. This component takes five inputs from other components. One
of the inputs is the information about the colors which needs to be change according
to the environmental changes. This input is an RGB array, and it includes the revised
RGB values of the map. The second input is a Boolean, and it is coming from GUI
Manager to specify whether the other troops need to be shown on the screen or not.
The third input, zoom_level, is also from GUI Manager, and specifies the zoom-level
of the map. The other input is the location information of the user which is sent by
GPS component. Finally, the last input is again coming from the GUI Manager
component, and it marks the places in the Map component for making them visible or
invisible. The output of the Map component is a Map object which is revised and it is

sent to the Screen component.

5.2.3.3 Processing Detail for component Map

The Map component needs the location information of the user before it
begins to create the Map object which is sent to the Screen class. After GPS
component send this information, Map class takes the necessary information of the
user interface properties from GUI Manager Component. These are visibility of the
places and troops, zoom-level of the map and an RGB array for color changes. If the
user is not in motion, GUI Manager does not continuously send visibility and zoom-
level information and this is also true for the RGB array in a situation in which light
condition is not changing. If the user is in motion or the luminosity changes, after
these changes are set, a new Map object is created and it is sent to the Screen

component by the Map component.

32

5.2.4 Camera

Diagram for the component Camera

‘ Camera \

CameraController

<<interface>>
WirelessCommunication

+capture_frame(void):void +send_data(data: TCP package) :bool
+get data(void) : TCPpackage)

Figure 5.8

5.2.4.1 Processing narrative for component Camera

This package works to communicate with the camera hardware of the mobile
device and tells it to capture frames. These frames are sent to server with
WirelessCommunication interface.
5.2.4.2 Interface Description for component Camera

The only output of this component is a package consisting of frames captured
by the camera of the mobile device.
5.2.4.3 Processing Detail for component Camera

This component is active until the application on the mobile device is closed.
This means that the component is actively working all the time. The reason is that to
change the user interface dynamically, these frames have to be sent to server and
evaluated there.

The captured frames are packed and sent to server to be evaluated via

WirelessCommunication interface.

33

5.2.4.4 Dynamic Behavior for component Camera

main:Application w:WirelessCommunication
. 1
]
cm:CameraController i
1
T i
new ! 1
1]
i 1
1]
: :
loop /fJ : E
1
capture_frame frames E
1
send_data
]
)
1
I
]
L}
Figure 5.9
5.2.5 Computer Vision
Diagram for the component Computer Vision
Computer Vision
Frame
Qheighi s int
ComputerVision -width : int) .
- - E‘ -rgb_values[][][] : char[height][width][3]
-velocity : int

=luminosity : int
-frame [] : Frame

+evaluate_frames(void) : void
+update_frame_buffer(frame [] : Frame) : void

v

<<interface>>
WirelessCommunication

+send_data(data:TCPpackage)
+get_data(void) : TCPpackage

+Frame(height : int, width:int, rgb[][][] : char[][1[])
+ set_height(height: int) : void

+get_height(void) : int

+set_width(width : int) : void

+get_width(void) : int

+set_rgb_values(rgb[1[1[1:char[1[1[]) : void
+get_rgb_values(void): char[][][]

Figure 5.10

34

5.2.5.1 Processing narrative for component Computer Vision

This component works on server side to evaluate the frames coming from
mobile device via WirelessCommunication interface. When the application starts, this
component starts to work. It determines the velocity of the user and the quantity of
lighting of the environment the user is in. After calculating these values, this

component sends these values to the mobile device.

5.2.5.2 Interface Description for component Computer Vision

The inputs for this component are the packed frames sent by the mobile
device. These frames are captured with the camera of the mobile device. Outputs of
this component are the calculated velocity and luminosity values to be used by the

mobile device in order to dynamically change the user interface.

5.2.5.3 Processing Detail for component Computer Vision

The packed frames come from the mobile device via WirelessCommunication
interface. ComputerVision class updates the frame array consisting of frame objects
according to the new frames with its update frame_buffer function. New frame
objects are constructed using the constructor of the Frame class.

ComputerVision class traverses the frame array (frame []) and by comparing
consecutive frame objects in the array by evaluate frames function it sets the
luminosity and velocity values. Then, these calculated values are sent to the mobile

device with the help of WirelessCommunication interface.

35

5.2.5.4 Dynamic Behavior for component Computer Vision

main:Application]

T
1

Loop /'

update_frame_buffer() —

new cv:ComputerVision w:Wirel mmunicati nI

get_data() i

TCPpackage Q

evaluate_frames()

send_data() $

Figure 5.11

36

5.2.6 Screen

Diagram for the component Screen

Screen

MessageBox

fontSize : int
message:String
isVisible: bool
color : Color

+set_fontSize(size:int):void
+get_fontSize(void) : int
+set_message(message: String):void
+get_message(void): String
+set_visible(visible : bool) : void
+get_visible(void) : bool
+set_color(color: Color):void
+get_color(void):Color

<<interface>>
WirelessCommunication

+send_data(data:TCPpackage): bool
+get_data(void) : TCPpackage

Screen

brightness : int

contrast : int

color : Color

map : Map

info_bar : InformationBar
button_bar : ButtonBar
message_box : MessageBox

+ set_brightness(brightness:int) :void
+get_brightness(void) : int
+set_contrast{contrast:int) : void
+get_brightness(void):int
+set_color(color: Color):void
+get_color(void):Color
+get_infoBar(void) : InformationBar
+get_buttonBar(void):ButtonBar
+get_r Box(void) : M Box
+refresh(void) :

void

1

InformationBar

fontSize : int
information :String
zoomLevel : int
isVisible : bool
color: Color

+set_fontSize(size:int):void
+get_fontSize(void) : int
+set_information(info:String): void
+get_information(void): String
+set_visible(visible : bool) : void
+get_visible(void) : bool
+set_zoomLevel(zoom : int) : void
+get_zoomLevel(void) : int
+set_color(color: Color):void
+get_color{void):Color

—

ButtonBar

size :int

isVisible : bool
buttons[] : Button[]
color:Color

+set_size(size:int):void
+get_size(void) : int
+set_visible(visible : bool) : void
+get_visible(void) : bool
+add_button(button : Button) : void
+get_button(id: int) : Button
+get_buttons(void) : Button[]
+set_color(color: Color):void

+get_color(void):Color

Button

size : int
isVisible : bool
priority : int
color:Color

+set_size(size:int):void
+get_size(void) : int
+set_visible(visible : bool) : void
+get_visible(void) : bool
+set_priority(priority:int):void
+get_priority(void) : int
+set_color(color: Color):void
+get_color(void):Color

Figure 5.12

5.2.6.1 Processing narrative for component Screen

This component is responsible for keeping all data about the screen. This data
is represented in MessageBox, ButtonBar, InformationBar classes and Map package.
Another main duty of this component is refreshing the screen.

