

CENG 491

INITIAL DESIGN REPORT

SECURE VIDEO STREAMING PROXY SERVER

Sponsored by

Portakal Technologies

TEAM PRIME'

Ant Ongun Kefeli

Doğan Poyraz

Yurdakul Göksu Orhun

Onur Cem Sırlı

December 24, 2010

i

Table of Contents

1. Introduction ... 1

1.2. Purpose .. 2

1.3. Scope ... 2

1.4. Overview ... 2

1.5. Definitions, Acronyms and Abbreviations ... 3

1.6. References .. 3

2. System Overview .. 4

3. Design Considerations .. 5

3.1. Design Assumptions, Dependencies and Constraints .. 5

3.2. Design Goals and Guidelines .. 5

4. Data Design ... 6

4.1. Data Description ... 6

4.2. Data Dictionary ... 6

5. System Architecture .. 8

5.1. Architectural Design ... 8

5.2. Description of Components.. 9

5.2.1. Media Server ... 10

5.2.2. Web Servers .. 13

5.2.3. Load Balancer... 14

6. User Interface Design .. 16

6.1. Overview of User Interface .. 16

6.1.1. Admin Interface ... 16

6.1.2. Standard User Interface ... 16

6.2. Screen Images.. 17

6.3. Screen Objects and Actions .. 21

7. Libraries and Tools .. 22

7.1. Media Server Tools ... 22

7.1.1. VideoLAN Server ... 22

ii

7.1.2. MediaTomb ... 23

7.2 Web Server Tools ... 24

7.2.1. Apache ... 24

7.2.2. nginx .. 25

7.3. Load Balancer Tools ... 26

7.3.1. pfSense .. 26

7.3.2. Pound .. 27

7.3.3. nginx .. 28

7.4. Puppet ... 28

8. Time Planning (Gannt Chart) ... 29

8.1. Term 1 Gannt Chart ... 29

8.2. Term 2 Gannt Chart ... 29

9. Conclusion ... 29

1

1. Introduction

1.1. Problem Definition

Video streaming and processing is issued in many areas. For example, nowadays there are

car surveillance systems in Ankara, which aims to determine the speed of cars and

fine them if they exceed the allowed limit. However, the system is not able to do all the

work. Now, it just can determine the car speed and detect speed limit violations and record

the relevant frames. Then someone needs to check all these frames and fine them one by

one by hand.

Software is being developed to automate this procedure by removing the human

work completely out of the system. Instead of the police officers manually writing

tickets, software will automatically detect and fine the violators. Note that, only in Ankara,

cameras pinpoint around 18.000 traffic violations per day, however; only 2000 of them can

be fined with manual labor. Therefore, automatizing the fining procedure will raise an

important problem. Currently only 2.000 traffic violation footages are being stream from

the central media server, however, when the update is complete the number of requested

streams will raise to 18.000. The problem is that current infrastructure will not support

the increased load and there does not exist a system which can distribute this load

automatically between number of reverse proxy servers to maintain the functionality

of the fining process.

Another example is face recognition software that the governments are using to track and

detect the criminals. These systems use the footage that the distributed camera systems

provide, like MOBESE or security camera networks in some malls. The software processes

the video footage for faces of wanted criminals, when one is detected the software tries to

find out more about the activities of the person, like who he/she met, where he/she is

living etc. To dig out this information the software needs to process more footage to find

the travel route and recent activities of the mentioned criminal. Clearly the whole process

needs hours and hours of video footage which is divided into few seconded segments. As

2

central media server cannot respond to this volume of video requests face

recognition software output is vastly outdated due to delay of the required footage.

In both of these systems, there is an overwhelming work load on the server since

these operations require dramatic amount of video streams per unit of time. And if

multiple systems that accesses heavily to the media server run concurrently, load is

multiplied and after a moderate amount of connections to the server, system cannot scale

the and it may start to collapse causing serious issues on the other system that

depends on the media server. Our system will mainly focus on the scalability issue by

introducing reverse proxy servers that will share the load.

1.2. Purpose

This document describes the initial design plan for our project and how the requirements

stated in the Software Requirement Specifications will be fulfilled. Requirements in the SRS

document will be translated into structural components. Design concepts and general

design architecture of the project will be explained in a detailed way. Design issues

discussed here are the guidelines we intend to follow; however, they are always subject to

change. The intended audience is prospective software developers and all users.

1.3. Scope

This initial design document contains design information which demonstrates architecture,

modules, functions, features, graphical user interface and tools. It describes how the system

works properly in a detail. The architecture is intended as an infrastructure for future

versions.

1.4. Overview

Rest of the document contains eight more chapters. Second chapter is System Overview in

which we will give a detailed design of the system. Then the Design Considerations follows.

In this part, design issues related to assumptions, dependencies and constraints will be

discussed. The next chapter is the Data Design. This chapter will include information and

3

data domain of the system and how it is transformed into structures. In the fifth chapter,

we will describe architecture of the system by examining the components. Next, User

Interface Designs are explained with screenshots from both similar projects and our

templates we have been planning to use. Then, libraries and tools we are currently

considering to choose among them will be listed. Finally, we will present our planning for

the project and finish with conclusion.

