

09.12.2011

Middle East Technical University

Computer Engineering

CENG 491 – Computer Engineering Design – I

Fall – 2011

Software Design Document

BEE - TECH

1. Fatih SEMİZ_1752476
2. Güner ORHAN_1631050
3. Çağlar SEYLAN_1631126
4. Tuğba DEMİR_1630722

Software Design Document 2012

1

0
9

O

c
a

k

2

0
1

2

Contents
1. Introduction .. 6

1.1. Problem Definition .. 6

1.2. Purpose .. 7

1.3. Scope ... 7

1.4. Overview ... 7

1.5. Definitions, Acronyms and Abbreviations .. 7

1.6. References ... 8

2. System Overview ... 8

2.1. Waspmote IDE .. 8

3. Design Considerations .. 9

3.1. Design Assumptions, Dependencies and Constraints .. 9

3.2. Design Goals and Guidelines .. 10

3.2.1. Performance ... 10

3.2.2. Reliability ... 10

4. Data Design .. 10

4.1. Data Description .. 10

4.1.1. Description of Data Entities ... 10

4.1.2. Databases and Data Storage Items ... 16

4.2. Data Dictionary .. 16

5. System Architecture ... 17

5.1. Architectural Design .. 17

5.1.1. Software Architectural Design of the Control Center .. 18

5.1.2. Software Architectural Design of the Sensors ... 20

5.2. Description of Components ... 20

5.2.1. Simulation Core Component .. 20

5.2.2. Database Component .. 22

5.2.3. Sensor Managing Component .. 24

5.2.4. Reporting Component .. 27

5.2.5. Communication Component .. 30

5.2.6. Timeline Component .. 33

5.2.7. Analysis Component .. 35

5.3. Design Rationale .. 38

Software Design Document 2012

2

0
9

O

c
a

k

2

0
1

2

5.4. Traceability of Requirements .. 38

6. User Interface Design ... 39

6.1. Overview of User Interface ... 39

6.1.1. Tester Interface ... 39

6.1.2. Admin Interface .. 43

6.2. Screen Images .. 44

6.2.1. Login Screen .. 44

6.2.2. Register Screen ... 46

6.2.3. Main Screen .. 47

6.2.4. Control Screen .. 48

6.2.5. Report Screen ... 49

6.3. Screen Objects and Actions ... 50

7. Detailed Design .. 53

7.1. Database Module ... 55

7.1.1. Classification .. 55

7.1.2. Definition ... 55

7.1.3. Responsibilities .. 55

7.1.4. Constraints .. 55

7.1.5. Compositions .. 55

7.1.6. Uses and Interactions ... 56

7.1.7. Resources ... 56

7.1.8. Processing ... 57

7.1.9. Interface / Exports .. 57

7.2. Simulation Core Module ... 57

7.2.1. Classification .. 57

7.2.2. Definition ... 58

7.2.3. Responsibilities .. 58

7.2.4. Constraints .. 58

7.2.5. Compositions .. 58

7.2.6. Uses and Interactions ... 59

7.2.7. Resources ... 59

7.2.8. Processing ... 59

7.2.9. Interface / Exports .. 60

Software Design Document 2012

3

0
9

O

c
a

k

2

0
1

2

7.3. Reporting Module .. 61

7.3.1. Classification .. 61

7.3.2. Definition ... 61

7.3.3. Responsibilities .. 61

7.3.4. Constraints .. 61

7.3.5. Compositions .. 62

7.3.6. Uses and Interactions ... 62

7.3.7. Resources ... 62

7.3.8. Processing ... 62

7.3.9. Interface / Exports .. 63

7.4. Analysis Module .. 63

7.4.1. Classification .. 63

7.4.2. Definition ... 63

7.4.3. Responsibilities .. 64

7.4.4. Constraints .. 64

7.4.5. Composition ... 64

7.4.6. Uses and Interactions ... 65

7.4.7. Resources ... 65

7.4.8. Processing ... 65

7.4.9. Interface / Exports .. 66

7.5. Timeline Module ... 66

7.5.1. Classification .. 66

7.5.2. Definition ... 66

7.5.3. Responsibilities .. 66

7.5.4. Constraints .. 66

7.5.5. Compositions .. 66

7.5.6. Uses and Interactions ... 67

7.5.7. Resources ... 67

7.5.8. Processing ... 67

7.5.9. Interface / Exports .. 67

7.6. Communications Module .. 67

7.6.1. Classification .. 67

7.6.2. Definition ... 68

Software Design Document 2012

4

0
9

O

c
a

k

2

0
1

2

7.6.3. Responsibilities .. 68

7.6.4. Constraints .. 68

7.6.5. Compositions .. 68

7.6.6. Uses and Interactions ... 68

7.6.7. Resources ... 69

7.6.8. Processing ... 69

7.6.9. Interface / Exports .. 69

7.7. Sensor Managing Module .. 70

7.7.1. Classification .. 70

7.7.2. Definition ... 70

7.7.3. Responsibilities .. 70

7.7.4. Constraints .. 70

7.7.5. Compositions .. 70

7.7.6. Uses and Interactions ... 70

7.7.7. Resources ... 71

7.7.8. Processing ... 71

7.7.9. Interface / Exports .. 71

8. Libraries and Tools ... 71

8.1. Eclipse RCP ... 71

8.1.1. Description ... 72

8.1.2. Usage in the Intruder Detection System ... 72

8.2. Nasa World Wind Java SDK ... 72

8.2.1. Description ... 72

8.2.2. Usage in the Intruder Detection System ... 72

8.3. JOGL ... 73

8.3.1. Description ... 73

8.3.2. Usage in the Intruder Detection System ... 73

8.4. JFreeChart .. 73

8.4.1. Description ... 73

8.4.2. Usage in the Intruder Detection System ... 73

8.5. Waspmote and Waspmote IDE .. 73

8.5.1. Description ... 73

8.5.2. Usage in the Intruder Detection System ... 74

Software Design Document 2012

5

0
9

O

c
a

k

2

0
1

2

8.6. Eclipse IDE .. 74

8.6.1. Description ... 74

8.6.2. Usage in the Intruder Detection System ... 74

8.7. PostgreSQL .. 74

8.7.1. Description ... 74

8.7.2. Usage in the Intruder Detection System ... 74

8.8. XBee .. 75

8.8.1. Description ... 75

8.8.2. Usage in the Intruder Detection System ... 75

8.9. SD Card ... 75

8.9.1. Description ... 75

8.9.2. Usage in the Intruder Detection System ... 75

9. Time Planning .. 77

9.1. Term 1 Gantt Chart .. 77

9.2. Term 2 Gantt Chart .. 78

10. Conclusion ... 79

Software Design Document 2012

6

0
9

O

c
a

k

2

0
1

2

1. Introduction

Intruder detection system is the security-based project that is essential for detection of the

intruder entering to the specified confidential area. The aim of this document is that showing

the more detailed representations of the requirement specifications and giving the structured

data design of the project in more detailed manner.

1.1. Problem Definition

Military service of any country has confidential information about country or any other

equipped military soldiers. Therefore, this secret information must be protected from any

other country or person. This can be achieved by protecting the area which surrounds these

places. Another use area of this intruder detection system is to protect area for soldier gunned

exercises, because, entrance of the any person can cause to injure the intruder.

Due to the security necessity of the specified area, intruder detection system will cope with

the intrusion detection. The most important problem is that detecting the intrusion can be

difficult due to the noise which results from the animal entrance, wind, or other climate

conditions.

Another important problem that our system will handle is false alarm rates. False alarm rate

can occur with two ways. First one is that the system gives an alarm when there is no intruder

in the detection area. Second one is that system does not give an alarm even if there is an

intruder in an area. Former will cause only waste of time. However, the latter one is more

crucial problem that our system must not ignore such an intrusion.

Moreover, the detection range is a problem and also the constraint of the system. The working

range of the system is important, because if we can increase it, military service can protect the

area with less number of seismic sensors.

Classification of the intrusion is another problem that we must handle. This problem has also

relation with the decreasing the false alarm rate, because, if the intrusion classification cannot

handled efficiently, this means that our system will give the intrusion detection alarm for any

other kind of animal. This is also the waste of time and money for military services.

The last important problem is that power consumption of the seismic sensor and its board.

These sensors will not only be placed to the smooth terrains, but also to the rough lands where

the soldiers cannot reach frequently. Therefore, the power consumption of our system must be

minimum as much as possible. This means that complexity of our algorithm must be very low

and we can give less voltage to the seismic sensor if there is no intrusion for a long time.

Software Design Document 2012

7

0
9

O

c
a

k

2

0
1

2

1.2. Purpose

We have stated the functional and non-functional requirements of the intruder detection

system in Software Requirements Specification document. At this document, we will give the

detailed system design properties of these requirements.

With the help of this document, reader can understand the system and the data architecture of

the system. In addition, this document includes all necessary information for a programmer to

develop an intrusion detection system.

1.3. Scope

This document describes software designs and establishes the information content and

organization of a software design description [1].

The scope of document includes hardware and software requirements, data design, system

architecture, tools, libraries, user interface design, and time planning of our project.

1.4. Overview

We can divide the document into nine parts, including introduction part as first. In the 2
nd

section, we will mention about the general details of the system by giving its goals, benefits

and objectives. 3
rd

 section generally includes the design issues which are dependencies,

constraints, goals, and guidelines. In section 4, we will give the data design properties which

are the properties of the storage of data into the database system, or SD card with data

features. 5
th

 part includes the detailed description of program architecture. In 6
th

 section, user

interface design and its screen images will be presented. In section 7, we will give a detailed

design of our entities and components. In the 8
th

 section, we will give the required tools and

libraries to develop the system. In the 9
th

 section, we will give the finalized Gantt chart

diagram for 1
st
 and 2

nd
 terms. In the last section, we will conclude the software design

document.