MessageBox implements WirelessCommunication interface to get message from the

server.

37

Moreover,

5.2.6.2 Interface Description for component Screen
The inputs of this component are coming from GUIManager that sets attributes
of Screen package classes. Another input is message coming from server machine.

The output of this package is modified and refreshed screen content.

5.2.6.3 Processing Detail for component Screen

Actually Screen package is a container package that keeps screen entities
and their characteristics that can be seen at class diagram of this package. The main
action Screen package performs is that refreshing the screen triggered by
GUIManager. When GUIManager decides to change screen content, it calls refresh ()
method of the Screen class. Another process Screen Package performs is displaying

message whenever a message comes.

38

5.2.7 GUIManager

Diagram for component GUIManager

GUI Manager

GUIManager

contextMngr : ContextManager
interactionMngr : UserInteractionManager

+configureButtons(veid): void
+configureInfoBar(void): void
+configureVisibility(void): void
+configureMessage(void): void
+configureMap(void) : void

.

ContextManager UserInteractionManager
velocity : int preffered_zoomLevel : int
luminosity : int preffered_brightness: int
threshold_velocity : int preffered_contrast: int
threshold_luminosity: int wantMessageBox : bool

wantInfoBar: bool

— P —— . wantButtonBar : bool
+get_velocity(void) : int wantEnemies: bool
+get_luminosity(void) : int wantAllies : bool
+get_threshold_velocity(void) : int wantPlaceNames : bool
+get_threshold luminosity(void) : int

+zoomIn/Out(zoomLevel : int):void
+changeBrightness{brightness: int) : void
+changeContrast(contrast: int) : void
<<interface>> +showMessage(isWanted : bool) : void
WirelessCommunication +showInformation(isWanted : bool) : void
+showButtonBar(isWanted : bool) : void
+showEnemies(isWanted : bool) : void
+showAllies(isWanted : bool) : void
+showPlaceNames(isWanted : bool) : void
+get_preffered_zoomLevel(void) : int
+get_preffered_brightness(void) : int
+get_preffered_contrast{void) : int
+isMessageWanted(void) : bool
+isInfowanted(void) : bool
+isButtonsWanted(void) : bool
+isEnemiesWanted(void) : bool
+isAlliesWanted(void) : bool
+isPlaceNamesWanted(void) : bool

+send_data(package : TCPpacakage) : bool
+get_data(void) : TCPpackage

Figure 5.13

5.2.6.1 Processing narrative for component GUI Manager
This component is responsible for managing graphical user interface by
considering user preferences, users motion and environment’s luminosity.

UserinteractionManager class interacts with a user by GUI and keeps user’s

39

preferences without applying them. Meanwhile, ContextManager class keeps getting
information about the context from server by Wireless Communication interface.
Then, GUIManager class combines all of the information and decides appearance of

the screen.

5.2.6.2 Interface Description for component GUI Manager

ContextManager inputs are evaluated frame data that coming from the server
machine. This input gives information about the context by stating velocity and
luminosity values. UserlnteractionManager inputs are coming from user via GUI.
These inputs indicate user preferences about the screen content. User can decide
additional zoom level, brightness and contrast, visibility of message box, information
bar, button bar, enemies, allies, and place names on the map. The only output of this

component is decided screen content that is going to be rendered.

5.2.6.3 Processing Detail for component GUI Manager

UserInteractionManager’s duty is keeping user preferences to take into
consideration later in GUIManager methods. When user presses a button, function
that sets related attribute is called. For example, if user wants to show enemies in the
map, clicks on the “Show Enemies” button. Then “wantEnemies” attribute is set as
“true” by calling “showEnemies ()’ function. Other preferences are kept in the same
way. UserlnteractionManager is activated with user interaction. On the other hand,
ContextManager is always active to get velocity and Iluminosity values. If
ContextManager gets valid velocity and luminosity values from the server,
GUIManager starts deciding the new screen content considering user preferences
and context change by calling configureButtons(), configurelnfoBar(),
configureVisibility(), configureMessage(), configureMap() functions.

e configureButtons () function arranges button numbers, button sequence in the
button bar and change buttons’ size and color. If user preference is hiding
button, this function only hides button bar, doesn’t achieve former operations.

e configurelnfoBar () function arranges information bar with respect to font size,
text color, amount of information displayed. If user prefers to hide information

bar, this actions are not necessary to be performed.

40

e configureVisibility () function adjusts brightness and contrast of the screen. If
user wants additional brightness and contrast, this preference is also taken
into consideration.

e configureMessage () function arranges message box size , color and
messages text size , color. In case of user preference is hiding the message

box, these procedures are not performed.

e configureMap () function arranges map’s zoom level, color range, amount of
information on the map such as place names, allies and enemies. If user
prefers to show or hide information on the map, these preferences are
considered.

