SOFTWARE DESIGN DOCUMENT
FOR

PPTX TO HTMLS
CONTENT
CONVERTER

PREPARED BY Limon

Shamil Farajullayev
Rustam Hashimov
Nahid Hamidli
Omer Baykal

this page is intentionally left blank

Table of Contents

O 14 o o To [T} i o o TSRS 7
1.1, Problem Definition ... e 7
I 0100 = 8
I Y ol T o 1= 8
L4, OVEIVIEW ettt bbb e s b s a e e s bbb e e s b e e sna e s sans 8
1.5. Definitions, Acronyms and Abbreviations.......ccceeiieieee e e 9
1.6, REEIENCES ..c.uiiiiiiiee e e 9

2. SYSTEM OVEIVIBW ..eiiiiiiiiieitie ettt ettt ettt e ettt e e et e e e e bt e e s e sasteeeseaseeeesenreeeesenneeeesenrens 10

T B 1T Fd o W oY a1 Lo [T =Y o o [T 11
3.1. Design Assumptions, Dependencies and CoONStraintsccccccvveeeerireeeeeriveeeeercveeeesnnen 11

31,1, ASSUMPLIONS ceiiiiiiiiiieitie ettt ettt e e et e e et e e s st e e s e sase e e e e s neeeesenneeessanneaeens 11
I R B 7Y o Y=Y o o [=] o Vol =TSSP 11
3.1.3. CONSTIAINTS cveiiiiiiiiiiii e e 11
3.2. Design Goals and GUIAEIINEScc.eeeiieiiierieciiceere et st saeeaeas 11
20 S € S T Vol o 1= 11
3.2.20 US@DITITY coueeiieeeeeeee e 12

N B -) = T 1= = o PR 12

T3 N DT | =l B 1T o] o o] { o] o IO O OO TP PPPUPPRN 12
s O R o 4 (=T o o =Y W D - | = T @] <1 0 RSP 12
4.1.1.1. PresentatioNMLoociiiiiiiiiiiiiiiiiiiic 12
A.1.0.2. HTIMILS Lottt ettt e e sttt e e st e e s et e e s e are e e e e eneeeeessaneeeesanns 20
4,1.2. Internal Data ObJECES ...cccviieieciiie ettt e et e e e re e e e sare e e e s rabaeeeeenes 20
4,1.2.1. HIierarchy Tre@ StOrAZE ..ucccvvveeeiecrieeeeeitteeeeesitreeeesireeeesstbeeeeesssresessssreseesssssesenenns 20
4.1.2.2. Template StOrage ...uuviiiiieiieeie ettt st e e e saeeens 20

T/ N N VY| - 1 D 1T d o] -1 Y AU UUURN 20

TV =T 0 Y ol o1 =T ox AU RS SS 21
5.1, ArchiteCtural DESISN ...cccueiiuiieieiieecie ettt sttt e st e e aeesaeesaaeereas 22
5.2. Description of COMPONENTSooiiiieiieeee ettt s rae e e 23

5.2.1. Add-In Tab ComMPONENt.......occeiiiieeee et et 23
5.2.1.1. Processing Narrative of Add-In Tab Component........cccccceeevveeecreeenireeenveeennen, 23

5.2.1.2. Interface Description of Add-In Tab Component.......cccccceeviveccieecieeeciee e, 23

5.2.1.3. Processing Details of Add-In Tab Component........ccccevvueeveeneencreeneeneesiieennn 23
5.2.1.4. Dynamic Behavior of Add-In Tab Component........cccceevueeveeneenceeneesieceeenenn 24
5.2.2. Hierarchy CoOmMPONENt......c.oi ot ree e s e re e et e e s e eanne s 24
5.2.2.1. Processing Narrative of Hierarchy Component........cccceeeveeevveeecreeenreeenveeeneen, 25
5.2.2.2. Interface Description of Hierarchy Componentc.cccccceevvieiccieecieeeciee e, 25
5.2.2.3. Processing Details of Hierarchy Componentcccceevvieiieecceeeccee e, 25
5.2.2.4. Dynamic Behavior of Hierarchy Componentcccccveeeevireeecniieeecccieee e, 28
5.2.3. Template COMPONENT ...ccccuiieiieeieeeee ettt rete e e e e e e et e e ena e e earae s 28
5.2.3.1. Processing Narrative of Template Componentccccecueeveeneencieeieencienieeenen, 29
5.2.3.2. Interface Description of Template Componentcccceevveeeeiiieeeeniieeeecrnnenen, 29
5.2.3.3. Processing Details of Template Componentcccecvevvieeveineenceeneeniescieennn 30
5.2.3.3.1. Template Editor Classcccevieeciinienieeieesie st 30
5.2.3.3.2. Template Handler Class....cuiiiieeieieee e eeiiree e cerirreeeessreeesssnveeeesnnsaeee s 31
5.2.3.3.3. TemMPlate Class ...ccceeieeciiiiesieeieesite sttt stte e ve et esae e re e sae e e aeesaaesnaeennean 31
5.2.3.4. Dynamic Behavior of Template Componentccceveevieeieeneenceeseesee e, 31
5.2.4. XMLParser COMPONENTcciiiiiiiiciiiiiiieeeeeeeeseiiiireeee e e s ssssrrrreeeeesessssssnsraeeeeessssnsnnnns 32
5.2.4.1. Processing Narrative of XMLParser COMpoNent........cccecvveevveeeireeenveeenveeennn. 32
5.2.4.2. Interface Description of XMLParser COmponentccccceeeveeeecreeenreeerveeennnen. 32
5.2.4.3. Processing Details of XMLParser Componentccccceeeveeeeiieecceeescieeeceee e, 32
5.2.4.4. Dynamic Behavior of XMLParser Componentccoceeeevvveeeeriveeeesineeeeennnennn 33
5.2.5. Publish COMPONENToiii ittt e e e are e e e are e e e ennaeee s 34
5.2.5.1. Processing Narrative of Publish Component.........cccocerviirviinieniennennieenieeen, 34
5.2.5.2. Interface Description of Publish Componentccoeveeviveeeciiieeecccieee e, 34
5.2.5.3. Processing Details of Publish Componentccccccevieriienieinienieeneenieeieenn 34
5.2.5.4. Dynamic Behavior of Publish Componentc.ccccevieriieeieenienceeneesie e 35
USEr INtEITACE DESIEN coooevveee ettt ettt ettt e e e eebre e e esbee e e eesbbeeesebbeaeeessbaeeessssbaseesnnseneens 36
6.1. Overview Of UsSer INterfacecocioiiiriiiieeeeeeeeee e 36
6.1.1. Main Window Interface (Publish Interface)ccccccevveveerveeieenecceeceesee e, 36
6.1.2. Hierarchy Editor Window INterfaceccceeeveeecieecceeeeee e, 36
6.1.3. Template Editor Window INterfacecceeveeeveeeccieeccieeecree e 37
6.2, SCIEEN IMAEES e e s e s e s e s s e s e e e e s e s e e s e aeaaaaaaaaaaaaaaaaaaaas 38

(DL Y1 1=To I 1T =4 o AU 41

7.1, Add-INn Tab COMPONENT ..coeiiiiiieeeieceeree et eae e saaeenreas 41
7.1 1. ClasSifiCation .o.eeeeseeiereeees e s 41
7.1.2. DefiNITION oo e 41
% . TR YTy o Yo T 0 LY o 11 L =R 41
7. 14, CONSTIAINTS cveiiiiiiiiiicri e s 42
7.0.5. COMPOSITION. ittt s e e e e s e e s s ssbbaraeeeeeessssssbraaeeeeeesenannses 42
7.1.6. INTEracCtioNS ...cciiviiiiiiiicictt s 42
% O N o] o Tl <11y 1 o V= OO P OO PPPPPPRRN 42

7.2. Hierarchy COMPONENT ...cooiiiiiiiieeieceesee ettt s st e e neesaeesaaeenseas 43
7.2. 1. ClasSifiCation .o.coiiciiiiiiicccc e 43
7.2.2. DfiNITION oottt 43
7.2.3. ReSPONSIDIIITIES couevieiiiiiieciieceeee e 43
724, CONSEIAINTS c.eiiiiiiiiiiiiie e s 43
7.2.5. COMPOSITION..ciiiiiiiiieitte ettt ettt e e e s s s abe e e s s sabte e s s snreeessnraeessanneaeens 44
7.2.6. USES & INTEIrACTIONS ..couviiiiiiiiiiiecite ettt s 45
7.2.7. RESOUICESotiiiiiiiitiiiitt ittt sa e s bbb e s sna e saba s 45
7 TR o o Yol <11 1o V- PP 46

