

Karoshi

Initial Design Report
MAP-MET [Map-Military Enhancing Technology]

Fatma Akıncı
İsmail Can
Coşkuner
İlker Argın

Meryem Sağcan

27.12.2010

1

1 INTRODUCTION .. 4

1.1 PROBLEM DEFINITION .. 4

1.2 PURPOSE .. 4

1.3 SCOPE .. 4

1.4 OVERVIEW .. 4

1.5 DEFINITIONS, ACRONYMS AND ABBREVIATIONS ... 5

1.6 REFERENCES .. 6

2 SYSTEM OVERVIEW .. 6

3 DESIGN CONSIDERATIONS .. 6

3.1 DESIGN ASSUMPTIONS, DEPENDENCIES AND CONSTRAINTS .. 6

3.1.1 Time Constraints .. 6

3.1.2 Performance Constraints ... 7

3.1.3 Portability Constraints .. 7

3.1.4 Hardware Constraints .. 7

3.1.5 Software Constraints ... 8

3.2 DESIGN GOALS AND GUIDELINES .. 8

4 DATA DESIGN ... 9

4.1 DATA DESCRIPTION ... 9

4.2 DATA DICTIONARY ... 9

4.2.1 Messaging Package .. 9

4.2.1.1 Class Message .. 9

4.2.1.2 Class MessageController .. 10

4.2.2 GPS Package .. 10

4.2.2.1 Class GPSData ... 10

4.2.2.2 Class GPSSimulator .. 11

4.2.3 Map Package ... 12

4.2.3.1 Class Map ... 12

4.2.3.2 Class Place ... 12

4.2.3.3 Class Troop ... 13

4.2.4 Camera Package ... 13

4.2.4.1 Class CameraController .. 13

4.2.5 Computer Vision Package ... 13

4.2.5.1 Class ComputerVision ... 13

4.2.5.2 Class Frame .. 14

4.2.6 Screen Package .. 14

4.2.6.1 Class Screen ... 14

4.2.6.2 Class MessageBox .. 15

4.2.6.3 Class ButtonBar .. 16

4.2.6.4 Button .. 16

2

4.2.6.5 InformationBar ... 17

4.2.7 GUIManager Package ... 17

4.2.7.1 Class GUIManager .. 17

4.2.7.2 Class ContextManager .. 18

4.2.7.3 Class UserInteractionManager .. 19

4.2.8 Wireless Package .. 21

4.2.8.1 Class Wireless Communication ... 21

5 SYSTEM ARCHITECTURE ... 22

5.1 ARCHITECTURAL DESIGN ... 22

5.2 DESCRIPTION OF COMPONENTS ... 23

5.2.1 Messaging .. 25

5.2.1.1Processing narrative for component GPS .. 25

5.2.1.2 Interface Description for component Messaging ... 25

5.2.1.3 Processing Detail for component Messaging .. 26

5.2.1.4 Dynamic Behavior for component Messaging ... 26

5.2.2 GPS ... 27

5.2.2.1 Processing narrative for component GPS ... 27

5.2.2.2 Interface Description for component GPS ... 27

5.2.2.3 Processing Detail for component GPS .. 28

5.2.2.4 Dynamic Behavior for component GPS ... 28

5.2.3 Map .. 29

5.2.3.1 Processing narrative for component Map .. 29

5.2.3.2 Interface Description for component Map .. 30

5.2.3.3 Processing Detail for component GPS .. 30

5.2.4 Camera .. 31

5.2.4.1 Processing narrative for component Camera .. 31

5.2.4.2 Interface Description for component Camera .. 31

5.2.4.3 Processing Detail for component Camera ... 31

5.2.4.4 Dynamic Behavior for component Camera .. 32

5.2.5 Computer Vision .. 32

5.2.5.1 Processing narrative for component Computer Vision .. 33

5.2.5.2 Interface Description for component Computer Vision .. 33

5.2.5.3 Processing Detail for component Computer Vision ... 33

5.2.5.4 Dynamic Behavior for component Computer Vision .. 34

5.2.6 Screen .. 35

5.2.6.1 Processing narrative for component Screen .. 35

5.2.6.2 Interface Description for component GUI Manager ... 36

5.2.6.3 Processing Detail for component Screen .. 36

5.2.7 GUIManager .. 37

5.2.6.1 Processing narrative for component GUI Manager ... 37

5.2.6.2 Interface Description for component GUI Manager ... 38

5.2.6.3 Processing Detail for component GUI Manager .. 38

3

5.2.7.4 Dynamic Behavior for the component GUIManager .. 39

5.2.8 WirelessCommunication .. 40

6 USER INTERFACE DESIGN ... 40

6.1 OVERVIEW OF USER INTERFACE ... 40

6.2 SCREEN IMAGES .. 41

6.2.1 Sending Message from Command Center to Mobile Device .. 41

6.2.2 Default User Interface for Mobile Device ... 42

6.2.3 Default User Interface for Mobile Device with Hidden Components 43

6.2.4 User Interface for Mobile Device with Changing Colors .. 44

6.2.5 Brightness/Contrast Adjustment on Mobile Device ... 45

6.2.6 Reading Message on Mobile Device ... 46

6.3 SCREEN OBJECTS AND ACTIONS .. 46

7 LIBRARIES AND TOOLS .. 48

7.1 C++ .. 48

7.2 MATLAB .. 48

7.3 OPENCV ... 48

7.4 QT (FRAMEWORK) .. 49

7.5 JAVA ME ... 49

7.6 JAVA MICROEMULATOR ... 49

7.7 TRANSMISSION CONTROL PROTOCOL (TCP) ... 49

7.8 ECLIPSE .. 50

8 TIME PLANNING ... 50

8.1 TERM 1 GANTT CHART ... 50

8.2 TERM 2 GANTT CHART ... 51

9 CONCLUSION ... 51

4

1 Introduction

1.1 Problem Definition

Most of the mobile devices, today, have a static user interface which does not

respond to any environmental change or user’s motion. One may have difficulties in

seeing the screen content and using the device when light conditions change or

he/she moves. When soldiers are taken into consideration, they are often in motion

and they occur to be in places such that the light quantity in the environment is low.

Current map viewer applications, which run on mobile devices, used in military

have static buttons, menus and texts whose sizes do not change. The colors of the

map shown on the screen do not change, neither. This kind of static user interface of

current map applications creates a big problem for the soldiers.

The final product will be a mobile map application with dynamic user interface

and therefore will be a solution to difficulty of use of current map applications used for

military purposes.

1.2 Purpose

This Software Design Document (SDD) aims to provide a description of the

software product in order to give the developers a guidance of the architecture of the

software. The document details how the software requirements should be

implemented in a way that the structure of the system explained satisfies the

requirements mentioned in Software Requirements Specification. The components of

the product and their properties will be clearly explained.