5.2.7.4 Dynamic Behavior for the component GUIManager
This sequence diagram shows just how the contrast changes. Other properties
change in the same way and parallel to the contrast change.

m:Main | im:UserlnteractionManager | gm:GUIManager

cm:ContextManager w: WirelessCommunication
1 T ‘ T ¥ T
! ! ! 2 !]
i contrast i
1 2 o 1
ichange_contrast()) E
| [—" :
Loop ‘ i
w !
configure_visibility() !
= E
i i
i ey === I = > |
i 0%t preffered_contrast() get_luminosity() get_data() B
1 -
! :
) contrast : luminosity TCPpackage
1 «
! . ,
i
1
1
1
1
1
i
i
1 1
i i
i i
1 1
i i
1 1
i
| |
| |
1
i
1
1 1
1 1
i —— i
i H —r — i
| i 1 i i
| | i i i i
—— 1 1 1 1 1
i | i i i i
1 1 1 1 1 1
i 1 i ' | |
1 1 1 1] 1
i H i i i i
1
1
Figure 5.14

5.2.8 WirelessCommunication

WirelessCommunication is an interface class. It provides the connection

between the server and mobile device.

41

Diagram for WirelessCommunication component:

WirelessCommunication

< <interface>>
WirelessCommunication

+send data(data:TCP package) :bool
+get_data(void) : TCPpackage)

Figure 5.15

6 User Interface Design

6.1 Overview of User Interface

The overall system can be mainly categorized under two user interfaces, one
for sending message from the server side (Command Center) and another for the
client side application. User interface of the server side has a simple structure. It lists
all available messages and forward the message to client (mobile device) when user
selects and sends one of the messages.

The complex part of the project is client-side user interface, since the main
idea of the project is changing the user interface according to environmental
parameters. Zoom level, colors, object sizes and object locations change depending
on environmental factors. Therefore, too many user interfaces can be generated by
the application. In Section 6.2, effects of the environmental changes on the user

interface are shown with one example for each.

42

6.2 Screen Images

6.2.1 Sending Message from Command Center to Mobile Device

5 &% MAP-MET Command Center

Sender: | Karoshi | (Optional)
Message #: |§| Send

#1 - Message 1
#2 - Message 2
#3 - Message 3
#4 - Message 4
#5 - Message 5
#6 - Message 6
#7 - Message 7
#8 - Message 8
#9 - Message 9
#10 - Message 10

Figure 6.1

On this user interface all messages are shown to user. After message which is
going to be sent has decided, user fills the box which is labeled as “Message #: “with
corresponding message number. The user may want to specify the sender by filling
the text box which is labeled as “Sender:” This operation is optional, if user does not
fill sender information, the sender of the message will be set as “Command Center”
by default.

43

6.2.2 Default User Interface for Mobile Device

Enemy Troop
Name: PKX

Type:Land

Longitude: 106 €

Latitude :82°

Alzitude: 802 m.

A kptepe

m Yodurtcular Gegitboyu
Arakoy BalverenA

A Cevizdozo

A

Boyuny

A

Kosreli

Yazi

Ogagag Dedeler

Esenli

Ugkiraz
Kemerh
aka

A

Koyundren

Karacakdy

Uyanik

Basak

\ (E90 | Silopi zgen
A A A [
Bagverimh
jyniyah Ciftlikkoy En
BugdayhA Aktepe A\ L
Kapilid
Ovﬂ,"_‘?v\/\—-f’\'

Figure 6.2

A

A
4

Onbudak

Senoba

Hilal

Kb

Enemy Troop
Name: PKK
Type:Land
Longitude: 106 E
Latitude : 82N

Altitude: 802 m.

Zakho

L
b

This user interface is used for stable user when luminosity value is optimal.

This user interface consists of four main parts, map, button box, zoom bar and

information bar. On button box which presents at the bottom of the screen, there are

six buttons available.

“Show/Hide Enemy” button: The button which presents on the top-left corner

of the button box, labeled with enemy sign.

“Show/Hide Ally” button: The button which presents at the top-middle side of

the button box, labeled with ally sign.

“Show/Hide Location” button: The button which presents on the top-right

corner of the button box, labeled with "L" sign.

44

e "Inbox" button: The button which presents on the bottom-left corner of the

button box, labeled with a letter sign.

e “Change Brightness/Contrast” button: The button which presents at the

bottom-middle side of the button box, labeled with contrast sign.

e “Quit" button: The button which presents on the bottom-right corner of the

button box, labeled with quit sign.

Information bar is on the right-side of the screen. Details about selected point can
be seen on it. There presents an arrow button on the top-right corner of the
information bars to hide it.

Zoom-bar is on the left-side of the screen.

6.2.3 Default User Interface for Mobile Device with Hidden

Components

Yodurtcular
Gegitboyu
Em iy Onbudak

Arakoy | |
xptepe £e Ve Senoba Hilal
A Cewizdazo .
Ugkiraz
A Baglica
Kemerli ;
Boyunyaka ncese
Kosreli Koyundren Aksu
Karacakdy
Yaz|
Ugagag Dedeler Uyanik Caligkan
Esenli Bagak
m Silopi Ozgen
Bagverimh
yriyah Ciftlikkoy m
Bugaayl A Aktepe M
z Zakho
(,,«“" B

Show buttons

Figure 6.3

45

Zoom bar, button box and information bar can be hidden depending on
context, user preferences and 30 seconds idle time. When these components are

hidden two buttons reveal on the screen to recover them.

"Show Button Box Button" is at the bottom screen with a label of "Show
buttons". Touching on this button recovers button box and zoom bar.
"Show Information Bar Button" is at the right-side of the screen with a label of

left arrow. Touching on this button recovers information box.

6.2.4 User Interface for Mobile Device with Changing Colors

[D] Yeduteuler
K:nl&:"‘—‘

A Cevizdazo
A A Ugkiraz
Kemerl -
~ Enemy Troop
Boyunyaka

A .
Name: PKK

Type:Land
Longitude: 106 E

= Latitude : 82N
Silopi Ozgen

A A A Altitude: 802 m.

SAMSUNG

O

s

Figure 6.4
When luminosity value changes, colors on the user interface change accordingly.

The user interface in Figure 6.4 is an example of how user interface reacts when the

luminosity is low.