1.5. Definitions, Acronyms and Abbreviations

CARP: Common Address Redundancy Protocol

CLI: Command Line Interface

Codec: Coding Decoding

COTS: Commercial, off-the-shelf

DHCP: Dynamic Host Configuration Protocol

DNS: Domain Name System

GUI: Graphical User Interface

HA: High Availability

HTTP: Hypertext Transfer Protocol

MPEG: Moving Pictures Experts Group

NAT: Network Address Translation

PPPoE: Point-to-Point Protocol over Ethernet

PUI: Prime User Interface

RF: Radio Frequency

RRD: RF Receiving Device

VLC: VideoLAN Client

VPN: Virtual Private Network

1.6. References

● VideoLAN - The cross-platform streaming solution,

http://www.videolan.org/vlc/streaming.html

http://www.google.com/url?q=http%3A%2F%2Fwww.videolan.org%2Fvlc%2Fstreaming.html&sa=D&sntz=1&usg=AFQjCNGvn4a246YPv0FXwTMi2XuPImtRrg
http://www.google.com/url?q=http%3A%2F%2Fwww.videolan.org%2Fvlc%2Fstreaming.html&sa=D&sntz=1&usg=AFQjCNGvn4a246YPv0FXwTMi2XuPImtRrg
http://www.google.com/url?q=http%3A%2F%2Fwww.videolan.org%2Fvlc%2Fstreaming.html&sa=D&sntz=1&usg=AFQjCNGvn4a246YPv0FXwTMi2XuPImtRrg
http://www.google.com/url?q=http%3A%2F%2Fwww.videolan.org%2Fvlc%2Fstreaming.html&sa=D&sntz=1&usg=AFQjCNGvn4a246YPv0FXwTMi2XuPImtRrg
http://www.google.com/url?q=http%3A%2F%2Fwww.videolan.org%2Fvlc%2Fstreaming.html&sa=D&sntz=1&usg=AFQjCNGvn4a246YPv0FXwTMi2XuPImtRrg
http://www.google.com/url?q=http%3A%2F%2Fwww.videolan.org%2Fvlc%2Fstreaming.html&sa=D&sntz=1&usg=AFQjCNGvn4a246YPv0FXwTMi2XuPImtRrg
http://www.google.com/url?q=http%3A%2F%2Fwww.videolan.org%2Fvlc%2Fstreaming.html&sa=D&sntz=1&usg=AFQjCNGvn4a246YPv0FXwTMi2XuPImtRrg
http://www.google.com/url?q=http%3A%2F%2Fwww.videolan.org%2Fvlc%2Fstreaming.html&sa=D&sntz=1&usg=AFQjCNGvn4a246YPv0FXwTMi2XuPImtRrg
http://www.google.com/url?q=http%3A%2F%2Fwww.videolan.org%2Fvlc%2Fstreaming.html&sa=D&sntz=1&usg=AFQjCNGvn4a246YPv0FXwTMi2XuPImtRrg
http://www.google.com/url?q=http%3A%2F%2Fwww.videolan.org%2Fvlc%2Fstreaming.html&sa=D&sntz=1&usg=AFQjCNGvn4a246YPv0FXwTMi2XuPImtRrg
http://www.google.com/url?q=http%3A%2F%2Fwww.videolan.org%2Fvlc%2Fstreaming.html&sa=D&sntz=1&usg=AFQjCNGvn4a246YPv0FXwTMi2XuPImtRrg
http://www.google.com/url?q=http%3A%2F%2Fwww.videolan.org%2Fvlc%2Fstreaming.html&sa=D&sntz=1&usg=AFQjCNGvn4a246YPv0FXwTMi2XuPImtRrg
http://www.google.com/url?q=http%3A%2F%2Fwww.videolan.org%2Fvlc%2Fstreaming.html&sa=D&sntz=1&usg=AFQjCNGvn4a246YPv0FXwTMi2XuPImtRrg

4

● Closeness of Actions and Objects in GUI Design (Jakob Nielsen's Alertbox),

http://www.useit.com/alertbox/action-object-closeness.html

● VideoLAN Wiki, http://wiki.videolan.org/

● Software Requirements Specification Secure Video Streaming Proxy Server, Team

Prime’, Dec 17, 2010

● MediaTomb - Free UPnP MediaServer, http://mediatomb.cc/

● Projects @ Apache Documentation, http://projects.apache.org/docs/index.html

● nginx, http://nginx.org/en/

● PFSenseDocs, http://doc.pfsense.org/index.php/Main_Page

● Apsis Gmbh, http://www.apsis.ch/pound/

2. System Overview

Above, there is a overall diagram of our system. For Media Server, Web Server and Load

Balancer we will be using COTS software. Our goal is to make this system work as a secure

and scalable one. So coding the sub-components is not in our scope at the moment.

We want to explain COTS with a few words. COTS stand for ‘Commercial, off-the-shelf’. It

represents technologies which are ready and available for sale, lease or licensing. It often

refers to computer software or hardware and it may include free software with commercial

support.

There is already open source COTS software serving our purpose, so we will be using them.

Our system consists of 3 main parts. First one is media server. It is the component that

interacts with cameras, records data from them and serves them to the web servers as

requested.

Second one is web servers. It gets data from the media server and sends them to clients

according to the load balancer’s distribution.

The last one is the load balancer. It is the first component to handle incoming connections.