1.3 Scope

This document contains a complete description of the design of MAP_MET. All

the components and their functions of the product are explained in the document.

The intended audiences are code developers of the product. Hence, this report will

serve as a guideline throughout the development of the Project.

1.4 Overview

The following chapters and their contents are

 Chapter 2 is System Overview that includes a general description of the

overall system and its design. The benefits and the differences of the product

from the similar products are explained in this chapter.

5

 Chapter 3 is Design Considerations mentions the issues related to design. The

constraints that affect the design of the architecture of the software and the

use of the final product. Any design goals and principles that form the software

of the system is also clarified here.

 Chapter 4 is the Data Design that lists any data used for the system to

properly work. The data stored, managed, or manipulated are listed with their

descriptions, types and attributes.

 Chapter 2 is a Deployment Diagram that shows the physical nodes on which

the system resides. This allows a clear explanation of where each design

entity will reside. No design unit may straddle two nodes but must have

components on each, which collaborate to accomplish the service.

 Chapter 5 is the System Architecture. This is the heart of the document. It

specifies the design entities that collaborate to perform the functionality of the

system. Each of these expresses the services that it provides to the rest of the

system. To clearly explain the design a component diagram for the software is

drawn and all the packages and their classes in them are shown in the

package diagrams.

 Chapter 6 explains the content of the user interface. It shows the screen view

of the application and clarifies how each screen object functions. The

screenshots of the user interface are also included in this chapter.

 Chapter 7 lists the libraries and tools that will be used in development process.

 Chapter 8 includes Gantt chart illustrating the start and finish dates of the

terminal elements and summary elements of the project.

 Chapter 9 concludes the report.

1.5 Definitions, Acronyms and Abbreviations

SDD: Software Design Description

IDR: Initial Design Report

DDR: Detailed Design Report

MAP_MET: Map Military Enhancing Technology

Java ME: Java Micro Edition

6

1.6 References

[1] http://opencv.willowgarage.com/wiki/

[2] http://www.java.com/tr/

[3] http://www.mathworks.com/

[4] http://www.eclipse.org/

[5] http://qt.nokia.com/products/

[6] Kozierok, C. (2005). The TCP/IP guide : a comprehensive, illustrated Internet

protocols reference. San Francisco: No Starch Press.

2 System Overview

MAP_MET is a kind of military map viewer application with additional

functionalities. MAP-MET is capable of detecting user’s motion and environment’s

light condition. This provides the system with adaptable map visualization system and

dynamic user interface. The goals of such a product will be:

 Increase readability when user in motion by hiding details and rarely used

buttons, enlarging font sizes, zooming in map, and remarkable coloring of

important text.

 Increase visibility in light condition change by adjusting brightness and

contrast according to illumination, adjusting colors of map, application

background, buttons and text regarding their visibility of human visual system.

Moreover, our application can work on mobile device with a single camera and

CPU that has limited computation power. Similar application that use camera needs

powerful CPU to achieve image processing operations. Since we will do these

complex operations in the server machine, our application can be used in wide

variety of mobile devices.

3 Design Considerations

3.1 Design Assumptions, Dependencies and Constraints

3.1.1 Time Constraints

This project is a senior student project, given by the department of Computer

Engineering. So the schedule and timing is determined and strict. After this report

http://opencv.willowgarage.com/wiki/
http://www.java.com/tr/
http://www.mathworks.com/
http://www.eclipse.org/
http://qt.nokia.com/products/

7

there will be a certain deadline for a final decision report and a prototype must be

accomplished in a month. The main implementation of the project will be done in

second term. A task distribution and the needed time duration for these tasks are

decided in this document. Gantt chart of the project is given in the Project Schedule

section.

3.1.2 Performance Constraints

The most important operations that affect performance of the system will be

computer vision operations. Because of this fact, we handle these operations at

server machine that has powerful CPU than mobile device has. Communication

between mobile device and server is achieved with wireless communication protocol.

Since project does not involve designing a new hardware and network protocol, the

system will be limited by capacity of current hardware implementations.

3.1.3 Portability Constraints

Since the mobile side of the application is developed using Java ME, it can be

used most of the mobile devices which support Java ME. Another constraint for

mobile device which this system is set up on, the device must have a touchscreen

due to overall system is developed considering input type as touchscreen.

Server side of the application is developed using C++ and Matlab, therefore it

can be ported any server which provides basic Matlab and C++ support easily.

3.1.4 Hardware Constraints

Server Device

 Server must have an adequate processor for heavy computer vision

operations. (At least 2.0 GHz Intel or AMD Processor.)

 Server must be connected to internet.

 Server must have an adequate RAM capacity for computer vision operations.

(At least 512 Mb DDR2 Memory.)

 An Apache HTTP server must present on server to provide data transition.

Mobile Device

 Mobile device must have a Wi-Fi connection.

 Mobile device must have a touchscreen.

 Mobile device must have a camera.

 Mobile device must have a color screen with at least 12-bit color resolution

(4096 colors).

8

 Mobile device must support HTTP connection.

 Mobile device must have an adequate RAM capacity for map processing (At

least 512 Kb)

3.1.5 Software Constraints

Server Device

 This application can run on all distributions of Linux, MS Windows 95/98, MS

Windows NT/2000/XP, 32-bit and 64-bit MS Windows Vista, 32-bit and 64-bit

Windows Seven, 32-bit and 64-bit, Windows Server 2003/2008.

 Since Matlab is used for computer vision operations, Matlab must be set up on

the server device.

 Apache HTTP Server must be installed and running.

Mobile Device

 This application can run on all operating systems that support Java ME.

3.2 Design Goals and Guidelines

Since mobile devices have not CPU powerful enough, the image processing

tasks are handled by the server which is a computer that can handle complicated

image processing tasks. This situation changes the design. Speed gain is achieved

by this way to increase the performance of the product. However, to do that another

hardware is added to the design and wireless communication with the server is

required.

To keep the design simple, the data transactions between the server and the

mobile device is reduced. Only the data required for image processing tasks and

messaging tasks (between the user in the server side and mobile device user) are

transacted between the server and mobile device and the other data are kept on the

mobile device. By this way, database access is not needed.

Data types coming from the server according to the image processing results

are primitive. This also increases performance by reducing the complexity of the data

types transferred.

9

4 Data Design

4.1 Data Description

There is no database in the system. However some necessary storage is done in

simple text files. These files include:

 File of messages: This file is stored on the server side. It contains numbered

message texts to be sent to the user on the mobile device side. Message

class in 5.2.1 in Messaging package is constructed using the message texts in

this file.

 File of troops: This file contains the coordinates, types and names of the

troops. Troop class in 5.2.3 in Map package is constructed by reading this file.

 Place file: The file includes the names and coordinates of the places. Place

class is constructed by reading this file.

