

D-BUG

Detailed Design
Document
DUYGU ARALIOĞLU
BEDİA ACAR
ZÜLFÜ ULAŞ ŞAHİN
GÜLNUR NEVAL ERDEM

MIDDLE EAST TECHNICAL UNIVERSITY
COMPUTER ENGINEERING

2011

 Detailed Design Document

2

D-BUG

Table of Contents
1. INTRODUCTION ... 6

1.1. Problem Definition ... 6

1.2. Purpose.. 7

1.3. Scope ... 7

1.4. Overview.. 7

1.5. Definitions, Acronyms and Abbreviations ... 9

1.6. References ... 9

2. SYSTEM OVERVIEW .. 10

3. DESIGN CONSIDERATIONS ... 11

3.1. Design Assumptions, Dependencies and Constraints ... 11

3.1.1. Assumptions and Dependencies ... 11

3.1.2. Design Constraints ... 12

3.1.2.2. Performance Constraints ... 12

3.1.2.3. Financial Constraints ... 12

3.2.1. Reliability ... 12

3.2.2. Usability ... 13

3.2.3. Portability .. 13

3.2.4. Extensibility ... 13

4. DATA DESIGN... 13

4.1. Data Description .. 13

4.2. Data Dictionary ... 16

5. SYSTEM ARCHITECTURE ... 21

5.1. Architectural Design .. 21

5.2. Description of Components ... 22

5.2.1. InputHandler.. 22

5.2.1.1. Processing narrative for InputHandler ... 22

5.2.1.2. InputHandler interface description .. 22

5.2.1.3. InputHandler processing detail .. 23

 Detailed Design Document

3

D-BUG

5.2.1.4. Dynamic behavior InputHandler .. 24

5.2.2. Recognizer ... 25

5.2.2.1. Processing narrative for Recognizer... 25

5.2.2.2. Recognizer interface description ... 25

5.2.2.3. Recognizer processing detail ... 26

5.2.2.4. Dynamic behavior Recognizer ... 27

5.2.3. HMM ... 27

5.2.3.1. Processing narrative for HMM ... 29

5.2.3.2. HMM interface description ... 29

5.2.3.3. HMM processing detail ... 29

5.2.3.4. Dynamic behavior HMM ... 30

5.2.4. InterfaceHandler .. 30

5.2.4.1. Processing narrative for InterfaceHandler ... 30

5.2.4.2. InterfaceHandler interface description .. 31

5.2.4.3. InterfaceHandler processing detail .. 31

5.2.4.4. Dynamic behavior InterfaceHandler .. 32

5.3. Design Rationale ... 33

5.4. Traceability of Requirements .. 34

6. USER INTERFACE DESIGN ... 35

6.1. Overview of User Interface ... 35

6.2. Screen Images ... 37

6.3. Screen Objects and Actions ... 39

7. DETAILED DESIGN .. 41

7.1. InputHandler Component... 41

7.1.1. Classification .. 41

7.1.2. Definition ... 41

7.1.3. Responsibilities .. 41

7.1.4. Constraints ... 41

7.1.5. Compositions ... 42

7.1.6. Uses/Interactions ... 42

7.1.7. Resources ... 42

 Detailed Design Document

4

D-BUG

7.1.8. Processing .. 43

7.1.9. Interface/Exports ... 43

7.2. Recognizer Component .. 44

7.2.1. Classification .. 44

7.2.2. Definition ... 44

7.2.3. Responsibilities .. 44

7.2.4. Constraints ... 45

7.2.5. Compositions ... 45

7.2.6. Uses/Interactions ... 45

7.2.7. Resources ... 45

7.2.8. Processing .. 45

7.2.9. Interface/Exports ... 47

7.3. HMM Component .. 47

7.3.1. Classification .. 50

7.3.2. Definition ... 50

7.3.3. Responsibilities .. 50

7.3.4. Constraints ... 50

7.3.5. Compositions ... 51

7.3.6. Uses/Interactions ... 51

7.3.7. Resources ... 51

7.3.8. Processing .. 52

7.3.9. Interface/Exports ... 53

7.4. InterfaceHandler Component ... 54

7.4.1. Classification .. 54

7.4.2. Definition ... 54

7.4.3. Responsibilities .. 54

7.4.4. Constraints ... 54

7.4.6. Uses/Interactions ... 55

7.4.7. Resources ... 56

7.4.8. Processing .. 56

7.4.9. Interface/Exports ... 58

 Detailed Design Document

5

D-BUG

8. LIBRARIES AND TOOLS ... 58

8.1. Hardware .. 58

8.1.1. Kinect .. 58

8.1.1.1. Description ... 58

8.1.1.2.Usage ... 59

8.2. Software ... 60

8.2.1. Kinect SDK.. 60

8.2.2. Microsoft Visual Studio 2010 Express ... 61

9. TIME PLANNING... 62

10. CONCLUSION ... 64

 Detailed Design Document

6

D-BUG

1. INTRODUCTION

This Detailed Design Document for TSL Kinect project sponsored by INNOVA provides

the complete description of the system. This document also mostly follows the

functionalities identified in the SRS document of the project, however some changes

has been made in the structural arrangement of the system and all these changes were

stated under the related subsections.

1.1. Problem Definition

In this project our aim is to solve the communication problem between speech-impaired

people and others. When someone with speech impairment is unable to express

himself/herself, it can be frustrating. Since almost most of the people do not know sign

language and cannot understand what speechless people mean by their special

language, tasks such as shopping, settling affairs at a government office are so difficult

that speech-impaired people cannot handle by their own. Our team intends to help

alleviate the frustration that speech-impaired people face by using assistive technology.

This project proposes a method that translates sign language in a manner that other

people can also understand. More precisely, the final product of the project will get the

sign language gestures and give the meaning of them in text format.

 Detailed Design Document

7

D-BUG

1.2. Purpose

This SDD provides the design details of TSL Kinect in the scope of Middle East Technical

University Computer Engineering Department Graduation Project and aims to provide a

guide to a design that could be easily implemented by any designer reading this

document. Throughout the document design architecture and procedure, constraints,

interface design and implementation strategies will be explained in detail.

1.3. Scope

The scope of this SDD is to provide information about the design procedure of the

system. The design constraints, data design, architectural design and user interface

design will be elucidated in the scope of this document. Also chosen helper libraries and

complete time planning of the system will be included. The intended audience is the

ones who will implement the project, hence it is aimed that this document to be a

guideline for those developers.

1.4. Overview

This SDD is divided into ten sections in order to provide a complete and understandable

perception about the system to the target readers. First section is mostly about the

scope and purpose of the document. This section also includes the definition of the

problem that is intended to be solved.

In the second part, system overview, a general description of the software system

including its functionality and matters related to the overall system and its design is

provided. The intended goals, objectives and benefits of the project are stated in this

section, too.

 Detailed Design Document

8

D-BUG

The third section states the design considerations and consists of two parts. In the first

part, design assumptions, dependencies and constraints of the system are defined. In

the second part, design goals and guidelines are given in terms of reliability, usability,

portability and extensibility of the system.

The organization of the data structures of the system is explained in section four.

Subsequently, a data dictionary is provided in order to provide a detailed description of

the system major data, including data objects, their attributes and methods.

In the fifth section, the architectural design of the application and detailed description

of modules are elaborated. In this section, it is also provided a sequence diagram for

each module.

Sixth section is all about the user interface design. In this section the functionality and

expected features of the user interface is given. In addition, some possible screenshots

showing the interface from the user’s perspective are provided and purpose of the

screen objects is explained.

In the seven part of the document, the details of each component are explained deeply

by following classification, definition, responsibilities, constraints, composition,

interactions, resources, processing and exports issues.

In the eighth part, information about the libraries and tools that our project depended

on is given.

In section nine, time planning and scheduling issues will be demonstrated by a Gantt

chart.

The last part covers the summary of the whole document.

 Detailed Design Document

9

D-BUG

1.5. Definitions, Acronyms and Abbreviations

Definitions, acronyms and abbreviations are listed in the below table.