According to the load of web servers, it distributes incoming connections to the web

servers so that none of the servers are overloaded.

http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwww.useit.com%2Falertbox%2Faction-object-closeness.html&sa=D&sntz=1&usg=AFQjCNHvxrC--Ld222EX1h6uq9e1NMKVcg
http://www.google.com/url?q=http%3A%2F%2Fwiki.videolan.org%2F&sa=D&sntz=1&usg=AFQjCNG-RxuDgKX9eKz5BR1g8wtEce46gg
http://www.google.com/url?q=http%3A%2F%2Fwiki.videolan.org%2F&sa=D&sntz=1&usg=AFQjCNG-RxuDgKX9eKz5BR1g8wtEce46gg
http://www.google.com/url?q=http%3A%2F%2Fwiki.videolan.org%2F&sa=D&sntz=1&usg=AFQjCNG-RxuDgKX9eKz5BR1g8wtEce46gg
http://www.google.com/url?q=http%3A%2F%2Fwiki.videolan.org%2F&sa=D&sntz=1&usg=AFQjCNG-RxuDgKX9eKz5BR1g8wtEce46gg
http://www.google.com/url?q=http%3A%2F%2Fwiki.videolan.org%2F&sa=D&sntz=1&usg=AFQjCNG-RxuDgKX9eKz5BR1g8wtEce46gg
http://www.google.com/url?q=http%3A%2F%2Fwiki.videolan.org%2F&sa=D&sntz=1&usg=AFQjCNG-RxuDgKX9eKz5BR1g8wtEce46gg
http://www.google.com/url?q=http%3A%2F%2Fwiki.videolan.org%2F&sa=D&sntz=1&usg=AFQjCNG-RxuDgKX9eKz5BR1g8wtEce46gg
http://www.google.com/url?q=http%3A%2F%2Fwiki.videolan.org%2F&sa=D&sntz=1&usg=AFQjCNG-RxuDgKX9eKz5BR1g8wtEce46gg
http://www.google.com/url?q=http%3A%2F%2Fmediatomb.cc%2F&sa=D&sntz=1&usg=AFQjCNGgjadRxEgpKeN9AHUQOb5PGrMblg
http://www.google.com/url?q=http%3A%2F%2Fmediatomb.cc%2F&sa=D&sntz=1&usg=AFQjCNGgjadRxEgpKeN9AHUQOb5PGrMblg
http://www.google.com/url?q=http%3A%2F%2Fmediatomb.cc%2F&sa=D&sntz=1&usg=AFQjCNGgjadRxEgpKeN9AHUQOb5PGrMblg
http://www.google.com/url?q=http%3A%2F%2Fmediatomb.cc%2F&sa=D&sntz=1&usg=AFQjCNGgjadRxEgpKeN9AHUQOb5PGrMblg
http://www.google.com/url?q=http%3A%2F%2Fmediatomb.cc%2F&sa=D&sntz=1&usg=AFQjCNGgjadRxEgpKeN9AHUQOb5PGrMblg
http://www.google.com/url?q=http%3A%2F%2Fmediatomb.cc%2F&sa=D&sntz=1&usg=AFQjCNGgjadRxEgpKeN9AHUQOb5PGrMblg
http://www.google.com/url?q=http%3A%2F%2Fprojects.apache.org%2Fdocs%2Findex.html&sa=D&sntz=1&usg=AFQjCNGcM-uYam-oUExrzMOYuFSexzAzNw
http://www.google.com/url?q=http%3A%2F%2Fprojects.apache.org%2Fdocs%2Findex.html&sa=D&sntz=1&usg=AFQjCNGcM-uYam-oUExrzMOYuFSexzAzNw
http://www.google.com/url?q=http%3A%2F%2Fprojects.apache.org%2Fdocs%2Findex.html&sa=D&sntz=1&usg=AFQjCNGcM-uYam-oUExrzMOYuFSexzAzNw
http://www.google.com/url?q=http%3A%2F%2Fprojects.apache.org%2Fdocs%2Findex.html&sa=D&sntz=1&usg=AFQjCNGcM-uYam-oUExrzMOYuFSexzAzNw
http://www.google.com/url?q=http%3A%2F%2Fprojects.apache.org%2Fdocs%2Findex.html&sa=D&sntz=1&usg=AFQjCNGcM-uYam-oUExrzMOYuFSexzAzNw
http://www.google.com/url?q=http%3A%2F%2Fprojects.apache.org%2Fdocs%2Findex.html&sa=D&sntz=1&usg=AFQjCNGcM-uYam-oUExrzMOYuFSexzAzNw
http://www.google.com/url?q=http%3A%2F%2Fprojects.apache.org%2Fdocs%2Findex.html&sa=D&sntz=1&usg=AFQjCNGcM-uYam-oUExrzMOYuFSexzAzNw
http://www.google.com/url?q=http%3A%2F%2Fprojects.apache.org%2Fdocs%2Findex.html&sa=D&sntz=1&usg=AFQjCNGcM-uYam-oUExrzMOYuFSexzAzNw
http://www.google.com/url?q=http%3A%2F%2Fprojects.apache.org%2Fdocs%2Findex.html&sa=D&sntz=1&usg=AFQjCNGcM-uYam-oUExrzMOYuFSexzAzNw
http://www.google.com/url?q=http%3A%2F%2Fprojects.apache.org%2Fdocs%2Findex.html&sa=D&sntz=1&usg=AFQjCNGcM-uYam-oUExrzMOYuFSexzAzNw
http://www.google.com/url?q=http%3A%2F%2Fprojects.apache.org%2Fdocs%2Findex.html&sa=D&sntz=1&usg=AFQjCNGcM-uYam-oUExrzMOYuFSexzAzNw
http://www.google.com/url?q=http%3A%2F%2Fprojects.apache.org%2Fdocs%2Findex.html&sa=D&sntz=1&usg=AFQjCNGcM-uYam-oUExrzMOYuFSexzAzNw
http://www.google.com/url?q=http%3A%2F%2Fprojects.apache.org%2Fdocs%2Findex.html&sa=D&sntz=1&usg=AFQjCNGcM-uYam-oUExrzMOYuFSexzAzNw
http://www.google.com/url?q=http%3A%2F%2Fnginx.org%2Fen%2F&sa=D&sntz=1&usg=AFQjCNEufUneNuT1MsbwC6K-R-dQsS1r1g
http://www.google.com/url?q=http%3A%2F%2Fnginx.org%2Fen%2F&sa=D&sntz=1&usg=AFQjCNEufUneNuT1MsbwC6K-R-dQsS1r1g
http://www.google.com/url?q=http%3A%2F%2Fnginx.org%2Fen%2F&sa=D&sntz=1&usg=AFQjCNEufUneNuT1MsbwC6K-R-dQsS1r1g
http://www.google.com/url?q=http%3A%2F%2Fnginx.org%2Fen%2F&sa=D&sntz=1&usg=AFQjCNEufUneNuT1MsbwC6K-R-dQsS1r1g
http://www.google.com/url?q=http%3A%2F%2Fnginx.org%2Fen%2F&sa=D&sntz=1&usg=AFQjCNEufUneNuT1MsbwC6K-R-dQsS1r1g
http://www.google.com/url?q=http%3A%2F%2Fnginx.org%2Fen%2F&sa=D&sntz=1&usg=AFQjCNEufUneNuT1MsbwC6K-R-dQsS1r1g
http://www.google.com/url?q=http%3A%2F%2Fnginx.org%2Fen%2F&sa=D&sntz=1&usg=AFQjCNEufUneNuT1MsbwC6K-R-dQsS1r1g
http://www.google.com/url?q=http%3A%2F%2Fnginx.org%2Fen%2F&sa=D&sntz=1&usg=AFQjCNEufUneNuT1MsbwC6K-R-dQsS1r1g
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.pfsense.org%2Findex.php%2FMain_Page&sa=D&sntz=1&usg=AFQjCNHTBSQneU1JVAPvFczI3aH4s3X2XQ
http://www.google.com/url?q=http%3A%2F%2Fwww.apsis.ch%2Fpound%2F&sa=D&sntz=1&usg=AFQjCNGmoBgaaozooNHW3iatPPJuJkP7AQ
http://www.google.com/url?q=http%3A%2F%2Fwww.apsis.ch%2Fpound%2F&sa=D&sntz=1&usg=AFQjCNGmoBgaaozooNHW3iatPPJuJkP7AQ
http://www.google.com/url?q=http%3A%2F%2Fwww.apsis.ch%2Fpound%2F&sa=D&sntz=1&usg=AFQjCNGmoBgaaozooNHW3iatPPJuJkP7AQ
http://www.google.com/url?q=http%3A%2F%2Fwww.apsis.ch%2Fpound%2F&sa=D&sntz=1&usg=AFQjCNGmoBgaaozooNHW3iatPPJuJkP7AQ
http://www.google.com/url?q=http%3A%2F%2Fwww.apsis.ch%2Fpound%2F&sa=D&sntz=1&usg=AFQjCNGmoBgaaozooNHW3iatPPJuJkP7AQ
http://www.google.com/url?q=http%3A%2F%2Fwww.apsis.ch%2Fpound%2F&sa=D&sntz=1&usg=AFQjCNGmoBgaaozooNHW3iatPPJuJkP7AQ
http://www.google.com/url?q=http%3A%2F%2Fwww.apsis.ch%2Fpound%2F&sa=D&sntz=1&usg=AFQjCNGmoBgaaozooNHW3iatPPJuJkP7AQ
http://www.google.com/url?q=http%3A%2F%2Fwww.apsis.ch%2Fpound%2F&sa=D&sntz=1&usg=AFQjCNGmoBgaaozooNHW3iatPPJuJkP7AQ
http://www.google.com/url?q=http%3A%2F%2Fwww.apsis.ch%2Fpound%2F&sa=D&sntz=1&usg=AFQjCNGmoBgaaozooNHW3iatPPJuJkP7AQ
http://www.google.com/url?q=http%3A%2F%2Fwww.apsis.ch%2Fpound%2F&sa=D&sntz=1&usg=AFQjCNGmoBgaaozooNHW3iatPPJuJkP7AQ