Other than the files, the frames captured by the camera of the mobile device are

the most important data manipulated. These frames are created in the mobile device

and sent to the server to be evaluated. Computer Vision package in section 5.2.5

gets these frames via wireless communication and constructs objects of Frame class

using the incoming frames.

4.2 Data Dictionary

The overall system consists of seven packages and each package has several

classes in it. Packages, classes in these packages and the data stored in classes are

explained in sections below.

4.2.1 Messaging Package

4.2.1.1 Class Message

Attributes:

 String sender: This field keeps the name of the sender of the message object.

If the sender does not set this field it is set as “Command Center” as default.

 Date date: This attribute keeps the date and time information.

 String message: The message which is sent to the remote device is kept in

this field of the Message object as a string.

10

Methods:

 void set_sender(String) : this method takes a string as an argument and sets

the sender field with this argument.

 String get_sender (): this method returns the sender field, and it does not take

any argument.

 void set_date(Date): this method takes a Date object as an argument and sets

the date field with this argument.

 Date get_date (): this method returns the date field, and it does not take any

argument.

 String get_message (): this method returns the message text, and it does not

take any argument.

4.2.1.2 Class MessageController

Attributes:

 File* messages: This is a file which includes all messages. User selects one of

these messages via GUI.

 Message currentMessage: this field is set when the user selects one of the

messages. The return value of this selection process is currentMessage

object.

Methods:

 MessageController (fileName): it is the constructor of the MessageController

class. It takes a file name as an argument and initializes the messages

attribute.

 void set_currentMessage(Message): it takes a Message object as an

argument, and put this object to the currentMessage field.

 Message get_currentMessage (): it returns the currentMessage field of the

MessageController class.

4.2.2 GPS Package

4.2.2.1 Class GPSData

Attributes:

 int longitude: longitude information of the place.

 int latitude: latitude information of the place.

 int altitude: altitude information of the place.

11

 int speed: speed information of the user, it is coming from the Computer Vision

package.

Methods:

 GPSData (int longitude, int latitude, int altitude, int speed): it is the constructor

of the GPSData class. It initializes the corresponding fields by its arguments.

 void set_longitude(int): It sets the longitude attribute of the object.

 void set_latitude(int): It sets the latitude attribute of the object.

 void set_altitude(int): It sets the altitude attribute of the object.

 void set_speed(int): It sets the speed attribute of the object.

 int get_longitude(): It returns the longitude value of the object.

 int get_latitude(): It returns the latitude value of the object.

 int get_latitude(): It returns the altitude value of the object.

 int get_speed(): It returns the speed value of the object.

4.2.2.2 Class GPSSimulator

Since the mobile device used in this project does not have GPS hardware,

GPSSimulator is developed to simulate the GPS part.

Attributes:

 File* GPS_file: it keeps all locations. It is assumed that the user moves on

these locations respectively. The time when the user change location is

calculated by using the speed of the user.

 GPSData [] data: all locations are taken from the file and they are put into this

'data' array.

 GPSData currentData: the current location of the user.

Methods:

 GPSSimulator (string fileName): It takes a file, in which all locations are listed,

as an argument. And this constructor initializes the GPSData array.

 GPSData get_currentData (): it returns the information about the place at

where the user is assumed to be.

 void update_currentData(): it changes the place information in the currentData

with the next coordination of the user.

12

4.2.3 Map Package

4.2.3.1 Class Map

Attributes:

 int latitude: it keeps the latitude information

 int longitude: it keeps the longitude information

 char[latitude][longitude][3] RGB: this is a RGB array which has three

dimension and keeps the red, green, and blue intensity values of each pixel.

 int zoom_level:it keeps the information about the zooming. The details on the

map are changed according to this zoom_level and this field changes

according to the movement of the user.

 Place[] places: it keeps all Place objects which can be shown or hidden on the

map according to the user request and the environmental condition.

 Troop[] troops: it keeps all Troop objects, they can be shown or hidden

according to the user request and the environmental changes.

Methods:

 void set_zoom_level(int): this method takes an integer as an argument and it

sets the zoom_level attribute.

 void adjust_RGB_Array(char[latitude][longitude][3]): this function takes an rgb

array, and it changes the RGB attribute according to this argument.

4.2.3.2 Class Place

Attributes:

 int latitude: it keeps the latitude of the Place object.

 int longitude: it keeps the longitude of the Place object.

 int altitude: it keeps the altitude of the Place object

 boolean isVisible: it determine that the place information is going to be visible

or not.

 double distance: it is the distance between the place where user wants to see

information about, and he current location of the user.

Methods:

 void set_visible(): it changes the value of the isVisible. If it is already true, it

makes it false or if it is already false, it makes it true.

13

4.2.3.3 Class Troop

Attributes:

 int latitude: it keeps the latitude information of the place at which the troop is.

 int longitude: it keeps the longitude information of the place at which the troop

is.

 int size: it keeps the number of the people in the troop.

 string name: the name of the troop is kept in this field.

 string type: it specifies that the troop is air force, army force or marine forces.

 boolean is_visible: it is set to one if troops are shown, it is set to zero if they

are not shown.

 boolean is_enemy: it is to decide the troop is enemy troop or ally troop.

Methods:

 void setVisible(): this function does not take an argument, because, it negates

the value in the isVisible field.

4.2.4 Camera Package

4.2.4.1 Class CameraController

This class is just responsible for capturing image and it has no attribute.

4.2.5 Computer Vision Package

4.2.5.1 Class ComputerVision

Attributes:

 int velocity: it is one of the return values of the image processing task, it is set

with the velocity information extracting from snapshots.

 int luminosity: it is the other return value of the image processing task, it is set

with the environmental light condition information extracting from the

snapshots.

 Frame[] frame: it keeps all frames (snapshots) coming from the mobile device.

It sends them to the evaluate_frames function one by one.

Methods:

 void evaluate_frames(): it takes frames from the 'frame' attribute of itself and

process them and set the velocity and luminosity fields.

 void update_frame_buffer(Frame[]): it updates the frame buffer with the new

frames coming from the remote mobile device via wireless.

14

4.2.5.2 Class Frame

Attributes:

 int height: it keeps the height value of the snapshot (frame).

 int weight: it keeps the width value of the snapshot (frame).

 char[height][width][3] rgb_values: it is an array of char type, it has three

dimension. Height and width is to keep all pixels and 3 are to keep red, green,

and blue intensity values of each pixel.

Methods:

 Frame (int height, int width, char rgb[][][]): it is the constructor of the Frame

class. It creates a new instance whose attributes are height, width and rgb

[][][].

 void set_height(int): it sets the height attribute of the object.

 int get_height(): it returns the value of the height attribute.

 void set_width(int): it sets the width attribute of the object.

 int get_width(): it returns the value of the width field.

 void set_rgb_values(char[][][]): it sets the rgb array of the object.

 char[][][] get_rgb_values(): it returns the rgb array of the object

4.2.6 Screen Package

4.2.6.1 Class Screen

Attributes:

 int brightness: it is the value for the brightness of the screen.

 int contrast: it is the contrast value of the screen.