HMM Hidden Markov Model

GUI Graphical User Interface

WPF Windows Presentation Foundation, is graphical subsystem based on

XAML to develop user interfaces in Windows-based applications

TSL Turkish Sign Language

SDD Software Design Document

SDK Software Development Kit

XAML Extensible Application Markup Language

1.6. References

*1+ IEEE Std 1016‐1998: IEEE Recommended Practice for Software Design Descriptions

[2] Software Requirements Specification for TSL-Kinect, it was prepared according to

IEEE Std 830-1998: IEEE Recommended Practice for Software Requirements

Specifications

[3] A Revealing Introduction to Hidden Markov Models

http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

[4] A. B. S. Hussain, G. T. Toussaint, and R. W. Donaldson. Results obtained using a

simple character recognition procedure on Munson’s handprinted data. IEEE

Transactions on Computers, 21:201–205, February 1972.

http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

 Detailed Design Document

10

D-BUG

*5+ J. Yang, Y. Xu, “Hidden Markov Model for Gesture Recognition”, The Robotics

Institute, Carnegie Mellon University, pp. 10, 1994. Retrieved from

http://www.ri.cmu.edu/pub_files/pub3/yang_jie_1994_1/yang_jie_1994_1.pdf

[6] Getting started with Microsoft Kinect SDK, http://www.i-

programmer.info/programming/hardware/2623-getting-started-with-microsoft-kinect-

sdk.html?start=1

[7] http://blogs.msdn.com/b/eternalcoding/archive/2011/08/20/10174036.aspx

and (from readme of Kinect SDK)

 [8] http://en.wikipedia.org/wiki/Kinect

[9] Coding4Fun Kinect Toolkit

http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit

2. SYSTEM OVERVIEW

Our software needs a Kinect camera and a personal computer with Windows 7

operating system to work. Kinect camera gathers real world images with depth

information and transfers it to computer via USB. Microsoft Kinect SDK gathers these

images, processes them and detects skeletal-position information of the user who

stands in front of the camera. Software uses position information of the body parts for

both interface control and gesture recognition.

http://www.ri.cmu.edu/pub_files/pub3/yang_jie_1994_1/yang_jie_1994_1.pdf
http://www.i-programmer.info/programming/hardware/2623-getting-started-with-microsoft-kinect-sdk.html?start=1
http://www.i-programmer.info/programming/hardware/2623-getting-started-with-microsoft-kinect-sdk.html?start=1
http://www.i-programmer.info/programming/hardware/2623-getting-started-with-microsoft-kinect-sdk.html?start=1
http://blogs.msdn.com/b/eternalcoding/archive/2011/08/20/10174036.aspx
http://en.wikipedia.org/wiki/Kinect
http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit

 Detailed Design Document

11

D-BUG

3. DESIGN CONSIDERATIONS

3.1. Design Assumptions, Dependencies and Constraints

3.1.1. Assumptions and Dependencies

While designing this project, we needed to make some assumptions related to software,

hardware and the environment. First of all, our program is intented to run on Windows

7 OS. Working platform cannot be changed since the Microsoft official SDK for Kinect

has such a big restriction that it can be used only on Windows 7 platform.

Related to hardware, our program will run on computer systems, so the user is expected

to have a computer with dual-core,2.66-GHZ or faster processor and minimum of 2 GB

of RAM . Moreover, the graphic card support in Windows for Direct X 9.0c is also

expected. The most important requirement as a hardware is the user must have Kinect

for Xbox 360 sensors.

Related to environment, since our program is completely about skeleton tracking, the

environment that the user stands should be clear as possible in order to have a properly

working SDK and maintain accuracy. We assume that Kinect is set up properly according

to its manual and the user stands between 1.8 to 2.4 meters away from the Kinect

sensors. In our environment, it is also assumed the room that the Kinect is set up is large

enough and there are no moving objects around.

There are no restricted features about the user, however; since our system tracks only

one person’s skeleton user should stand alone in front of the sensors.

 Detailed Design Document

12

D-BUG

 3.1.2. Design Constraints

 3.1.2.1. Time Constraints

Both the design and implementation parts of the project should be completed within

eight months. At the end of the fall semester of 2011-2012 academic year a prototype

needs to be implemented, so in order to achieve this all group members should strictly

follow the specified schedule. The detailed schedule can be found in the Gantt charts in

the section 8 of this detailed design report.

3.1.2.2. Performance Constraints

The system performance strongly depends on the environment that the Kinect is set up.

When the environment is so noisy or there are moving objects around the recognition of

the skeleton cannot be done as desired by SDK. Moreover, the system should recognize

the gesture as fast as possible and return an answer to the user. In order to satisfy these

constraints, the process running on the background of the application needs to be

modeled with the fastest algorithm as possible.

3.1.2.3. Financial Constraints

Project is financially supported by Innova Bilişim Çözümleri A.Ş in terms of Kinect

sensors.

3.2. Design Goals and Guidelines

3.2.1. Reliability

Our main purpose is to make the system run without any problems or bugs. In order to

maintain the reliability any performed gesture will be correctly recognized by the

implemented HMM and correct answer will be published if the gesture is in the pre-

determined gesture list. We will use various testing strategies while designing the

 Detailed Design Document

13

D-BUG

project in order to improve the performance and decrease the number of errors that

will occur.

3.2.2. Usability

Since this project intends to simplify speech-impaired people’s lives it should be simple

and functional at the same time. The user interface is kept simple so that the pure

functionality is gathered without being bothered with lots of menus or buttons. It

should also be stated that not only the sign language translation part but also switching

between menus and sub-menus are maintained by the user’s movements. In other

words kinetic interface is implemented hence the user does not have to use any input

device (namely mouse and keyboard) to control the program once it is started.

3.2.3. Portability

The system will be implemented only into the pc environments having Windows7

operating systems which makes the system low-portable.

3.2.4. Extensibility

This project is designed to be extensible in terms of the number of gestures to be

recognized. For the time being the system will recognize 10 pre-defined TSL gestures,

however, it will be possible to add new gestures to the programs’ memory by gathering

experimental data of gestures and training new HMMs.

4. DATA DESIGN

4.1. Data Description

Every major module and sub-components in the system will be implemented as classes.

Our software basically performs a “function” (sign language recognition), and both main

 Detailed Design Document

14

D-BUG

and sub-components will be created to compose a functional program. There will be no

database system because the numbers of the components are pre-determined, their

creation will be handled in initialization, their names and duties are restricted and there

will be no structured information transfer between classes. Information transfers will be

in simple vectors of primitive types. Also, predetermined gestures will be stored as

Hidden Markov Model matrices in a simple text file, and transfer of this file to main

memory will be held in a simple initialization function. So, we decided to remove

Database module that we defined in the previous requirements specification document.

There will be four main classes of our system: InputHandler, Recognizer,

InterfaceHandler, and HMM. First three of them will have only one instance, and

functional structure of the system is built by them. For every sign language gesture that

introduced to the system, there will be one or two HMMs (this depends on gesture

type) in the Recognizer module. HMMs are also initialized at the beginning of the

program and never be released.

There will be three sub-classes of our system: InterfaceMode, SpaceZoningMatrix, and

Button. Button class will contain information about buttons of InterfaceModes, so this

classes will be elements of InterfaceModes at the beginning. InterfaceModes will

contain specific buttons of all user interface menus of the software (there are four of

them), and they will also be created by InterfaceHandler at the beginning of the

application. SpaceZoningMatrices will be created and deleted every time when

InputHandler repeated its functional routine.

In the section 4.2, a short explanation of attributes and helper methods of each class

will be provided. The fundamental functional structures of main components, and the

way of assisting attributes, helper methods and subclass objects in these structures will

be explained together with algorithmic details in section 5.

 Detailed Design Document

15

D-BUG

Figure 1: Class Diagram of the System

 Detailed Design Document

16

D-BUG

4.2. Data Dictionary

InputHandler:

Attributes:

 matrix (spaceZoningMatrix): This object will be created and initialized with every

new input comes to InputHandler.

Methods:

 initialization(): void This method initializes all other components and

creates pre-defined class instances.