5

3. Design Considerations

3.1. Design Assumptions, Dependencies and Constraints

● Media streams are working fine.

● Streams and server have enough bandwidth.

● System has low latency.

● Video processing and networking libraries are available on the system.

● One load balancer will be sufficient for our simple design and it will be stable.

3.2. Design Goals and Guidelines

In our system, we aim to create a highly scalable system rather than an efficient one. Since

we will be using COTS tools mostly, our system’s efficiency will be determined by our tool

choices mostly. Of course we will try to be as efficient as possible it is not our main concern.

Our main issue is to serve as many clients as possible without having any problems.

Our system’s security issues will be mostly handled by load balancer since it handles

incoming connections. It will not allow unauthorized accesses to the system. HTTP

authentication protocol will be implemented in order to authenticate connections to the

system. Users will authenticate themselves by supplying a username and password. The

password will be verified by using HTTP digest access authentication in order to prevent

undesired interception of the access credentials. All HTTP traffic will be encrypted using

SSL encryption which will prevent theft, undesired access and/or corruption of data. We

will utilize a firewall to secure the system from malicious attacks.

Also there might be a VPN installed between the cameras and media server. It is good for

security of overall system but that issue is not our score at the moment.

Our system will be very simple to use. It has a few functions for people’s use. Most of its job

is internal and not available to users. There will be a web interface for clients to use and an

admin interface for basic operations for system management.