46

6.2.5 Brightness/Contrast Adjustment on Mobile Device

Brightness:
¢

Contrast:
A &

u\':i. j/

ey S ———

Figure 6.5

Yogurtcular Gegitboyu

Onbudak

Arako:
ke (Y Balveren g Senoba Hilal
A Cewvizdozo Uckirez
A A 2 Baglica
Kemerli ;
Boyunyaka nceser
A
A
Brightness: ..,
L 1 \
Y 1 !
Contrast:”
4 A 1 \
2\
Al | !

T —— N =7 W—
jyriyah Ciftlikkay g
1 Bugaayll Aktepe A
A o
Kapili
Ovakoy s et = :

=Khabur

/

Show buttons

Zakho

When “Change Brightness/Contrast” button is touched, a box appears on two

scroll bars on it. Changing brightness and control values using scroll bars show

immediate effect. When desired result is achieved, box can be closed using "X"

button which is on top-right corner of the box.

47

6.2.6 Reading Message on Mobile Device

m Yogdurtcular Gecitboyu e
U

(_B’fepe Arakay Balveren‘ Senoba Hslal‘
X Baglica
inceler
o 4
4 T i
Too many Enemy Lines | ./ 00 Mma ny Enemy Lines
are spotted, Take your g

are spotted. Take your

fallback position and go

nearest checkpoint to

fallback position and go

get new tactical

information.

nearest checkpoint to
yriya

get new tactical
SAMSUNG

information.

Show buttons

Figure 6.6

When a new message is received or inbox button on the button box is
touched, a message box appears showing the content of the message. The display
of the message changes depending on the context. For example, while moving

emphasized words becomes bigger and distinct.
6.3 Screen Objects and Actions

The input is gathered from the mobile device via touchscreen. On the screen,
there exists three main areas, hamely; map, button box and zoom bar. In addition to
main components of the user interface, there are five auxiliary components: Message
window, information bar, brightness/contrast window, show information bar button
and show button box button.

Map: When a point on the map is touched, info bar reveals and the detailed

information about that point is shown on the information bar.

48

Button Box: Button box arranges the buttons which serves different purposes.

e Using “Show/Hide Enemy”, “Show/Hide Ally” and “Show/Hide Location”
buttons, user is able to state his/her preferences. If the selection of the
user is one of these to be hidden, then no information about that option is
shown on the map. If user selects one of them to be shown, then that
option will be shown on the map, but the detail level of this information will
be decided by the application.

e Using “/Inbox” button, user can view the latest message.

e “Quit” button is used to exit from application.

e Using “Change Brightness/Contrast” button, user can set his/her brightness
and contrast preferences. When luminosity changes, application make
adjustments depending on user preferences.

Button box is hidden by the application if user is idle for 30 seconds. When

button box is hidden, show button box button reveals.

Zoom Bar: Zoom bar is used to get the preference of user about zoom level.
Application changes this user specified zoom level according to the movement of the
user and calculates the actual zooming level. Zoom bar is hidden by the application if
user is idle for 30 seconds.

Message Window: This window opens when there is a new incoming
message or “Inbox” button is touched. In this window, a message can be selected by
touching on it for view it. To close the message box, user should touch on the “X”
button which presents on the top-right corner of the message window.

Information Bar: This bar is not a main component of the user interface.
When a point is selected on the map or “Show Information Bar” button is touched,
this bar appears and shows the information about selected point if a new point is
selected. If not, it shows the information about last used point. Information bar is
hidden if user is idle for 30 seconds or it can also be hidden by touching the arrow
button on the top-right corner of it. When information bar is hidden, “Show
Information Bar” button is revealed.

Brightness/Contrast Window: When “Change Brightness/Contrast” button is
touched, this window appears. On this window, there exist two bars. One of them is

used for changing contrast, while other one is used for adjusting brightness.

49

Brightness/contrast window can be closed by touching “X” button which presents on
the top-right corner of the brightness/contrast window.
Show Information Bar Button: When information bar is hidden, show
information bar button is revealed. Touching this button reveals information bar.
Show Button Box Button: When button box is hidden, show button box

button is revealed. Touching this button reveals button box.

7 Detailed Design
7.1 Messaging

7.1.1 Classification

Messaging component is an application at the server side. This component is

used for sending messages to mobile device.
7.1.2 Definition

In Requirement Analysis Report, It is stated that server need to send
messages to mobile device. For this purpose messaging component is added.
Server-side user can select a message from number of predifined messages, add
sender field and send to the mobile device user.

7.1.3 Responsibilities

The responsibility of this component is just sending messages not recieving
messages. This component is responsible for controlling user interactions and
sending messages by providing Graphical User Interface.

7.1.4 Constraints

The message can be selected only predifined message templates. This
templates are provided since urgent situation occurs frequently in military area. The
assumption of this component is that all neccessary message templates are provided
in a file that keeps messages. This file is kept in server machine storage. Another
asumption is that default sender of the message is “Command Center”. The
constraint of this messaging application is that user can select and send one

message at a time.

50

7.1.5 Composition

The Messaging system consists of three main components, Message class,
MessageController class and GUI. Message class keeps message text, date and
sender. Message class methods are just getters and setters of these attributes.
MessageController class provides a connection between message file and GUI.
MessageController keeps file that consists of messages and parse this file to show
them to user via GUI. MessageController also keeps user’s selected message by the
help of GUI. MessageController class also implements WirelessCommunication
interface to send current message to mobile device.
7.1.6 Uses/Interactions

This component designed as a seperate application running on the server
side. Because of this fact Messaging component has no interaction with other
components on the server side. However Messaging component implements the
WirelessCommunication interface to transfer messages to mobile device.Mobile
device also have component named MessageBox that implements
WirelessCommunication interface to get and show incoming message.
7.1.7 Resources

Messages are kept in a file whose format is selected as a XML since XML is a
very useful format. It is easily read, parsed and written by many applications. The
below is the format of an example message file:

<?xml version="1.0" encoding="UTF-8" 7>

<messages>

<message id = "1">

<sender> Message-1 sender name is here </sender>
<message_text> Message-1 is here </message text>
</message>

<message id = "2">

<sender> Message-2 sender name is here </sender>
<message_text> Message-2 is here </message text>
</message>
</messages>

51

7.1.8 Processing

When user opens messaging application MessageController object created
with constructor that takes message file name as an argument.This message file is
parsed and messages are displayed on the screen to let user see messages and
select one of them to send.User can select a message by clicking on the
message.After user clicks on the message, MessageController's currentMessage
attribute is set to this selected message. When the user clicks on the send button, the
date and time information is added to currentMessage and this message object is
wrapped as TCP package. Finally, the package is sent to the mobile device via

Wireless Communication component.
7.1.9 Interface/Exports

Messaging component needs to use XML parser to parse XML message file
when application first starts.The GUI is also provided for this application.The GUI
mainly consists of text box to specify the sender of the message, message list to
select one of them and send button to achieve sending the message.After user
clicks on the send button , the message box appears on the screen to tell user the
message whether or not successfuly sending.Message sending is done by
WirelessCommunication component which discussed in section 5.2.8.