Recognizer:

Attributes:

 activationState (boolean): This variable determines whether the Recognizer is

active or not.

 hmm (HMM[]): This array holds all HMMs in the system.

 leftHandLastPosition (int): This variable contains the last position of left hand

that comes from InputHandler.

 leftHandStack (int*): This stack holds different consequent positions of left hand.

 leftHandTimer (int): If left hand does not change its position, this variable

increments.

 leftObservationList(int *): the list that keeps observation sequence for left hand

which will be sent to HMM

 Detailed Design Document

17

D-BUG

 rightObservationList(int *): the list that keeps observation sequence for right

hand which will be sent to HMM

 rightHandLastPosition (int): This variable contains the last position of right hand

that comes from InputHandler.

 rightHandStack (int*): This stack holds different consequent positions of right

hand.

 rightHandTimer (int): If right hand does not change its position, this variable

increments.

Methods:

 activate():void This method sets activationState true.

 deactivate():void This method sets activationState false.

HMM:

Attributes:

 alphaMatrix (double[][]): This matrix contains scaled alpha values of each state

calculated at each pass.

 endRange (double[]): This array contains possible end positions of the gesture as

SpaceZoningMatrix indices

 gestureMeaning (string): Holds the corresponding meaning of the gesture.

 handName (string): This variable determines which hand’s movement will be

recognized by HMM (left or right).

 howManyHands (boolean): This variable tells if related gesture is composed of

one or both hands movements.

 Detailed Design Document

18

D-BUG

 initialProbabilityMatrix (double[][]): This matrix contains probabilities which

determine the initial state.

 maximumObservation (int): This variable determines the maximum number of

matrix indices that gesture can be represented by.

 minimumObservation (int): This variable determines the minimum number of

matrix indices that gesture can be represented by.

 observationMatrix (double[][]): This matrix matches each states and each

discrete observations with probability values.

 observationNumber (int): This variable holds the number of observations in the

model.

 scalingCoefficients (double[]): This array contains scalars calculated for each pass

of forward algorithm.

 startRange (int[]): This array contains possible start positions of the gesture as

SpaceZoningMatrix indices

 stateNumber (int): This variable holds the number of states in the model.

 threshold (double): This value determines minimum occurrence probability of

the gesture that HMM recognizes.

 transitionMatrix (double[][]): This matrix contains probabilities of state

transitions. Also known as A matrix.

Methods:

 probabilityCalculation(int []):double This method calculates occurrence

 probability of given observation list.

InterfaceHandler:

Attributes:

 handPositions(int *): This holds the positions of both hands

 Detailed Design Document

19

D-BUG

 InterfaceMode[] modes: The array holding the instances of the InterafceMode

object

 gestureNames (string[]): This array holds gesture meanings for randomGesture

function.

 educationCounter (int): Counts execution cycles in order to detect seconds for

education mode of program.

 gestures(string[]): This array holds the last 4 gesture meanings coming from

Recognizer to illustrate user.

Methods:

 randomGesture(): String Randomly chooses a gesture name from

gestureNames array.

 displayVideo(video *stream): void This method displays the image of the user on

the screen

 changeMode(string buttonName):InterfaceMode This method changes the mode

to “Eğitim” or “İletişim” mode.

 setGestures(string gesture): void This method sets the meaning of the new

gesture name it the communication mode .

 compareGesture(string gesture):void This method compares the string it gets

with the expected gesture’s name in education mode.

 whichButton(int *handPosition):button This method returns the button that the

hand is on

SpaceZoningMatrix:

Attributes:

 columnNumber (int): This variable contains how many column that matrix has.

 Detailed Design Document

20

D-BUG

 originPoint (double[]): This array holds the x and y coordinates of the origin of

matrix.

 range (int):This variable contains length of one square of matrix.

 rowNumber (int): This variable contains how many row that matrix has.

Methods:

 calculateMatrix():void Calculates data members of this class.

InterfaceMode:

Attributes:

 buttonNumber (int): This variable is the number of buttons in InterfaceMode.

 Button[] buttons: This is the array holding the buttons present in an interface

mode

 modeName (string): Name of the interface mode

Button:

Attributes:

 downLeft (double[]): This array holds x and y coordinates of a button with

respect to the upper left corner of the screen box.

 width (double): This variable holds the width of a button.

 height (double): This variable holds the height of a button.

 buttonTimer (int): This variable holds a counter determines the number of the

cycles that a hand cursor is on this button.

 buttonName (string): hols the names of buttons

 Detailed Design Document

21

D-BUG

5. SYSTEM ARCHITECTURE

5.1. Architectural Design

System will consist of four major components. These components designed as

functional units and will be implemented as classes. InputHandler can be thought as the

core component of the system. It will operate while program is on, and it repeatedly

arranges Kinect input that SDK serves to the system. All the other components will use

these inputs and performs their responsibilities with the rhythm of InputHandler’s

repetitive functional routine. HMMs are responsible for detecting pre-determined

gestures. Each gesture has its own HMM, and the part of the system that manages

HMM modules, their inputs and decides whether an input sequence corresponds to a

pre-defined gesture meaning is called Recognizer. InterfaceHandler is the module that

arranges menus, buttons, video displays, and also handles functional requirements of

each mode of the user interface. Functionalities of education and communication mode

will be provided by InterfaceHandler.

 Figure 2 : Component Diagram of the System

 Detailed Design Document

22

D-BUG

5.2. Description of Components

5.2.1. InputHandler

This component basically manipulates Kinect inputs and serves them to other

components.

5.2.1.1. Processing narrative for InputHandler

InputHandler component is the core component of the software. It processes Kinect

inputs that SDK supplies to the system, and sends them to related components while

program is on.

Two kinds of input manipulation are held by this module. First, it calculates hand

positions ,scaled with respect to the size of the screen box, for interface controlling via

gestures (explained in 5.2.1.3). Second, it matches hand positions to a number in the

space zoning matrix.

5.2.1.2. InputHandler interface description

This module takes video stream and skeleton joints information generated by SDK as

input. It sends scaled hand positions and video stream to InterfaceHandler component,

and the matrix indices of both hands to Recognizer component.

 Detailed Design Document

23

D-BUG

5.2.1.3. InputHandler processing detail

This component repeats its functional routines every time a new input is generated by

SDK (30 times per second).

First, it scales x- y coordinates of the hands with the size of screen box, a rectangle on

user interface. This calculation is transformations of 3d positions of both hands into 2d

positions, and the results will be used to move hand cursors which will be explained in

section 5.2.4.

Second, InputHandler creates an abstract matrix called SpaceZoningMatrix. It is used for

detecting the positions of the hands with respect to its indice labels, and those indice

labels will be sent to Recognizer. Every time SDK provides a raw input of skeleton joints,

a new SpaceZoning Matrix is created and hand positions are reduced to single integer

value.

 SpaceZoningMatrix is created by calculating the length between the user’s hip and

shoulder centers. This length is divided to a pre-determined integer and result is stored

in a variable called range. Then, hip center is considered to be lying on the down-middle

of the matrix, and originPoint is determined by taking “a times range left, b times range

up” from hip center. Origin is the upper-left corner of the matrix. Matrix squares are

labeled with integers from left to right and then up to down (for example, squares of

4x5 matrix will be labeled from upper-left to bottom-right as 1,2,…,19,20 with this

method). Then , the squares that hands lie on are computed and their labels are sent to

Recognizer as single integer values for each hand. Origin, range, a, b, x values and matrix

square labels can be seen in the Figure 3.

 Detailed Design Document

24

D-BUG

 Figure 3: Space zoning matrix

Exact values of these variables will be determined experimentally in the implementation

phase.

5.2.1.4. Dynamic behavior InputHandler

InputHandler has interaction with Kinect SDK, InterfaceHandler and Recognizer. It takes

raw input from SDK whenever it is ready, processes some of these raw inputs and

passes them to both InterfaceHandler and Recognizer.

 Detailed Design Document

25

D-BUG

 Figure 4: Sequence Diagram of InputHandler

5.2.2. Recognizer

This component essentially performs gesture recognition.

5.2.2.1. Processing narrative for Recognizer

Recognizer will use HMMs to detect performed gesture; also it will arrange, store and

deallocate observation stacks. It will try to match collected observations with pre-

determined gesture meanings by using corresponding HMMs which are created for each

gesture.