1.5. Definitions, Acronyms and Abbreviations

API: Application Program Interface

DBMS: Database Management System

GPRS: General Packet Radio Service

GPS: Global Positioning System

GUI: Graphical User Interface

IDE: Integrated Development Environment

Software Design Document 2012

8

0
9

O

c
a

k

2

0
1

2

JDBC: Java Database Connectivity API

ORDBMS: Object-Relational Database Management System

SCC: Simulation Core Component

SD: Secure Digital

SDD: Software Design Document

SRAM: Static Random Access Memory

1.6. References

[1] Society, IEEE Computer. (2009). IEEE Standard for Information Technology—

Systems Design— Software Design Descriptions. New York: IEEE.

[2] http://en.wikipedia.org/wiki/Flow-based_programming

[3] http://c2.com/cgi/wiki?CouplingAndCohesion

[4] Liang Z., Wei J., Zhao J., Liu H., Li B., Shen J., Zheng C., “The Statistical Meaning of

Kurtosis and Its New Application to Identification of Persons Based on Seismic Signals”,

Sensors 2008, 8, 5106-5119; DOI: 10.3390/s8085106

[5] http://worldwind.arc.nasa.gov/java/

[6] http://www.postgresql.org/docs/current/static/intro-whatis.html

[7] http://itextpdf.com/

[8] http://code.google.com/p/java2word/

[9] http://www.java-tips.org/other-api-tips/jogl/what-is-jogl.html

[10] http://www.jfree.org/jfreechart/

2. System Overview

We use mainly Waspmote IDE application for writing and embedding the code to the

Waspmote.

2.1. Waspmote IDE

Waspmote IDE is a well-organized development environment, programmed with Java, to

embed the code to the waspmote board. It contains all required libraries to handle the

operations of the sensors, GPS, GPRS, or any other equipped hardware that can be integrated

Software Design Document 2012

9

0
9

O

c
a

k

2

0
1

2

on a board. Its libraries are created, effectively. All of the functions are understandable for a

programmer. In figure (1), user interface of Waspmote IDE is provided.

Figure 1. Waspmote IDE

It includes own grammar syntax written with Java ANTLR library.

3. Design Considerations

3.1. Design Assumptions, Dependencies and Constraints

 Intruder detection system code will be embedded to the waspmote board.

 Waspmote has ATmega1281 microprocessor with 8MHz frequency and 8 KB SRAM.

 The program must use less memory as much as possible due to the small size of

memory on board.

 The microprocessor has low frequency so the time complexity of our system must be

very low.

 The required database management system is PostgreSQL.

Software Design Document 2012

10

0
9

O

c
a

k

2

0
1

2

 The system has GPS to get the latitude, longitude, altitude, and the time from the

satellite.

 When Waspmote is not connected to the PC, it will record the alarms to the SD card

which can be integrating on it.

 Our project assumption is that each waspmote with seismic sensors will have own

code inside and all seismic sensors will give an alarm independent from each other.

3.2. Design Goals and Guidelines

3.2.1. Performance

Due to the small memory size and low frequency of the microprocessor inside the board, our

intruder detection algorithm must work fast. All of the calculations which decide the intrusion

detected must be performed in short period of time.

3.2.2. Reliability

Important issue that we will handle is reducing the false alarm rate meaning that giving an

alarm when there is no intruder or not giving any alarm that there is an intruder. False alarm

rate will decrease the reliability of our system. It also causes the waste of time for military

service. We can think that our system has a zero tolerance to the errors.

4. Data Design

4.1. Data Description

This part consists of two subparts: description of data entities, where the major data entities of

the system will be identified and described one by one and database of the system where the

responsibilities of the databases will be discussed and details how to create it will be given.

4.1.1. Description of Data Entities

In this part, descriptions of the data entities in the information domain of the intruder

detection system are given. There are 13 data entities in the system: report, analysis, alarm,

position, timeline, timelineEntry, simulationCore, database, sensor, sensorParameters,

sensorManager, communication, and alarmPacket.

4.1.1.1. Report Data Entity

The Alarm data entity holds the information needed to describe a report.

Software Design Document 2012

11

0
9

O

c
a

k

2

0
1

2

Field Name Data Type Description

text string Text defining the document

documentType bool Type of the document.

Indicates pdf or doc.

linkToCore SimulationCore* Pointer to simulation core

component

linkToAnalysis Analysis* Pointer to analysis

component

4.1.1.2. Analysis data entity

The Analysis data entity holds the information needed to describe statistics computed by the

analysis component.

Field Name Data Type Description

numOfSensors int Number of sensors in the

system

numOfAlarms int Total number of alarms

obtained

mostActiveSensor string ID number of the most active

sensor

leastActiveSensor string ID number of the least active

sensor

lastAlarm Alarm Last alarm obtained

lastActiveSensor string ID number of the sensor

from the last alarm obtained

mostActiveToLeast string[] List of IDs of sensors from

most actives to least

mostRecentActiveToLeast string[] List of IDs of sensors from

most recent actives to least

linkToCore SimulationCore* Pointer to simulation core

component

linkToTimeline Timeline* Pointer to timeline

component

Software Design Document 2012

12

0
9

O

c
a

k

2

0
1

2

4.1.1.3. Alarm data entity

The Alarm data entity holds the information needed to describe an alarm.

Field Name Data Type Description

date date Date when the intruder is

detected

time time Time when the intruder is

detected

alarmPos Position Position where the intruder is

detected

4.1.1.4. Position data entity

The Position data entity holds the information needed to describe a position.

Field Name Data Type Description

latitude double Latitude value of the position

longitude double Longitude value of the

position

4.1.1.5. Timeline data entity

The Timeline data entity holds the information needed to represent the timeline on the GUI.

Field Name Data Type Description

timeline TimelineEntry[] List of TimelineEntriy

objects to define the timeline

linkToCore SimulationCore* Pointer to simulation core

component

4.1.1.6. TimelineEntry data entity

The TimelineEntry data entity holds the information needed to describe an entry of the

TimeLine.

Software Design Document 2012

13

0
9

O

c
a

k

2

0
1

2

Field Name Data Type Description

sensorID string ID number of the sensor

alarmDate date Date when the intruder is

detected

alarmTime time Time when the intruder is

detected

alarmPos Position Position where the intruder is

detected

4.1.1.7. SimulationCore data entity

The SimulationCore data entity holds the information needed to represent the simulation core

component.

4.1.1.8. Database data entity

The Database data entity holds the information in the database.

Field Name Data Type Description

linkToDatabase Database* Link to the database

component

instructionQueue Queue<int> Queue of integers

Field Name Data Type Description

sensors Sensor[] Array of sensors

Software Design Document 2012

14

0
9

O

c
a

k

2

0
1

2

4.1.1.9. Sensor data entity

The Sensor data entity holds the information needed to describe and mimic a sensor.

4.1.1.10. SensorParameters data entity

The SensorParameters data entity holds the information needed to describe the sensor

parameters.

Field Name Data Type Description

sensorID string ID number of the sensor

sensorName string Name of the sensor

sensorPos Position Current position of the sensor

alarms Alarm[] List of alarms obtained from

that sensor

parameters sensorParameters Parameters of the sensor

mode int Current mode of the sensor

Field Name Data Type Description

sensitivity int Sensitivity to seismic

movements

power int Power that the sensor

consumes

algorithmParameters float[] Parameters used in the

algorithm embedded in the

sensor

Software Design Document 2012

15

0
9

O

c
a

k

2

0
1

2

4.1.1.11. SensorManager data entity

The SensorManager data entity holds the information needed to describe the sensor managing

component.

4.1.1.12. Communication data entity

The Communication data entity holds the information needed to describe the communication

component.

4.1.1.13. AlarmPacket data entity

The AlarmPacket data entity holds the information needed to describe the alarm packets

received from the sensor.

Field Name Data Type Description

linkToCommunication Communication* Pointer to the communication

component

linkToCore SimulationCore* Pointer to the simulation core

component

Field Name Data Type Description

linkToCore SimulationCore* Pointer to the simulation core

component

Field Name Data Type Description

sensorID string ID number of the sensor

alarms Alarm[] List of alarms

Software Design Document 2012

16

0
9

O

c
a

k

2

0
1

2

4.1.2. Databases and Data Storage Items

4.1.2.1. SD Card

There will be a SD card in the sensor, more specifically, integrated with the Waspmote board.

With this card, the sensor will be able to store the alarms. When user wants to read the alarms

from the sensor, he/she will send a command requesting the alarms in the card and the alarms

will be kept in the hard disk, namely, the storage item of control center. More specific

information about SD cards is given in section 8.9.

4.1.2.2. Hard-disk of the Control Center

A common hard-disk will be the main information storage item of the system. It will hold the

records of the past alarms. We keep past alarms because user may want to create a document

showing the statistics about the alarms kept.

The database will be created with PostgreSQL, which is an open source, object-relational

database system. More specific information about PostgreSQL can be found in section 8.7.

4.2. Data Dictionary

Name Type Refer to Section

Alarm Data entity 4.1.1.3

AlarmPacket Data entity 4.1.1.13

Analysis Data entity 4.1.1.2

Analysis Component 5.2.7

Communication Data entity 4.1.1.12

Communication Component 5.2.5

Database Database 4.1.1.8

Database Component 5.2.2

Software Design Document 2012

17

0
9

O

c
a

k

2

0
1

2

Position Data entity 4.1.1.4

Report Data entity 4.1.1.1

Reporting Component 5.2.4

Sensor Data entity 4.1.1.9

SensorManager Data entity 4.1.1.11

Sensor Managing Component 5.2.3

SensorParameters Data entity 4.1.1.10

SimulationCore Data entity 4.1.1.7

Simulation Core Component 5.2.1

Timeline Data entity 4.1.1.5

Timeline Component 5.2.6

TimelineEntry Data entity 4.1.1.6

5. System Architecture

In this chapter, a general description about the Intruder Detection System will be given.