7.2 GPS

7.2.1 Classification

This is a component of the overall system. This component is used for the

simulation of an GPS device.
7.2.2 Definition

The main task of this GPS component is to simulate the GPS device since the
GPS hardware is not provided in the mobile device used in the project. The purpose
of the component is taking the coordinates of the user and the selected place which
the user wants to display on the screen and contributing to the displaying the

corresponding place on the screen by the GUIManager.

52

7.2.3 Responsibilities

The component is responsible to specify the user's coordinates. By providing
the location information which is needed to display the correct part of the map and to
showing the information of the correct place, its plays a GPS device role in the
system. It is not in an interaction with the user directly it just gives information to the
system about the user.

7.2.4 Constraints

The component assumes that the user is moving among the places which is
kept in a GPSData file. This file is in the mobile device storage. The second
assumption is that the user is moving through the previously specified path which
means that the next place the user will be is known. Another assumption is that the
user is initially at the first place entry in the file.

7.2.5 Composition

The GPS component has two class namely GPSData and GPSSimulator.
GPSSimulator is simulating the GPS device and the GPSData class is keeping the
information which is necessary for the GPSSimulator class. It holds all locations in a
file and takes the current or desired one when it is asked by the GPSSimulator.

7.2.6 Uses/Interactions

This component may need the user's movement information to update the
current place information; however, this information is not necessary to specify the
user's initial position when the system is started since the initial position is assumed
to be the first entry in the GPSData file. It takes the user's movement information
from the ComputerVision component on the server via the WirelessCommunication
module. The another component which this component interacts is the GUIManager.
GPS component takes the which place's information the user wants to see on the
information bar from the GUIManager. It also sends the user's place or desired place
information to the GUIManager.

7.2.7 Resources

The resources used by this component are memory, CPU and disk. The
component access the disk firstly and brings the file which keeps the location

information into the memory. The simulation uses the CPU and memory.

53

7.2.8 Processing

The GPSSimulation class is the main part which makes the GPS component
work. The other class, namely GPSData, provides an object description to the
simulation. The simulation firstly takes the GPSData file from the disk, sets the first
entry in the file as the place where the user is and sends it to the GUIManager via
WirelessCommunication. After this task is finished, the simulation will be idle until the
user starts to move. When the motion starts, the motion information coming from the
ComputerVision component to the GPS component wakes up the simulation. After
being waked up, the simulation calculates the time when the user will be at the next
place. It recalculates the time when the velocity information of the user changes.
When the place of the user changes, it sends the new location information.

7.2.9 Interface/Exports

As mentioned above, this component provide a GPS simulation to the system,
since there is no GPS device in the mobile device used in the project. The
component has two class in it and these classes have attributes and methods. The
functional details of these classes are mentioned in section 4.2 - Data Dictionary in
this document. The assumptions and the constraints about this component is also

provided in this section of the Detailed Design report under the Constraints title.

7.3 Map

7.3.1 Classification
This is a subcomponent of Screen component.This component used for
keeping all necessary data to draw map on the screen.

7.3.2 Definition

This components keeps places’ information, troops’ information, user’s current
position, zoom level of the map and color distribution of the map.
7.3.3 Responsibilities

The main responsibility of this component obtaining all necessary data about
the map to the application from mobile device storage.This component also need to
keep all informations coming from GUI Manager about appearence of the Map.These
informations are zoom level, color distribution, visibility of map’s places and troops

components.Another responsibility of this component is gathering information about

54

user’s current position from GPS component to specify which area is needed to be
shown on the screen.
7.3.4 Constraints

There is one big map provided to the application that is stored in mobile
device.Since mobile device does not have GPS hardware, GPS is simulated and
user could’t go out of the map area.Troops’ places are assumed to static.Movement
information of troops are not attained.Troops’ informations are kept in a file that is
stays in mobile device storage.
7.3.5 Composition

This component consists of three class, Map, Troop and Place.Troop class
has latitude and longitude attributes to keep location of the troop, name attribute ,size
attribute to specify the how many people troop consists of , type attribute to indicate
the characteristic of the troop, is_visible attribute to keep the troop is visible or not on
the map and is_enemy attribute to remark the troop as a enemy or ally.Place class
has latitude, longitude, altitude atributes of the class, name attribute of the place,
distance attribute that keeps distance from the user’s location and is_visible attribute

that specify the place is visible or not on the map.
7.3.6 Uses/Interactions

This component has interaction with three components of the system which
are GUI Manager, GPS Simulator and Screen.GUI Manager controls map’s
appereance by setting relevant attributes.One of the attribute is three dimensional
RGB array that keeps the information about the colors on the map which needs to be
changed according to the environmental changes. The second attribute is named
is_visible that needs to be arranged by GUI Manager to specify whether the troops
or the places need to be shown on the map. The third attribute, zoom_level, is also
set with a value coming from GUI Manager, and specifies the zoom-level of the map.
The other attributes are latitute and longitute values that state the location
information of the user which is sent by GPS Simulator component.Finally Screen
component uses all of the information in the Map Package to refresh the screen.