5.2.2.2. Recognizer interface description

Module takes position values of both hands from InputHandler as input. Its activation is

triggered by InterfaceHandler. It gives the meaning of the related gesture to

InterfaceHandler as output.

 Detailed Design Document

26

D-BUG

5.2.2.3. Recognizer processing detail

While Recognizer module is in active state, it stores observation inputs of both hands

that come from InputHandler on related hand stacks. So, one of the major tasks of this

module is eliminating inputs and releasing these right/leftHandStacks whenever it is

necessary.

This module takes two integer values for each hand, and compares them with the

previous ones. If they are not different, they will not be inserted into right

/leftHandStacks. Same successive positions that come from InputHandler can imply that

hand is standing firm. There are two counters for each hands detecting the cycle

numbers of the same values come from InputHandler. If a counter reaches a pre-

determined upper-limit, it means that hand is not moving, so related right

/leftHandStack will be released to prevent unnecessary memory allocation.

If a new position value comes from InputHandler to this module, then it will be put into

related hand stack as first element, and Recognizer checks first n elements of related

hand stack with each HMMs assigned to this hand. The value of n changes with respect

to HMM (every number between max. and min. observation number of HMMs are

checked). When Recognizer checks an HMM for first n element, it first compares first

element of the stack with HMM’s endRange, and n.th element of the stack with HMM’s

startRange. If both values are matched, then HMM module calculates logarithmic

probabilities for these n observations. If the result is bigger than the threshold value of

HMM, it means that recorded movement is the gesture to which HMM is assigned.

Then, hand stack that contains this n position values will be released.

If a gesture performed with two hands, Recognizer checks both hand stacks in this way.

After this process, if recognition does not occur, Recognizer keeps inserting new

position values into hand stack.

 Detailed Design Document

27

D-BUG

5.2.2.4. Dynamic behavior Recognizer

When Recognizer is activated by InterfaceHandler, it starts to perform gesture

recognition via HMM sub-components and transfers the result to the InterfaceHandler

until it is deactivated.

 Figure 5: Sequence Diagram of Recognizer

5.2.3. HMM

HMMs are not independent components, they are sub-components of Recognizer

module. On the other hand, instances of this class play an important role in gesture

recognition process. They can be considered as main functional units of the software

just like others mentioned in this section. Before giving information about the

processing narratives or interface description of this module, one should understand

what HMM stands for. Although their functional characteristics are very sophisticated

 Detailed Design Document

28

D-BUG

and worth to be explained in detail, we will provide a brief explanation about HMM to

let the reader have an understanding about it.

HMM (Hidden Markov Model) is a probabilistic model created with a state set and an

observation set. Model is based on the assumption that a visible observation sequence

(in our software, patterns will be represented with observation sequences) is triggered

by unobservable (hidden) states of the model. Model is defined by a transition matrix (a

matrix that shows probability of each state transitions), an initial distribution matrix (a

matrix that shows starting probabilities of each state) and an observation matrix (a

matrix that matches hidden states and visible observations with a probability value).

 If a model is given, an observation sequence’s occurrence probability for this model can

be calculated with forward algorithm. Forward algorithm recursively calculates

occurrence probabilities of first t elements of an observation sequence for each state by

using probabilities of first t-1 elements. These values called alpha value of state i at time

t, and they are collected to calculate next alpha values until t reaches to the end of the

sequence. When t is equal to the length of the sequence, the observation sequence’s

occurrence probability with each state is calculated.

 Also, a model can be trained with an observation sequence set by repeatedly re-

estimating its matrix values. Training aims to maximize occurrence probability of a

specific kind of observation sequence. If a model is trained with parallel observation

sequence set, then it will give higher probability to the sequences that has same/alike

properties with the ones in training set.

In our system, one or two HMMs will be trained for each gesture. Minimum probability

that HMM calculates for its training sequences will be stored as its thresholds. Also,

minimum and maximum number of observations that will be used for training HMMs

will be held in this unit. There will be more explanations about HMMs, their kinds and

 Detailed Design Document

29

D-BUG

topologies, calculating and training principles, formulas and algorithms in Detailed

Design Report.

5.2.3.1. Processing narrative for HMM

These functional units will be employed by Recognizer. It will make calculations for an

input sequence in order to determine whether the given sequence matches with the

training gesture of HMM. It will also hold gesture related information, such as gestures

minimum occurrence probability in this model, its maximum, minimum length as a

sequence, and its possible starting and ending points.

5.2.3.2. HMM interface description

HMMs take observation sequences from Recognizer as input. It gives gesture related

information and calculated occurrence probability of a sequence with respect to the

model as output to Recognizer module.

5.2.3.3. HMM processing detail

When an HMM takes an observation sequence, it uses forward algorithm to calculate

probability. During execution of algorithm, it computes alpha values and scales them

with the sum of alpha values which belong to same pass. Scaled alpha values for each

state in each pass are collected in alphaMatrix, and scalars of each pass are collected in

scalingCoefficients array. After passes reach to the end, logarithmic sum of scalars of

each pass will be equal to the logarithm of actual occurrence probability of the set.

 Detailed Design Document

30

D-BUG

5.2.3.4. Dynamic behavior HMM

When Recognizer module is active, it takes pre-determined values of an HMM, then if it

is necessary, it passes portions of related hand stacks to HMM. An HMM will perform its

calculation and both the result of this calculation and HMM’s threshold value will be

passed to Recognizer.

As it is stated before, HMMs are actually sub-components of Recognizer module. Since

an HMM performs its calculation only when Recognizer requests, and it communicates

only with Recognizer, it is decided not to put a special sequential diagram for HMM.

5.2.4. InterfaceHandler

InterfaceHandler is responsible for the arrangement of the user interface. It also

changes interface modes according to the scaled hand positions information that comes

from InputHandler.

5.2.4.1. Processing narrative for InterfaceHandler

InterfaceHandler manages the user interface, moves hand cursors (they are used as

mouse pointers) and changes interface modes with respect to hand movements of the

user, and also implements user interface mode functionalities. There will be four user

interface mode: main menu, tutorial, education and communication mode. For each of

them, InterfaceHandler creates an InterfaceMode class instance at the beginning of the

program. Each InterfaceMode object will contain different buttons and some of them

will have textboxes.

 Detailed Design Document

31

D-BUG

5.2.4.2. InterfaceHandler interface description

InterfaceHandler takes video stream and scaled hand position vectors from

InputHandler. While communication or education mode is active, it takes the string

from Recognizer that shows the meaning of the performed gesture. It activates and

deactivates Recognizer component whenever interface mode changes.

5.2.4.3. InterfaceHandler processing detail

No matter which menu is active, back stage of user interface remains unchanged.

InterfaceHandler takes video stream from InputHandler, and uses library functions to

render and display video on back stage. Also, this module uses another library function

to move hand cursors to new positions on the screen box in each cycle.

There are four InterfaceMode objects in this component. These modes will be activated

by hand cursors. Buttons of the program is actually not real buttons (i.e., mouse event

handler will not be assigned to them) , they are represented by coordinates of a

rectangle in screen box and an icon. If one of the hand cursor stands on the rectangle of

a button, InterfaceHandler increments counter of the button, and if this counter reaches

to an upper-limit, then current mode is deactivated and related user interface mode of

the button will be activated.

When a new interface mode is activated, related textboxes and button images will be

shown on front stage. All this modes have different functional properties, and

InterfaceHandler implements these functionalities.

If main menu or tutorial is opened, program will not perform gesture recognition. So,

InterfaceHandler deactivates Recognizer module and displays the related buttons on

front stage. There is not a special function of these two user interface modes.

 Detailed Design Document

32

D-BUG

If the communication mode is on, InterfaceHandler activates Recognizer. Every time

recognizer detects a gesture, it passes its name to InterfaceHandler. InterfaceHandler

will put these strings in an array, and content of this string array will be displayed in the

textbox.