Firstly, information about the relationships between the modules of the whole system will be

provided. Then, each module will be analyzed individually. Finally, the design rationale and

traceability of system requirements will be provided.

5.1. Architectural Design

The Intruder Detection System will consist of two types of devices: the control center, and

sensor. There may be several sensors in the system. However, there will be only one control

center managing all of these sensors. A deployment diagram for the system is provided in the

figure (2).

Software Design Document 2012

18

0
9

O

c
a

k

2

0
1

2

Figure 2. Deployment diagram of the system.

Software architecture design of each device will be described separately.

5.1.1. Software Architectural Design of the Control Center

The control center consists of components. Each of these components has a different task than

each other. Every component in the system sees other components as black boxes. The whole

system is organized with the help of data exchanges between these black boxes, namely

components. This type of programming paradigm is called as flow based programming.

The system will consist of seven components. These components are;

 Simulation core component

 Database component

 Sensor managing component

 Reporting component

 Communication component

 Timeline component

 Analysis component

Software Design Document 2012

19

0
9

O

c
a

k

2

0
1

2

Component diagram of the Intruder Detection System is provided in the figure (3).

Figure 3. Component diagram of the system.

Before giving detailed descriptions of these components, we will first give short descriptions

of each of these components.

Simulation Core Component: This component is the heart of the system. Only this

component has access to the database component. With this, reaching of more than one

operation to the database at the same time is avoided. Thus, the simulation core component

makes the system more modular. Every other component will be in interaction with this

component. Hence, this component can be seen as a bridge between the database component

and the other components.

Database Component: This component has the responsibility of realizing the database

operations. Only this component is authorized to reach the physical database. Hence, this

component can be seen as a bridge between the simulation core component and the physical

database.

Sensor Managing Component: This component has the responsibility of managing the

sensors such as changing sensor parameters, changing mode of a sensor, registering new

sensor to the system and unregistering a sensor from the system.

Reporting Component: This component is responsible from documenting the statistics

related to the sensors in the system and their alarm information. The user can provide the time

interval in which he/she wishes to see the statistics and the type of the document (pdf or doc).

Software Design Document 2012

20

0
9

O

c
a

k

2

0
1

2

Communication Component: The responsibility of this component is to establish

communication between the control center and the sensors. Low level operations such as

receiving information packets and sending them to the simulation core component are done by

this component.

Timeline Component: When the user wishes to see alarms in a time interval along with

corresponding sensor, position, date and time, this component takes the action. The user can

be seen the information as a timetable.

Analysis Component: This component has the responsibility of computing the statistics

related to the sensors in the system. Either the user can directly see the statistics or reporting

component can use these statistics in the documentation.

5.1.2. Software Architectural Design of the Sensors

The sensor processes the signals related to the seismic movements and decides whether it is

an intruder or not. If it is an intruder, it sends an alarm to the control center.

The responsibility of the sensors is not as complex as the control center. Thus, it is not consist

of any components. There will be a detection and classification algorithm embedded in it.

We are planning to use an algorithm making use of kurtosis method. The details of the

algorithm is provided in [4].

5.2. Description of Components

In this section, brief description of each component is given. For each component, firstly, a

class diagram describing the component is provided. Then, for each component, processing

narrative summarizing the responsibilities of the component, interface description describing

the interfaces that the component has, processing details that describes the details related to

the computations done by the component, and dynamic behavior summarizing the interactions

between components and defining use case realized by the component is going to be given.

5.2.1. Simulation Core Component

Simulation core component is the heart of the system. This component is in communication

with all other components. Basically, simulation core component is a bridge between other

components (except database component) and the database component. The class diagram

describing the simulation core component is given figure (4).

Software Design Document 2012

21

0
9

O

c
a

k

2

0
1

2

Figure 4. Class diagram for the simulation core component.

5.2.1.1. Simulation Core Component Processing Narrative

We choose the design paradigm while designing the system to be flow based programming.

This component is created so that the system will be more modular and more suitable for flow

based programming paradigm [2].

Simulation core component can be thought as an interface between the other components

(except database component) and the database component. A component can access a method

of any other component via this component. This minimizes the coupling of the whole system

[3].

Data transfers between the database component and the other components are realized by the

simulation core component.

5.2.1.2. Simulation Core Component Interface Description

The component provides a data interface between the database component and the other

components. The data communication between the database component and the other

components are realized by this interface.

5.2.1.3. Simulation Core Component Processing Details

When a component requires doing an operation that makes use of database, it uses this

component instead of reaching the database directly. When an operation making use of the

database is requested, simulation core module puts that operation in an instruction queue. The

operations in the instruction queue are done one-by-one sequentially by the simulation core

component. With this kind of processing, only one operation at a time is done that makes use

of the database.

Software Design Document 2012

22

0
9

O

c
a

k

2

0
1

2

5.2.1.4. Simulation Core Component Dynamic Behavior

At the very basic, the responsibility of the simulation core component is to receive data from

the database component and send data to the database component. More specifically, the read

and write operations related to the database of timeline, analysis, reporting, communication

and sensor managing components are done with the help of the simulation core component.

This component does not realize any requirement directly but it helps other components to be

able to make them realize the system requirements.

5.2.2. Database Component

Database component is designed to coordinate write and read operations that will be done on

the database. Only this component is authorized to reach the database directly. The class

diagram describing the database component is given in figure (5).

Software Design Document 2012

23

0
9

O

c
a

k

2

0
1

2

Figure 5. Class diagram for the database component.

5.2.2.1. Database Component Processing Narrative

As indicated previously, the only component that interacts with the database component is the

simulation core component. Thus, responsibility of this component is to realize the operations

on the database desired by the simulation core component.

Indirectly and logically, it can be thought that all other components make write and read

operations with the database via the simulation core component. Thus, the database

component can be seen as a “bridge” between the simulation core component and the physical

database.

Software Design Document 2012

24

0
9

O

c
a

k

2

0
1

2

5.2.2.2. Database Component Interface Description

The database component is an interface between the simulation core component and the

physical database. The simulation core component is going to request data read and data write

operations to the physical database via this component. Thus, there are two interfaces of the

database component: one with the simulation core component, one with the physical database.

From both of them, there will be data communication.

5.2.2.3. Database Component Processing Details

The sensors registered to the system and alarms get from SD cards of the sensors will be

recorded in the database. There are two major operations with the database: data read and data

write.

When the user wants a document of the alarms in the database via the reporting module, the

simulation core sends a request to the database module. After that, a read operation is

performed; the database module reads the alarms recorded in the database and sends them to

the simulation core component.

When the user wants to get the records in the SD cards of the sensors, the alarms are obtained

via the communication component. It sends them to the simulation core component and the

simulation core component sends them to the database component. Then, a write operation is

performed; the database module writes the alarms sent by the simulation core component to

the database.

Write operations may also be requested by the sensor managing module. When a new sensor

is registered or deleted, or settings of a sensor are changed, the data related to the sensors on

the database are needed to be updated. These operations are redirected by the simulation core

component to the database component and the database component performs the desired

tasks.

5.2.2.4. Database Component Dynamic Behavior

The responsibilities of the database component are described in the previous sections. At the

very basic, it performs read and write operations related to the database requested by the

simulation core module. This module does not realize any functional requirement directly but

it helps other modules in a way that database operations are done via this component.

5.2.3. Sensor Managing Component

At the very basic, the sensor managing component will perform the tasks related to the tuning

of the sensors such as changing sensor parameters etc. The details of these operations are

provided in the following subsections. The class diagram describing the sensor managing

component is given in figure (6).

Software Design Document 2012

25

0
9

O

c
a

k

2

0
1

2

Figure 6. Class diagram for the sensor managing component.

5.2.3.1. Sensor Managing Component Processing Narrative

The operations related to sensors are realized by this component. The responsibilities of this

component can be summarized as changing sensor parameters, changing sensor mode, adding

a new sensor to the system and deleting a sensor from the system.

5.2.3.2. Sensor Managing Component Interface Description

The sensor managing module has three interfaces; one with the user via GUI, one with the

communication component and one with the simulation core component.

When the user wants to change settings or mode of a sensor, it sends new parameters or mode

to the sensor via the communication component and updates the parameters or mode in the

database related to that sensor via the simulation core component.

When the user wants to add or delete a sensor, the sensor managing component updates the

sensor list in the database accordingly via the simulation core component.

5.2.3.3. Sensor Managing Component Processing Details

The user interacts with the sensors via the sensor managing component. The computational

task of the component is not heavy. It just redirects the information related to sensors from

GUI to the related components, namely, to the communication component and to the

simulation core component.

When the user wishes to change the settings or mode of a sensor, the components packets the

related data obtained via GUI. It first sends it to the communication module. If the setting

change is successful, it also calls simulation core component to update the related information

in the database.

Software Design Document 2012

26

0
9

O

c
a

k

2

0
1

2

When the user wishes to add or delete a sensor, the related information is updated via the

simulation core component. Thus, in such a case, this component invokes the simulation core

component.

5.2.3.4. Sensor Managing Component Dynamic Behavior

The responsibilities and the processing details of the sensor managing component have

already been described in the previous sub sections. As it is described, the component is in

interaction with the communication component and the simulation core component.

In a parameter or mode change operation, the component first invokes the communication

component. If the operation is successful, then, the component invokes the simulation core

component to make the related updates in the database.

In a sensor add or delete operation, the component directly invokes the simulation core

component and makes the related updates in the database.

The use cases realized by the component are changing mode or parameters of a sensor, adding

a new sensor to the system and deleting a sensor from the system. The sequence diagrams

summarizing these processes are given in figures (7), (8), and (9).

Figure 7. Sequence diagram for changing mode/parameters of a sensor.