7.3. XML Parser COMPONENT a e aaaaaas 46
7.3. 1. ClasSifiCationcoeeieeieieieee e 46
7.3.2. DefiNitioN oo 46
2 T TR Yt o Yo 0 LY o 11 L [T T 46
7.3.4. CONSTIAINTS c.eeiiiii it 46
/8 8> TR o T ¢ oY o T 1Y 1 oY o 1 UPPRR 46
7.3.6. RESOUICES ...ttt et st esa e e s be e s b e s anb e e s e e e snee s 47
7.3.7. PrOCESSING «.eeeeiiiitie ettt ettt ettt e e e et e e s et e e s e bt e e e e s ne e e e e nbee e e e neeee s 47

7.4, PUDBIISh COMPONENT...ciiiieceee ettt e et e e e sbre e e s eabee e e s sbaeeesenbraseesnsens 47
7A.L. ClasSifiCationeoieieeieeeeee e st 47
742, DEfiNITION oo e 47
743, CONSTIAINTS cveiiiiiiiiiiii s 48
744, Uses & INtEractionscccvvuiiiiiiiiiiiiiicnicc s 48
Libraries and TOOIScc.oiiiiiiiiiiiieie e e 48

8.1, MICrosOft VIiSUAlI CH ..ooooeeeeeeeeeeeeeeee 48

2 700 0t S B 1= 1 o | o { [0] s PO T ST PP P PRRPT 48

S O B VL 1= LN [I o T o o) =T ot SRS 48
8.2. Microsoft .NET FrameWOrKcoceiiiieiiiiiiiieiecieseetcsie e 48
307 2 R B =1 ol 1 1 oY o SRR 48
8.2.2. USABEIN the PrOjJEC ..c.eeii ettt ettt et e e e 49
8.3, Microsoft Visual STUAIOcc.eiiiiiiiiiiiieceee e e 49
30 T80 I B =T ol 1 o o U EPRR 49
e I B V- T B T I o o TS o o] =T ox AR 49
8.4, OPEN XML SDK 2.0 ..ottt e e st e e s et e e e e sne e e e s e nseeesennneeeeeans 49
30 I B 1= T ol 1] o o PR 49
8.4.2. UsSAge iN the ProjECt .ccviiiiiiiieiecie ettt st 50
8.5, JSON Lttt h e bbb bbb nhe et e b e e nae e 50
0o Y00 I B 1= T ol 1] o o [PP 50
8.5.2. USAgEIN the PrOJECE .eivuiieieiieeeecece ettt e 50
8.6, HTIMILS ...ttt et e e s ettt e e s s aste e e s asbaeesesasbaeessnbeaessanneaeesnnns 50
T8 R B 1= ol §1 o 0] o PO O TSP P PO PPPPPPPPPPRN 50
R I A U LY - { I [Y o o (o o =T 51

S B [0 o VO o - oY oLV - 52
1S 1= o o 1 PP PP PRTOPR 52
9.2, TEIM 2ttt e 53

10. [000] 0 Lol [V 1Yo] o I 54

1. Introduction

This is the Software Design Document of “PPTX to HTML5 Content Converter” project. This
document provides how the software system will be designed to satisfy the requirements
and functionalities that were stated in the Software Requirements Analysis Document of the
project [1]. It is the crucial document for developers of the project, since it includes details
that ease the implementation of the project. This document is written based on standard of
SDD writing that are stated in IEEE Std 1016-1998: IEEE Recommended Practice for Software
Design Descriptions [2].

1.1.Problem Definition
Educational institutions that have their lectures online and departments of companies that
are responsible from education of employees are faced with the problem that they are
unable to keep track of the development of their students. To solve this problem, for
example, companies are making lecturers to go to the towns of employees and educate
them by arranging instructive meetings. Some companies even bringing their employees to
headquarters of the company and arranging meetings in there. These methods are seemed
to solve the problem but they also have some problems. They are not much efficient and
they cost the companies a lot of time, effort and money. Hence, they are started to look at
for alternative solutions like cooperating with consulting companies. Since most of the
documents prepared by lecturers are presented as PowerPoint slides and it is impossible to
follow the process of learning, these consulting companies convert the PowerPoint files to e-
learning packages manually. We intend to solve this difficulty by developing a Microsoft
PowerPoint plug-in which will automatically convert PPTX documents to HTML5 formatted
documents without almost any human effort while keeping the structure of slides. The
software we intended to create will have two main advantages.

Firstly, the created product from PPTX file will obey the SCORM [3] standard. The SCORM
standard defines communication between client side content and a host system
(generally referred as learning management system) and how content of may be
packaged into a transferable ZIP file “Package Interchange Format”. So, obeying SCORM
standard will provide the product ability of being tracked.

Secondly, the created product will keep its content in HTMLS [4] format. HTMLS files are
accessible from any platform and its only requirement is a web browser. HTML5 will
provide the product independency. Users of the product will be able to use the system
from any environment; any operating system (like MAC OS, Windows, iOS, Android and
Linux distributions), any device (like MACs, PCs, Smart Phones, Tablets); and any time
they demand.

1.2.Purpose
In the Software Requirements Analysis Document of the PPTX to HTML5 Content Converter
project [1]; desired features, functionalities and requirements were stated. This Software
Design Document is intended to create a software design which will satisfy the stated
functionalities and requirements based on the constraints and assumptions made in SRS of
the project. This document is intended to be viewed by development team of the project
because design issues are mainly related to development phase of the project and therefore
they are related to developers of the project.

1.3.Scope
Scope of this Software Design Document is to explain design related issues of the project in
detail. This document is a Detailed Software Design Document. Therefore, it includes a
detailed design. It includes the overall system architecture and data architecture. Design
considerations like assumptions, dependencies, and constraints; detailed design of software
components; design of user interfaces; development schedule and development tools are
also covered in this document.

1.4.0verview
This first chapter of this SDD is an introduction to the project. It includes information about
this document (its purpose, scope and contents), the clear statement of problem that the
project intends to solve, definitions and abbreviations used and references referred
throughout this document. The rest of the document covers the sections, respectively:

System Overview; provides general description of the software system. It explains major
parts of the software to be created.

Design Considerations; addresses special design issues which need to be resolved before
dividing into design. Some examples are time and performance constraints, hardware or
software related limitations.

Data Design; explains how data is stored, processed and organized in the product.
System Architecture; provides description of the program architecture.

User Interface Design; covers the information of how the users of the product will be
able to use the system. Also there are some screen images of designed user interfaces.

Detailed Design; covers the details of software components of the project. Also there are
some use-case diagrams to support the design.

Libraries and Tools; lists the libraries and tools that are planned to be used throughout
the development phase of the project.

Time Planning; demonstrates time planning and scheduling issues by representing a
Gantt Chart.

Conclusion; sums up this Initial Software Design Document.

1.5.Definitions, Acronyms and Abbreviations
Definitions, acronyms and abbreviations that are used throughout this document are listed
in the following table.

The Project PPTX to HTML5 Content Converter Project

SRS Software Requirements Specification

SDD Software Design Document

ISDD Initial Software Design Document

SCORM Sharable Content Object Reference Module

IDE Integrated Development Environment

ECMA An international standards organization for Information
Communication Technology and Consumer Electronics

ISO International Organization for Standardization

JSON Java Script Object Notation

1.6.References
[1] Software Requirements Specification of PPTX to HTML5 Content Converter Project

The SRS document of PPTX to HTML5 Content Converter Project, written according to
IEEE Std 830-1998: IEEE Recommended Practice for Software Requirements
Specifications.

[2] IEEE Std 1016-1998: IEEE Recommended Practice for Software Design Descriptions

A common software engineering standard to provide some guidance and
recommended approaches for specifying software design descriptions.