If education mode is activated, a back button and a textbox that shows requested

gesture’s name and time left will be displayed on front stage. randomGesture function

chooses a random gesture name in every ten seconds, and waits user to perform the

chosen gesture. Ten seconds will be decremented by the help of educationCounter

variable, this counter will be incremented every time that InterfaceHandler main routine

is executed. When educationCounter reaches an upper limit, the timer on the screen

will be decremented. If user performs correct gesture, Recognizer will transfer the

expected gesture name and InterfaceHandler stops counting down process. Textbox

shows a success message for a while and another gesture will be selected randomly to

repeat this process. If user cannot perform expected gesture on time, a failure message

appears on text box for a while and another gesture will be selected randomly to repeat

this process.

5.2.4.4. Dynamic behavior InterfaceHandler

InterfaceHandler module is cooperating with both InputHandler and Recognizer.

Activation and deactivation of Recognizer depends only on this module.

 Detailed Design Document

33

D-BUG

 Figure 6: Sequence Diagram of InterfaceHandler

5.3. Design Rationale

We decided to conduct our system operations with four main components, and all these

parts have a crucial role. Since both recognizing function and interface needs processed

inputs, the best decision is to assign a module to handle Kinect SDK’s raw inputs and

provide processed inputs to other modules. An alternative method could be making

every module to handle Kinect SDK inputs by themselves. But as mentioned before,

recognizing algorithm needs discrete observations as inputs, and putting these complex

calculations into Recognizer module will complicate its functional operation

unnecessarily. While taking Kinect SDK inputs via a time dependent event handler,

InputHandler also determines the rhythm of the system and enforces other modules to

 Detailed Design Document

34

D-BUG

execute their routines repeatedly. There should be a component that takes this role for

the system even if there is no InputHandler.

Recognizer module recognizes sign language gestures by using HMMs. Since sign

language recognition is the main purpose of the system, an independent module is

assigned for this function. The most important advantage of collecting functional units

of recognition process into one module is that: communication between

InterfaceHandler and this module can be arranged in a simple, elegant way. Recognizer

module can be activated and deactivated by one command and it transfers recognized

gesture into a simple output.

InterfaceHandler contains all user interface related functionalities. In SRS document, we

assigned independent modules for education and communication modes. But these

user interface modes need very little functionality except arranging interface changes.

So, we decided to remove them and assign their functionality to InterfaceHandler. With

this arrangement, all interface related functions of the system are collected and user

interface mode information is wrapped with InterfaceMode structures.

5.4. Traceability of Requirements

 In this section, we will trace our design implementation to our software requirement

specification. The aim is to ensure that, we have kept the design simple enough not to

implement additional functionality that users did not wanted . On the other hand, we

have added new sub-components, data structures and eliminate some of the

functionalities explained in the previous software requirements specification document.

Since the software that we develop is mostly an interface based one, in the

requirements specification document mostly the functional requirements of user

interface are mentioned. Because of this property, most of the functional requirements

are related to the InterfaceHandler module.

 Detailed Design Document

35

D-BUG

Below, the requirements versus modules in a tabular form to associate the

requirements with modules to show which module is responsible for which

requirement.

SRS REQUIREMENTS SDD MODULES

3.2.1. 5.2.2.,5.2.4.

3.2.2. 5.2.2.,5.2.4.

3.2.3. 5.2.4.

6. USER INTERFACE DESIGN

6.1. Overview of User Interface

This project can serve both speech-disordered people and the others. Yet it is designed

especially for the speech-disordered people’s convenient use. Since most of the speech-

disordered people are not capable of hearing neither any sound-depended input-output is

included. All the functionalities of the program is maintained with gestures and movements

performed by the user. More precisely, clicking any of the buttons related to an action is

done by the user putting any hand on the related button for a certain amount of time.

In this program there are four main menus: main menu, tutorial menu, communication

menu and education menu. In all menus the user can see the video image of

himself/herself. The hand positions of the user are shown with hand images on the screen.

The user sees the positions of these images and can select the buttons accordingly. Also it

helps the user during the communication and education modes.

In the main menu the user can switch to education or communication mode. Also it is

possible that the user switch to the tutorial menu form this menu. The exit from the

program is possible only from this menu.

 Detailed Design Document

36

D-BUG

Tutorial menu is a simple text based menu that the user can read how to use the program.

The user can go only to the main menu from this menu.

Communication menu is where the conversion from Turkish Sign Language to text is done.

The user performs the gestures in front of the Kinect and the program tries to recognize the

gestures. The gestures are performed one after another and as the pre-defined gestures are

recognized they are displayed on the screen. If the movements do not correspond to any

gesture nothing is displayed. The user can go only to the main menu from this menu.

The education menu is for the user to practice Turkish Sign Language. It is like a game asking

the user to perform gestures that is displayed in a text box on the screen. Every gesture

should be done in a certain amount of time and the user can see the remaining time. After

the specified time elapses the user is informed with a message appearing on a text box

which informs the user whether s/he has performed the gesture correctly or not. The user

can go only to the main menu from this menu.

 Detailed Design Document

37

D-BUG

6.2. Screen Images

Figure 7: ScreenShot of Main Menu

 Detailed Design Document

38

D-BUG

Figure 8: ScreenShot of Education Menu

 Detailed Design Document

39

D-BUG

Figure 9: ScreenShot of Communication Menu

6.3. Screen Objects and Actions

Since there are only four menus and the program interface is kept simple there are not

many interface components. The general structure of the user interface is as follows:

o There exists a video box showing the image of the user simultaneously. This

helps the user see herself/himself whether s/he is in the line of sight of the

Kinect.

o There is the screen box on the right half of the program interface which consists

of different buttons, or text boxes according to the active mode of the program.

o The hand positions of the user is shown with hand images on the screen box.

 Detailed Design Document

40

D-BUG

The components of the screen box are dependent on the active mode. In this program

there are four menus: main menu, tutorial menu, communication menu and education

menu.

In the main menu it is possible to choose either of the communication or education

modes of the program by selecting the corresponding buttons. “Nasıl Kullanılır?” button

is for the tutorial menu to appear. The “Çıkış” button is to exit from the application.

The tutorial menu has a text box in which the helping text is written and a button

labeled “Geri” for switching back to main menu.

In the education menu there is a text box which the meaning of gestures displayed also

the remaining time is displayed in this text box. The information about the trueness of

the gesture performed is given in a text box again. There also exists a “Geri” button to

switch back to main menu.

In the communication mode the recognized gestures’ meanings are displayed in a text

box where the last word is at the top and emphasized. There also exists a “Geri” button

to switch back to main menu.

 Detailed Design Document

41

D-BUG

7. DETAILED DESIGN

7.1. InputHandler Component

7.1.1. Classification

 This component is a class with attributes and methods.

7.1.2. Definition

InputHandler is responsible for the input manipulation that comes from Kinect. This

component is in interaction with both Recognizer and InterfaceHandler.

7.1.3. Responsibilities

The main role of the InputHandler component is getting data from Kinect. InputHandler will

be on process as long as the application is working, in other words, it serves the

manipulated input 30 times per second to InterfaceHandler and Recognizer. Firstly, it

calculates hand positions, scaled with respect to the size of the screen box for the

controlling user interface with gestures feature of the application. Also the video stream

coming from Kinect is to be posted to InterfaceHandler by InputHandler. Secondly,

Recognizer receives the hand positions as a number in the SpaceZoningMatrix from the

InputHandler. Furthermore, another significant responsibility of this module is to initialize

all other components at the beginning of the application.

7.1.4. Constraints

There are some constraints about the environment that the user stands. For this

component to do its task properly, Kinect should be set correctly. As a requirement of this,

the environment that the user stands should be as clear as possible, otherwise Kinect

cannot process the input. The room should be large enough and there should not be any

moving objects.The application can recognize only one person’s skeleton joints, thus there

 Detailed Design Document

42

D-BUG

should not be another person around. Also the distance between the user and the Kinect is

another constraint that Kinect requires. This distance should be between 1.8 to 2.4 meters.

The user should stand straight since the distance between the hip center and the shoulder

center is used to produce the SpaceZoningMatrix. If the user bends forward the distance

between hip center and shoulder center will decrease and relative miscalculations occur. It

is also same for bending backward, right or left.

7.1.5. Compositions

There is only one sub-component of the InputHandler which is SpaceZoningMatrix class.

Although the existence of SpaceZoningMatrix class was not obligatory, it is integrated into

the system since the matrix properties such as the height and weight of the matrix are

determined experimentally and so if there needs to be any changes in these attributes it will

be done easily.