Software Design Document 2012

27

0
9

O

c
a

k

2

0
1

2

Figure 8. Sequence diagram for registering a new sensor to the system.

Figure 9. Sequence diagram for deleting a sensor from the system.

5.2.4. Reporting Component

With the reporting component, the user will be able get the statistics and alarm records in a

document format. The details of the component are described in the following sub sections.

The class diagram describing the reporting component is given in figure (10).

Software Design Document 2012

28

0
9

O

c
a

k

2

0
1

2

Figure 10. Class diagram for the reporting component.

5.2.4.1. Reporting Component Processing Narrative

Via this component, the user will be able to get the information about the intruder actions

defined in a time interval in a report format. The user will be able to select the desired format

for the document; it will be either pdf or doc.

The information on the document can be grouped into two: statistics such as most recently

detected intruder, most active alarm etc., and a list that illustrates alarms obtained for each

sensor along with their coordinates, dates and times.

5.2.4.2. Reporting Component Interface Description

The reporting component has three interfaces; one with the GUI, one with the simulation core

component and one with the analysis component.

Via the GUI, the user will be able to define a time interval and type of the document. The user

will get the report in the specified format. There will be alarm actions related to that time

interval and statistics related to time interval on the document.

With the interface with analysis component, the reporting component will be able to get the

data required for the statistics part of the document.

With the interface with simulation core component, the reporting component will be able to

obtain the sensor information related to the sensors registered in the database.

5.2.4.3. Reporting Component Processing Details

From the analysis component, the reporting component will create the statistics part of the

report. Please note that it is the responsibility of the analysis component to create the

Software Design Document 2012

29

0
9

O

c
a

k

2

0
1

2

statistics. Thus, the reporting component will do no computations to compute the statistics;

they will be in hand already.

From the simulation core component, the reporting component will get a list of the sensors.

Then, for each sensor in the list, the component will compute alarms obtained from that

sensor, current position of the sensor and name of that sensor. For each alarm, the component

will extract date, time and position information of that alarm.

Then, the component will create a text from these data and print the text on a document in the

specified format.

5.2.4.4. Reporting Component Dynamic Behavior

The reporting component will be in interaction with the analysis component and the

simulation core component.

It will obtain the information related to sensors via the simulation core component

(Simulation core component is responsible from realizing the database operations.). However,

it will not get all the information hand in. It will obtain the list of sensors in the database and

then compute the desired information using the list. It will obtain the statistics information

from the analysis module hand in.

A sequence diagram summarizing this process is given in figure (11).

Software Design Document 2012

30

0
9

O

c
a

k

2

0
1

2

Figure 11. Sequence diagram for reporting alarms in the database.

5.2.5. Communication Component

It is the communication component that sends and receives data from the sensors. Details of

the communication component are provided in the following sub sections. The class diagram

describing the communication component is given in figure (12).

Software Design Document 2012

31

0
9

O

c
a

k

2

0
1

2

Figure 12. Class diagram for the communication component.

5.2.5.1. Communication Component Processing Narrative

Basically, there are two major responsibilities of this module; sending information to a sensor,

getting information from a sensor.

Getting alarms from a sensor, getting mode or settings of a sensor and getting position of a

sensor are getting information operations.

Changing sensor modes and parameters are sending information operations.

Software Design Document 2012

32

0
9

O

c
a

k

2

0
1

2

5.2.5.2. Communication Component Interface Description

The communication component has four interfaces; one with the sensor (via a wireless link),

one with the user via the GUI, one with the simulation core component, and one with the

sensor manager component.

The wireless communication interface will be provided with XBee modules. The details of

these modules will not be given here. Please refer to tools and libraries section to see more

details about these modules.

Via GUI, the user will be able to learn alarm information, mode, parameters and position of a

sensor. The ID of the sensor will be provided in the GUI.

The communication component will be invoked by the sensor managing component. When

the user wishes to change parameter or mode of a sensor, sensor managing component will

pack and redirect the related information to the communication component.

The simulation core component will be invoked when the user wishes to learn alarm

information, parameters, mode or position of a sensor. The related information will be sent to

the simulation core component via the interface between it and the communication

component.

5.2.5.3. Communication Component Processing Details

The computations performed by the communication component are not heavy. In an

information getting operation, it packets the incoming packets and redirects it to the

simulation core component. In an information sending operation, it packets the related

information and sends it to the corresponding sensor via the wireless communication.

5.2.5.4. Communication Component Dynamic Behavior

The communication component will be in interactions with the sensor managing component

and the simulation core component.

However, the communication component will not invoke the sensor managing component; it

will be invoked by the sensor managing component.

The communication component will invoke the simulation core component when the user

wants go get information related to the sensors. It will send these data to the simulation core

so that they will be written to the database.

A sequence diagram summarizing this process is provided in figure (13).

Software Design Document 2012

33

0
9

O

c
a

k

2

0
1

2

Figure 13. Sequence diagram for sending alarm to the control center.

5.2.6. Timeline Component

Timeline component is used when the user wishes to see the alarms in a time interval in the

database in a list format. Details of the timeline component are provided in the following sub

sections. The class diagram describing the timeline component is given in figure (14).

Software Design Document 2012

34

0
9

O

c
a

k

2

0
1

2

Figure 14. Class diagram for the timeline component.

5.2.6.1. Timeline Component Processing Narrative

The responsibility of the timeline component is to create a list of alarms in the GUI for a

desired time interval. It will list the alarms one-by-one. For each alarm, it will show ID of the

sensor from whom the alarm is get, alarm date, alarm time, and position of the alarm.

5.2.6.2. Timeline Component Interface Description

Timeline component has two interfaces; one with the user via the GUI, and one with the

simulation core component.

Via the GUI, the component will get the start time and date and ending time and date. It will

create the timeline for the alarms get in this interval.

From the simulation core component, the timeline component will obtain the sensor data via

the interface. By using this data, the component will compute the desired information.

5.2.6.3. Timeline Component Processing Details

The timeline component will obtain the sensor list of all sensors recorded in the database. It

then processes this list and obtains the alarms and information related to these alarms (alarm

Software Design Document 2012

35

0
9

O

c
a

k

2

0
1

2

position, time, etc.) by investigating this list. It then sends these data to the GUI so that the

user will be able to see the alarm list.

5.2.6.4. Timeline Component Dynamic Behavior

The timeline component will be in interaction with the simulation core component. The

timeline component obtains information related to the sensor recorded in the database via the

simulation core component. The simulation core component will invoke the database

component to obtain the information and redirects it to the timeline component.

A sequence diagram summarizing this process is provided in figure (15).

Figure 15. Sequence diagram for creating the timeline.

5.2.7. Analysis Component

With the analysis component, the user will be able to see statistics related to the sensors.

Details of the analysis component are provided in the following sub sections. The class

diagram describing the analysis component is given in figure (16).

Software Design Document 2012

36

0
9

O

c
a

k

2

0
1

2

Figure 16. Class diagram for the analysis component.

5.2.7.1. Analysis Component Processing Narrative

The responsibility of the analysis component is to process the information related to the

sensors registered in the database, and gather statistics about them. More specifically, it will

compute number of sensors, number of alarms, most active sensor, least active sensor, last

alarm obtained, last active sensor, list of sensors from most active to least, list of sensors from

most recent active to least recent active.

Software Design Document 2012

37

0
9

O

c
a

k

2

0
1

2

5.2.7.2. Analysis Component Interface Description

The analysis component has two interfaces; one with the simulation core component, and one

with the user via GUI.

The list of sensors in the database is transferred via the simulation core component. Please

note that it is the responsibility of the analysis component to process and gather information

related to the sensors.

Via the GUI, the analysis component will be able to be invoked by the user.

5.2.7.3. Analysis Component Processing Details

When the analysis component gets the list of the sensors in the database, it will process the

list and gather the statistics defined in the processing narrative section. After the processing, it

will send the information to the GUI so that the user will be able to see the statistics.

5.2.7.4. Analysis Component Dynamic Behavior

The analysis component is in interaction with the simulation core component. When it needs

the list of sensors, it invokes the simulation core component to get the list. Then, the

simulation core component obtains the list and redirects it to the analysis component.

A sequence diagram related to the use case realized by this process in provided in figure (17).

Figure 17. Sequence diagram for getting statistics from the database.

Software Design Document 2012

38

0
9

O

c
a

k

2

0
1

2

5.3. Design Rationale

The system is decomposed in this way because the requirements of the system are quite

different from each other. These requirements must be realized by distinct components.

Hence, decomposing the system into components in this way is intuitive.

Decomposition of the system also makes testing and debugging process easier as components

can be tested and debugged independently.

Nevertheless, this approach can decrease the optimality of the system. More specifically,

defining many classes with many methods such that these methods call each other can affect

the performance of the system in an undesirable fashion. However, as the control center

application will not be real time, this issue is not so important.

5.4. Traceability of Requirements

In the following table, each functional requirement of the system is defined in the

“Requirement” column; the component that satisfies the requirement is defined in the

“Component” column, the figure number illustrating the sequence diagram that summarizes

the process realizing the requirement is defined in the “Figure” column.

Requirement Component Figure

Sending alarm to the control center Communication

Reporting alarms in the database Reporting

Getting statistics from the database Analysis

Changing mode/parameters of a sensor Sensor managing

Registering a new sensor to the system Sensor managing

Deleting a sensor from the system Sensor managing

Creating timeline Timeline

Software Design Document 2012

39

0
9

O

c
a

k

2

0
1

2

6. User Interface Design

6.1. Overview of User Interface

This part contains explanations about usage of the system. In this part, users are provided

enough information about interfaces and possible actions can be made. We will have two

types of users, namely Admin and Tester.

Tester: Checks data sent by sensor and gets reports.

Admin: Checks data sent by sensor, gets report, adds new geophone and user to the system.

Admin has more authority than testers.