[3] SCORM Standard,
http://en.wikipedia.org/wiki/Sharable_Content_Object_Reference_Model

(4] Specifications of HTML5 in W3 Consortium Page for Developers,
http://dev.w3.org/html5/spec/Overview.html

[5] Microsoft Visual C#,
http://en.wikipedia.org/wiki/Microsoft_Visual C_Sharp

[6] John Sharp, “Microsoft Visual C# 2010 Step by Step”, Microsoft Press, 2010

[7] Microsoft .NET Framework,
http://en.wikipedia.org/wiki/.NET_Framework

[8] Visual Studio in Microsoft Developer Network Page (MSDN),
http://msdn.microsoft.com/en-us/library/fx6bk1f4.aspx

[9] Getting Started with the Open XML SDK 2.0 in Microsoft Developer Network Page
(MSDN),

http://msdn.microsoft.com/en-us/library/bb456488.aspx
[10] JSON in Wikipedia,
http://en.wikipedia.org/wiki/JSON
[11] User Control Class Documentation in MSDN
http://msdn.microsoft.com/en-us/library/system.web.ui.usercontrol.aspx
[12] Ribbon Class Documentationin MSDN

http://msdn.microsoft.com/en-us/library/microsoft.office.tools.ribbon.aspx

2. System Overview

As explained in detail at the Problem Definition section (1.1), the aim of our product is to
make it easier for the educators to keep track of the employee training programs, so that
they can know how much of the presentation slides they have learned. But how this can be
achieved? What should be concerned while implementing the application in terms of
design? User interface had to be very easy, since the consumer might have almost no
PowerPoint knowledge. That’s why we created an add-in for PowerPoint application of
Microsoft Office so that every operation happens inside a single program. In addition, we
have decided to implement object oriented programming to treat every element as a
separate object.

As the means of interface; Template, Interface and general Add-in (Ribbon) windows will sit
inside the PowerPoint. By a few mouse clicks only, output will be ready. Open XML SDK will
be used to parse the XML files to ParsedSlides format, which is described in following
sections of this document, taken from PPTX files. Hierarchy window will let the user see and
edit hierarchy of slides in real time. Template window will let the users to select the best
fitting template for each slide, so that our static HTML generator creates the appropriate

HTMLS code. By pressing publish button in Add-in tab interface, user will be asked to choose
the save directory, and after HTMLS5 files are crated for each slide, a SCORM based
compressed file will be published. In Detailed Design section, there are some details of
SCORM standard.

3. Design Considerations

In this chapter of SDD, some design considerations about the project PPTX to HTML5
Content Converter such as basic assumptions, constraints and dependencies as well as goals
and guidelines will be described.

3.1.Design Assumptions, Dependencies and Constraints
General assumptions, dependencies and constraints are discussed respectively in the
following subsections.

3.1.1. Assumptions

% First goal is to implement a PowerPoint add-in as a final product. However,
depending on the circumstances (based on the permissions to developers given by
Microsoft Office PowerPoint) a windows application can also be developed
separately.

X/
L %4

It is assumed that users of system will be aware that video and audio contents in
slides will not be transferred to the final outcome of conversion process.

3.1.2. Dependencies

Microsoft Visual Studio 2010.

Open XML SDK v2.0.

Microsoft Office PowerPoint 2007 or a later version.

X/
L %4

3

%

X3

¢

X3

%

Microsoft Office running on machines with Microsoft Windows.

3.1.3. Constraints

+» Time Constraint: Project will be finalized by the mid of June 2012.

++» Performance Constraint: The conversion duration will be depends on both device
and input PPTX file’s size. On the other hand, it is desired and planned that the
conversion process will finish in a few seconds.

3.2.Design Goals and Guidelines

3.2.1. KISS Principle
KISS is the abbreviation for “Keep it simple, Stupid”. As the name says it all, we tried to keep
our product as simple as possible to make it easy for both developer to develop, and the
user to use.

3.2.2. Usability
Since our product will be implemented as an add-in to Microsoft Office PowerPoint, it will
provide the user ability to see the add-in specific windows and original PowerPoint windows
at the same time. Therefore, user sees every change made at real time without leaving
PowerPoint application. If the product was an application, it would be weaker in the means
of interface, consequently making the application difficult to use.

4. Data Design

4.1.Data Description
Several files are processed during the process of conversion and running of the system. In
addition some files are created and stored by the system that keeps the changes made by
users before the conversion that makes the conversion and final product more effective. In
following subsections, detailed information can be found.

4.1.1. External Data Objects

4.1.1.1. PresentationML
Using the Open XML SDK 2.0, we can create document structure and content that uses
strongly-typed classes that correspond to PresentationML elements. The table 4.1 lists the
class names of the classes that correspond to some of the important presentation elements.
In the following subsections, there is parent, child elements, and attributes details of these

classes.
Package Top Level Open XML SDK 2.0 Description:
Part: PresentationML Class:
Element:
Presentation | <presentation> Presentation The root element for the

Presentation part. This element
specifies within it fundamental
presentation-wide properties.

Presentation | <presentationPr> | PresentationProperties | The root element for the
Properties Presentation Properties part.
This element functions as a
parent element within which
additional presentation-wide
document properties are
contained.

Slide Master | <sldMaster> SlideMaster

The root element for the Slide
Master part. Within a slide
master slide are contained all
elements that describe the
objects and their corresponding
formatting for within a
presentation slide.

Slide Layout | <sldLayout> SlideLayout

The root element for the Slide
Layout part. This element
specifies the relationship
information for each slide
layout that is used within the
slide master.

Theme <officeStyleSheet> | Theme

The root element for the
Theme part. This element holds
all the different formatting
options available to a
document through a theme and
defines the overall look and
feel of the document when
themed objects are used within
the document.

Slide <sld> Slide

The root element for the Slide
part. This element specifies a
slide within a slide list.

Table 4.1: Table of Presentation Element Classes

Presentation Class:

This element specifies within it fundamental presentation-wide properties.

Parent Elements:

Root element of PresentationML Presentation part

Child elements:

custDatalst (Customer Data List)

defaultTextStyle (Presentation Default Text Style)

embeddedFontLst (Embedded Font List)

extLst (Extension List)

handoutMasterldLst (List of Handout Master IDs)

kinsoku (Kinsoku Settings)

modifyVerifier (Modification Verifier)

notesMasterldLst (List of Notes Master IDs)

notesSz (Notes Slide Size)

photoAlbum (Photo Album Information)

sldidLst (List of Slide IDs)

sldMasterldLst (List of Slide Master IDs)

sldSz (Presentation Slide Size)

smartTags (Smart Tags)

Attributes:

Description:

autoCompressPictures
(Automatically Compress
Pictures)

Specifies whether the generating application should
automatically compress all pictures for this presentation.
The possible values for this attribute are defined by the
W3C XML Schema boolean datatype.

bookmarkldSeed (Bookmark
ID Seed)

Specifies a seed for generating bookmark IDs to ensure IDs
remain unique across the document. This value specifies
the number to be used as the ID for the next new bookmark
created.

compatMode (Compatibility
Mode)

Specifies whether the generating application isto be ina
compatibility mode which serves to inform the user of any
loss of content or functionality when working with older
formats.

conformance (Document
Conformance Class)

Specifies the conformance class to which the
PresentationML document conforms.

If this attribute is omitted, its default value is transitional.
[Example: Consider the following PresentationML
Presentation part markup:

XML

<p:presentation conformance="strict">

</p:presentation>

This document has a conformance attribute value of strict,
therefore it conforms to the PML Strict conformance class
end example]

The possible values for this attribute are defined by

the ST_ConformanceClass simple type.

embedTrueTypeFonts (Embed
True Type Fonts)

Specifies whether the generating application should
automatically embed true type fonts or not.

The possible values for this attribute are defined by the
W3C XML Schema boolean datatype.

firstSlideNum (First Slide
Number)

Specifies the first slide number in the presentation.
The possible values for this attribute are defined by the
W3C XML Schema int datatype.

removePersonallnfoOnSave
(Remove Personal Information
on Save)

Specifies whether to automatically remove personal
information when the presentation document is saved.
The possible values for this attribute are defined by the
W3C XML Schema boolean datatype.

rtl (Right-To-Left Views)

Specifies if the current view of the user interface is oriented
right-to-left or left-to-right. The view is right-to-left is this
value is set to true, and left-to-right otherwise.

The possible values for this attribute are defined by the
W3C XML Schema boolean datatype.

saveSubsetFonts (Save Subset
Fonts)

Specifies to save only the subset of characters used in the
presentation when a font is embedded.

The possible values for this attribute are defined by the
W3C XML Schema boolean datatype.

serverZoom (Server Zoom)

Specifies the scaling to be used when the presentation is
embedded in another document. The embedded slides are
to be scaled by this percentage.