7.3.7 Resources

Places’ and Troops’ informations are kept in a file whose format is selected as a
XML. Because this format is practical in these type of situations. It is easily read,

55

parsed and written by many applications. The examples of Troop and Place XML files

can be seen below:

<?xml version="1.0" encoding="UTF-8" ?>

<troops>
<troop id ="1">
<name> Troop-1 name is here = </name>
<isEnemy> Troop-1 is enemy or not is here </isEnemy>
<type> Troop-1 type is here </type>
<size> Troop-1 size is here </size>
<latitude> Troop-1 latitude value is here </latitude>
<longitude> Troop-1 longitude value is here </longitude>
</troop>
<troop id = "2">
<name> Troop-2 name is here </name>
<isEnemy> Troop-2 is enemy or not is here </isEnemy>
<type> Troop-2 type is here </type>
<size> Troop-2 size is here </size>
<latitude> Troop-2 latitude value is here </latitude>
<longitude> Troop-2 longitude value is here </longitude>
</troop>

</troops>

<?xml version="1.0" encoding="UTF-8" ?>

<places>
<place id ="1">
<name> Place-1 name is here </name>
<latitude> Place-1 latitude value is here </latitude>
<longitude> Place-1 longitude value is here </longitude>

</place>

56

<place id = "2">
<name> Place-2 nameis here = </name>
<latitude> Place-2 latitude value is here </latitude>
<longitude> Place-2 longitude value is here </longitude>
</place>
</places>
7.3.8 Processing
The GPS Simulator class sets the position of the user in the Map class.The
GUI Manager class applies the neccessary changes in the Map component.Screen
class refreshes the screen using informations in the Map component.GUI Manager
controls the refreshment of the screen.
7.3.9 Interface/Exports
Map component needs to use XML parser to parse XML files when application

first starts.By this way troops and places loaded to map component.

7.4 Camera

7.4.1 Classification

Camera component is a subsystem to provide environmental data.
7.4.2 Definition

Camera component continuously collects environmental data taking
snapshots. This environmental data is required to determine luminosity and
movement data.
7.4.3 Responsibilities

This component is responsible from capturing frames continuously.
Afterwards, it sends data to server to be processed.
7.4.4 Constraints

Environment must have enough light, in other words frames must be
identifiable. Also connection between server and client must be established since a

healthy data transfer is needed for camera to send frames through.

57

7.4.5 Composition

Camera component is a simple component which contains only one class
namely CameraController. This class uses camera interface of the mobile device to
capture a frame and sends the captured frame from mobile device to server by the
help of WirelessCommunication interface.
7.4.6 Uses/Interactions

This component designed as a seperate application running on the client side.
Because of this fact Camera component has no interaction with other components on
the client side. However Camera component implements the WirelessCommunication
interface to transfer captured frames to server. After frames are sent through
WirelessCommunication interface, Computer Vision component which presents on
the server side handles this data and process it.
7.4.7 Resources

Camera component uses camera of the mobile device as a hardware
resource.
7.4.8 Processing

When user starts the mobile application, network connection is established.
After a connection is made between server and client, application starts camera and
waits for feedback. When application connected to the camera, capturing cycle starts.
Camera captures frames continuously and sends them to server using network
connection.
7.4.9 Interface/Exports

Camera component needs to use camera device interface to get captures

from environment.

7.5 Computer Vision

7.5.1 Classification

Computer Vision component is a subsystem to provide luminosity and

movement values from incoming frames.

58

7.5.2 Definition

This component uses image processing operations in order to decide on user
movement and light value of the environment depending on acquired frame data from
client.

7.5.3 Responsibilities

Main responsibility of this component is supplying luminosity and movement

information to the client. Therefore, using these two values, client is able to adjust

user interface.
7.5.4 Constraints

To be able to processed, frames must be identifiable. This means differences
between consecutive frames must be noticiable. Moreover, network connection
between server and client must be established in order to data transfer.

7.5.5 Composition

This component consists of two classes, ComputerVision and Frame. Frame
class is used to keep incoming frame data. It keeps height value, width value in
corresponding variables. In addition to this, rgb values of each pixel are kept in a char
array. ComputerVision class has a frame buffer to keep objects from Frame class.
ComputerVision class has two methods. update frame_ buffer() method adds
incoming frame data to frame buffer. evaluate frames() method evaluates current
frame buffer and extracts movement and luminosity data. velocity and luminosity
variables are also set by evaluate_frames() method to be sent to the client.

7.5.6 Uses/Interactions

This component does not interact directly with other components. It uses
WirelessCommunication interface in order to get/send data from/to other
components. Computer Vision component indirectly interacts with Camera and GUI
Manager components. It gets frame data from Camera component using
WirelessCommunication interface and sends movement and luminosity data to GUI
Manager again using Wireless Communication interface.

7.5.7 Resources
Since computer vision operations are complex operations, they highly depend

on CPU and physical memory.

59

7.5.8 Processing

Computer Vision component gets the frame data which is provided by
Camera component and presents on WirelessCommuncation interface. After that,
this frame is buffered by ComputerVision object to be processed. ComputerVision
object processes buffered frames and extracts light and movement values. For
evaluating light value, the histograms of frames are used. For evaluating movement
value, similarity of frames are used. After these values are calculated, they are put on
the WirelessCommunication interface to be sent to mobile device. Mobile device get
these values which are ready on the network and makes further adjustments on the
user interface using GUI Manager object.
7.5.9 Interface/Exports

MATLAB scripts will be used for computer vision operations, therefore they

will be exported for serverside application.

7.6 Screen

7.6.1 Classification

Screen is one of the most important components of the overall system.
7.6.2 Definition

The specific mission of the Screen component is to display the screen content
on the screen of the mobile device as mentioned in the section 5.2.6.1 of the Detail
Design Report, namely Processing Narrative for Component Screen.
7.6.3 Responsibilities

This component is responsible to draw the screen content onto the screen of
the mobile device according to the GUIManager's orders. Screen component does
not decide how the size, font and color of the screen contents change. This is the
GUIManager's task.
7.6.4 Constraints

Since this component does not decide anything, there is no constraint or
assumption. All information comes from GUIManager, Screen component only draws

the screen.