7.1.6. Uses/Interactions

The two modules that the InputHandler interacts are the Recognizer and InterfaceHandler.

As long as the application is active the InterfaceHandler is served by the InputHandler in

order to manage the user interface with gestures. While the Recognizer module is active,

InputHandler sends the hand positions to this module.

7.1.7. Resources

For this component the main external resource is obviously Kinect and the input it serves.

Also, the libraries used for this component NUI and Coding4Fun should be stated. The

positions of the skeleton joints of the user are given by the help of NUI library. The video

stream, which is accessed by the help of Coding4Fun library, is another resource for this

component although it directly sends this input to InterfaceHandler. Coding4Fun is also

used to obtain the hand positions scaled with respect to the screen.

 Detailed Design Document

43

D-BUG

7.1.8. Processing

The first task that InputHandler accomplishes is to determine the hand positions on the

screen, in other words, the transformations of 3d positions of both hands into 2d positions

on the screen. The results will be used to represent hands on the screen box which is a

rectangle on the user interface. To do this, it scales x- y coordinates of the hands with the

size of screen box. Then it passes these computed values to InterfaceHandler module.

Another production of this module is the SpaceZoningMatrix. This is an abstract matrix

created every time SDK provides the input of skeleton joints positions. By the help of this

matrix hand positions are reduced to single integer value that is to be sent to Recognizer.

For this, module calculates the length between the user’s hip and shoulder centers. This

length is divided to a pre-determined integer and result is stored in a variable called range.

It is assumed that hip center is considered to be lying on the down-middle of the matrix.

Assuming so the originPoint , which is the upper-left corner of the matrix, is determined by

taking “a times range left, b times range up” from hip center. The indices of the matrix is

determined with integers from left to right and then up to down (for example, squares of

4x5 matrix will be labeled from upper-left to bottom-right as 1, 2,…, 19, 20 with this

method). After the matrix is computed the squares that the hands lie on are determined

and the labels (integer values) are passed to the Recognizer.

7.1.9. Interface/Exports

The SpaceZoningMatrix is the data produced by this module. It is not directly sent to any

other module, instead the matrix is used by this module itself. By using SpaceZoningMatrix,

the matrix indices that the hand is on are determined and sent to the Recognizer

component. The other production of InputHandler is the hand positions with respect to

screen box that is to be sent to InterfaceHandler. The video stream is also transfered to

InterfaceHandler by this module.

 Detailed Design Document

44

D-BUG

The initialization task of the other modules is a function without any return value. By this

function the application has its components and classes initialized and ready to be used

during the whole running time of it.

7.2. Recognizer Component

7.2.1. Classification

Recognizer module is a class of the system.

7.2.2. Definition

The role of this class is to determine the performed gesture by comparing them with the

pre-defined gestures. The main functionality of this component is delivered by the help of

HMM sub-component.

7.2.3. Responsibilities

Since it receives the hand positions of the movements from InputHandler for 30 times per

second, an elimination of unnecessary matrix indices is required. Only the changing

positions of the both hands are to be kept in the stacks. This task is handled by the

Recognizer.

This component is also responsible for releasing the stack(s) when the hand(s) stand still for

memory considerations.

The most significant role of the module is determining which gesture is performed. To do

this the Recognizer manipulates the input, constructs the right/leftObservationList and

sends it to HMM instances defined for each gesture.

 Detailed Design Document

45

D-BUG

7.2.4. Constraints

The Recognizer module will be active when the application is in either communication or

education modes. The activationState is set/reset by InterfaceHandler. For any gesture to

be recognized, it should start/end in the correct region of squares of SpaceZoningMatrix.

7.2.5. Compositions

Recognizer module involves only one sub-component namely HMM. It stores HMM

instances for each gestures in an array called hmm.

7.2.6. Uses/Interactions

This module interacts with three classes namely InputHandler, InterfaceHandler and HMM.

Recognizer receives the matrix indices of both hands from InputHandler. By manipulating

this input, it creates the observationList and sends it to HMM instances. According to

output of HMMs, the determined gesture name is sent to InterfaceHandler.

InterfaceHandler also activates/deactivates the Recognizer according to chosen interface

mode.

7.2.7. Resources

There are no external entities directly used by Recognizer component.

7.2.8. Processing

The first functionality of the Recognizer module is eliminating unnecessary matrix indices

for performance considerations by following the changes in squares of SpaceZoningMatrix.

If the position of a hand on SpaceZoningMatrix is not changing, it means that the input

 Detailed Design Document

46

D-BUG

coming from InputHandler is the same with the previous one. So, it compares the new hand

position with the top element of the related stack, if these values are the same, new hand

position is not pushed to stack. This prevents filling the stacks unnecessarily due to the fact

that Kinect produces output 30 times per second which means the same number coming

from InputHandler while the hand is moving along the same square of the

SpaceZoningMatrix. Thus, only the changing positions of the both hands are kept in the

stacks.

Determining gesture meaning by using HMMs is the main responsibility of Recognizer. To be

able to do this, Recognizer constructs the rightObservationList/leftObservationList from the

first n elements of the each hand stacks. The length of the observation list (n) is determined

by the maximum/minumum observation number of the HMMs. According to the value of n,

Recognizer makes comparison between the first element of the stack and HMM’s

endRange, and also between nth element of the stack and HMM’s startRange. The reason

of these comparisons is to increase the performance by sending observationList to less

HMM instances. If these values match, observationList is sent to the related HMM to

calculate the occurrence probability of this observation sequence and then HMM returns

the probability of observing the given sequence to Recognizer. If this probability is bigger

than the threshold value of HMM, this means that HMM’s gestureMeaning corresponds to

the performed gesture and this meaning is sent to the InterfaceHandler component.

Whenever a gesture is recognized, these n elements of the related hand stack are released.

Releasing the stacks when the hands stand still is the another duty of the Recognizer. While

performing the gesture the user should move his/her hand(s) over a square of the matrix in

a time less than a second. If the position of a hand does not change for such a time, the

right/leftHandStack should be released for using memory efficiently. This is done by two

counters for each hands. This counter is incremented each time the Recognizer receives the

matrix indices from InputHandler. Since the input comes 30 times per second when the

counter reaches 30 it means that the user is not moving his/her hands for almost a second.

 Detailed Design Document

47

D-BUG

Thus, the right/leftHandStacks can be released. By doing so, there will not be any missed

gesture since the previous observations are already checked for gesture recognition.

7.2.9. Interface/Exports

The observationList and the recognized gesture name are the main productions of this

module. The observationList is a list constructed for an HMM and holds appropriate number

of observations for this HMM. The number of observations is determined with the HMM’s

maximum and minimum observation numbers. There are two observation lists for two

hands. The gesture name is the string that is the movements passed to InterfaceHandler

module to be presented on the screen.

7.3. HMM Component

As explained in 5.2.3, each HMM sub-component will contain a Hidden Markov Model, and

also they will have some additional values that are not a part of a model, but related to its

gesture. A brief description of the model was provided in section 5.2.3 and in this section

usage of these extra attributes and a more detailed explanation of the model will be stated.

System uses one or two first-order, left-right discrete Hidden Markov Models for every

gesture. Since observation set of each HMM will be one dimensional and discrete values

(single integers), model is called discrete. First-order means that an observation at time t

will be emitted only by the hidden state at time t. So, observation matrix of a first order

Hidden Markov Model has one probability value that matches a state with an observation.

Left-right implies a special topology of the model. In a left-right model, a state qi has

transition probability different from zero with itself, qi+1 and qi+2 states only. Also, initial

distribution matrix enforces model to start with the first state q0 in this left-right topology.

 Detailed Design Document

48

D-BUG

These restrictions make the model more powerful, because successively ordered state

sequences are more likely to represent changes over time.

Standard topology of an HMM (ergodic model) and left-right model can be seen in Figure

10.

 (a) (b)

 Figure 10: Standard HMM(a) Left-right HMM(b)

This sub-component will hold model related matrices and a function that applies

forward algorithm. Training of the model, in other words, getting effective values of the

matrices will be done externally, and training functions will not be added into the

system. Before training, different observation sequences of each gesture will be

collected as training set by repeatedly performing gestures in front of the Kinect. The

characteristic values of a gesture (possible starting and ending points, average length of

a gesture etc.) that HMM component holds will be extracted from training set manually.