The possible values for this attribute are defined by

the ST_Percentage simple type.

showSpecialPIsOnTitleSId
(Show Header and Footer
Placeholders on Titles)

Specifies whether to show the header and footer
placeholders on the title slides.
The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

strictFirstAndLastChars (Strict | Specifies whether to use strict characters for starting and
First and Last Characters) ending lines of Japanese text.

The possible values for this attribute are defined by the
W3C XML Schema boolean datatype.

PresentationProperties Class:

This element functions as a parent element within which additional presentation-wide
document properties are contained. All properties and their corresponding settings are
defined within the child elements.

Parent Elements:

Root element of PresentationML Presentation Properties part

Child elements:
clrMru (Color MRU)
extLst (Extension List)

prnPr (Printing Properties)

showPr (Presentation-wide Show Properties)

SlideMaster Class:

This element specifies an instance of a slide master slide. Within a slide master slide are
contained all elements that describe the objects and their corresponding formatting for
within a presentation slide. Within a slide master slide there are two main elements. The
cSld element specifies the common slide elements such as shapes and their attached text
bodies. Then the txStyles element specifies the formatting for the text within each of these
shapes. The other properties within a slide master slide specify other properties for within a
presentation slide such as color information, headers and footers, as well as timing and
transition information for all corresponding presentation slides.

Parent Elements:

Root element of PresentationML Slide Master part

Child elements:

clrMap (Color Scheme Map)
cSld (Common Slide Data)
extLst (Extension List with Modification Flag)

hf (Header/Footer information for a slide master)

sldLayoutldLst (List of Slide Layouts)

timing (Slide Timing Information for a Slide Layout)

transition (Slide Transition for a Slide Layout)

txStyles (Slide Master Text Styles)

Attributes:

Description:

preserve (Preserve Slide
Master)

Specifies whether the corresponding slide layout is deleted
when all the slides that follow that layout are deleted. If
this attribute is not specified then a value of false should
be assumed by the generating application. This would
mean that the slide would in fact be deleted if no slides
within the presentation were related to it.

The possible values for this attribute are defined by the
W3C XML Schema boolean datatype.

SlideLayout Class:

This element specifies an instance of a slide layout. The slide layout contains in essence a
template slide design that can be applied to any existing slide. When applied to an existing
slide all corresponding content should be mapped to the new slide layout.

Parent Elements:

Root element of PresentationML Slide Layout part

Child elements:

clrMapOvr (Color Scheme Map Override)

cSld (Common Slide Data)

extLst (Extension List with Modification Flag)

hf (Header/Footer information for a slide master)

timing (Slide Timing Information for a Slide Layout)

transition (Slide Transition for a Slide Layout)

Attributes:

Description:

matchingName (Matching
Name)

Specifies a name to be used in place of the name attribute
within the cSld element. This is used for layout matching in
response to layout changes and template applications.
The possible values for this attribute are defined by the
W3C XML Schema string datatype.

preserve (Preserve Slide
Layout)

Specifies whether the corresponding slide layout is deleted
when all the slides that follow that layout are deleted. If this
attribute is not specified then a value of false should be
assumed by the generating application. This would mean
that the slide would in fact be deleted if no slides within the
presentation were related to it.

The possible values for this attribute are defined by the
W3C XML Schema boolean datatype.

showMasterPhAnim (Show
Master Placeholder
Animations)

Specifies whether or not to display animations on
placeholders from the master slide.

The possible values for this attribute are defined by the
W3C XML Schema boolean datatype.

showMasterSp (Show Master
Shapes)

Specifies if shapes on the master slide should be shown on
slides or not.

The possible values for this attribute are defined by the
W3C XML Schema boolean datatype.

type (Slide Layout Type)

Specifies the slide layout type that is used by this slide.
The possible values for this attribute are defined by
the ST_SlideLayoutType simple type.

userDrawn (Is User Drawn)

Specifies if the corresponding object has been drawn by the
user and should thus not be deleted. This allows for the
flagging of slides that contain user drawn data.

The possible values for this attribute are defined by the
W3C XML Schema boolean datatype.

Theme Class:

This element defines the root level complex type associated with a shared style sheet (or

theme). This element holds all the different formatting options available to a document

through a theme and defines the overall look and feel of the document when themed

objects are used within the document.

Parent Elements:

Root element of DrawingML Theme part

Child elements

custClrLst (Custom Color List)
extLst (Extension List)

extraClrSchemelLst (Extra Color Scheme List)
objectDefaults (Object Defaults)
themeElements (Theme Elements)

Attributes: Description:

name (Name) Specifies the name given to the theme.
The possible values for this attribute are defined by the
W3C XML Schema string datatype.

Slide Class:
This element specifies a slide within a slide list. The slide list is used to specify an ordering of
slides
Parent Elements:
Root element of PresentationML Slide part
Child elements:
clrMapOvr (Color Scheme Map Override)
cSld (Common Slide Data)
extLst (Extension List with Modification Flag)
timing (Slide Timing Information for a Slide Layout)
transition (Slide Transition for a Slide Layout)
Attributes: Description:
show (Show Slide in Slide Specifies that the current slide should be shown in slide
Show) show. If this attribute is omitted then a value of true is
assumed.
The possible values for this attribute are defined by the
W3C XML Schema boolean datatype.
showMasterPhAnim (Show Specifies whether or not to display animations on
Master Placeholder placeholders from the master slide.
Animations) The possible values for this attribute are defined by the
W3C XML Schema boolean datatype.

showMasterSp (Show Master | Specifies if shapes on the master slide should be shown on
Shapes) slides or not.

The possible values for this attribute are defined by the
W3C XML Schema boolean datatype.

4.1.1.2. HTML5
As stated before, HTMLS5 is the last version of HTML. So, all the tags, attributes, properties
supplied by the HTML including the new ones and the APIs provided that comes with HTML5
will be used. Since the output data will be stored as HTML formatted files, the structure of
the files determined by HTML standards.

4.1.2. Internal Data Objects

4.1.2.1. Hierarchy Tree Storage
Since users of the software product will add some hierarchy information to the process and
document, that information has to be kept. It is decided that it will be stored in XML files; so
that users will be able to reuse the hierarchy they have structured before and also will be
able to modify it. Detailed information is provided in Detailed Design section.

4.1.2.2. Template Storage
The software will have built-in templates stored in it. Those templates will be represented in
Template Editor Window Interface. Just like with Hierarchy Editor, users will be able to set
templates for slides manually. Again to make those choices reusable by the users, they
should be stored. Template choice information is also going to be kept as XML files. Detailed
information is provided in Detailed Design section.

4.2.Data Dictionary

Function Reference
int index(void) 52.2.3
int parent(void) 5223
Vector<int> children(void) 5223
int which_child(void) 5223
int set_parent(int) 5223
int add_child(int) 5223
int remove_child(int) 5223
int ShowTree(int) 5223
int convert(string) 52.4.3

int createHtml(void) 52.5.3
int savefile(void) 5253
void Add-In_Ribbon_Load (object sender, RibbonUIEventArgs e) 52.1.3
void publish_button_Click (object sender, RibbonControlEventArgs e) 5.2.1.3
void hierarchy_button_Click (object sender, RibbonControlEventArgs e) 52.13
void template_button_Click (object sender, RibbonControlEventArgs e) 52.13
void TemplateEditor_Load (object sender, EventArgs e) 5.2.33.1
void ShowTemplates(Templatel]) 52331
void Preview(Slide) 52331
void apply_button_Click(object sender, EventArgs e) 5.2.33.1
void preview_button_Click(object sender, EventArgs e) 52331
Slide Convert(Slide activeSlide, Template template) 52332
void Save () 52332

5. System Architecture

The converter application will be highly object oriented. Architecture will contain a Ribbon
class for the add-in tab, 2 interface classes namely Hierarchy class and Template class.
However, those classes will not be doing any conversion or calculation. These will be
handled by Hierarchy editor class, Template editor class, Node class, XmlParser class and
Publish class which will be described in detail in section 5.2. In section 5.1, there is the
general architectural design figure, which is Figure 5.1.