 Color color: background color of the screen.

 Map map: the map part which is shown. The map part is decided according to

the user's current position.

 InformationBar info_bar: this InformationBar object is used to show information

about the place whose information is needed by the user.

 ButtonBar button_bar: The button_bar is a ButtonBar object and it keeps all

buttons on it.

 MessageBox message_box: A message is shown on the screen if any

message is sent from the server side. This object keeps that message.

15

Methods:

 void set_brightness(int): it sets its argument to the brightness field.

 void set_contrast(int): it sets its argument to the contrast field.

 void set_color(Color): it sets its argument to the Color object in the class

 int get_brightness(): It returns the brightness value of the object.

 int get_contrast(): It returns the contrast value of the object.

 Color get_color (): It returns the Color value of the object.

 InformationBar get_infoBar (); It returns the infoBar field of the object.

 ButtonBar get_buttonBar (); It returns the buttonBar field of the object.

 MessageBox get_messageBox (): It returns the messageBox value of the

object.

 int get_contrast(): It returns the contrast of the object.

4.2.6.2 Class MessageBox

Attributes:

 int fontSize: it specifies the font size of the message when it is shown on the

screen. It changes according to the environmental changes.

 String message: It keeps the text which is going to be shown on the screen.

 boolean isVisible: it is a boolean which decides the message text is shown or

not.

 Color color: It is the color of the text. This field also changes while

environmental luminosity changes.

Methods:

 void set_fontSize(int): It update the fontSize field which changes the font size

of the messages shown on the screen.

 int get_fontSize(): It returns the fontSize value as a return parameter.

 void set_message(String): It sets the message attribute to a string which is

going to be shown on the screen.

 String get_message (): It returns the message text as a string.

 void set_visible(bool): it arranges the visibility of the MessageBox object.

 bool get_visible(): It returns the boolean value inside the isVisible attribute.

 void set_color(Color): It sets the color field by a Color object.

 Color get_color (): It returns the color field.

16

4.2.6.3 Class ButtonBar

Attributes:

 int size: the size of the buttons is important for context aware user interface

design. Buttons are scaled according to this size information.

 boolean isVisible: it specifies the visibility of the bar. If isVisible is true then the

button bar is drawn on the screen. If it is false, the button bar is not shown.

 Button [] buttons: it is an array of Button objects which are shown if the

ButtonBar is opened.

 Color color: It is the color of the ButtonBar.

Methods:

 void set_size(int): It sets the size field with its argument.

 int get_size(): It returns the size of the Button object.

 void set_visible(bool): It sets the visibility of the object.

 bool get_visible(): It returns a boolean which represents the object is visible or

not.

 void add_button(Button): It adds the given Button object to the buttons field

which is an array of Button objects.

 Button get_button (int id): It returns the Button object whose index in the array

is equal to the argument of the function, id.

 void set_color(Color): It sets the color of the object.

 Color get_color (): It returns the color field.

4.2.6.4 Button

Attributes:

 int size: It is the size of the button. It changes according to the user movement.

 boolean isVisible: it is used when drawing buttons on the screen. If isVisible

attribute of an object is true, then this button is drawn, if it is false, then the

button is not drawn on the screen.

 int priority: Each Button object has a priority value. This priority helps the

application decide which buttons are shown on the screen and which ones are

listed under one button when environment condition changes.

 Color color: It is the color of the button.

17

Methods:

 void set_size(int): It sets the size field to its integer argument.

 int get_size(): It returns the value of the size field.

 void set_visible(bool): It changes the visibility of the object.

 bool get_visible(): It returns the information about the buttons are visible or

not.

 void set_priority(int): It sets the priority field to the its argument.

 int get_priority(): It return the priority of the object.

 void set_color(Color color): It sets the color of the buttons.

 Color get_color (): It returns the color of the button.

4.2.6.5 InformationBar

Attributes:

 int fontSize: it is the font size of the text which is shown.

 string information: it is the string which is going to be shown on the

InformationBar.

 int zoomLevel: it is also shown in the InformationBar. It gives the user

information about the zoom-level of the map.

 boolean isVisible: if this field is true, the information bar is shown and if it is

false, the bar is not shown on the screen.

 Color color: it is the color of the information bar.

Methods:

 void set_fontSize(int): It sets the fontSize of the InformationBar object.

 int get_fontSize(): It returns the fontSize of the object.

 void set_information(String):

 String get_information():

4.2.7 GUIManager Package

4.2.7.1 Class GUIManager

Attributes:

 contextMngr: it is a ContextManager object. It is used to access methods in

ContextManager class and to get information coming from the ComputerVision

component via ContextManager class.

18

 interactionMngr: this is an InteractionManager object; it is used to access

methods in UserInteractionManager and to get information coming from the

User via UserInteractionManager class.

Methods:

 void configureButtons(): It configures the buttons on the button bar. It

increment the size of the buttons and it only draws the buttons which have

higher priorities, other buttons listed under one button, the user can access

them if he/she wants. It does not take an argument, it uses contextMngr and

interactionMngr objects to decide the buttons. Also, the colors of the buttons

are configured.

 void configureInfoBar(): It configures the information bar. It increments the font

size of the text if the user in motion. If the information bar is not used for a

while, it hides the bar.

 void configureVisibility(): It decides the visibility constraints.

 void configureMessage(): If the user is in motion, this function just takes the

important parts of the message which is written in the file between *** and ***.

It decides the text which is going to be shown and the color of the text.

 void configureMap(): It configures the Map object by changing its colors to

sustain the visibility, and the details on the map to sustain the usability. It can

change the current colors to the more visible ones based on the environment

condition. It also reduces the details on the map. It can show or hide the

enemy and ally troops, name of the places according to the user's movement.

4.2.7.2 Class ContextManager

Attributes:

 int velocity: this field keeps the information about the user's velocity.

 int luminosity: this attribute has the information about the environment

luminosity.

 int threshold_velocity: it is a threshold value for the velocity. It is used when

the user interface changes according to the user's movement.

 int threshold_luminosity: it is a threshold value for the luminosity. It is used

when the colors of the user interface changes according to the environment

luminosity.

19

Methods:

 void configureButtons(): It configures the buttons on the button bar. It

increment the size of the buttons and it only draws the buttons which have

higher priorities, other buttons listed under one button, the user can access

them if he/she wants. It does not take an argument, it uses contextMngr and

interactionMngr objects to decide the buttons. Also, the colors of the buttons

are configured.

 void configureInfoBar(): It configures the information bar. It increments the font

size of the text if the user in motion. If the information bar is not used for a

while, it hides the bar.

 void configureVisibility(): It decides the visibility constraints.

 void configureMessage(): If the user is in motion, this function just takes the

important parts of the message which is written in the file between *** and ***.