6

4. Data Design

4.1. Data Description

Video File: Media Server records the video streams while serving them to users. As video

files are relatively large, recording should occur after encoding the systems with

appropriate codex. Furthermore, array of storage discs should be managed to ensure

concurrent recording of multiple video streams. RAID 0 architecture can be employed on

the discs for fast retrieval of video files.

Configuration File: In each of the components, there are configuration files that are to be

used by sub-components. For example, admin will pass commands to the media server,

web server and load balancer via their specific configuration files. They will read the

settings from the file and operate accordingly.

Both of these files will be stored on the hard disk directly. As mentioned above, for

efficiency in big video files, RAID 0 configuration may be used on array of disks.

User Information: Reaching the video streams is restricted to authorized users. Therefore,

it is obligatory to store user information and authorization. Storage could be implemented

in a file or relational database system, database system is chosen for performance

concerns, as simple file system does not perform well in cases where user pool is relatively

large.

Stream: Each video stream has its own unique ID in the SVSPS. This ID is used as an

identifier at both stream processing and stream retrieval processes. Each stream source

has several attributes related to it such as IP etc.

This information is not specific files, so they will be stored in a database. We are planning

to use MySQL as our database.

4.2. Data Dictionary

● Data structures:

7

○ Configuration file: .ini file that components read their settings from.

○ Stream info: Database entry that keeps info about each stream source.

○ User info: Database entry that keeps info about every user.

○ Video file: Media file that keeps the received video data separately from stream

sources.

● Function prototypes:

○ intAddStream(Stream): takes a stream parameter that holds info about a stream and

adds it to the media server. Returns a value depending on the result of the operation

(succeeds or fails for some reason).

○ intAddUser(User): takes a user parameter that holds info about user to be added.

Returns a value depending on the result of the operation (succeeds or fails for some

reason).

○ intInjectConfigurationFile(String): takes a path parameter that points to a

configuration file and sets it as active settings file. Returns a value depending on the

result of the operation (succeeds or fails for some reason).

○ String LoadCheck(void): checks all web servers for their work load and decides to

which server new clients will be directed. Returns identifier of the decided web

server.

○ intRemoveStream(String): takes a string parameter that holds the unique ID of a

stream and removes that stream from the media server. Returns a value depending

on the result of the operation (succeeds or fails for some reason).

○ intRemoveUser(String): takes a string parameter that holds the unique ID of a user

and removes that user from the user database. Returns a value depending on the

result of the operation (succeeds or fails for some reason).

8

5. System Architecture

5.1. Architectural Design

Overall architecture of the system

9

5.2. Description of Components

10

Above there are sequence diagrams of adding camera to the system and sending data to a

client. Operation of removing camera is almost same as adding camera so we didn’t include

its diagram. We will explain operations below

5.2.1. Media Server

5.2.1.1. Processing narrative for Media Server

Media server is a machine that collects data from streaming sources. While receiving and

sending the data, media server may do some codec processing as well. In addition,

resolution of the video streams will be most probably subject to change as it is preferable

to standardize the resolution of the feeds. Media server receives data from cameras (or any

other streaming sources) and delivers the processed streams to the media servers.

5.2.1.2. Media Server interface description

The entire media server tools that we have been examining use Command Line Interface

for communication with user and other software. They usually do not have Graphical User

Interfaces. For example here is a CLI screenshot from VideoLan Client, which is a tool that

we most probably will be using.

Here are the CLI commands of VideoLAN, one of the media server alternatives we are

considering.

11

 To open a file with a codec, start VLC with:

% vlc -vvv --codec ffmpeg my_file.mpg

 To receive a unicast UDP stream (sent by VLS or VLC's stream output), start VLC with:

% vlc -vvvudp:[@:server_port]

To receive a multicast UDP stream (sent by VLS or VLC's stream output), start VLC with:

% vlc -vvvudp:@multicast_address[:server_port]

To receive a HTTP stream, start VLC with:

% vlc -vvv http://www.example.org/your_file.mpg

To receive a RTSP stream, start VLC with:

% vlc -vvv rtsp://www.example.org/your_stream

5.2.1.3. Media Server processing detail

Media server is main database and data processing unit of our system. It has four main sub-

components;

First main component is media server manager tool. This component will be responsible

from; gathering the data from connected cameras, process the data in means of codec and

resolution, store the data as video files in the storage devices, deliver the processed

streams to the web servers according to the settings in the configuration file. Note that this

process will display pipeline properties as for instance, a part of the stream could be at the

processing stage while preceding seconds of the same stream is being delivered to the web

servers. In addition, it is highly possible that this pipeline will be working for many streams

in parallel. Therefore, this component will be drastically CPU-heavy, so the infrastructure

hosting this component should be able to satisfy this need.

Second sub-component is the configuration file. It keeps the settings that will be used by

the media server manager. Configuration file contains many parameters that is used to

regulate processes of the media server. Some of these parameters are as follows; codec

types, resolution of the output streams, TCP ports to be used, database information, log file

path etc.

12

Another sub-component is Command Line Interface. It is used to command and modify

behavior of the media server manager using Terminal interface of UNIX based systems. In

the resulting system, this interface will not be used directly by the standard user or the

admin, Prime’ User Interface will map the functionalities of the CLI to a graphical interface.

Last sub-component of MS is the media server controller. This component will be designed

and written by Prime’ as a bridge for the communication between the general user

interface and media server’s CLI and configuration file.. It will deliver the commands from

the user to the server by giving commands through CLI or modifying the configuration file

and do some periodic checks and regulations on the system if needed.

