CONFIGURATION
MANAGEMENT
PLAN

RONGO RONGO

F. Aybike Avsaroglu
Esra Gariboglu
Osman Kaya
Onder Kalaci



Contents

1. Introduction

1.1. Purpose of Configuration Management Plan
1.2. Scope of the Document
1.3. Definitions, Acronyms and Abbreviations
1.4. Document References
1.5. Document Overview
2. The Organizations CM Framework
2.1. Organization
2.2. Responsibilities
2.3. Tools and Infrastructure
3. Configuration Management Process
3.1. Identification
3.1.1.Source Code
3.1.2.Data
3.1.3.Documentation
3.2. Configuration Management and Control
3.3. Configuration Status Accounting
3.4. Auditing
4. Project Schedules and CM Milestones

5. Project Resources



6. Plan Optimization

1. Introduction

The GWSN project constructs a greenhouse monitoring system using wireless
sensor networks. The major goal of the project is to increase the productivity and quality

of the plants in a greenhouse without observing it whole day.

1.1. Purpose of Configuration Management Plan

The absence of coordination and planning makes developers face some
unwelcoming consequences. Building the right coordination hierarchy in a software
development process seems difficult, however if configuration management report is
prepared, coordination problem will be out of question.

Configuration Management Plan (CMP) makes the integration of changes to our
project easier and reduces the side effects of this changes. The purpose of this CMP
report is to identify and describe a configuration management process for the GWSN

project.

1.2. Scope of the Document



The scope of the document is to give a brief description about how the technical
components are used, configuration process is done, and the distribution of the

responsibilities among the team members.

1.3. Definitions, Acronyms and Abbreviations

CM: Configuration Management

CMP: Configuration Management Plan
GWSN: Greenhouse Wireless Sensor Network
HTML: HyperText Markup Language

JSP: JavaServer Pages

NesC: Network embedded Systems C

GCC: GNU Compiler Collection

IDE: Integrated Development Environment
UML: Unified Modelling Language

CSA: Configuration status accounting

1.4. Document References

- Software Configuration Management Plan (Online) Available:

htto://www.nongnu.org/ghosts/developers/contributing/plans/scmp.html

- Sample Configuration Management Plan (Online) Available:

htto.//it.toolbox.com/blogs/enterprise-solutions/sample-confiquration-

management-plan-30170

- Cultivating Successful Software Development, Scott Donaldson and Stanley

Siegel, Prentice-Hall, 1997.

1.5. Document Overview

In the Introduction part, our project, the CMP, and its purpose are explained

briefly. The used abbreviations and references are given. In the second part, The


http://it.toolbox.com/blogs/enterprise-solutions/sample-configuration-management-plan-30170
http://it.toolbox.com/blogs/enterprise-solutions/sample-configuration-management-plan-30170
http://www.nongnu.org/ghosts/developers/contributing/plans/scmp.html

Organizations CM Framework,gives information about the organization of our team,
responsibilities, and tools used in the project. The identification, configuration
management and control practices, configuration status accounting and auditing are be
described in the Configuration Management Process section. The next section,
Project Schedules and CM Milestones, important dates and the schedule of our
project are given in the light of the syllabus. Project Resources part gives information
about the resources used. Lastly, Plan Optimization part concludes with the methods

followed for optimizing CMP.

2. The Organizations CM Framework

2.1. Organization
Our team consists of four people and we are all responsible for various parts of
the project. Each member has a contribution to the development phase with ideas,
suggestions and interactions. Team members are:
@ Aybike Avsaroglu
@ Esra Gariboglu
@ Onder Kalac

@ Osman Kaya

Software Development Team:

Software development for the hardware part: Onder and Osman are
responsible for this part of the project, which is based on programming the nodes
according to the leach protocol.

Web application development: Aybike and Esra are responsible for creating

the interface to access and control the database and to monitor the greenhouse.



Testing Team: The main purpose of this team is to test the software continuously

against bugs and unwanted results. All members are responsible.