6.1.1. Tester Interface

6.1.1.1. Login Page

After starting application, this page is opened in front of user. User is asked to enter a valid

username and password to login to the system. If the username/password combination is not

valid, user is warned about that error. User must check for his login information and must

provide new combination. For new users, there is a Register link in this page. After clicking

this link, user will be directed to Registration Page where new users register themselves to the

system. Activity diagram for Login is shown in figure (18).

Software Design Document 2012

40

0
9

O

c
a

k

2

0
1

2

Figure 18. Activity diagram for the login page.

6.1.1.2. Registration Page

In this page, there is a registration form. User must fill all the fields before submitting the

form. If there exists a username or an email address with selected ones user is warned about

these errors (Figure (24) in part 6.2). User is asked to provide new username/email address.

When successful registration is achieved, user will be directed to Login Page (as explained in

diagram in Figure (19)). After approval by admin, user can enter the system freely using his

username and password.

Software Design Document 2012

41

0
9

O

c
a

k

2

0
1

2

Figure 19. Activity diagram for the registration page.

6.1.1.3. Main Page

After successful login, user will be directed to this page. This page contains a map which is

produced using Nasa World Wind Java SDK ([5]). This map shows the place of each

geophones in a certain region which are signed by rectangular-shaped marker. Colors of

markers display important information about the state of geophones.

Software Design Document 2012

42

0
9

O

c
a

k

2

0
1

2

 : Last alarm time is less than 15 minutes

 : Last alarm time is less than 24 hour but more than 15 minutes

 : Last alarm time is more than a day

User can get information about geophones clicking on colored markers (look at Figure (27) in

part 6.2.3). This information is ID, latitude, longitude and last data time of geophone. By

using “click here” link on opened information window, user will be directed to Report Page.

Activity diagram for operations in Main Page is given in figure (20).

Figure 20. Activity diagram for the main page.

Software Design Document 2012

43

0
9

O

c
a

k

2

0
1

2

6.1.1.4. Report Page

User can see report about sensor which is clicked lastly. GeophoneID, latitude, longitude and

last data time is contained in this page. User also will be able to see time series chart of

geophone. This chart shows last 24 hour flow of incoming signals. Below chart, there are

forward and backward buttons. Clicking on these buttons, user can see the charts of previous

and next days (look at Figure (21) to see activity diagram). There will be Print button to print

out the report. In addition, there are two buttons to save Report on computer, namely “Save

As DOC” and “Save As PDF”.

 Figure 21. Activity diagram for the report page.

6.1.2. Admin Interface

6.1.2.1. Login Page

Login page of admin will be the same as testers (explained in part 6.1.1.1). The only

difference is that admin will not need to register to system.

6.1.2.2. Control Page

There are two frames in this page. In the first frame, users who want to register to the system

will be displayed. Admin can select people and after pressing “Add Selected Users” button,

users will be added to the database of the system. There is also “Delete Selected Users”

button. Admin can reject requests of some users by selecting them and pressing that delete

button. Second frame will be used for adding new sensors to the system. There will be a form

to be filled. This form asks user to enter latitude, longitude and geophoneID. After filling this

Software Design Document 2012

44

0
9

O

c
a

k

2

0
1

2

form, user will click on “Add Geophone” button and geophone will be added to the system.

Result of each activity can be made is shown in figure (22).

Figure 22. Activity diagram for the control page.

6.1.2.3. Main Page

This page will be the same as tester's Main Page (explained in part 6.1.1.3).

6.1.2.4. Report Page

This page will be the same as tester's Report Page (explained in part 6.1.1.4).

6.2. Screen Images

6.2.1. Login Screen

Login screen can be seen in figure (23).

Software Design Document 2012

45

0
9

O

c
a

k

2

0
1

2

Figure 23. Login screen

When wrong username/password is entered, User will be warned about this by screen as

shown in figure (24).

Figure 24. Error-login screen

Software Design Document 2012

46

0
9

O

c
a

k

2

0
1

2

6.2.2. Register Screen

Register screen can be seen in figure (25). Moreover, error register screen can be seen in

figure (26).

Figure 25. Register screen

Software Design Document 2012

47

0
9

O

c
a

k

2

0
1

2

Figure 26. Error-register screen

6.2.3. Main Screen

Main screen can be seen in figure (27).

Software Design Document 2012

48

0
9

O

c
a

k

2

0
1

2

 Figure 27. Main screen

6.2.4. Control Screen

Control screen is given in figure (28).

Software Design Document 2012

49

0
9

O

c
a

k

2

0
1

2

Figure 28. Control screen

6.2.5. Report Screen

Report screen can be seen in figure (29).

Software Design Document 2012

50

0
9

O

c
a

k

2

0
1

2

 Figure 29. Report screen

6.3. Screen Objects and Actions

While on Control screen or Report screen, if user presses the close marker (Figure (30)), user

will be directed to Main Page.

 Figure 30. Close markers on Control and Report screens

There will be a map on Main screen as explained in part 6.1.1.3. By clicking on middle of

rotate marker, user will be able to rotate around world origin. Using left, right, down and up

signs exist on rotate marker , user will be able to move to left, right, up and down.(look at

figure (31)).

Software Design Document 2012

51

0
9

O

c
a

k

2

0
1

2

 Figure 31. Rotate and zoom actions on Main Screen

Using + / - signs on map as shown in figure (31), user can zoom in/ zoom out.

User can see map from up and down by clicking from Up and from Down markers as shown

in figure (32). User can make choice about the details of location which is seen. User can see

more detail or less by using markers on map (look at Figure (32)).

Software Design Document 2012

52

0
9

O

c
a

k

2

0
1

2

 Figure 32. Up, down and detail actions on Main screen

Highly detailed map scene can be seen in Figure (33).

Software Design Document 2012

53

0
9

O

c
a

k

2

0
1

2

 Figure 33. Detailed Map

7. Detailed Design

The overview of each component was provided at System Architecture section. In this section

we will provide the internal details of these components. By and large we will provide

information about each of the components classification, definition, responsibility, constraint,

composition, interaction, resource and processing details. The aim of this part is to contain all

the details that will be needed for implementation phase.

Please note that the class diagrams of the components are given individually in the system

architecture chapter. In this part, instead of giving them again, we provide the class diagram

of the whole system. Class diagram of the whole system can be seen in figure (34).

Software Design Document 2012

54

0
9

O

c
a

k

2

0
1

2

Figure 34. Class diagram of the whole system.

Software Design Document 2012

55

0
9

O

c
a

k

2

0
1

2

7.1. Database Module

In this section detailed design of Database Module is provided.

7.1.1. Classification

Database Module is a module of the Intruder Detection System which interacts with the

Simulation Core Component and Database System.

7.1.2. Definition

This module is the place where the interaction with the database and the whole is system is

held. Database module is the interface between the Database Management System (DBMS)

and the Simulation Core Component. This module organizes the reading and writing process

on the database. No other module has direct access to database. This module has

communication with Simulation Core Component. And the whole database accesses are

carried out with the help of this communication.

7.1.3. Responsibilities

The main responsibility of this component is to manage the requests come from the

Simulation Core Component. Any of the other components makes their requests on

Simulation Core Component. These requests are generally about reading from database or

writing to database. For each of the request coming from a different component, performing

the corresponding reading and writing operations is also a responsibility of this component.

7.1.4. Constraints

The constraints of the Database component are:

Database unit must interact with Simulation Core Component without serious time-delays to

be able to get and send the information accurately.

The module is completely dependent to other modules. If a wrong information transfer is

made between the Simulation Core Component and the other modules. There is no way to

handle that situation.

It should take the information to be written to database without much time-delay because

other modules also can make data reading request and if the data supposed to be written to

data base is not written yet, then serious problems like not reporting the alarms could occur.

7.1.5. Compositions

The Database Module is composed of one sub component. That sub component is composed

of two sub components. One can see the class diagram at the Database Module part at the

Software Design Document 2012

56

0
9

O

c
a

k

2

0
1

2

System Architecture part (Part 5) to see the details of these subcomponents. The descriptions

of these sub components are provided below:

Sensor Sub Component:

This sub component is used for reaching the information related to sensors. When writing data

to the database, data shall be written in a structured manner. Similarly when reading

information from database structured data shall be parsed and hold into relevant data

structures. For this job sensor sub component has two sub components namely Alarm and

Position sub components.

Alarm Sub Component:

This component holds the date, time and alarm positions. Organizations of these particles are

done by this sub component. This sub component is responsible from reading and writing of

these particles.

Position:

This component holds the latitude and longitude information. Organization of this information

is done on the Position Sub Component. This sub component is responsible from reading and

writing of these particles.

7.1.6. Uses and Interactions

Database component has Sensor sub component for performing the interactions with the

database. This sub component is responsible for communicating with database. It can perform

operations like inserting data to database, deleting, updating or retrieving. This sub

component consist classes namely Alarm and Position classes. These classes are used to

represent the entity structure of the database. When there is a request to Simulation Core

Component for reaching the database, the related class instances will be created. If the request

is a reading request associated class will be filled with requested information from database

tables. If the request is a writing request the associated class will be filled with the

information send from the Simulation Core Component. Then this information will be written

to relevant tables in the database tables.

7.1.7. Resources

Our Database Module reaches to Database System with the help of PostgreSQL DBMS.

PostgreSQL, is an object-relational database management system (ORDBMS) available for

many platforms including Linux, FreeBSD, Solaris, Microsoft Windows and Mac OS X [6].

Because of we are implementing Database interaction module of our system with Java, we use

the industry standard for database-independent connectivity with our program and the

Software Design Document 2012

57

0
9

O

c
a

k

2

0
1

2

database. This industry standard is Java Database Connectivity API (JDBC), it provides an

appropriate connection between the system and the database.

7.1.8. Processing

Database component carries on its operations over Sensor sub component. In this sub

component sensor information is processed with the help of Alarm and Position objects.