60

7.6.5 Composition

This component has a class named Screen and this Screen class is
composition of four other classes. These classes are MessageBox, Map, ButtonBar,
InformationBar. The ButtonBar also has attributes from the Button class. These
classes provide some objects to the Screen class as screen content. In other words,
there are information bar, button bar, message box and map on the screen and these
objects are provided by the classes which the Screen class is composed of.

7.6.6 Uses/Interactions

The only component which uses the Screen component is GUIManager. It
does all calculations and specify the sizes, fonts, and colors, then Screen draws the
screen contents according to the GUIManager's orders. The Screen component only
uses the WirelessCommunication interface. The MessageBox class takes messages

from server via this wireless communication interface.
7.6.7 Resources

This component works on the mobile device side; therefore, it uses the CPU
and memory of the mobile device. The only managed resources is the screen of the
device.

7.6.8 Processing

Firstly, the component takes the initial values from the GUIManager. According
to these information, the Screen class draws the screen contents by using only Map
object. The necessary information for the Map object is already given to it by the
GUIManager, such as places, troops, zoom level and the initial place of the user. If
the environment condition changes or the user wants to change some properties the
GUIManager deals with them and gives the new screen content information to the
Screen. As mentioned above, the Screen does not decide anything, it only waits the
GUIManager and does its orders. This component draws the screen by using Canvas
class of the Java Micro Edition.

7.6.9 Interface/Exports

Actually Screen package is a container package that keeps screen entities
and their characteristics. The main action Screen package performs is that refreshing
the screen triggered by GUIManager. When GUIManager decides to change screen
content, it calls refresh() method of the Screen class. Another process Screen

Package performs is displaying message whenever a message comes

61

7.7 GUI Manager

7.7.1 Classification

This component is a package that combines three classes that are
GUIManager, ContextManager and UserinteractionManager. The component is the

most important one between all the components.
7.7.2 Definition

This component purposes to manage the graphical user interface of the map
application by deciding on what to do with combining the context information of the
user (luminosity and velocity) and preferences of the user.

7.7.3 Responsibilities

The component plays a very important role in changing the graphical user
interface of the map application. The component is required for dynamically changing
the interface because it is the only component that keeps the context information of
the user in the mobile device side. One other important role of this component is to
keep track of the user preferences. The attributes of UserInteractionManager class
are for keeping that mentioned preferences.

7.7.4 Constraints

It is assumed that luminosity and velocity values of the evaluated data come
from the WirelessCommunication package continuously. There will be no sudden
changes on the user interface when the luminosity value becomes lower than the
threshold value or when the velocity value becomes bigger than the threshold
velocity value.

7.7.5 Composition

Subcomponents for this component are GUIManager, ContextManager and
UserInteractionManager classes. GUIManager class is associated with the other two,
since it makes the decision on how to change the graphical user interface by looking
at the values in these two classes. ContextManager class exists to control the context
change issues. UserinteractionManager class is, on the other hand, for interacting

and then controlling the user actions.

62

7.7.6 Uses/Interactions

This component is not used by any other component. However, this
component is interacts with WirelessCommunication package. It gets the luminosity

and velocity data that were emerged after the evaluation of the frames captured.
7.7.7 Resources

Camera is, not directly but indirectly, a resource for this component. Captured
frames from the camera are evaluated in server machine and the luminosity and
velocity value extracted become input to this component. WirelessCommunication
package gets these values from the server machine and delivers is to the
ContextManager package. Therefore camera of the mobile phone is a fundamental
resource for the component. If the camera does not work, the interface of the
application cannot change dynamically but statically with only the preferences of the
user.

7.7.8 Processing

All the objects from the classes of this component are created when the map
application first started. The reason is that the component must be capable of
interacting with the user himself and respond to his context changes from the
beginning of the application until the application is closed.

GUIManager class includes the UserinteractionManager and ContextManager
objects in it. Therefore, when the application starts to function, a GUIManager object
is created and consequently a UserInteractionManager and ContextManager objects
are created.

When the UserInteractionManager starts to work, the user becomes capable
of using buttons on the mobile device screen and changes the visibility of the screen
according to his needs. When the user presses a button on the screen, the related
function gets into action and sets the related attribute of this class. The functions and
what attributes change when these functions work are mentioned in chapter 4.2.7.

When the ContextManager starts to work, this class keeps getting the
evaluated data which is the velocity value of the user and luminosity value of the
environment the user is in with the get_velocity and get_luminosity functions. These
values come from the WirelessCommunication package.

If the velocity value extracted is higher than the threshold value GUIManager
changes the zoom level if the required zoom level should be higher than the zoom

63

level specified by the user(the preferred_zoom_level attribute in Userinteraction
manager). If the velocity becomes lower than the threshold value again, zoom level of
the map is adjusted according to the user preference. Contrast and brightness of the
screen is controlled in the same way.

e configureMap () function arranges map’s zoom level, color range, amount of
information on the map such as place names, allies and enemies. If user
prefers to show or hide information on the map, these preferences are
considered.

e configureVisibility () function adjusts brightness and contrast of the screen. If
user wants additional brightness and contrast, this preference is also taken

into consideration.

If the velocity is higher than the threshold value, buttons are configured according
to the importance of these buttons. How the buttons change is explained in Chapter
6. If the velocity becomes normal again, buttons are shown in default mode.

The reason to keep threshold values is not to change the user interface when the
changes in velocity or luminosity is unnoticeably small.

e configureMessage () function arranges message box size , color and

messages text size , color. In case the user prefers to hide the message box,
these procedures are not performed.

7.7.9 Interface/Exports

ContextManager inputs are evaluated frame data that coming from the server
machine via WirelessCommunication class. This input gives information about the
context by stating velocity and luminosity values. UserinteractionManager inputs are
coming from user via GUI. These inputs indicate user preferences about the screen
content. User can decide additional zoom level, brightness and contrast, visibility of
message box, information bar, button bar, enemies, allies, and place names on the
map. The only output of this component is decided screen content that is going to be

rendered.