5.1.Architectural Design

User Interface

Add-In_Ribbon
{Add-In Tab}

Load

Publish Button

Hierarchy Button

Template Button

Hierarchy Editor
Hierarchy Component

Publish
Publish Component

createHTML()

saveFi

Hierarchy Handler
Hierarchy Component

Move Up Button

showTr

Move Down Button

move U

Move Left Button

move Down()

Move Right Button

move Left()

Load Button

move Right(}

Save Button

Delete Button

Reset Button

V'V VVVVVY

set

B

Template Editor
emplate Component’

Apply Button

v

Template Handler
emplate Component

XML Parser
XML Parser Com

nent

convert()

showTemplates()

Preview Button

emplate Component

[apply()
} review
Memory
v
Templates QUtEUt

[onkine diagramming & design] Create

Figure 5.1: General Architectural Design

5.2.Description of Components

5.2.1. Add-In Tab Component
Add-In Tab Component is main user interface part of software. This component creates a tab
in Microsoft PowerPoint. The tab contains buttons: "Publish", "Hierarchy" and "Template".
By pressing these three buttons, user starts to use the three main functionalities: Publish,
Hierarchy Editor, Template Editor. The component has a class, named Add-In Ribbon. This
class is derived from OfficeRibbon Interface [11].

5.2.1.1. Processing Narrative of Add-In Tab Component
The Add-In Tab component is designed to serve a tab in Microsoft PowerPoint. Its
responsibility is to handle button clicks and to activate Template, Hierarchy and Publish
components.

5.2.1.2. Interface Description of Add-In Tab Component
This component does not have any input-output relation with other components. Add-In
Ribbon only has Event Handler methods for each buttons.

5.2.1.3. Processing Details of Add-In Tab Component

Class Add-In Ribbon : OfficeRibbon

void Add-In_Ribbon _Load Method Loader method, called
(object sender, automatically, when Microsoft
RibbonUIEventArgs e) PowerPoint is opened.

void publish_button_Click Method EventHandler, called when the user
(object sender, pushes "Publish" button.
RibbonControlEventArgs e) This function calls Publish()
function in Publish class.

void hierarchy_button_Click Method EventHandler, called when the user
(object sender, pushes "Hierarchy" button.
RibbonControlEventArgs e) This function makes visible the
HierarchyEditor taskpane.

void template_button_Click Method EventHandler, called when the user
(object sender, pushes "Template" button.
RibbonControlEventArgs e) This function makes visible the
TemplateEditor taskpane.

5.2.1.4. Dynamic Behavior of Add-In Tab Component
In Figure 5.2, dynamic behavior of add-In tab is described by a sequential diagram.

Add-In Tab

Publish()

Hierarchy Editor pane is made Visible ’

Template Editor pane is made Visible ’

nkne diags ming & design| Create m

Figure 5.2 : Add-In Tab Component Sequential Diagram

5.2.2. Hierarchy Component
Hierarchy is one of the main components of the application. Since the aim of the product is
to keep the trace of the training program by SCORM standard, hierarchical structure is the
most important necessity. Application will create a tree structure out of the slides included
in PowerPoint file, briefly explained, each subchapter being the child node of the chapter
above it. This hierarchy, or in other words, tree structure, will be saved in a temporary file so
that SCORM modifications are applied depending on this user-created hierarchy of slides.

5.2.2.1. Processing Narrative of Hierarchy Component
The main responsibility of the component is to create a file with a pre-defined structure
which will contain the hierarchical relationship between slides. User will use “Hierarchy”
window lying on the right side panel of the MS PowerPoint program to create/edit/reset the
structure. There will be “up”, “down”, “left”, “right”, “load”, “save”, “delete” and “reset”
buttons. They will be explained later in following subsections 5.2.2.2 and 5.2.2.3.

5.2.2.2. Interface Description of Hierarchy Component
Hierarchy component will be not visible by default. When the user presses “hierarchy”
button in add-in tab of the application, a new side pane will be opened at the right. Buttons
will be at the bottom side of the panel, and the panel will let user maximize it as a new
window to see the structure in detail in case it doesn’t fit in the pane because of the number
of the slides. Detailed interface description will be given at section 6.2. The Hierarchy
interface class description is given in the Figure 5.3.

| SLIDE class l

! | PR e e e e e 1
<<Ster:(:Type>> i : Hierarchy Editor Class :
Node Class ! i e s i
+Index: Int I W
+Parent : Int]
+ \(,:Vt;qdren ‘Vector<int> ! TR IEZVS::?:;M
=W il i Hierarchy Interface +Left button
1

+ parent (void) : int

+ children (void) : Vector<int=
+which_child (void) : int
+index (void) : int
+set_parent(int):int
+add_child (int):int
+remove_child (int): int

+ Load button
+ Save button
+ Delete button
+ Reset button

+showTree (int) : int

1
1
1
1
1
1
1
1
1
1
1
1
1
1
+index (void) : int _.._D + Structure : File* + Right button :
1
1
1
1
[}
]
1
]
1
[}
1
1
1

sign] Clreate m

Figure 5.3: Hierarchy Component Interface Diagram

5.2.2.3. Processing Details of Hierarchy Component
In this subsection, all the details and algorithms of the Hierarchy component will be
explained. To being with, the Node class is a class similar to the Slide class of the
PresentationML given in chapter 4 while explaining data models. We decided not to use
Slide class directly in order to get rid of massive temporary memory; therefore

implementation will use arrays of nodes and node indexes only pointing to the real Slide
class objects.

Node Class

Element Type Description

Index Attribute (int) Holds which slide this node
corresponds to.

Parent Attribute (int) Holds index of parent node

Children Attribute(vector<int>) Vector of children indices

Which_child Attribute(int) Holds which child of the parent
the node is

int index(void) Method Returns index

int parent(void) Method Returns parent index

Vector<int> children(void) Method Returns pointer to the children
array

int which_child(void) Method Returns Which_child

int set_parent(int) Method Sets argument to Node::parent
Returns 1 if successful;
0 otherwise

int add_child(int) Method Adds arg. to Node::children
Returns 1 if successful;
0 otherwise

int remove_child(int) Method Removes arg. indexed child

from Node::Children
Returns 1 if successful;
0 otherwise

Buttons will be a “package” of functions used by Hierarchy Editor Class.

Button name Description

Int move_up(int) Moves the node with arg. index up in hierarchy meaning
to decrease the Node::which_child
Returns 1 if successful;
0 otherwise

Int move_down(int) Moves the node with arg. index down in hierarchy
meaning to increase the Node::which_child
Returns 1 if successful;

0 otherwise

Int move_left(int) Decreases the depth of node in hierarchy making the
node its parent’s sibling
Returns 1 if successful;
0 otherwise

Int move_right(int) Increases the depth of node in hierarchy making the node
the child of its left sibling
Returns 1 if successful;
0 otherwise

File * load(string) Loads the file with directory of the arg. and applies
hierarchical structure in that file to current structure.
Returns the file’s pointer

File * save(string) Saves the structure to the file with directory of the arg.
Returns the file’s pointer.

Int delete(int) Removes the slide with arg. index from the hierarchy.
Returns 1 is successful,
0 otherwise.

Int reset(void) Resets the structure to its default state, which is all nodes

having same depth=1

Hierarchy interface will be displayed by a function named “int ShowTree(int)” called for
every change taken from EventHandler() function. This can be saved to a file which is hold by
an attribute “Structure” and loaded later.

Hierarchy Editor Class

Element Type Description

Structure Attribute (File *) It is the pointer to the file where
the structure is saved

Int ShowTree(int) Method It displays the current hierarchy of

slides inside the hierarchy window.

We will keep the subchapters of a chapter as a vector of children slide indices, and ShowTree
function will do a depth-first-search in this tree-like structure. ShowTree will be called each
time a change is made in hierarchy window.

5.2.2.4. Dynamic Behavior of Hierarchy Component
In Figure 5.4, dynamic behavior of hierarchy component is described by a sequential

diagram.

Hierarchy Hierarchy
Editor Editor
Window Class
5 |
|
Hierarchy Editor TaskPane is madel 2
Visible i ’
|
|
Show Presentation Slides
Load pressed ’
< Load Hierarchy from Memory
Reset '
Move right pressed)
Move left pressed ’
Move up pressed ’
Move down pressed ’
< Update Hierarchy tree
' i
I |
: |
|
nkne diagramming & design] Cl'eate m

Figure 5.4 : Hierarchy Component Sequential Diagram

5.2.3. Template Component
Template Component is designed to support Template Editor functionality of Software. It
has three parts: Ul part, named TemplateEditor class, Control part, named TemplateHandler
class and Template class. Firstly, TemplateEditor is a User Control class [12]. It is a panel, in
which software (our plug-in) templates are shown . Secondly, Template Handler class is in
interaction with Ul partin order to convert the active presentation slide to chosen template
in Template Editor panel. The converted result is represented in "Preview" part of Template

Editor panel. Lastly, Template class is a data structure, used to create templates for
Template Component.