It decides the text which is going to be shown and the color of the text.

 void configureMap(): It configures the Map object by changing its colors to

sustain the visibility, and the details on the map to sustain the usability. It can

change the current colors to the more visible ones based on the environment

condition. It also reduces the details on the map. It can show or hide the

enemy and ally troops, name of the places according to the user's movement.

4.2.7.3 Class UserInteractionManager

If the user wants to arrange some attributes manually, his/her requests are delivered

to the GUIManager class via this UserInteractionManager class. (i.e., when the user

is not in motion, he/she may not like the zoom-level of the map and he/she may want

to adjust this property.)

Attributes:

 int preferred_zoomLevel: it is the requested zoom level by the user.

 int preferred_brightness: it is the requested brightness value by the user.

 int preferred_contrast: it is the requested contrast value by the user.

 boolean wantMessageBox: if the user wants to see the message box again,

he/she has to request this from the device manually. This field holds the user's

request.

20

 boolean wantInfoBar: if the user wants to see an information about a place,

he/she requests this from the device manually. This field holds the user's

request.

 boolean wantButtonBar: Buttons are hidden as default. This field holds the

user's request about whether he/she wants to use buttons or not.

 boolean wantEnemies: it holds the information about whether the user wants

to see enemies or not.

 boolean wantAllies: it holds the information about whether the user wants to

see allies or not.

 boolean wantPlaceNames: it holds the information about whether the user

wants to see place names on the map or not.

Methods:

 void zoomIn/Out(int): It takes the zoom-level from the user and send this

request and the data to the GUIManager.

 void changeBrightness(int): It takes the brightness value from the user and

deliver this request and the data to the GUIManager.

 void changeContrast(int): It takes the contrast value from the user and give it

to the GUIManager to adjust the screen according to this information.

 void showMessage(bool): If the user wants to see an old message, this

function takes his/her request and deliver it to the GUIManager.

 void showInformation(bool): If the user needs to see a place information which

is not seen on the screen because of the user's movement, his/her request is

sent to the GUIManager by this method.

 void showButtonBar(bool): If the user wants to use buttons, he/she needs to

open the button bar. His/her request is sent to GUIManager by this method.

 void showEnemies(bool): If the user wants to see the place of the enemy

troops, this is provided by the GUIManager and it needs to communicate with

this method to be able to notice the request.

 void showAllies(bool): If the user wants to see the place of the ally troops,

this is provided by the GUIManager and it needs to communicate with this

method to be able to notice the request.

 void showPlaceNames(bool): the user can show or hide the place names.

Actually, this information is shown as default, but according to the user's

21

movement, they can be hidden by the contextManager. This method takes the

user's request. And send it to the GUIManager.

 int get_preferred_zoomLevel():It returns the zoomLevel which the user wants.

 int get_preferred_brightness(): It returns the brightness value which the user

wants.

 int get_preferred_contrast(): It returns the contrast value which the user wants.

 bool isMessageWanted(): It returns a boolean which reveal whether the user

wants to see the messages or not.

 bool isInfoWanted():It returns a boolean which reveal whether the user wants

to see an information about a place or not.

 bool isButtonsWanted(): It returns a boolean which reveal whether the user

wants to see buttons bar or not.

 bool isEnemiesWanted(): It returns a boolean which reveal whether the user

wants to see the enemy troops or not.

 bool isAlliesWanted(): It returns a boolean which reveal whether the user

wants to see the ally troops or not.

 bool isPlaceNamesWanted(): It returns a boolean which reveal whether the

user wants to see the names of the places or not.

These properties are arranged by the GUI Manager according to the information

extracted from the snapshots by the Computer Vision component. This component

just provides the user extra power. If the user is not satisfied with the revised user

interface, he/she can adjust it.

4.2.8 Wireless Package

4.2.8.1 Class Wireless Communication

Attributes:

This class is just an interface to send and get data packages. It has no

attribute.

Methods:

 bool send_data(TCP Package): this method is actually implemented in

classes which wants to send package; because; Wireless is an interface.

 void get_data(TCP Package): this method is actually implemented in classes

which wants to get package; because; Wireless is an interface.

22

5 System Architecture

A description of the program architecture is presented here.

5.1 Architectural Design

 MAP-MET has seven main components namely Messaging, Computer Vision,

PC-Computation Unit, Wireless, Mobile Device-Computation Unit, Camera and MAP-

MET Application.

 After the application is started, firstly, the camera of the mobile device takes

snapshots continuously. These snapshots are sent to the server side from Mobile

Device-Computation Unit via Wireless component. PC-Computation Unit delivers

them to the Computer Vision component.

 In the server side, Computer Vision component processes snapshots and

extracts movement and luminosity information. After extracting this information, they

are wrapped in the server side and they are sent from PC-Computation Unit via

Wireless component. After this package is received by Mobile Device-Computation

Unit and it is unwrapped, it is delivered to the MAP-MET Application component. This

component decides the user interface properties such as fonts of the texts, size of

the buttons, zoom level of the map, context of the screen according to the movement

information and it adjusts colors on the screen according to the luminosity

information. The details about how MAP-MET Application and other components

work will be explained in Detailed Design Report.

 Messaging component has message objects in it, wraps the message chosen

by the sender and sends the package to the mobile device via Wireless component.

After unpacking process, the message is shown on the screen by MAP-MET

Application component.

23

5.2 Description of Components

 The package diagram included below intends to show object-oriented nature

of the basic software components of the whole MAP-MET System. The project has

two main packages, namely, Server package and Client package. The Server

package includes Messaging, Computer Vision and Wireless Communication

packages. In the Client package, there are Wireless Communication, GUI Manager,

Camera, Screen, GPS and Map packages.

 Since implementation of the project will be mainly done using C++ and Java

Micro Edition programming languages, software packages are arranged suitably with

Object-Oriented way of coding. All packages import the necessary classes and

packages as indicated by the diagram.

Figure 5.1

24

Server and Client packages represent the main agents of the project. They

both communicate with each other, using Wireless Communication packages of their

own.

Messaging and Computer Vision packages which are in Server package

import from Wireless Communication package since they both use methods of

Wireless Communication package to send/get information to/from Client package.

GUI Manager, Screen and Camera packages which exist in Client package

import from Wireless Communication package since they all use methods of Wireless

Communication package to send/get information to/from Server package.

GUI Manager Package imports from Screen package because it refreshes

screen according to user adjustments and information coming from Server.

Screen package imports from Map package since there is always a map

shown on the screen. To be able to manipulate map, it needs to access the methods

and attributes of the Map package.

Map package imports from GPS package since user location is shown on the

map according to GPS value. Moreover, zooming operation is done based on user

location.