These objects have some variables for placing the relevant values. Furthermore they have

some functions to process data. The latitude and longitude values taken from GPS are stored

at Position object. These values can be read, written, deleted or updated by the help of

setLattitude(float), getLattitude(), setLongitude(float) and getLongitude() functions provided

by this object. On the other hand; date, time and position values.of the alarms are stored at

Alarm object. This object provides set and get functions for the specified values. Time and

date information provides information about the times of the Alarms. These values will be

used by many modules like Timeline module, Reporting Module and Analysis module.

Position values are also important for Reporting and Analysis modules. Furthermore position

information may be used to determine the direction of the intruder as a future study. In

addition to these, Sensor sub component provides setSensorMode(int) and getSensorMode()

functions to read and update sensor status in the database. This function is needed by Sensor

Managing Module to update sensor information. deleteSensor(string) method finds the sensor

defined by its ID given as string to it, and deletes the information related to that sensor from

the database.

7.1.9. Interface / Exports

As a result of all of its duties this component makes it creates an interface called Sensor. This

interface is provided to Simulator Core Component.

So now Simulator Core Component is aware of the alarm times, dates and positions and also

all of the sensor settings. With the help of this interface Simulator Core Component may

change, delete or retrieve information from the database.

7.2. Simulation Core Module

In this module detailed design of Simulation Core Module is provided.

7.2.1. Classification

Simulation Core Module is a module of the Intruder Detection System which interacts with all

of the modules of the system. It is actually main component of the system. All the data flow is

done on this module.

Software Design Document 2012

58

0
9

O

c
a

k

2

0
1

2

7.2.2. Definition

This module is the place where the whole data flow of the system is organized. The only

module that has interaction with database module is Simulation Core Module. It creates an

interface for all of the other modules of the system.

This module takes many requests for reaching the Database Module. Mainly what this module

does is to arranging the requests, putting them in order and processing these requests as fast as

possible.

After fulfilling the requests of the relevant modules, it notifies them that the work requested is

performed.

7.2.3. Responsibilities

In general main responsibility of this component is to organize the data flow of the system.

This module is always open to requests. When a new arrived request is come it must be

remembered. So this modules main work is to remember the requests make a list of them and

fulfill the requests.

To give better illustration of the responsibilities of this module following can be listed as the

main responsibilities of this component.

 Make polling to see that if there is an incoming request to reach the Database

Module.

 Put the requests to the, request list.

 Perform the requests.

 Notify the relevant module after the requests performed.

Another responsibility of this module is to provide a communication interface to the other

modules of the Intruder Detection System. So, receiving data from the modules and

transmitting data to the modules is a vital responsibility of this module.

7.2.4. Constraints

By and large there are two main constraints of this module.

The requests taken from the other modules must not be lost. Putting them to a list and

processing from that list is so much important for the reliability of the data. If one of the

requests is lost then this would cause to missing an intruder. Or if one of the requests are done

more than once by mistake, this would slow down the system as well as having an improper

result.

Another constraint of this module is the timing constraint. It must response in a small amount

of time to the requested components. If it does not answer in a short amount of time, then the

requests will accumulate and system will slow down which means having unnoticed intruders.

7.2.5. Compositions

This module is composed of one sub component which is called as Simulation Core.

Software Design Document 2012

59

0
9

O

c
a

k

2

0
1

2

Simulation Core: This object has the work to hold the request list. It has a queue in it to hold

the requests. Furthermore it makes communication with Database Module with the help of

linktoDatabase member. In addition to that it has some functions like

executeNextInstruction(), getSensorList(), addAlarm(string, Alarm) to read data from

Database Module and send data to Database Module. Details of these functions will be

provided at processing section.

7.2.6. Uses and Interactions

This module has communications with, Database module, Sensor managing module, Timeline

module, Reporting module, Analysis module and Communication Module. Basically it has

interactions with all of the modules of the system. It provides this interface with the sub

component Simulation Core. It can take requests, make a list of them and perform one by one.

After performing the requests it sends notification to the modules that the request is taken.

The only module that does not send requests to Simulation Core Module is the Database

Module. Simulation Core Module makes data reading or writing request according to the

incoming request. And when the Database Module makes the work it also notifies Simulation

Core Component. When a notification comes from Database Module, it communicates with

the module that sent the last request and sends a notification with the relevant data if it was

needed.

7.2.7. Resources

This module needs some connection rules to construct the communication protocols of the

system which will be provided to the system before the run.

Furthermore this module only needs C++ data structures for having the queue structure. Apart

from that there is no resource is needed for this part.

7.2.8. Processing

This module is responsible from data flow of the system. There is no interaction between the

other modules of the system. They only interact with the Simulation Core Module. This

provides the modularity of the system.

This module continues its process with polling for the incoming requests. When a new request

comes the module is notified. And it puts the request to instructionQueue member. Then it

starts new instructions to follow from instructionQueue with the help of

executeNextInstruction. If the instruction is a Database read request, make the request to

Database Module, save the read data and send it to the module which makes the request. Then

notify that module. If there is a Database write request, read the data that will be written,

make the request to Database Module, send the data that will be written. Notify the module

that made the request. The other functionalities that provided by this module is the following:

Software Design Document 2012

60

0
9

O

c
a

k

2

0
1

2

getSensorList(): This is a read request. When this request is comes from the other modules.

Then this module send a Database read request for sensor list. Database module returns the

sensor list to Simulation Core Module.

getSensor(string): This is a read request. When this request is comes from the other modules.

Then this module send a Database read request for specified sensor. Database module returns

the specified sensor to Simulation Core Module.

addSensor(Sensor): This is a write request. When this request is comes from the other

modules. Then this module send a Database write request for adding the specified sensor

information to the sensor list. Database module returns successful operation notification to the

Simulation Core Module when the writing process finishes.

deleteSensor(string): This is a delete request. When this request comes, it invokes delete

request of database module to delete the intended sensor defined as its ID in a string given as

the argument.

setSensorMode(string, int): This is a write request. When this request is comes from the other

modules. Then this module send a Database write request for changing the sensor mode of the

specified sensor. Database module returns successful operation notification to the Simulation

Core Module when the writing process finishes.

addAlarm(string,Alarm): This is a write request. When this request is comes from the other

modules. Then this module send a Database write request for adding an alarm to alarm list

with the specified date, time and position information. Database module returns successful

operation notification to the Simulation Core Module when the writing process finishes.

setSensorParameters(string,SensorParameters): This is a write request. When this request is

comes from the other modules. Then this module send a Database write request for changing

the sensor parameters of the specified sensor. Database module returns successful operation

notification to the Simulation Core Module when the writing process finishes.

setSensorPosition(string,Position): This is a write request. When this request is comes from

the other modules. Then this module send a Database write request for changing the position

values of the specified sensor. Database module returns successful operation notification to

the Simulation Core Module when the writing process finishes.

7.2.9. Interface / Exports

As a result of all of its duties this component makes it creates an interface called Simulation

Core. This interface is provided to all of modules except Database Module. With the help of

this interface all of the modules can make the changes on the database, like setting the alarm

times, dates and positions, changing sensor settings, reading sensor settings, changing sensor

positions etc.

Software Design Document 2012

61

0
9

O

c
a

k

2

0
1

2

7.3. Reporting Module

In this module detailed design of Reporting Module is provided.

7.3.1. Classification

Reporting Module is a module of the Intruder Detection System which interacts with the

Simulation Core Module and Analysis Module.

7.3.2. Definition

This module is the place where reporting process is handled. Reporting module take the

necessary data from the Analysis module and Database. When some data from Database is

needed it makes communications with Simulation Core Component. It can provide reports on

PDF or Doc format. Also it has some functions to organize the document that will be printed.

The details of these functions will be described at Processing part.

7.3.3. Responsibilities

This module has responsibility to print a report in a specified document type. This document

type will be determined by the user. The responsibilities of this module can be summarized as

the following:

 Take type of document from the user.

 Request necessary information from the Analysis Module, and the Database via

Simulation Core Component.

 Create a text and fill it with the information taken from Analysis Module and the

Database.

 Create the document in the specified document type. Namely Pdf or Doc formats.

7.3.4. Constraints

This module is totally dependent to Analysis Module. Because the information that is present

in the documents is directly taken from Analysis Module. For this reason, if there is a mistake

at the data taken from Analysis Module, there is no way to handle it.

This module is also indirectly dependent to all the other modules that are present in the

system. The reason of it is, this module uses the information from the database. This

information is coming from all of the other modules of the system. So, the reliability of the

data that is presented in documents is depends on the correctness of the data that is send from

the other modules.

Software Design Document 2012

62

0
9

O

c
a

k

2

0
1

2

7.3.5. Compositions

The Report Module is composed of one sub component. The name of this sub component is

Report sub component.

Report: This object has the work of holding the document to be printed and document type.

Furthermore it has links to Analysis Module and Simulation Core Module. The names of the

links are linktoCore and linktoAnalysis. Furthermore it has functions like

createText(date,time), createDocFile(string), createPdfFile(string), setDocumentType(bool)

and getDocumentType() functions. The details of these functions will be described at

processing part.

7.3.6. Uses and Interactions

This module has communications with, Analysis Module and Simulation Core Module. It

does not provide an interface to other modules.

It makes communications with Analysis module to take the analyzed data. With this it does

not need to make mathematical calculations on the data. It presents this analyzed data on the

documents.

Report Module also makes communications with the Simulation Core Module to reach to the

Database. It can request Alarm Times, Positions, the times that the sensor settings changed

etc.

With this kind of information it can put an action table on the report data. It can mark the

times that alarms occur in the schedule that will be present in the document.

7.3.7. Resources

When creating Pdf or Doc documents we need some libraries to make this work easier. We

will work with Java, so we needed java libraries for creating Pdf or Doc documents.