5.2.3.1. Processing Narrative of Template Component

Template Component has four responsibilities:

% Representation of all templates that our software suggests to its user.
Auto-Conversion of active presentation slide to template, in case a template
selected.

Preview the result of conversion.

Save the result in memory for Publish Component.

X/

%

X/
X4

L)

X/
L %4

X/
L %4

5.2.3.2. Interface Description of Template Component
The basic description of input and output of the classes are showed in Figure 5.5. The
description for each method is given in section 5.2.3.3.

XMLParser Component

P

|

=

x| ®

© =

i) 3

] -

]

=

g

v
Template Editor : User Control TemplateHandler

+m_Slide

Slide and Slide Index

+void TemplateEditor_Load (object sender, EventArgs e) V| +m_Index

+void ShowTemplates(Template[]) + Slide Convert(Slide activeSlide, Template template)
+void Preview(Slide) +void Save ()
+void apply_button_Click(object sender, EventArgs e) Converted Slide
g +void preview_button_Click(object sender, EventArgs e) ‘
Q)
=
D
(k=
O
]
2
@
2
@
Templates g
Memory

onkine diagramming & design] Cl'eéate

Figure 5.5: Template Component Interface Diagram

5.2.3.3. Processing Details of Template Component
Template Component has 3 classes:

5.2.3.3.1. Template Editor Class

Class TemplateEditor : UserControl

Element Type Description
void TemplateEditor_Load Method Loader method, called
(object sender, EventArgs e) automatically, when

TemplateEditor.Visible() is
changed to true.

This is basic method for creation
of TemplateEditor.

void Method Fills the part, templates

ShowTemplates(Template[]) represented in panel, with the
templates that software suggests
to user. Templates are saved in

memory.

void Preview(Slide) Method Updates the part, converted slide
is showed.

void apply_button_Click(object Method EventHandler, called when the

sender, EventArgs e) user pushes "Apply" button.

This function calls Save(Slide)
function in Template Handler
class in order to save new version
of slide in memory.

void Method EventHandler, called when the
preview_button_Click(object user pushes "Preview" button.
sender, EventArgs e) This function creates Preview

class instance

5.2.3.3.2. Template Handler Class

Class TemplateHandler ‘

Element Type Description
m_Slide Attribute(Type Slide type parameter, is used to
Slide) keep the converted version of the
latest slide.
m_Index Attribute(Type int) Integer type parameter, is used to

keep the index of latest
converted object.

Slide Convert(Slide activeSlide, = Method Called by Template Editor class.

Template template) It converts the form of the slide
to template form. Before
conversion, by using XMLParser
component, it gets content of
slide.

void Save () Method Called by TemplateEditor ::
apply_button_Click function.
This function saves the latest
form of the slide in memory for
the use of Publish functionality.

5.2.3.3.3. Template Class
The detailed information about this class is given in Detailed Design section.

5.2.3.4. Dynamic Behavior of Template Component
In Figure 5.6, dynamic behavior template component is described by a sequential diagram.

Template Template XMLParser
Editor Editor T
Window Class |
ar I
1 ==

Template Editor TaskPane is made
Visible

v

|
|
|
|
-

< Show Templates
[ParseActiveSlide() A
L4 14
, _ _ UndatePreview _ _ _ _ ¢ — Retumsiide Content_ _
Preview button clicked v

Open preview window

< ______________

o =
[
|
|
[
|
|
[
[
[

diagramming & design] Create!y .com

Figure 5.6: Template Component Sequential Diagram

5.2.4. XMLParser Component
This component of the product, in brief, is going to parse the xml contents of the PPTX file
and save it for OpenXML classes to use it. The output of the parsing operation and the way it
is going to be handed is discussed in Detailed Design section. Component contains only
XmlParser class.

5.2.4.1. Processing Narrative of XMLParser Component
XmlParser class has a simple duty: taking a PPTX file exact directory, it sends the contents to
its parser (converter) function and saves it in ParsedSlides class object created after parsing.

5.2.4.2. Interface Description of XMLParser Component
XmlParser component takes a slide as an input and outputs an object of type ParsedSlides
class. This component will be used by Publish component - section 5.2.5 and Template
component —5.2.3.

5.2.4.3. Processing Details of XMLParser Component

XmlParser Class

Element Type Description
M_slide Attribute (ParsedSlides) Itis a data structure type

containing parsed content

Int convert(string) Method Taking PPTX file directory as an
argument, it converts PPTX to
ParsedSlides type object and
assigns it to M_slide.
Returns 1 is successful,
0 otherwise.

Int convert(string) function will use OpenXML SDK functions in general to retrieve each
element one by one (such as titles, subtitles, standard text, image, bulleted lists etc.)

5.2.4.4. Dynamic Behavior of XMLParser Component
In Figure 5.7, dynamic behavior of XML parser is described by a sequential diagram.

XmlParser
Class
453

ParseActiveSlide()

Return Slide Content

nine diagramming & design| Cl"eate com

Figure 5.7 : XMLParser Component Sequential Diagram

5.2.5. Publish Component

Publish component, in brief, is the class creating the output HTML files in a compressed zip
folder. It contains one class only as in XmIParser component. Publish Class does the main
conversion operation from ParsedSlides (which are in templates already) to HTML5 format
with a given directory address.

5.2.5.1. Processing Narrative of Publish Component
The scenario of the publishing process is quite straightforward. User does any necessary
operation with Hierarchy editor and Template editor before clicking Publish button in Add-in
window. This button will trigger a standard “Windows Directory Selection” pop-up window
to select the directory for the output compressed zip file. The directory will be kept in
Publish class and saving operation will be done.

5.2.5.2. Interface Description of Publish Component
Publish component takes the directory input from user interface, through a Windows
Directory Selection pop-up and saves it as a string to argument Publish::outputDirectory. In
addition, Publish component will receive ParsedSlides type object and convert it to HTML5
using dynamic or static html generator. Product will provide static conversion, meaning that
converting from a premade template to html5 for any document. However dynamic
conversion, which implies conversion from PPTX slide directly to HTMLS without using any
templates, will not be available for all document types depending on their designs.

5.2.5.3. Processing Details of Publish Component

Publish Class

Element Type Description

outputDirectory Attribute (String) Keeps the directory selected from
Directory Selection Pop-up
Window

Int createHtml(void) Method This function does all the main

html5 generation from either a
template or a slide directly.
Returns 1 is successful,

0 otherwise.

Int savefile(void) Method Creates a zip compressed file with
HTML files inside and saves it the
directory Publish::outputDirectory
Returns 1 is successful,

0 otherwise.

Int createHtml(void) function will use the advantages and some methods of ASP.NET
framework to be handle calculations and controls of data objects. Those ASP codes will be
embedded inside HTML5 code in this function. ASP.NET framework will enable us to create
html codes as simple as inserting arguments to some methods. To illustrate, let’s take a
Template to hand. Let’s assume that this template will contain a title in the middle of the

slide, an image at the bottom right corner, and a simple text box at the bottom left corner
without any backgrounds. In this case, we know approximately how the html code will look
like, except the exact title, text and image contents. Therefore, using 3 functions for each,
we can generate proper HTML codes using this framework such that, for the title “HTML
create_title(Stitle)”, “HTML create_image(Simage_directory)” and “HTML
create_text(Stext_body)” for title, image and text respectively.

5.2.5.4. Dynamic Behavior of Publish Component
In Figure 5.8, dynamic behavior of publish component is described by a sequential diagram.

Publish

Publish()

Save zip file to memory ’

nine diagramming & design] Create m

Figure 5.8 : Publish Component Sequential Diagram

6. User Interface Design

This section describes the Graphical User Interfaces (GUI) offered by the software product
for PPTX to HTML Content Converter project. Both information about the planned interfaces
and some screen images of them are given in the following subsections.

6.1.0verview of User Interface
As stated in previous sections, the targeted software product for PPTX to HTML Content
Converter project is a Microsoft Office PowerPoint add-in. Therefore, the interfaces
supported by this software product will be visible to the users only through the Microsoft
Office PowerPoint program, assuming that this add-in is installed. So, the interfaces that will
be provided by the system are going to be windows that are belong and embedded to the
Microsoft Office PowerPoint program.

There will be only three graphical user interfaces. The details of those interfaces and the
facilities they provide will be listed in following subsections. In addition, there are also some
screen images of those interfaces in the next subsection (6.2).