In the first stage of the training of a model, matrices will be initialized. Experiments

show that initializing matrices with approximately equal values (but not with uniform

values, they should be slightly different) gives the best training results. State number of

each model will be set equal to the average length of the sequences in training set. State

transition matrix will be initialized according to the constraints of left-right model.

 Detailed Design Document

49

D-BUG

Figure 11 illustrates the state transition matrix of a left-right model with four states.

Except the last states, transition values can be nearly ⅓ for achieving best results.

 Figure 11: State transition matrix

In second stage, initialized model will be trained iteratively. While training, Baum-Welch

algorithm for multiple observation sequences will be applied on the model. Algorithm

calculates probability of each sequence of the training set with respect to the current

matrices of the model, then compares the products of these probabilities with the products

of old probabilities. If new probability product is bigger than the older one, values of each

matrix will be re-estimated. Re-estimation can be executed while there is a significant

growth in probability products. Although there is no analytical approach to create the best

model, it is known that Baum-Welch algorithm raises the likelihood of an observation

sequence which is similar to the ones in training set.

After training completed, occurrence probability of each observation sequences in the data

set will be calculated and the minimum value will be set as threshold of the model.

Validation of these threshold values will be tested during implementation. If it is necessary,

for example if a correct performance of the gesture cannot pass the threshold, these values

can be changed later. When all these training stages successfully completed and necessary

information gathered, HMM component will be added to the system.

 Detailed Design Document

50

D-BUG

7.3.1. Classification

This sub-component will be implemented as a class with data members and methods, and

its instances will be employed by Recognizer component.

7.3.2. Definition

HMM sub-components will be used to determine the likelihood probability of a set of

numbers which is extracted from the movements of hands. Probability is calculated with

respect to HMM’s training set.

7.3.3. Responsibilities

Every HMM object in the system is assigned to a different gesture. They are responsible for

containing name, and characteristic values of its gesture, and providing them to Recognizer.

Also, instances of this class are capable of calculating occurrence probability of an

observation sequence which is composed and provided by Recognizer.

7.3.4. Constraints

There are some constraints for the HMM component related to the start, end position of a

gesture and the length of the observation sequences.

In order to make HMM component to recognize performed gesture more precisely and

effectively, there must be a range for the start and end positions of each gesture. For

example, in a 4x12 SpaceZoningMatrix, for the gesture “Goodbye” right hand should start

its movement from the chest level within the squares of matrix in a range of <19,20,21>.

Also, end position of the right hand is restricted in that manner. These numbers will be

precisely determined after gathering several experimental values. In addition to starting and

ending positions, the length of a gesture sequence is also restricted. Possibility calculation

 Detailed Design Document

51

D-BUG

will be executed only if the length of the sequence is in between pre-determined range. For

instance, the observation sequence of the gesture “Goodbye” could have a length of either

4, 5 or 6 but not 7. In order to cover all different starting-ending points and maximum-

minimum lengths of a gesture, it is important to collect different performances of a gesture

as much as possible while creating training set.

These constraints are necessary to make the comparisons more efficiently since there will

be at least one HMM for each gesture and the system should determine the best-fit HMMs

for the performed gesture by looking at the starting and ending states and also the length of

the sequence.

7.3.5. Compositions

Since HMMs are already sub-components, all functional responsibilities of them are covered

by their data members and related methods that works on these members. In other words,

there are no sub-components of an HMM.

7.3.6. Uses/Interactions

Being a sub-component of Recognizer and required only for Recognizer, HMM component

has an interaction only with the Recognizer component. This interaction appears whenever

Recognizer is in the active state, that is, every time a gesture is performed to be recognized.

After InputHandler component gets the input and Recognizer makes necessary comparisons

and arrangements with this input, it sends it to the related HMMs for probability

calculations.

7.3.7. Resources

There are no directly used external resources for the HMM component. There exists some

open-source libraries for Hidden Markov Models with discrete observation sequences,

 Detailed Design Document

52

D-BUG

however in TSL-Kinect instead of manipulating existing codes for our purpose; we decided

to write our own HMM implementation.

7.3.8. Processing

The main functionality of an HMM will be calculating the logarithmic probability of a given

sequence. Another responsibility of this sub-component which is collecting and providing

gesture-related values will not need any special process. All these values are hold as public

attributes of this class, and can be directly reached by Recognizer.

When an observation sequence extracted by Recognizer from a hand stack and is given to

HMM, it executes forward algorithm (other name of this algorithm is alpha pass) as

explained in 5.2.3.

Alpha value for a state i and at time t is the occurrence probability of first t observation of

the observation sequence, and also occurrence probability of state t. For an observation

sequence with length T, alpha values of each state at time t=0 will be initialized with initial

distribution matrix and related observation matrix value for each state q=0,1,2....N-1. For

observations at time t=1,2,3,...,T-1, alpha values can be calculated recursively by using alpha

t-1 values. Calculation can be summarized as follows:

 Detailed Design Document

53

D-BUG

After alpha values calculated until T-1, the probability of sequence is equal to the sum of

alpha T-1 for each state.

Although this calculation is mathematically valid, since it deals with very little probabilities

while T grows, and alpha values go underflow eventually. The solution to this underflow

problem is to scaling numbers. With scaling, in each stage of the pass, sum of the alpha

values of each state is recorded to the scaling coefficients array, and each alpha values of

time t is divided by this sum. Occurrence probability of the sequence can be calculated by

inverted products of the scale values. Again, we can avoid underflow problem by taking

logarithms of scaling factors and summing them. Then, logarithm of probability will be equal

to negative of logarithmic sum of each scale value for t=0,1,2,...T-1. All of these calculations

will be held in probabilityCalculation function of HMM component, and return value of this

function will be the logarithmic probability value.

7.3.9. Interface/Exports

Gesture related information is kept as public variables and they can be reached externally.

Each HMM holds name of the gesture in gestureMeaning string variable, how many hands

gesture has in howManyHands variable, name of the hand (left or right) that HMM is

assigned in handName string variable, possible starting and ending points as arrays of

integers in endRange, startRange variables, minimum and maximum lengths as integers in

minimumObservation and maximumObservation variables, and a threshold probability

value of a gesture as double in threshold variable.

They take data from Recognizer and executes scaled forward algorithm with

calculateProbability function. This function returns result as double.

 Detailed Design Document

54

D-BUG

7.4. InterfaceHandler Component

7.4.1. Classification

InterfaceHandler component is also a class with several attributes, methods and two

subcomponents.

7.4.2. Definition

InterfaceHandler is the component that manipulates user interface modes. In TSL-Kinect

project there will be four interface modes: Main Menu, Tutorial, Education and

Communication Modes. The main functionality that InterfaceHandler takes hand is

arranging the displays namely text-boxes, buttons and labels for each user interface modes

by checking the switches between modes.

7.4.3. Responsibilities

This component is responsible for all the necessary user interface functionalities. Basically,

it changes the screen contents according to the user interface mode changes. The

visibilities, fonts or sizes of the screen images are also decided by InterfaceHandler while

the application is on process. InterfaceHandler is also responsible for activating and

deactivating the Recognizer component whenever a change occurs in user interface modes

from education/communication modes to main menu mode or vice versa.

7.4.4. Constraints

The functionality of this component is completely depends on the Microsoft SDK’s image

processing ability. Since Microsoft Official SDK is not good enough to recognize the hand

positions when two skeleton joints overlap, it is assumed that controlling the user interface

 Detailed Design Document

55

D-BUG

is performed by only one hand and the initial position of the hand is away from the body in

order to be sure that there is no overlapping between two skeleton joints.

7.4.5. Compositions

InterfaceHandler is composed of two sub-components which are InterfaceMode and

Button. InterfaceHandler includes an array of InterfaceMode instances called “modes” and

InterfaceMode sub-component has an array of Button instances called “buttons”.

InterfaceMode class exists for storing the positions of every button displayed in the active

user interface mode. This information is required to compare the scaled hand positions,

with respect to the screen, with the button positions in order to perform the “click” event.