Configuration Management Team: This team is responsible for preserving and

updating configuration management organization.

Release Control Team: This team is responsible for controlling the market and making

plans about the release of the project.

2.2. Responsibilities

Software Development Team: Each member has a responsibility in software
development part. As mentioned above in the organization section team members
partitioned into two groups. One group consists of Onder and Osman; another group
consists of Aybike and Esra.

Onder and Osman are responsible for writing the code for our sensor nodes.
Their program is based on the leach protocol, which has to be coded separately for
nodes and clusters.

Aybike and Esra are concerned with designing the web application interface.

JSP, HTML and Javascript are used for creating the web application.

Testing Team: This team tests the software continuously against bugs and unwanted

results. Both software development team is responsible for testing their own program.

Configuration Management Team: All members are responsible for preserving and

updating configuration management organization and change it if necessary.

Release Control Team: All members are responsible for controlling the market and

making plans about the release of the project in control of sponsor firm INNOVA.



2.3. Tools and Infrastructure

NesC (Network Embedded Systems C): NesC is an extension to the C programming
language designed to embody the structuring concepts and execution model of TinyOS.
Since the sensor nodes we are going to use have very limited resources, we will use
nesC to program them.

NesC Compiler: It is nesC compiler for TinyOS. It is Implemented as an extension to
GCC and called via TinyOS wrapper ncc. Platform code implements API of macros and
functions in C and output C code or object code.

NetBeans: Refers to both a platform framework for Java desktop applications, and an
IDE (integrated development environment) for developing with Java, JavaScript, PHP,
Python, Ruby, Groovy, C, C++, Scala and Clojure. We use NetBeans for developing the
web application of the greenhouse monitoring system.

Mote-View: Mote-View is designed to be an interface between a user and a deployed
network of wireless sensors. It makes it easy to connect to a database, to analyze, and
to render sensor readings. However, we do not use it now.

Smart Draw: Smart Draw is a visual processor used to create flowcharts, organization
charts, mind maps, project charts, and other visuals. It integrates with Microsoft Word,
Excel, PowerPoint and Microsoft Project. We used SmartDraw for drawing data flow
diagrams, UML diagrams and ER diagrams.

SVN (Subversion): SVN is a software versioning and a revision control system to
maintain the data and allow editing and sharing if necessary. It is easier with SVN to
update the data and track the status of the applications.

3. Configuration Management Process

3.1. Identification

The following Configuration ltems are determined to be identified: source code,

data and documentation.



3.1.1.Source Code

3.1.1.1 Source Code of Sensor Nodes

The coding of the star topology based protocol and the leach protocol on the
sensor nodes are already finished successfully. We took many backups with proper
names, identifying the current state, while writing the codes. Thus, we always have the
chance to go back and look what new features are added at each increment. Moreover,

at each backup the changes are commented.

3.1.1.2 Source Code of Gateway

The coding of the application running on the gateway is already finished
successfully. It has only one version . We compiled with the object oriented design
principles, especially with the open-closed principle, since, in the future we may need to
change the code running on the sensor nodes, thus, we may need to change how the
gateway reads the data. Except for that, there is no need to change the code on the

gateway by itself.

3.1.1.3 Source Code of Web Application

There are always changes in the design of the user interface and the functionality
provided to the users. Thus, we need to change the codes. For each new functionality
added or for each new file added we took backups with proper names, identifying the
current state. The process of improving the user interface and the functionality provided

to the users are going on for the time being.

3.1.2.Data

The only database of the system is on a MySQL server on a laptop. The data

tables in the database are stable. Except for the user information on the database,



there would not be any change provided that there is no change on the protocol running

on the sensor nodes.

3.1.3.Documentation

Most of the documents are in our Google group(RongoRongo). But some of
these documents are accessible from the project’s web page. These documents are:

- Project proposal

- Requirements analysis report

- Initial design report

- Final design report

- Configuration management plan

3.2 Configuration Management and Control

Before started to use Trac and SVN, we had already finished the
implementations of the protocols on the sensor nodes and the application on the
gateway. Thus, what we are going to explain should be attributed to the web

application.