We will use iText pdf creation library for creating pdf files [7]. It is a library that allows the

user to create and manipulate PDF documents. Furthermore it is free software, so reaching it

is so easy. Further details of this library can be found at our 2
nd

 reference.

For doc file creating there some libraries for Microsoft Word. We will use a free software tool

which uses these libraries and creates word files so easily. The name of the tool is java2word

[8]. It is free software and it simply creates a doc file from the java code. The details of this

product can be found at our 3
rd

 reference.

7.3.8. Processing

This module is responsible from creating report documents when the user requests. It simply

takes the necessary data from Analysis Module and Simulation Core Module. It takes

Software Design Document 2012

63

0
9

O

c
a

k

2

0
1

2

document type information from the user. When the user requests the report of the system this

module starts to work. It has a text member for writing the text. Then it converts this text item

to either doc or pdf according to the document type information. The detailed information

about the functions of Report object is provided below:

createText(date,time): This function is used to create a new Text item and initialize it with the

given date and time items. When this function is called, the requests are made by the calls

from the linktoAnalysis and linktoSimulationCore . When these data arrives the data is also

written to the text item. Then, when creating doc or pdf files, it will be converted to doc or

pdf.

createDocFile(string): This function is used to create a new doc file with the given name. It

simply reads the current text item. It calls java2word function and creates a new doc file with

the given name.

createPdfFile(string): This function is used to create a new pdf file with the given name. It

simply reads the current text item. It uses iText library to create a new pdf file with the given

name.

setDocumentType(bool): This function is used to change the current document type. When the

value of this is true the document will be created will have a type pdf. When the value of this

is false the document will be created will have a type doc. The default value of the

documentType member is true. This function can also be called by the user to change the

document type.

getDocumentType():This function is used to read current document type information.

7.3.9. Interface / Exports

As a result of all the duties this component creates a pdf or doc document which is prepared to

be printed immediately. By interface, it does not provide an interface to other modules.

7.4. Analysis Module

7.4.1. Classification

Analysis module is a module of the system.

7.4.2. Definition

This module is created to make some statistical calculations about the alarm times, sensors,

detection for reporting the events. It has a connection to DBMS to get the values from the

database and calculate the statistical values. It also has a connection with reporting module

which commands it to get the statistical values about alarm timestamps and sensor properties.

Software Design Document 2012

64

0
9

O

c
a

k

2

0
1

2

Basically, the duty of this module is getting computing some values to give the results to the

operator.

7.4.3. Responsibilities

We have mention about the responsibilities or duties of this module on definition part.

However, we can give the more detailed information about this module. The general

responsibilities of our module are:

 The number of sensors

 The numbers of detected intrusion

 Last alarm time

 The sensor id which has the most active sensor

 The sensor id which has the least active sensor

 The sensor id that gives an alarm last

7.4.4. Constraints

The constraints of the Analysis module are:

 When report module commands a statistical value from this module, it must reply the

command in a very short time.

 It does not require any synchronization.

 It must always be on waiting state for requests not to miss them.

7.4.5. Composition

This module is composed of one sub module named Alarm. This Alarm sub module has also

one sub structure which holds the position information of the alarm.

Alarm Sub-module:

This object has a private property in analysis module. Alarm sub module holds the time

position and date of the alarm which was last detected. This object is set whenever the report

module wants the statistical calculation value. When this command comes, the analysis

module gives a request to take the alarm times from database by using the database module

and finds the last alarm from the taken alarm from database.

Position:

This object holds the latitude and longitude values of the alarm position. We mean that the

sensor position by saying the alarm position.

Software Design Document 2012

65

0
9

O

c
a

k

2

0
1

2

7.4.6. Uses and Interactions

This module directly works in collaboration with the reporting module. Basically, it has a

connection with the database module for getting the information from database. Since, it is an

intermediate module between database and the reporting module; it does not any interaction

with any other module.

7.4.7. Resources

Due to the fact that this module is only for statistical calculation, it does not need any resource

except math library of C++ programming language. It uses the square root, power and any

other functions of this library only.

7.4.8. Processing

We want to give the processing details of this module by explaining all methods of it.

computeNumOfSensors(): it takes the sensor id from the database and counts it to find the

number of sensors and stores the information to the numOfSensors class variable.

computeNumOfAlarms(): it takes the alarm information from the database and counts the

alarms and stores the number of alarm to the numOfAlarm class variable.

computeMostActiveSensor(): it takes the sensors and alarm values of each sensor. It finds the

sensor which gives the most number of alarms in a predefined time period and stores the

mostActiveSensor class variable

computeLeastActiveSensor():it takes the sensors and alarm values of each sensor. It finds the

sensor which gives the least number of alarms in a predefined time period and stores the

leastActiveSensor class variable.

computeLastAlarm(): it takes the alarms from the database and finds the alarm whose time is

last and stores the lastAlarm class variable.

computeLastActiveSensor(): it takes the sensor and its alarm whose time is the last one and

stores the sensor information to the lastActiveSensor class variable.

computeMostActiveToLeast(): it sorts the sensors from the most active to least active with

respect to their number of alarms of each.

computeMostRecentActiveToLeast(): it sorts the sensors from most recent active to recent

least with respect to the last alarm time of each sensor.

This module includes also get version of all of these compute methods and they returns the

class variables which have been calculated with this compute methods.

Software Design Document 2012

66

0
9

O

c
a

k

2

0
1

2

7.4.9. Interface / Exports

With the help of this module, reporting module does not need any method to make

mathematical operations. As we have said earlier, this module is an interface between

reporting and database modules.

7.5. Timeline Module

Timeline module is a module for displaying the alarm information of the intruder detection

system.

7.5.1. Classification

This component is a module of our system. The output of this module is directly related with

the graphical user interface of our system.

7.5.2. Definition

The timeline module is directly related with the output to the user. It uses the database records

to mark the corresponding point on the timeline graph. This timeline graph gives the alarm

timestamps and the total number of alarms that detected on corresponding sensor.

Mainly, this module does not require any connection to the database module; instead, it has a

link to the simulation core module to get the required information from the database.

7.5.3. Responsibilities

The main responsibility of this module is marking the specified timestamp on the timeline

graph. This accomplished by giving a request database management system to get the alarm

information of selected sensor by using the simulation core module.

7.5.4. Constraints

When timeline screen is active, this module must take the new alarm dates of the selected

sensor, synchronously, and mark the timestamp with this value.

7.5.5. Compositions

The timeline module includes one sub-component. This is the TimelineEntry.

TimelineEntry: This component includes the sensorID, alarmDate, alarmTime, and alarmPos

variables. Timeline entry component is essential, because, with the help of this component,

we can take all alarm information for only one specific sensor which is assigned to the

Software Design Document 2012

67

0
9

O

c
a

k

2

0
1

2

sensorID. Taken alarm day information is stored to the alarmDate variable, taken alarm time

information is stored to the alarmTime and specific sensor identification is stored the

sensorID.

7.5.6. Uses and Interactions

This module uses the simulation core module to get the required information from database.

Therefore, we can say that this module has a communication with SCC.

7.5.7. Resources

This module only requires the graphical user interface libraries of Java programming

language to draw the graph and point out the alarm timestamp on it.

7.5.8. Processing

The timeline module includes some methods to fulfill its duty. These methods are:

createTimeLine(date, time, date, time): This method create a timeline chart with the given

date and time values. First two date and time variable is the starting time to draw the chart

towards to the second date and time variable values. After setting the bounding values of

timestamp, it takes the alarm information from the database by using the linkToCore pointer

whose type is SCC, and stores the alarm values to the timeline class variable whose type is

timelineEntry array.

getTimeline(): this methods returns the timeline class variable.

7.5.9. Interface / Exports

This module creates a visual representation of the alarm information for the sake of user-

friendly interface. This module does not provide any interface to the other modules.

7.6. Communications Module

Communications module is the module which is responsible from data communications

between the control center and the sensors.

7.6.1. Classification

Communications component is a module of the system.

Software Design Document 2012

68

0
9

O

c
a

k

2

0
1

2

7.6.2. Definition

The purpose of this module is to provide communication between the control center and the

sensors.

The information to be sent comes to this module at the control center side lastly. This module

packets the information to be sent and sends it to the sensor.

Also, the information received firstly comes to this module at the control center side. This

module unpacks the received information and redirects it to the related component.

7.6.3. Responsibilities

There are two major types of responsibilities of this module: sending information and

receiving information.

It sends new sensor mode or settings to the sensor if the user wishes to change them. Before

sending them, it takes related data from the sensor managing module.

It unpacks and redirects the received data to be recorded in the database to the simulation core

component. Namely, when it gets alarms from a sensor, gets mode or parameters of a sensor,

or gets position of a sensor.

7.6.4. Constraints

For receiving operations, it is assumed that the data obtained from the XBee wireless

communication unit is correct.

7.6.5. Compositions

It uses two sub components, namely, SlarmPacket and SensorParameters.

SensorParameters holds settings related to the sensor and parameters related to the algorithm

embedded in the sensor. It is used when receiving or sending related to the sensor to packet

the data.

AlarmPacket holds information related to the alarms obtained from the sensors. More

specifically, it holds alarm list of the intruders detected by the sensor and ID number of that

sensor.

7.6.6. Uses and Interactions

This module makes use of simulation core module to send the information to be written to the

database.

Software Design Document 2012

69

0
9

O

c
a

k

2

0
1

2

This module is used by sensor managing module to get the information intended to be sent to

a sensor.

7.6.7. Resources

This module needs XBee wireless communication unit to send information to a sensor or

receive information from a sensor. Also, it needs GUI so that the user can invoke this module

to get alarms.