6.1.1. Main Window Interface (Publish Interface)
The main window of the add-in will contain only three buttons and nothing more. The names
and functions of the buttons are as followed,;

Publish Button: This is the button that will start the conversion process. After this
button is pressed, user will not be able to interfere in the process. All the
modifications that are done by the user (they will be explained), are occurred before
this button have been clicked.

Hierarchy Editor Button: This button has the effect of toggling the Hierarchy Editor
Window, which is explained in next section (6.1.2), on and off.

Template Editor Button: Just like the hierarchy editor button, this button closes and
opens the Template Editor Window as it is clicked. Template Editor Window is also
explained in section 6.1.3.

In section 6.2, there is a screen image of the main window interface design (Figure 6.1).

6.1.2. Hierarchy Editor Window Interface
Microsoft Office PowerPoint does not provide any facilities that allows categorization;
crating a tree-like hierarchy; of the slides. It just keeps them sequentially. This is not a
problem for presentations, but it is against the nature of e-learning contents, which are
targets of this project. Dividing the whole content into subgroups that builds sense of
chapters is so common for this kind of contents.

Since Microsoft Office PowerPoint do not provide hierarchy facilities, it has to be done by
the add-in. The Hierarchy Editor accomplishes this mission. The system fetches all the slides
and lists them sequentially in the editor window. There are 7 buttons that let the user to
alter the hierarchy of the slides. Their missions are explained below using the tree notation.

Move Up Button: This button is to change the order of the slide that is checked with
the sibling slide that comes before it.

Move Down Button: This button is the opposite of move up button. Order switch
occurs between checked slide and sibling slide after the checked one.

Move Right Button: This button achieves the real categorization. It makes the slide
that is selected, child of the sibling slide that comes before it.

Move Left Button: This is the button that undoes the hierarchy that is created
before, only one step. It makes the slide that is selected, sibling of the slide that is the
parent slide of it.

Load Hierarchy Button: This button pop-ups a window to make user to select a
hierarchy XML file that is created before for the PPTX that is open.

Save Hierarchy Button: This button is to save the Hierarchy that is created (or
modified).

Reset Hierarchy Button: This button have the function of resetting the currently
loaded hierarchy so that slides are again in sequential order.

In section 6.2, there is a screen image of the hierarchy editor window interface design
(Figure 6.2).

6.1.3. Template Editor Window Interface
During the conversion of PPTX documents to HTMLS5 it is crucial to keep the structure of the
slides. For example, if there is a bulleted list in the slide, there should be one in
corresponding HTMLS file. Presenting that bulleted list as a newline separated sequence of
texts is not enough. Moreover, locations of the elements in slides also have to be transferred
similarly to the newly created HTMLs. If a text is the title of the slide, or there is an image at
the bottom-right corner of the slide, they should also be in corresponding HTML in same
positions.

Template editor is to solve this issue. The PPTX to HTML5 Content Converter will solve this
problem automatically. It will recognize the content and structure of the slide that is wanted
to be converted and try to conserve them. However, it will not be 100% precise especially
for abnormally designed slides. So, using the template editor users will be able to increase
the correctness performance of the conversion process.

There will be built-in templates that can be selected by the user. User will be able to
determine a template for each of the slides. Choosing a template for a slide will not be
mandatory and initially all slides will be marked to be their templates selected automatically
by the system.

The Template Editor Window will be divided into two parts. In the first part all slides will be
listed. In the second part, all the built-in templates will be listed. User will choose the slide
that he/she wants to choose its template, and then from second menu, will choose the
desired template.

There are 3 buttons that let the user to affect the template choices of the slides. Their
missions are explained below.

Load Template Button: This button pop-ups a window to make user to select a
template XML file that is created before for the PPTX that is open.

Save Template Button: This button is to save the Template that is created (or
modified).

Reset Template Button: This button have the function of resetting the currently
loaded template selections so that all slides’ templates are selected automatically.

In section 6.2, there is a screen image of the template editor window interface design (Figure
6.3).

6.2.Screen Images
In Figure 6.1, there is the descriptive screen image of the main window interface.

PUBLISH! name of the product!

Figure 6.1 : Main Window Interface

In Figure 6.2, there is the descriptive screen image of the hierarchy editor window interface.

slide

content

slide

content

L slide

slide

content

slide

content

slide

content

Figure 6.2 : Hierarchy Editor Window Interface

In Figure 6.3, there is the descriptive screen image of the template editor window interface.

template eaitor

slide

content

auto
detect

slide

content

slide

content

image text

content

slide

content

Figure 6.3 : Template Editor Window Interface

And in Figure 6.4, there is all three interfaces located on Microsoft Office PowerPoint

program.
@_ﬂ 9-0)°¢ Sunul - Microsoft PowerPaint = b

Giris Ekle Tasanm Animasyonlar Slayt Gosterisi Gozden Gegr | Gorunum | r Lirmor 1

rarne of the product!

Ferarchy cditor tempilate cditor

content

————

slide

content

I_ slide slide

content content
slide
content 7
L slide dlide
content content
. slide
slide content
content

Slaytl/1 | "Ofis Temas:™ | <5 Tirkce Tarkiye) |
L

- — — i T T

Figure 6.4 : All three interfaces together on MS Office PowerPoint program

7. Detailed Design

This section contains the details of the design entities that are stated in the system
architecture section.

7.1.Add-In Tab Component

7.1.1. Classification

Add-In Tab is a user-interface subsystem, which will be seen as a tab in Microsoft
PowerPoint. It is contains main class for plug-in.

7.1.2. Definition
Definition is given in section 5.2.1.

7.1.3. Responsibilities

Ribbon class tab: the main purpose of this tab is to give access to Hierarchy editor,
Template Editor, Publish components.

ThisAddiIn class: the purpose of this class is to start and shut-down the plug-in.
Besides, the hierarchy and template windows are defined in startup of this class as a
CustomTaskPane.

7.1.4. Constraints

Since ThisAddIn class is the core of software, any problem in startup of this class will
be resulted as failure of software.

7.1.5. Composition
The component has two parts:

Ribbon class: derived from OfficeRibbon class, creates tab.

ThisAddiIn class: this class is the main structure of our software. Microsoft Visual
Studio gives developers the opportunity to produce software for Microsoft Office
Programs, by serving class templates such as Excel Add-In, Outlook Add-In,
PowerPoint Add-In etc. So, when we create new project, which PowerPoint Add-In
type, we automatically have ThisAddIn class in project.

This class is called when Microsoft PowerPoint is opened. The basic parameters of class are:
PowerPoint = Microsoft.Office.Interop.PowerPoint
Office = Microsoft.Office.Core

These parameters enable access to Microsoft PowerPoint's data.

7.1.6. Interactions

As stated before, Ribbon class is responsible for starting other components. In order to start
Hierarchy and Template components, it changes the status of hierarchy and template task
panes, respectively:

private void hierarchy _button_Click(object sender, RibbonControlEventArgs e)

{
Globals.ThisAddIn.HierarchyTaskPane.Visible = true;
}
private void template_button_Click(object sender, RibbonControlEventArgs e)
{
Globals.ThisAddIn.TemplateTaskPane.Visible = true;
}

7.1.7. Processing
Add-In Tab Component processing steps are shown below:

+ ThisAddIn class Startup() function is called.
¢ Ribbon class Load() function is called.
¢ In this function Hierarchy and Template Task Panes are defined.
+» If publish button is clicked in Ribbon, event handler for publish functionality is
called.
¢ If template button is clicked in Ribbon, event handler for template
functionality is called.

+» If hierarchy button is clicked in Ribbon, event handler for hierarchy
functionality is called.
** When Microsoft PowerPoint is closed, Shutdown() function of ThisAddIn class is
called.

7.2.Hierarchy Component
As explained in detail in section 5.2.2, Hierarchy component of the product is supposed to
handle the hierarchical structure of the slides of the presentation based on the user’s desire.
In other words, through a user interface, the user will be creating the hierarchy tree of the
slides, defining subchapters and subsections of the presentation, which will be controlled by
Hierarchy component at the lower levels. As this process needs more clarification and
explanation, the details will be provided in the following subsections:

7.2.1. Classification
Hierarchy component is a subsystem inside of our main system. That’s because of the fact
that, this component includes a class for calculations, a package, another class for user
interface, and directly affects the output of the product, since it is going to produce a
hierarchy tree based on SCORM standards.