5.2.1.4. Dynamic behavior of Media Server

Media server has two main dynamic events, namely, add and remove camera. This events

can occur by manual stimulation by the admin or through automatic self-registry.

To add a camera (or any other streaming video source) to the list of cameras streamed to

the media server admin needs to have distinguishing information (IP address of the source,

format of the stream etc.) about the source and this information needs to be provided to

the media server. To remove a video source, admins just needs to perform a graphical user

interface operation which does not require any specific pieces of information about the

source to be removed as information about the existing sources resides within the storage

of the media server.

Second way of adding a streaming source is automatic self-registry. This method is the

desired one on adding sources, as it is more dynamical and large quantities of cameras can

be added much more rapidly than manual source addition. In this method, first of all

cameras sends its information to the media server, then, if media server allows the

connection, add operation is triggered, finally the source is added to the list and the

streaming begins.

13

5.2.2. Web Servers

5.2.2.1. Processing narrative for Web Servers

Web Servers are responsible for distribution of data to users which is obtained from Media

Server. Media server streams the videos using HTTP protocol in MPEG4 format. Web

Servers have a vital role in scalability. For instance, for some random stream source, say X,

Web Server receives one stream of X from media server but can feed up to 250 users with

this stream. Therefore, a Web Server acts as a reverse proxy to the media server. User

requests the stream from media server, but receives it from the Web Server, by this way

work load on the media server gets drastically reduced.

5.2.2.2. Web Servers interface description

Web Servers will be controlled using with CLI as our current options Apache and nginx are

both controlled with CLIs. Multiple Web Servers will exist on final implementation of the

system, and these Web Servers will be running on UNIX based operation systems (most

probably Linux). To control all Web Servers concurrently we will employ an open source

tool called Puppet.

5.2.2.3. Web Servers processing detail

Web Servers can be virtual machines or real machines; however they consist of three

components in both cases.

First one, Web Server Manager, is responsible for connection management. It establishes

connection with media server and hosts feeds for users.

Second one is Configuration File. It holds necessary settings and options about streams.

Web Server Controller, the last one, is responsible for actualizing admins’ or systems

autonomous commands.

Web Server Manager and Configuration File will be chosen from open source alternatives.

Web Server Controller will be designed and implemented by our team.

14

5.2.2.4. Dynamic behavior of Web Servers

Web Servers has four main dynamic events. These are adding and removing feed;

activating and de-activating Web Server. All of these operations are initiated by Load

Balancer; however, later two are consequences of first two operations. Adding feed

operation results in adding another thread to user side and may cause a Web Server to be

loaded to its limit. When a Web Server is loaded to its limit, a new Web Server will be

activated. On the other hand, removing feed operation results in removing a thread from

user side and may cause a Web Server to be completely empty, thus, it will be deactivated.

5.2.3. Load Balancer

5.2.3.1. Processing narrative for Load Balancer

Load Balancer stands between the client and the web servers. Its role is to balance the

work load and command the web servers so that as the work load increases on the system,

it is distributed among the servers so system can handle much more client connections.

Load Balancer’s behavior is controlled by the configuration file supplied and modified by

Prime’ Load Balancer Management component. This configuration file contains parameters

such as upper and lower limits of connections per web server. Note that Load Balancer

component is a network firewall with load balancing capabilities, so it also acts as a

security measure.

LB receives stream requests from the users. It checks the number of the users fed by each

web server, if there is an appropriate web server that can handle a new feed; LB redirects

the user using HTTP to the mentioned web server. If the active web servers are at their

predetermined maximum capacity, LB injects a configuration to one of the idle web servers

to activate it, and directs the incoming load to the activated web server.

5.2.3.2. Load Balancer interface description

Most of the load balancers have Command Line Interfaces. For the time being, we are

considering pfsense, Pound and nginx as load balancer choices. We will examine them in

more detail before making a final choice before our detailed design report.

15

Prime’ Load Balancer Management Component will manage the load balancer using CLI

and configuration file. However, note that LB can be classified as a daemon. It can make

choices like deactivating a web server by observing the load on the web servers, without a

command from a human or a system actor.

5.2.3.3. Load Balancer processing detail

The job of the Load Balancer is to distribute the connection load to the web servers so that

no web server is over or under loaded. It has four sub-components, which are similar to the

other components’ sub-components. First one is load balancer core which does the main

job, which is to be explained in 5.2.3.4. Second one is CLI to control the load balancer core

from the command line. Third one is the configuration file that holds settings for balancer

core to use and last one is load balancer controller which is a bridge between the load

balancer and user interface.

Load Balancer is a very dynamic component. Almost the entire job it does is dynamic so its

job will be explained in more detail in 5.2.3.4.

5.2.3.4. Dynamic behavior of Load Balancer

Load balancer is the most dynamic component in the system. It is the component that

realizes our main goal, which is to scale the system so that it can handle large number of

client connections. When a client tries to connect, connection is first handled by the load

balancer. It first checks the work load on the web servers. According to the workloads it

decides one of the two actions. First, if there is a server that has load below the maximum

threshold, it sends the new connection to the server. Otherwise, it sends command to an

idle web server, and then web server activates and starts to serve to the clients.

Other than coordinating the incoming connections, it also checks the workloads on the

servers periodically and if there is a low loaded server, load balancer tries to distribute its

load on other servers to reduce number of active web servers.

16

6. User Interface Design

6.1. Overview of User Interface

6.1.1. Admin Interface

The first thing an admin sees when he tries to accesses the system is the login screen. This

is an essential part of user interface as it should be able to prevent theft, undesired access

and/or corruption of data.