64

8 Libraries and Tools
8.1 C++

C++ is a statically typed, freeform, multiparadigm, compiled, general purpose
programming language. It is regarded as a middle level language, as it comprises a
combination of both high-level and low-level language features. It was developed by
Bjarne Stroustrup starting in 1979 at Bel Labs as an enhancement to the C
programming language and originally named “C with Classes”. It was renamed to
C++ in 1983. Some of its application domains include systems software, application
software, device drivers, embedded software, high performance server and client
applications. Therefore, C++ is selected for the server side implementation due to the

performance constraints.
8.2 MATLAB

MATLAB (for matrix laboratory) is a numerical computing environment and
fourth-generation programming language. Developed by MathWorks, MATLAB allows
matrix manipulations, plotting of functions and data, implementation of algorithms,
creation of user interfaces, and interfacing with programs written in other languages,
including C, C++, and FORTRAN. We select MATLAB to achieve image processing
computations easily. Another reason that affects our decision is that MATLAB

provides easy binding with C++.
8.3 OPENCV

OpenCV is a library of programming functions mainly aimed at real time
computer vision, developed by Intel and now supported by Willow Garage. It is free
for use under the open source BSD license. The library is cross-platform. It focuses
mainly on real-time image processing. We can use OPENCYV functions because of
the performance reasons and it can ease our job when extracting information about

user’s speed and environment’s luminosity value.
8.4 Qt (framework)

Qt is a cross-platform application framework that is widely used for developing
application software with graphical user interface (GUI) (in which case Qt is referred
to as a widget toolkit when used as such), and also used for developing non-GUI
programs such as command-line tools and consoles for servers. Qt is free and open

source software. All editions support a wide range of compilers, including the GCC

65

C++ compiler.We choose Qt to implement GUI of messaging application at server

side.
8.5 Java ME

Java Platform, Micro Edition, or Java ME, is a Java platform designed for
embedded systems (mobile devices are one kind of such systems) . Target devices
range from industrial controls to mobile phones (especially feature phones) and set-
top boxes. Java ME was formerly known as Java 2 Platform, Micro Edition (J2ME).

Java ME devices implement a profile. The most common of these are the
Mobile Information Device Profile aimed at mobile devices. Mobile Information Device
Profile includes a GUI, and a data storage API, and MIDP 2.0 includes a basic 2D
gaming API. Since Java ME is portable, we choose this platform to implement mobile

side application.
8.6 Java MicroEmulator

MicroEmulator is a pure Java implementation of Java ME in Java SE.
MicroEmulator is licensed under LGPL so it is possible to link and distribute
commercial software with its libraries. Example usages are stated below:

e Application demonstration in web browser applet

e Faster development of application in Eclipse

e Using standard java profiling tools to tune your application

e Creation of unit tests for J2ME application that runs during build process

We will use MicroEmulator to test mobile side application.
8.7 Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) is one of the core protocols of the
Internet Protocol Suite. TCP is one of the two original components of the suite,
complementing the Internet Protocol (IP), and therefore the entire suite is commonly
referred to as TCP/IP. TCP provides the service of exchanging data directly between
two hosts on the same network, whereas IP handles addressing and routing
message across one or more networks. In particular, TCP provides reliable, ordered
delivery of a stream of bytes from a program on one computer to another program on
another computer. TCP is the protocol that major Internet applications rely on,
applications such as the World Wide Web, e-mail, and file transfer. We will use this

protocol to achieve data transfer between server and mobile device.

66

8.8 Eclipse

Eclipse is a multi-language software development environment comprising and
a plug-in system to extend it. It is written primarily in Java and can be used to
develop applications in Java and, by means of the various plug-ins, in other
languages as well, including C, C++, COBOL, Python, Perl, PHP, and others. The
IDE is often called Eclipse ADT for Ada, Eclipse CDT for C and C++, Eclipse JDT for
Java and Eclipse PDT for PHP. Eclipse CDT and Eclipse PDT will be used in the

project development.

9 Time Planning

9.1 Term 1 Gantt Chart

1 Project Selection 7/10/2010 14/10/2010
2 Field Research 14/10/2010 19/10/2010
3 Market Research 19/10/2010 20/10/2010
4 Project Proposal 27/10/2010 12/11/2010
5 Software Requirement Analysis 22/10/2010 29/11/2010 —
6 SRS Review 30/11/2010 3/12/2010
7 Initial Design 19/12/2010 24/12/2010
8 Prototype Demo 20/12/2010 11/1/2011
9 Project Presentation Preperation 2/1/2011 4/1/2011
10 Detailed Design 27/12/2010 28/12/2010
Table 8.1

End

67

9.2 Term 2 Gantt Chart

February I March
1 Wireless Communication Impiementation | 14/2/2011 | 18/2/2011 &
2 Extracting Light Information 20/2/2011 | 6/3/2011 -
3 |Extracting Motion Information 26/2/2011 | 2/4/2011 s
4 Server Side Messaging Application 3/3/2011 9/3/2011 1]
5 |GPS Simuiation 11/3/2011 | 14/3/2011 ' n
>6 E-'LIIGL:QISQS‘J[]U Getting Data Packages via 26/3/20“‘ ;25';“.3.-‘2011 | B
7 Camera Thread Implamentation 30/3/2011 6/4/2011 -
8 Map Package Implementation 5/4/2011 | 21/4/2011 : [
W e e E
ranhical + sorbat
10 [Without Context Avarenase | 15412011 | 15572011 i
11 [Testing & Debugging In Emulator 14/2/2011 | 1/6/2011 —
12 |Deployment 20/5/2011 | 3/6/2011 ==
13 [Testing in Moblle Device 13/5/2011 | 19/5/2011 %3]
i-1- Dévelo;:le’ Documen:ation .14;’>2.j.§0.1 1 31,-‘5."201'1 - » :
15 User Manual 27/5/2011 | 31/5/2011 [l :
Table 8.2

10 Conclusion

This Detailed Design Report has been intended to explain how the system will
be structured to satisfy the requirements. System components, interfaces and data
required for the implementation phase have been briefly described. Desciption of the
components are explained in detail. Gantt chart for the first and second semester has
been also given.

68