3.2.1 Request for Change

At any time, any of the group member can request a change in any part of the
application. Most of the time, the team gathers as whole. However, if we do not get that
chance, since we are a small team consisting of four people, the requests are evaluated
almost instantly via e-mail or phone. If the changes are approved by all the members,
they are assigned in the Trac system with a ticket. The changes can be traced by using
SVN.

3.2.2 Acceptance Or Rejection Changes



We did not explicitly assign a project manager or team leader. However, for each
part of the project, there is a person who has more responsibility for that part. Although
that person has more responsibility for that part, the decisions could be accepted or

rejected by the all members of the team.

3.2.3 Implementing the Changes
When the change is accepted by all the members, the followings are done.
Firstly, the source code is changed as required. Then, unit testing is done. Lastly, the

changes in the source code is updated in SVN.

3.3 Configuration Status Accounting

Configuration status accounting (CSA) is the process of creating and organizing
the knowledge base necessary for the performance of configuration management. In
addition to facilitating CM, the purpose of CSA is to provide a highly reliable source of
configuration information to support all project activities including program management,
systems engineering, software development, modification, and maintenance.

Our accounting activities are as follows:

 Configuration status information reporting

» Keeping the configuration change history

» Milestone configuration reports

* Audit reports

SVN and Trac activities

3.4 Auditing

Auditing plays an important part in our project. Auditing is regularly done by

weekly meetings. At the start of weekly meetings, each member demonstrates his/her



assigned job to others. If these jobs are found deficient or lacking by other members, fix
jobs are filed to that member.

Change requests are mostly handled with the Trac system. However, if there is a
disputed change request, this request is discussed thoroughly. Justification of these
change requests are required to get the approval of other members.

According to the project schedule, weekly plan for the next week is decided.
Each member or group is assigned a part of the project. If there is a job that requires
collaboration of members, meeting times are decided.

A weekly report is written together and uploaded to the group page. This report is
used as checklist at the next week’s audit.

Apart from the weekly audits, when the project has reached a milestone, a bigger
audit is held. In these audits, general progress evaluation is done. Consistency check
between the design report and the implementation is reviewed. Evaluation report is
written for later use. A detailed schedule is written for the part which will be completed
until the next milestone. Group discusses on difficulties that might arise on the next
phase. Actions and solutions are produced for these possible difficulties. Members
share their thoughts on things like how this version should be demonstrated for the best
result, which parts would look good on the presentation and which parts would not look

SO good.

4. Project Schedules and CM Milestones

We partitioned our milestones into tasks to organize our project according to the

deadlines.
O Prototype implementation (December 28, 2010)
O Prototype testing (February 20, 2011)
O Web application testing (March 4, 2011)

O User Interface design (March 15, 2011)



O Prototype release (March 30, 2011)
QO Final test (April 30, 2011)

O Team presentation (May 10, 2011)
O Final release (May 30, 2011)

5. Project Resources

The resources of the GWSN project can be listed as follows:

- RongoRongo team members

- Mote-View

- Moteworks

- Netbeans

- Dreamweaver

- SVN : Revision Control System

- MySQL

- Crossbow Processor/radio board: XM2110CA IRIS 2.4 GHz

- Crossbow Sensor board: MDA100CB IRIS / MICA

- Crossbow Gateway/programming interface: MIB520CB IRIS / MICA USB
PC Interface

- RongoRongo’s Web Site

6. Plan Optimization

Development of the project will be done in accordance with the CMP. Everyone
in the group has to join weekly audits, follow the mail group and inform the group if there

is a change on the plan. We think that obeying the rules which we decided together is a



must. Anyone who does not follow the rules will get a warning. Also, weekly meetings

with our assistants guarantees that we move according to our plan.