After logging in with a username and password, management selection screen appears.

Management options of an admin are to manage streams or to manage users.

Stream management screen contains the list of registered streams to the system. There will

be buttons to add or remove streams. Add stream button will initiate a window which

requires admin to enter camera settings. Remove stream button will initiate another

window for confirmation. Stream management screen will also have link to each stream

and will be available to be seen in a media player window. Media player will have

play/pause buttons and there will be sound control button as well.

User management screen contains the list of user and their privileges. There will be add

user and remove user buttons on this page. Add user button will require admin to enter

user details and remove user button will open a confirmation window similar to the stream

management removal window.

6.1.2. Standard User Interface

A standard user who does not have admin rights will face a login screen which is supposed

to prevent access of unauthorized people.

After logging in the user will see a list of stream which he is authorized to access. These

streams will have links for starting media player with their feed. Media player will be the

same as the one admins use.

17

6.2. Screen Images

Login Screen - Admins and users see this screen before they can use the system.

Management Selection Screen - Admins can choose to manage streams or users on this

screen which is available to admins after login procedure.

18

Stream Management Screen - This screen contains full list of streams and buttons to

add/remove/play streams for admins. Users see the streams that they are authorized to

see and “Remove” button is not visible to them.

User Management Screen - This screen contains full list of users and buttons to

add/remove/change access level of users. Only admins can see this screen.

19

Removal Confirmation Screen - Admins see this screen whenever they want to remove a

stream or user.

Add Stream Screen - Admins see this screen and prompted to enter parameters for stream

they want to add a new one.

20

Add User Screen - Admins see this screen when they want to add a new user. Details may

be compulsory or optional.

Media Player Screen - Admins and users see this screen when they want to play a stream.

21

Screenshot of Nagios Open Source Monitoring - Nagios is one of the most popular

monitoring software in the industry, thus, we may use its user interface as a reference

point as we develop our project.

6.3. Screen Objects and Actions

Closeness of actions and objects is the primary element in our GUI design. We designed our

interface such that all screen objects are close to each other so that users will be able to

view and use them easily, in addition, this will provide a basis for future implementations

on mobile devices which have relatively smaller displays. Furthermore, this way admins

22

and users can understand what they can and cannot do in the system just by a quick look

on the interface.

We have some pop-up windows (confirmation queries etc.) and embedded controls (such

as drop down lists or radio buttons) for our system actions. This property also provides

more usability and enables us to adapt our current interfaces to newly risen needs,

modifications or improvement on the user interfaces or other actions more easily.

7. Libraries and Tools

7.1. Media Server Tools

As we researched for media servers, we have encountered many of them that can serve to

our purposes. Capabilities of most of them are similar but we are examining three of the

popular ones.

7.1.1. VideoLAN Server

The VideoLAN Server (VLS) is a dedicated streaming server from the VideoLAN project.

The VideoLAN Server can stream each of the following data types in uni-cast or multi-cast

mode:

● MPEG-1

● MPEG-2

● MPEG-4

● DVDs

● digital satellite channels

● digital DVB-TV

● Live-Videos

Much of the functionality is now integrated into the VLC media player (formerly VideoLAN

Client). As a result, the development of the VideoLAN Server since 2003 is almost at a

standstill. However, its capabilities are now embedded in VLC media player. Therefore VLC

23

media player has all of the capabilities mentioned above and a few more that is explained

below.

About the VLC media player, it is a open source media player and multimedia framework. It

can also serve as encoder and streamer for many audio and video codecs. It is capable of

streaming over networks, transcode multimedia files and save them into various formats.

VLC is a cross-platform media player. It has versions for Microsoft Windows, Mac OS X,

GNU, Linux, BeOS, BSD, eComStation and iOS.

Default distribution of VLC comes with many free encoding and decoding libraries. VLC also

has a remote control interface for console users. Since it can be used as a streaming server,

it can be useful to control it remotely. The remote control interface is a text-based one.

There are also interfaces using telnet and HTTP (ajax).

7.1.2. MediaTomb

MediaTomb is an open source media server which has capability of streaming the digital

media through a network and listening watching it on various UPnP compatible devices. It

is distributed under GPL. It also has a nice and user-friendly web interface.

MediaTomb is designed to work with any UPnP compliant media renderer.

Here are some of the supported features of MediaTomb:

● Allows to browse and playback your media via UPnP

● Metadata extraction from mp3, ogg, flac, jpeg, etc. files

● Exif thumbnail support

● User defined server layout based on extracted metadata (scriptable virtual containers)

● Automatic directory rescans

● Highly flexible media format transcoding via plugins / scripts

● Sophisticated web UI with a tree view of the database and the file system, allowing to

add/remove/edit/browse your media

● Support for external URLs (create links to internet content and serve them via UPnP to

your renderer)

24

● Support for Content Directory Service container updates

● Active Items (experimental feature), allows execution of server side scripts upon HTTP

GET requests to certain items

● Highly flexible configuration, allowing you to control the behavior of various features of

the server

● Support for Linux, FreeBSD, Mac OS X

● Runs on x86, Alpha, ARM, MIPS, Sparc

7.2. Web Server Tools

We have some popular choices for web servers but for the time being, we are focusing on

two of them.

7.2.1. Apache

Apache web server that has a very important role in the growth of World Wide Web. It was

first serious alternative to the Netscape Communications Corporation web server. As it

continued to evolve, it became a rival to the other UNIX-based web servers in terms of

functionality and performance.