As it can be understood from the name Button class is for holding the information about all

the buttons used in the user interface. An instance of Button class provides the height,

width, text and position information of a rectangular button image.

7.4.6. Uses/Interactions

Apart from sub-components (explained in section 7.4.5.) InterfaceHandler is in interaction

with both InputHandler and Recognizer.

The interaction with InputHandler appears every time InputHandler repeats its functional

routines, i.e., whenever a new input is generated by SDK (30 times per second) to display

the video stream on the screen and make comparison for interface mode changes.

On the other hand, the interaction with Recognizer only appears when the system user

selects the education or communication mode or returns to the main menu from these

modes.

 Detailed Design Document

56

D-BUG

7.4.7. Resources

For this component there are no directly used resources. However, since it is in interaction

with the InputHandler to get the video stream and scaled hand positions, InterfaceHandler

indirectly requires Coding4Fun toolkit and NUI library. The provided functionalities of these

libraries are explained in the section 7.1.7.

7.4.8. Processing

As is the case in the other components of the system an InterfaceHandler object is created

by the initialization() function placed in the InputHandler component.

Two main functionalities are handled by this component: changing the user interface modes

and displaying the gesture meanings on the screen.

Since there are four user interface modes of the system, InterfaceHandler creates an array

of InterfaceMode object with size four. The transitions between these modes are decided

by checking whether the hand position is in the area of an activation button belonging to

the related mode. All the buttons of the user interface are represented by rectangular

areas and a click event is checked by whichButton() function of the InterfaceMode class.

This function takes the scaled hand positions 30 times per second and it finds the associated

button by checking whether the hand position lies on the rectangular area of a button. After

finding the related activation button a button counter, which is the buttonTimer attribute of

a Button object, is incremented by one and if this counter equals to a pre-determined upper

limit, it means that hand remains its position within the border of the button and so a click

event is performed. After checking the click event of a button, changeMode() function in

InterfaceHandler is called and it rearranges the view of the user interface by manipulating

the visibilities of the related interface mode buttons and textboxes if any.

 Detailed Design Document

57

D-BUG

When the application is started, user will be confronted with the main menu. User will be

able to switch between tutorial, communication and education modes from the main menu.

When a click event is detected for the tutorial mode, a video will be displayed to teach the

use of the system visually.

When a click event is detected for communication mode, InterfaceHandler activates

Recognizer. Recognizer sends the name of the performed gesture to InterfaceHandler

whenever the recognition process is succeeded. The name of the performed gesture coming

to InterfaceHandler is of string type and if the gesture could not be recognized the content

of the string is empty. These strings are stored in the “gestures” attribute of

InterfaceHandler which is of type string array with size four in order to display the content

of gestures in the textbox. The displayed content of the textbox is updated by this way:

Whenever a new no-null string arrives to InterfaceHandler, it is placed in the first position of

the array and current value is placed in the second position , second string goes to the third

position and third one goes to the fourth position.

When a click event is detected for education mode, InterfaceHandler again activates

Recognizer for recognition process. In this mode user will be asked to perform a gesture

which is determined randomly by the randomGesture() function. The user will have ten

seconds to perform the asked gesture and the timer on the screen will be decremented

until user performed the correct gesture. In each time user makes a movement Recognizer

sends a string to the InterfaceHandler and this string will be compared with the randomly

chosen one. If these two are decided to be equal, at the end of simple string comparison

process, then counting down process is stopped and a success message is shown on the

textbox. If these two strings are never the same within the 10 seconds duration, a failure

message is displayed for a while and another gesture is selected randomly to repeat the

same process.

Both communication and education mode interfaces contain a “Back” button in order to

 Detailed Design Document

58

D-BUG

return to the main menu. When a click event is detected for the “Back” button,

InterfaceHandler deactivates Recognizer so the system will not perform any gesture

recognition until one of the education or communication mode is selected again by the

user.

7.4.9. Interface/Exports

InterfaceHandler has interaction with both InputHandler and Recognizer. The displayVideo

function takes video stream from InputHandler to display the image of the user on the

screen in every modes of user interface. whichButton function in InterfaceMode sub-

component takes the scaled hand position vectors from InputHandler and finds the

associated button. changeMode function takes the name of the button and if the name of

the button is “Education” or “Communication” Recognizer component is activated by

setting its activationState attribute to an integer value for gesture recognition. If the name

of the button is “Communication” Recognizer sends the meaning of the gesture via

setGestures function. If the name is “Education”, Recognizer sends the meaning of the

gesture via compareGesture function. If the name of the button is “Back” InterfaceHandler

deactivates Recognizer by setting its activationState attribute to 0.

8. LIBRARIES AND TOOLS

8.1. Hardware

8.1.1. Kinect

 8.1.1.1. Description

Kinect for Xbox360,or simply Kinect (originally known by the code name Project Natal),

is a motion sensing input device by Microsoft for the XBox 360 video game console.

Based around a webcam-style add-on peripheral for the Xbox 360 console, it enables

 Detailed Design Document

59

D-BUG

users to control and interact with the Xbox 360 without the need to touch a game

controller, through a natural user interface using gestures and spoken command.

8.1.1.2.Usage

Kinect handles the image processing part of the project.It support the positions of the

joint coordinates of the body in the space where the Kinect is at the center of the space.

Here is a diagram representing the joints (Figure 12):

Figure 12: Skeleton joints of Kinect SDK

 Detailed Design Document

60

D-BUG

8.2. Software

8.2.1. Kinect SDK

The Microsoft Kinect for Windows SDK provides the native and managed APIs and the

tools you need to develop Kinect enabled applications for Windows. This SDK provides

support for the features of the Kinect sensor (color images, depth images, audio,

skeletal data, etc.).

Basically, the Kinect sensors will send a set of three streams:

Image stream can be displayed like with any other camera (for example to do

augmented reality). The Kinect video sensor can return a stream with 2 resolutions: one

at 640x480 (at 30 frames per second) and one at 1280x1024 (but at 15 frames per

second).

The depth stream is the determining factor in our case. It will indeed add to each pixel a

depth defined by the sensor. So in addition to the 2D position of each pixel (and color)

we now have depth. This will greatly simplify the writing of shapes detection algorithms.

A third stream is sent from the sensor: it is the audio stream from the four microphones.

In this project, obviously this stream will not be used.

Therefore, the key point here concerns the ability of Kinect to give us three-dimensional

data. Using the NUI library (which comes with the SDK and stand for Natural User

Interfaces) you will be able to detect the presence of humans in front of the sensor.

 Detailed Design Document

61

D-BUG

8.2.2. Microsoft Visual Studio 2010 Express

Microsoft Visual Studio is a powerful IDE that ensures quality code throughout the

entire application lifecycle, from design to deployment. Whether you’re developing

applications for SharePoint, the web, Windows, Windows Phone, and beyond, Visual

Studio is your ultimate all-in-one solution. [http://www.microsoft.com/visualstudio/en-

us]

For using Kinect SDK one has to use any Visual Studio 2010 edition. In this project Visual

Studio 2010 Express edition is chosen.

8.2.3. Libraries

 NUI library

This library enables the Kinect programmers to get the input in skeleton form.

 Figure 13: NUI library interaction

 Coding4Fun Kinect Toolkit

The Coding4Fun Kinect Toolkit is a set of extension methods and controls to make

developing applications for the Kinect using the Kinect for Windows SDK easier.

http://www.microsoft.com/visualstudio/en-us
http://www.microsoft.com/visualstudio/en-us

 Detailed Design Document

62

D-BUG

9. TIME PLANNING

Figure 14: Gantt Chart for Term I

 Detailed Design Document

63

D-BUG

Figure 15: Gantt Chart for Term II

 Detailed Design Document

64

D-BUG

10. CONCLUSION

In conclusion, Detailed Design Report for TSL-Kinect gives the definition, purpose and scope

of the project. The possible design and other constraints that can be faced are explained.

The tools and the libraries that will be used during developing the project are decided.

Component diagrams, class diagrams, sequence diagrams and interface features are given

within the document. We have explained the works that we have done so far and within the

schedule we give the future work to be done.