Figure 5.2

25

5.2.1 Messaging

Diagram for Messaging Component:

Figure 5.3

5.2.1.1Processing narrative for component GPS

This package provides sending message from command center (server) to a

remote mobile device (client). On the server side, all messages are kept in a file.

Firstly, this package wants server side user to select a message via graphical user

interface. The user has an option to arrange sender field. Before sending the

message, date and time information is also attached. After that, the message is

wrapped and the Messaging Package sends it via Wireless Communication Interface.

5.2.1.2 Interface Description for component Messaging

There are two types of input for Messaging package. First input is a file

keeping all messages and the second one is the information about which message is

selected by the server side user. If the user wants to set the sender field, name of the

26

sender can be another input for the Messaging component. The only output of this

component is a packed message object.

5.2.1.3 Processing Detail for component Messaging

After the user opens this messaging application, the MessageController class

takes a file that keeps messages as an input and lists all of these messages on the

screen. The user needs to select a message from this list. After the user select a

message, MessageController gets the message corresponding to the number of the

message selected by the user from file and creates a message object. The default

sender of the message is defined as “Command Center” unless the user specifies it

manually. When the user clicks on the send button, the date and time information is

added and the created message object is wrapped. Finally, the package is sent to

the remote device via Wireless Communication component.

5.2.1.4 Dynamic Behavior for component Messaging

Figure 5.4

27

5.2.2 GPS

Diagram for the component GPS

Figure 5.5

5.2.2.1 Processing narrative for component GPS

This component is used for finding the location of the user. This information is

necessary for the GUI Manager component. It refreshes the map by taking the place

of the user as the center. In other word, when the zoom level of the map is changing

or when the application starts, the user coordinate must be the center. In addition, to

calculate the distance between the user and the enemy or ally troops, this information

is needed again.

5.2.2.2 Interface Description for component GPS

Since there is not GPS hardware on the mobile device used in the project,

GPS is simulated by this component. This component has two classes, namely,

GPSData and GPSSimulator. There is only one input which GPS component takes

from the other components. This input is speed information of the user and it is taken

from the Computer Vision component. It is used to simulate the GPS hardware.

Three outputs of the GPS component are longitude, latitude and altitude information

of the place where the remote user is and these outputs are sent to the GUI Manager

component.

28

5.2.2.3 Processing Detail for component GPS

After the user starts the application, before displaying the screen content, the

first place information in the GPSData file in the GPSSimulator class is taken and it is

assumed that the user is at that place. After that, the speed information is taken. If

speed information is not zero, the division of the distance between the user’s

coordinates and the next coordinate in the file by speed gives the time that the user’s

coordinates changes. When these tasks are done, GUI Manager Component takes

the new location and assumes that the user is at this place.

5.2.2.4 Dynamic Behavior for component GPS

Figure 5.6

29

5.2.3 Map

Diagram for the component Map

Figure 5.7

5.2.3.1 Processing narrative for component Map

This component deals with the map drawn on the screen. When the user

starts application, he/she sees a map whose center is the location of the user. This

map component has to have information about places and the ally and enemy troops

because if the user wants to get information about a place or to see the places of

other troops, the map must provide this information. In addition, as the light condition

changes, the Map component adjusts the color on the map according to the

information sent by the GUI Manager component.

30

5.2.3.2 Interface Description for component Map

There are three classes in Map component which are Place class, Troop

class, and Map class. This component takes five inputs from other components. One

of the inputs is the information about the colors which needs to be change according

to the environmental changes. This input is an RGB array, and it includes the revised

RGB values of the map. The second input is a Boolean, and it is coming from GUI

Manager to specify whether the other troops need to be shown on the screen or not.

The third input, zoom_level, is also from GUI Manager, and specifies the zoom-level

of the map. The other input is the location information of the user which is sent by

GPS component. Finally, the last input is again coming from the GUI Manager

component, and it marks the places in the Map component for making them visible or

invisible. The output of the Map component is a Map object which is revised and it is

sent to the Screen component.

5.2.3.3 Processing Detail for component GPS

The Map component needs the location information of the user before it

begins to create the Map object which is sent to the Screen class. After GPS

component send this information, Map class takes the necessary information of the

user interface properties from GUI Manager Component. These are visibility of the

places and troops, zoom-level of the map and an RGB array for color changes. If the

user is not in motion, GUI Manager does not continuously send visibility and zoom-

level information and this is also true for the RGB array in a situation in which light

condition is not changing. If the user is in motion or the luminosity changes, after

these changes are set, a new Map object is created and it is sent to the Screen

component by the Map component.

31

5.2.4 Camera

Diagram for the component Camera

Figure 5.8

5.2.4.1 Processing narrative for component Camera

 This package works to communicate with the camera hardware of the mobile

device and tells it to capture frames. These frames are sent to server with

WirelessCommunication interface.

5.2.4.2 Interface Description for component Camera

 The only output of this component is a package consisting of frames captured

by the camera of the mobile device.

5.2.4.3 Processing Detail for component Camera

 This component is active until the application on the mobile device is closed.

This means that the component is actively working all the time. The reason is that to

change the user interface dynamically, these frames have to be sent to server and

evaluated there.

 The captured frames are packed and sent to server to be evaluated via

WirelessCommunication interface.

32

5.2.4.4 Dynamic Behavior for component Camera

Figure 5.9

5.2.5 Computer Vision

Diagram for the component Computer Vision

Figure 5.10

33

5.2.5.1 Processing narrative for component Computer Vision

 This component works on server side to evaluate the frames coming from

mobile device via WirelessCommunication interface. When the application starts, this

component starts to work. It determines the velocity of the user and the quantity of

lighting of the environment the user is in. After calculating these values, this

component sends these values to the mobile device.

5.2.5.2 Interface Description for component Computer Vision

 The inputs for this component are the packed frames sent by the mobile

device. These frames are captured with the camera of the mobile device. Outputs of

this component are the calculated velocity and luminosity values to be used by the

mobile device in order to dynamically change the user interface.

5.2.5.3 Processing Detail for component Computer Vision

 The packed frames come from the mobile device via WirelessCommunication

interface. ComputerVision class updates the frame array consisting of frame objects

according to the new frames with its update_frame_buffer function. New frame

objects are constructed using the constructor of the Frame class.

ComputerVision class traverses the frame array (frame []) and by comparing

consecutive frame objects in the array by evaluate_frames function it sets the

luminosity and velocity values. Then, these calculated values are sent to the mobile

device with the help of WirelessCommunication interface.

34

5.2.5.4 Dynamic Behavior for component Computer Vision

Figure 5.11

35

5.2.6 Screen

Diagram for the component Screen

Figure 5.12

5.2.6.1 Processing narrative for component Screen

This component is responsible for keeping all data about the screen. This data

is represented in MessageBox, ButtonBar, InformationBar classes and Map package.

Another main duty of this component is refreshing the screen. Moreover,

MessageBox implements WirelessCommunication interface to get message from the

server.