Apache is developed and maintained by developers who are members of Apache Software

Foundation. Apache web server is available for various operating systems such as Unix,

GNU, FreeBSD, Linux, Solaris, Novell NetWare, Mac OS X, Microsoft Windows, OS/2, TPF,

and eComStation.

Apache is distributed under Apache License and it is characterized as a open source

software.

Here are some of Apache web server’s features:

● Supported by many common languages

● Popular authentication modules, such as mod_access, mod_auth, mod_digest, and

mod_auth_digest

● SSL and TLS support

25

● Proxy module

● URL rewriter

● Custom log files

● Filtering support

● Popular compression methods, including mod_gzip

● ModSecurity: an open source intrusion detection and prevention engine

● Virtual Hosting

● Configurable error messages

● DBMS-based authentication databases

● Content negotiation

● Supported by many GUIs

7.2.2. nginx

nginx is a high-performance Web server/reverse proxy and e-mail (IMAP/POP3) proxy. It

is licensed under a BSD-like license. It is designed to run on many popular operating

systems such as UNIX, GNU/Linux, BSD variants, Mac OS X, Solaris, and Microsoft Windows.

nginx is capable of serving dynamic http content with efficient use of system resources. It

is also capable of load balancing effectively.

Here are some features of nginx:

● Handling of static files, index files, and auto-indexing

● Reverse proxy with caching

● Load balancing

● Fault tolerance

● SSL support

● FastCGI support with caching

● Name- and IP-based virtual servers

● FLV streaming

● MP4 streaming, using the MP4 streaming module

● Web page access authentication

● gzip compression

● Ability to handle more than 10000 simultaneous connections

26

● URL rewriting

● Custom logging

● Server-side includes

● WebDAV

● SMTP, POP3, and IMAP proxy

● STARTTLS support

● SSL support

7.3. Load Balancer Tools

As load balancer component of the system, we are planning to employ an open source

firewall distribution that has necessary load balancer feature. Choice for this tool has not

been yet made, however we are focusing on few alternatives.

7.3.1. pfSense

pfSense project started in 2004 as a fork of the m0n0wall project, but focused towards full

PC installations rather than the embedded hardware focus of m0n0wall. pfSense also offers

an embedded image for Compact Flash based installations.

pfSense is a free, open source customized distribution of FreeBSD tailored for use as a

firewall and router. In addition to being a powerful, flexible firewalling and routing

platform, it includes a long list of related features and a package system allowing further

expandability without adding bloat and potential security vulnerabilities to the base

distribution.

Some features of pfSense:

● Firewall

● State Table

● NAT

● Redundancy

27

○ CARP - CARP from OpenBSD allows for hardware failover. Two or more firewalls

can be configured as a failover group. If one interface fails on the primary or the

primary goes offline entirely, the secondary becomes active. pfSense also includes

configuration synchronization capabilities where changes made to the primary

firewall will automatically synchronize to the secondary firewall.

○ pfsync - pfsync ensures the firewall's state table is replicated to all failover

configured firewalls. This means your existing connections will be maintained in

the case of failure, which is important to prevent network disruptions.

● Outbound and Inbound Load Balancing

● VPN - IPsec, OpenVPN, PPTP

● PPPoE Server

● RRD Graphs Reporting

● Real Time Information - Using AJAX

● Dynamic DNS

● Captive portal

● DHCP Server and Relay

● Live CD Version Available

● Proxy server

● Support for software extensions.

○ Notable expansions are : Squid proxy server and Snort intrusion

prevention/detection system.

7.3.2. Pound

Pound is a open source reverse proxy program mostly used for web server load balancing.

It is developed by an IT security company. It is originally developed for load distribution

among several Zope servers. However, Pound is not limited only to Zope-based servers.

Pound is distributed under GNU General Public License and can be used free of charge.

Some of its most important features:

28

● Detects when a backend server fails or recovers, and bases its load balancing

decisions on this information: if a backend server fails, it will not receive requests

until it recovers.

● Decrypts https requests to http ones.

● Rejects incorrect requests.

● Can be used in a chroot environment.

● Has no special requirements concerning which web server software or browser to

use.

● Supports virtual hosts.

● Configurable.

7.3.3. nginx

nginx is mainly a web server and reverse proxy. But it can also be used as a load balancer.

Since its main purpose is not load balancing, its features may be less than the others but

still seems usable for our purposes. We don’t know its load balancing features in detail yet

but we are researching.

7.4. Puppet

Puppet is a configuration management tool for Linux. It manages the configuration of

Linux-like systems as declared by the user. The developer provides Puppet templates for

the states of the system and in the runtime, system is put into the declared state.

Puppet consists of a custom language to describe system configuration and a library to

apply this configuration. It enables the administrators to describe configuration in very

high-level terms.

Puppet is built to be cross-platform. It works mostly on Linux and Unix base systems, but it

also has basic support for Microsoft Windows. It is an open source tool released under GPL

and written in ruby.

29

We will use puppet in almost all of the components. It will enable us to control

configuration files (explained in section 4) easier and more practical instead of editing

them by hand.

8. Time Planning (Gannt Chart)

8.1. Term 1 Gannt Chart

8.2. Term 2 Gannt Chart

9. Conclusion

This document is a detailed initial guide for our process in the future. Structure and

architecture of the system is explained. Detailed explanations of the modules are given with

component and sequence diagrams.

We have mentioned about tools that we are considering to use, yet our research continues.

So before we start our implementation, we will make our final decisions about which tool

suits best for our purposes and explain these with our reasons.

30

Next step for us will be writing the Final Design Report which will cover design of the

structure explained in this document in even more detail. We will state our reasons for

decisions that we have not made yet.