7.6.8. Processing

The communications module has six methods to fulfill its duty:

changeSensorParameters(string, sensorParameters): The function sends new parameters to

the sensor in sensorParameters packet. It finds the intended sensor with its ID number that is

given by the first argument to the method as string. It returns true if the operation is

successful, false otherwise.

changeSensorMode(string, int): The function sends new sensor mode to the sensor defined by

an int. It finds theintended sensor with its ID number that is given by the first argument to the

method as string. It returns true if the operation is successful, false otherwise.

getAlarms(string): It simply obtains alarms in the intended sensor and packets these alarms to

an AlarmPacket object and returns that object. It finds the intended sensor via its ID number

that is provided in a string as an argument.

getSensorMode(string): It just learns the mode of the intended sensor and returns it in an int.

It finds the intended sensor via its ID number that is provided in a string as an argument.

getSensorParameters(string): It just learns the parameters of the intended sensor and returns

it in a SensorParameters object. It finds the intended sensor via its ID number that is provided

in a string as an argument.

getSensorPosition(string): It just learns the position of the intended sensor and returns it in a

Position object. It finds the intended sensor via its ID number that is provided in a string as an

argument.

7.6.9. Interface / Exports

This module establishes an interface between the other modules and XBee wireless

communication unit. It provides interface to sensor managing unit. Also, via a GUI, the user

will be able to get alarms from a sensor, learn mode of a sensor etc.

Software Design Document 2012

70

0
9

O

c
a

k

2

0
1

2

7.7. Sensor Managing Module

Sensor managing module is responsible from operations related to the sensors.

7.7.1. Classification

Sensor managing component is a module of the system.

7.7.2. Definition

The purpose of this module is to redirect the operations related to the sensor to the

communication module. When the user wishes to do an operation related with the sensors, it

first handled by this module. It sends the information required to be sent to the sensor to the

communication module and invokes the simulation core module to make the required updates

in the database.

7.7.3. Responsibilities

When the user wishes to change the sensor mode or parameters, it uses this module. This

module then redirects the parameters to the communications module so that they will be sent

to the sensor. If the change operation is successful, then it invokes the simulation core module

to make the required updates in the database.

Moreover, when a new sensor is added to the system or a sensor is deleted from the system, it

invokes the simulation core module to make the required updates in the database.

7.7.4. Constraints

It is assumed that the acknowledgment signal received by the communications module is

correct so that when the user wishes to change mode or parameters of a sensor it does not

updates the database in a mistaken way.

7.7.5. Compositions

The module does not have any sub components.

7.7.6. Uses and Interactions

This module makes use of simulation core module to update the information in the database

related to a sensor whose mode/parameters is/are changed successfully. Moreover, this

module makes use of the communication module to send information to a sensor.

Software Design Document 2012

71

0
9

O

c
a

k

2

0
1

2

7.7.7. Resources

This module needs the GUI from where the user will be able to define the new sensor mode,

parameters or add/delete a sensor.

7.7.8. Processing

The sensor managing module has four methods to fulfill its duty:

changeSensorParameters(string, sensorParameters): This method is used to change

parameters of a sensor. The first argument is the ID number of the intended sensor and the

second argument is the parameter packet of the sensor. It calls changeSensorParameters()

method of the communication module.

changeSensorMode(string, int): This method is used to change mode of a sensor. The first

argument is ID number the ID number of the intended sensor and the second argument is the

new mode of the sensor. It calls changeSensorMode() method of the communication module.

addNewSensor(Sensor): The method is used to register a new sensor to the system defined by

the Sensor object given as an argument. It calls addSensor() method of the simulation core

module.

deleteSensor(string): The method is used to delete a sensor from the system defined by the ID

number given as the argument in a string. It calls deleteSensor() method of the simulation

core module.

7.7.9. Interface / Exports

The module provides service to users so that they will be able to define new parameters, mode

for a sensor, add or delete a sensor. It is reached by the user via a GUI. It provides no

interfaces to any other modules. It makes use of the communications module and the

simulation core module.

8. Libraries and Tools

The libraries and tools that will be used while developing the intruder detection system are

given in this section. For each library and tool, we first give its description and then explain

its usage in developing the system.

8.1. Eclipse RCP

Software Design Document 2012

72

0
9

O

c
a

k

2

0
1

2

8.1.1. Description

Eclipse RCP is used for plugin development. It is a subset of Eclipse Platform. It is created as

plugin project in Eclipse IDE. Eclipse RCP uses the components shown in Figure (35). The

WorkbenchPage contains Parts, which can be Views or Editor. Views extend the abstract

class “ViewPart “. They are used to display information in an RCP application.

 Figure 35. Components of Eclipse RCP

8.1.2. Usage in the Intruder Detection System

We use Eclipse RCP to develop desktop application. In addition, we will use Views in eclipse

RCP to create screen displays.

8.2. Nasa World Wind Java SDK

8.2.1. Description

World Wind is open-source software, developed by NASA that allows you to zoom from

satellite altitude into any place on earth. Leveraging Landsat satellite imagery and SRTM

data, World Wind lets you experience any part of earth's terrain in visually rich 3D form, just

as if you were really there.

8.2.2. Usage in the Intruder Detection System

We will use Nasa World Wind Java SDK to use World Wind technology in our application.

We will draw our maps on GUI using World Wind technology.

Software Design Document 2012

73

0
9

O

c
a

k

2

0
1

2

8.3. JOGL

8.3.1. Description

JOGL is a Java API which provides bindings to the OpenGL libraries for the Java Virtual

Machine. This allows computer graphics programmers to use the object-oriented tools for

Java with hardware-accellerated 2D and 3D graphics while leveraging their existing

knowledge of OpenGL [9].

8.3.2. Usage in the Intruder Detection System

We will need it to draw 2D graphics and 3D map in our system.

8.4. JFreeChart

8.4.1. Description

JFreeChart is a free 100% Java chart library that makes it easy for developers to display

professional quality charts in their applications [10]. JFreeChart's extensive feature set

includes:

 a consistent and well-documented API, supporting a wide range of chart types;

 a flexible design that is easy to extend, and targets both server-side and client-

side applications;

 support for many output types, including Swing components, image files

(including PNG and JPEG), and vector graphics file formats (including PDF,

EPS and SVG);

8.4.2. Usage in the Intruder Detection System

We will use it to draw our timeline diagrams in the Report screen.

8.5. Waspmote and Waspmote IDE

8.5.1. Description

Waspmote is an integrated board developed by Libelium Company on which sensors can be

integrated. Its usage is extremely wide, it can be used in agriculture, health, industrial

processes, marketing etc.

Software Design Document 2012

74

0
9

O

c
a

k

2

0
1

2

Waspmote IDE is the environment to write the code which will be embedded into the

Waspmote. It is developed with Java ANTLR Library. Although it has its own syntax and

libraries, its usage is quite similar to C programming language.

8.5.2. Usage in the Intruder Detection System

We are going to use Waspmote integrated board in our design along with a GPS. The GPS is

going to tell us the position of the sensor in terms of latitude, longitude and altitude. The main

algorithm (The algorithm which determines whether a signal is due to an intruder or not) is

going to be embedded in the Waspmote.

8.6. Eclipse IDE

8.6.1. Description

The Eclipse IDE provides libraries and tools for Java developers to build Java applications. It

provides validation, incremental compilation, cross-referencing, code assist etc. It also

provides debugging tools.

8.6.2. Usage in the Intruder Detection System

The control center part of the intruder detection system will be developed with Java

programming language. Thus, we will use Eclipse IDE which is considered by many

developers to be one of the best Java development environments.

8.7. PostgreSQL

8.7.1. Description

PostgreSQL is a powerful, open source object-relational database system. It has been

developed actively for 15 years. It runs on all major operating systems including Linux,

UNIX, and Windows.

It has full support for foreign keys, joins, views, triggers and stored procedures (in multiple

languages). It includes most SQL: 2008 data types. It supports storage of binary large objects,

including pictures, sounds or videos. It has native programming interfaces for C/C++, Java,

.Net etc.

8.7.2. Usage in the Intruder Detection System

We are going to use PostgreSQL while creating the database of the system. We are going to

take advantage of it by using its programming interface with Java.

Software Design Document 2012

75

0
9

O

c
a

k

2

0
1

2

8.8. XBee

8.8.1. Description

XBee is a radio module is designed for point-to-point and point-to-multipoint

communications by Digi International Company. It is mainly used for wireless

communications. An image of XBee Pro is provided in figure (36).

Figure 36. XBee Pro

8.8.2. Usage in the Intruder Detection System

The sensor for intruder detection will send the alarms to the control center via wireless

communication. Because of its practical and simple usage, XBee will be used for wireless

communication infrastructure. It will be integrated with Waspmote board.

8.9. SD Card

8.9.1. Description

SD is a non-volatile memory card format developed for use in portable devices. As its

practicality and small dimensions, it is being used for data transfer between devices like flash

disks.

8.9.2. Usage in the Intruder Detection System

Besides sending the alarm to the control center, they will also be recorded in the sensor. The

alarms will be saved in SD card which is also going to be integrated with Waspmote board.

Software Design Document 2012

76

0
9

O

c
a

k

2

0
1

2

The user will be able to read the alarms saved in the SD card at a later time. In other words, it

will be used as the main storage device by the sensor itself.

In the following figures, we present two images of the sensor (figures (37) and (38)). Please

note that, the hardware consists of Waspmote with GPS, XBee and an SD card.

Figure 37. The sensor (not hidden)

Software Design Document 2012

77

0
9

O

c
a

k

2

0
1

2

9. Time Planning

9.1. Term 1 Gantt Chart

Software Design Document 2012

78

0
9

O

c
a

k

2

0
1

2

9.2. Term 2 Gantt Chart

Software Design Document 2012

79

0
9

O

c
a

k

2

0
1

2

10. Conclusion

This document specifies the design details of the Intruder Detection System taken by the team

BeeTech. More specifically, in this document, design details such as data design of the

system, system architectural design, user interface design and detailed design of the modules

are provided.

An experienced programmer can build the system by following the directives and architecture

described in this document.