36

5.2.6.2 Interface Description for component GUI Manager

 The inputs of this component are coming from GUIManager that sets attributes

of Screen package classes. Another input is message coming from server machine.

The output of this package is modified and refreshed screen content.

5.2.6.3 Processing Detail for component Screen

Actually Screen package is a container package that keeps screen entities

and their characteristics that can be seen at class diagram of this package. The main

action Screen package performs is that refreshing the screen triggered by

GUIManager. When GUIManager decides to change screen content, it calls refresh ()

method of the Screen class. Another process Screen Package performs is displaying

message whenever a message comes.

37

5.2.7 GUIManager

Diagram for component GUIManager

Figure 5.13

5.2.6.1 Processing narrative for component GUI Manager

 This component is responsible for managing graphical user interface by

considering user preferences, user’s motion and environment’s luminosity.

UserInteractionManager class interacts with a user by GUI and keeps user’s

38

preferences without applying them. Meanwhile, ContextManager class keeps getting

information about the context from server by Wireless Communication interface.

Then, GUIManager class combines all of the information and decides appearance of

the screen.

5.2.6.2 Interface Description for component GUI Manager

 ContextManager inputs are evaluated frame data that coming from the server

machine. This input gives information about the context by stating velocity and

luminosity values. UserInteractionManager inputs are coming from user via GUI.

These inputs indicate user preferences about the screen content. User can decide

additional zoom level, brightness and contrast, visibility of message box, information

bar, button bar, enemies, allies, and place names on the map. The only output of this

component is decided screen content that is going to be rendered.

5.2.6.3 Processing Detail for component GUI Manager

UserInteractionManager’s duty is keeping user preferences to take into

consideration later in GUIManager methods. When user presses a button, function

that sets related attribute is called. For example, if user wants to show enemies in the

map, clicks on the “Show Enemies” button. Then “wantEnemies” attribute is set as

“true” by calling “showEnemies ()” function. Other preferences are kept in the same

way. UserInteractionManager is activated with user interaction. On the other hand,

ContextManager is always active to get velocity and luminosity values. If

ContextManager gets valid velocity and luminosity values from the server,

GUIManager starts deciding the new screen content considering user preferences

and context change by calling configureButtons(), configureInfoBar(),

configureVisibility(), configureMessage(), configureMap() functions.

 configureButtons () function arranges button numbers, button sequence in the

button bar and change buttons’ size and color. If user preference is hiding

button, this function only hides button bar, doesn’t achieve former operations.

 configureInfoBar () function arranges information bar with respect to font size,

text color, amount of information displayed. If user prefers to hide information

bar, this actions are not necessary to be performed.

39

 configureVisibility () function adjusts brightness and contrast of the screen. If

user wants additional brightness and contrast, this preference is also taken

into consideration.

 configureMessage () function arranges message box size , color and

messages text size , color. In case of user preference is hiding the message

box, these procedures are not performed.

 configureMap () function arranges map’s zoom level, color range, amount of

information on the map such as place names, allies and enemies. If user

prefers to show or hide information on the map, these preferences are

considered.

The algorithmic details of these functions will be provided in Detailed Design Report.

5.2.7.4 Dynamic Behavior for the component GUIManager

 This sequence diagram shows just how the contrast changes. Other properties

change in the same way and parallel to the contrast change.

Figure 5.14

40

5.2.8 WirelessCommunication

 WirelessCommunication is an interface class. It provides the connection

between the server and mobile device.

Diagram for WirelessCommunication component:

Figure 5.15

6 User Interface Design

6.1 Overview of User Interface

The overall system can be mainly categorized under two user interfaces, one

for sending message from the server side (Command Center) and another for the

client side application. User interface of the server side has a simple structure. It lists

all available messages and forward the message to client (mobile device) when user

selects and sends one of the messages.

The complex part of the project is client-side user interface, since the main

idea of the project is changing the user interface according to environmental

parameters. Zoom level, colors, object sizes and object locations change depending

on environmental factors. Therefore, too many user interfaces can be generated by

the application. In Section 6.2, effects of the environmental changes on the user

interface are shown with one example for each.

41

6.2 Screen Images

6.2.1 Sending Message from Command Center to Mobile Device

On this user interface all messages are shown to user. After message which is

going to be sent has decided, user fills the box which is labeled as “Message #: “with

corresponding message number. The user may want to specify the sender by filling

the text box which is labeled as “Sender:” This operation is optional, if user does not

fill sender information, the sender of the message will be set as “Command Center”

by default.

Figure 6.1

42

6.2.2 Default User Interface for Mobile Device

Figure 6.2

This user interface is used for stable user when luminosity value is optimal.

This user interface consists of four main parts, map, button box, zoom bar and

information bar. On button box which presents at the bottom of the screen, there are

six buttons available.

 “Show/Hide Enemy” button: The button which presents on the top-left corner

of the button box, labeled with enemy sign.

 “Show/Hide Ally” button: The button which presents at the top-middle side of

the button box, labeled with ally sign.

 “Show/Hide Location” button: The button which presents on the top-right

corner of the button box, labeled with "L" sign.

43

 "Inbox" button: The button which presents on the bottom-left corner of the

button box, labeled with a letter sign.

 “Change Brightness/Contrast” button: The button which presents at the

bottom-middle side of the button box, labeled with contrast sign.

 “Quit" button: The button which presents on the bottom-right corner of the

button box, labeled with quit sign.

Information bar is on the right-side of the screen. Details about selected point can

be seen on it. There presents an arrow button on the top-right corner of the

information bars to hide it.

Zoom-bar is on the left-side of the screen.

6.2.3 Default User Interface for Mobile Device with Hidden

Components

Figure 6.3

44

Zoom bar, button box and information bar can be hidden depending on

context, user preferences and 30 seconds idle time. When these components are

hidden two buttons reveal on the screen to recover them.

"Show Button Box Button" is at the bottom screen with a label of "Show

buttons". Touching on this button recovers button box and zoom bar.

"Show Information Bar Button" is at the right-side of the screen with a label of

left arrow. Touching on this button recovers information box.

6.2.4 User Interface for Mobile Device with Changing Colors

Figure 6.4

When luminosity value changes, colors on the user interface change accordingly.

The user interface in Figure 6.4 is an example of how user interface reacts when the

luminosity is low.

45

6.2.5 Brightness/Contrast Adjustment on Mobile Device

Figure 6.5

When “Change Brightness/Contrast” button is touched, a box appears on two

scroll bars on it. Changing brightness and control values using scroll bars show

immediate effect. When desired result is achieved, box can be closed using "X"

button which is on top-right corner of the box.

46

6.2.6 Reading Message on Mobile Device

Figure 6.6

When a new message is received or inbox button on the button box is

touched, a message box appears showing the content of the message. The display

of the message changes depending on the context. For example, while moving

emphasized words becomes bigger and distinct.

6.3 Screen Objects and Actions

The input is gathered from the mobile device via touchscreen. On the screen,

there exists three main areas, namely; map, button box and zoom bar. In addition to

main components of the user interface, there are five auxiliary components: Message

window, information bar, brightness/contrast window, show information bar button

and show button box button.

Map: When a point on the map is touched, info bar reveals and the detailed

information about that point is shown on the information bar.

47

Button Box: Button box arranges the buttons which serves different purposes.

 Using “Show/Hide Enemy”, “Show/Hide Ally” and “Show/Hide Location”

buttons, user is able to state his/her preferences. If the selection of the

user is one of these to be hidden, then no information about that option is

shown on the map. If user selects one of them to be shown, then that

option will be shown on the map, but the detail level of this information will

be decided by the application.

 Using “Inbox” button, user can view the latest message.

 “Quit” button is used to exit from application.

 Using “Change Brightness/Contrast” button, user can set his/her brightness

and contrast preferences. When luminosity changes, application make

adjustments depending on user preferences.

Button box is hidden by the application if user is idle for 30 seconds. When

button box is hidden, show button box button reveals.

Zoom Bar: Zoom bar is used to get the preference of user about zoom level.

Application changes this user specified zoom level according to the movement of the

user and calculates the actual zooming level. Zoom bar is hidden by the application if

user is idle for 30 seconds.

Message Window: This window opens when there is a new incoming

message or “Inbox” button is touched. In this window, a message can be selected by

touching on it for view it. To close the message box, user should touch on the “X”

button which presents on the top-right corner of the message window.

Information Bar: This bar is not a main component of the user interface.

When a point is selected on the map or “Show Information Bar” button is touched,

this bar appears and shows the information about selected point if a new point is

selected. If not, it shows the information about last used point. Information bar is

hidden if user is idle for 30 seconds or it can also be hidden by touching the arrow

button on the top-right corner of it. When information bar is hidden, “Show

Information Bar” button is revealed.

Brightness/Contrast Window: When “Change Brightness/Contrast” button is

touched, this window appears. On this window, there exist two bars. One of them is

used for changing contrast, while other one is used for adjusting brightness.

48

Brightness/contrast window can be closed by touching “X” button which presents on

the top-right corner of the brightness/contrast window.

Show Information Bar Button: When information bar is hidden, show

information bar button is revealed. Touching this button reveals information bar.

Show Button Box Button: When button box is hidden, show button box

button is revealed. Touching this button reveals button box.

7 Libraries and Tools

7.1 C++

C++ is a statically typed, freeform, multiparadigm, compiled, general purpose

programming language. It is regarded as a middle level language, as it comprises a

combination of both high-level and low-level language features. It was developed by

Bjarne Stroustrup starting in 1979 at Bel Labs as an enhancement to the C

programming language and originally named “C with Classes”. It was renamed to

C++ in 1983. Some of its application domains include systems software, application

software, device drivers, embedded software, high performance server and client

applications. Therefore, C++ is selected for the server side implementation due to the

performance constraints.

7.2 MATLAB

MATLAB (for matrix laboratory) is a numerical computing environment and

fourth-generation programming language. Developed by MathWorks, MATLAB allows

matrix manipulations, plotting of functions and data, implementation of algorithms,

creation of user interfaces, and interfacing with programs written in other languages,

including C, C++, and FORTRAN. We select MATLAB to achieve image processing

computations easily. Another reason that affects our decision is that MATLAB

provides easy binding with C++.

7.3 OPENCV

OpenCV is a library of programming functions mainly aimed at real time

computer vision, developed by Intel and now supported by Willow Garage. It is free

for use under the open source BSD license. The library is cross-platform. It focuses

mainly on real-time image processing. We can use OPENCV functions because of

the performance reasons and it can ease our job when extracting information about

user’s speed and environment’s luminosity value.

49

7.4 Qt (framework)

 Qt is a cross-platform application framework that is widely used for developing

application software with graphical user interface (GUI) (in which case Qt is referred

to as a widget toolkit when used as such), and also used for developing non-GUI

programs such as command-line tools and consoles for servers. Qt is free and open

source software. All editions support a wide range of compilers, including the GCC

C++ compiler.We choose Qt to implement GUI of messaging application at server

side.

7.5 Java ME

Java Platform, Micro Edition, or Java ME, is a Java platform designed for

embedded systems (mobile devices are one kind of such systems) . Target devices

range from industrial controls to mobile phones (especially feature phones) and set-

top boxes. Java ME was formerly known as Java 2 Platform, Micro Edition (J2ME).

 Java ME devices implement a profile. The most common of these are the

Mobile Information Device Profile aimed at mobile devices. Mobile Information Device

Profile includes a GUI, and a data storage API, and MIDP 2.0 includes a basic 2D

gaming API. Since Java ME is portable, we choose this platform to implement mobile

side application.

7.6 Java MicroEmulator

 MicroEmulator is a pure Java implementation of Java ME in Java SE.

MicroEmulator is licensed under LGPL so it is possible to link and distribute

commercial software with its libraries. Example usages are stated below:

 Application demonstration in web browser applet

 Faster development of application in Eclipse

 Using standard java profiling tools to tune your application

 Creation of unit tests for J2ME application that runs during build process

We will use MicroEmulator to test mobile side application.

7.7 Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) is one of the core protocols of the

Internet Protocol Suite. TCP is one of the two original components of the suite,

complementing the Internet Protocol (IP), and therefore the entire suite is commonly

referred to as TCP/IP. TCP provides the service of exchanging data directly between

50

two hosts on the same network, whereas IP handles addressing and routing

message across one or more networks. In particular, TCP provides reliable, ordered

delivery of a stream of bytes from a program on one computer to another program on

another computer. TCP is the protocol that major Internet applications rely on,

applications such as the World Wide Web, e-mail, and file transfer. We will use this

protocol to achieve data transfer between server and mobile device.

 7.8 Eclipse

Eclipse is a multi-language software development environment comprising and

a plug-in system to extend it. It is written primarily in Java and can be used to

develop applications in Java and, by means of the various plug-ins, in other

languages as well, including C, C++, COBOL, Python, Perl, PHP, and others. The

IDE is often called Eclipse ADT for Ada, Eclipse CDT for C and C++, Eclipse JDT for

Java and Eclipse PDT for PHP. Eclipse CDT and Eclipse PDT will be used in the

project development.

8 Time Planning

8.1 Term 1 Gantt Chart

Table 8.1

51

8.2 Term 2 Gantt Chart

Table 8.2

9 Conclusion

This Initial Design Report has been intended to explain how the system will be

structured to satisfy the requirements. System components, interfaces and data

required for the implementation phase have been briefly described. Gantt chart for

the first and second semester has been also given. Detailed algorithmic description

of components and data will be given in the Detailed Design Report.