7.2.2. Definition
Hierarchy component can be defined as the main low level calculation component of the
system, creating the hierarchy tree among the slide objects. Further details can be found in
section 5.2.2.1.

7.2.3. Responsibilities
The main responsibility of Hierarchy component is to create tree like structure by editing the
children vector of each Node (in other words: slide). This vectors corresponding to each slide
will help the publish class to create a file named imsmanifest.xml, which will be explained in
section 7.2.5.

Another responsibility of Hierarchy component is to be able to understand user-triggered

” o«

events, which will come from the “buttons” package including “move up”, “move down”,
4 “" ” “"

“move left”, “move right”, “delete”, “reset”, “load”, “save”. Buttons are well defined in
section 5.2.2.3.

7.2.4. Constraints
There are no constraints specifically defined for this component; however all main project
constraints are applicable, which are explained in section 3.1.

7.2.5. Composition

7.2.5.1. Buttons Package
At this phase in order to make it clearer, Buttons package is going to be a separate function
library virtually used by Hierarchy class. Description of the buttons are explained at section
5.2.2.3

7.2.5.2. SCORM
SCORM is an e-learning standard which, in our case, enables instructors to track down the
learning process of the employees. The output of our plug-in will be a compressed zip folder
containing an HTML file for each slide, and an XML file called “hierarchy.xml” saving
hierarchical structure created by the user. A hierarchy file as shown below:

<hierarchy>
<slide id="1">
<slide id="2">
<slide id="5">
<slide id="6">
<slide3>
<slide4>
<slide7>
<slide8>
</hierarchy>

will correspond to a presentation where slides 2,5,6 are subchapters of slide 1. SCORM
servers are going to use this file named “hierarchy.xml” to understand the hierarchical
structure.

7.2.6. Uses & Interactions
Figure 7.1 is describing the user interactions of hierarchy component.

Hierarchy Component

Hierarchy

Add-In Tab = ==Hierarchy button == Editar

---------- Node Class

AT -
Actor Y Delete

4, Sy S Update

[onkine diagramming & design] CIFealtely com

Figure 7.1 : Hierarchy Component Use-Case Diagram

Template Component

-

- -

- -
- -——

-

Template
Editor

Template

Add-In Tah - =-Template Button = Handler

Actor

nine diagramming & design] Crreate "

Figure 7.2 : Template Component Use-Case Diagram

7.2.7. Resources
Hierarchy component uses User Control Class to show the user interface so that users can
create the structure. Since the structure is going to be saved in a file, hierarchy component
will use the computer hard disk as a resource.

7.2.8. Processing
All the methods are clearly explained in section 5.2.2.3, except ShowTree() function. The
algorithm of ShowTree function will as below:

int ShowTree()
{
//Makes a depth-first-search inside the “children” vectors for each node (slide)
1) Take the 1°' slide and its children;
2) Start with the unprocessed 1°* child and get its own children;
3) Proceed in this manner (step2) until there is no child;
4) Then return to last processed children vector and do step 2

}

7.3.XML Parser Component
As described with details in section 5.2.4, what XML Parser component does is to parse the
presentation slides and save the elements (e.g. text, image) as the ParsedSlides class which
is explained in section 7.3.5

7.3.1. Classification
XML Parser is a simple class described in section 5.2.4.3.

7.3.2. Definition
XML Parser class takes a PowerPoint file pointer as an argument to convert() function and
parses all the necessary information and saves it at M_slide attribute which is type
ParsedSlides (explained in 7.3.5)

7.3.3. Responsibilities
As explained in sections 5.2.4 and 7.3.2, XML Parser is responsible to retrieve the text
information such as text coordinates, font size, font type, font color, font background color,
image size, image coordinate and image file destination and save it to M_slide attribute of
the same class.

7.3.4. Constraints
All the general constraints stated at section 3.1 for the product is applicable for this
component too.

7.3.5. Composition

7.3.5.1. ParsedSlides Data Type
Class ParsedSlides
{
public:
vector<std::string> texts;
vector<File*> imageDestinations;

ParsedSlides Class

Name Type Description

texts Attribute (vector<std::string>) Vector of strings, holding all
the texts (titles, subtitles,
bullet lists) the top one having
the least index number

imageDestinations Attribute (vector<File*>) This is a vector of file pointers
pointing to the image
destinations inside the slides

7.3.6. Resources
XML Parser uses some functions (shown in 7.3.7) from Open XML SDK v2.0, thus it is the
main resource for this component.

7.3.7. Processing
Toillustrate the processing progress, we can take all the texts in a slide and save them in an
array of strings. Moreover, the paths of image files in the document should also be gathered.

7.4.Publish Component

7.4.1. Classification
Publish component does not have user interface. This component is an internal component.
As we mentioned in section 5.2.5.1, publish component is accessed when the publish button
in add-in tab is pressed. After the button pressed, createHtml() function will be called. By
means of this function, the HTMLS5 file generation will start. By the way, the generated
product will obey the SCORM standards.
After the createHtml() function, saveFile() function creates compressed file which holds
HTML files, and saves it into the directory Publish::outputDirectory. We have explained some
other details about these two functions which are createHtml() function and saveFile()
function in section 5.2.5.3.

7.4.2. Definition
Publish component has Publish class which is in our AddIn.Library.
Addin.Library :

namespace AddIn.Library

{
public class Publish
{
}

}

In this library we keep the classes which do not have user interface.

7.4.3. Constraints
Because ParsedSlides class is used by Publish component to get slide elements such as title,
text, and image, it is a constraint. Otherwise, it will not be published. The constraints in
section 3.1.3 are also valid with publish component.

7.4.4. Uses & Interactions
Publish class has interaction with the XMLParser class. In section 5.2.4, we have mentioned
about XMLParser component.

8. Libraries and Tools

Many libraries and tools will be used by the PPTX to HTML5 Content Converter project
during the development phase. Descriptions of those libraries and tools, and their planned
usage in the project are stated in following subsections.

8.1.Microsoft Visual C#

8.1.1. Description
Microsoft Visual C# is Microsoft’s implementation of the C# specification. It is based on the
ECMA/ISO specification of the C# language, which Microsoft also created. While multiple
implementations of the specification exist, Microsoft Visual C# is by far the one most
commonly used [5]. It is a powerful but simple language aimed primarily developers creating
applications by using the Microsoft .NET Framework [6]. It inherits many of the best features
of C++ and Microsoft Visual Basic, but few of the inconsistencies and anachronisms, resulting
in a cleaner and more logical language.

8.1.2. Usage in the Project
Microsoft Visual C# programming language will be the primary programming language used
during the development of the project. Considering the libraries that needed to be used for
easing the development (those libraries are explained in following subsections), Microsoft
Visual C# is obviously the best choice for the project.

8.2.Microsoft .NET Framework

8.2.1. Description
The Microsoft .NET Framework [7] is a software framework that runs primarily on Microsoft
Windows. It includes a large library and supports several programming languages which
allow language interoperability (each language can use code written in other languages).

Programs written for the Microsoft .NET Framework execute in a software environment
known as the Common Language Runtime (CLR), an application virtual machine that
provides important services such as security, memory management, and exception handling.
The class library and the CLR together constitute the .NET Framework. The .NET Framework's
Base Class Library provides user interface, data access, database connectivity, web
application development, and network communications. The .NET Framework is intended to
be used by most new applications created for the Windows platform.

8.2.2. Usage in the Project
Microsoft .NET Framework will be widely used in the project. As stated in previous section
(7.2.1) this framework can be used with different programming languages. However, again
stated in the section 7.1.2, Microsoft Visual C# is chosen and it will be used. The final
software product of the project will be a Microsoft PowerPoint plug-in. Microsoft .NET
Framework provides capability of creating plug-ins for Microsoft Office programs. In
addition, it includes the Open XML library that provides handy ways of parsing XML files that
constructs the Microsoft Office formatted documents like .pptx and .docx documents. So,
Microsoft .NET Framework is kind of a requirement for the project.

8.3.Microsoft Visual Studio

8.3.1. Description
Microsoft Visual Studio [8] is an integrated development environment (IDE) from Microsoft.
Microsoft Visual Studio is a complete set of development tools for building ASP.NET Web
applications, XML Web Services, desktop applications, and mobile applications. Visual Basic,
Visual C++, Visual C#, and Visual J# all use the same IDE, which allows them to share tools
and facilitates in the creation of mixed-language solutions. In addition, these languages
leverage the functionality of the .NET Framework, which provides access to key technologies
that simplify the development of applications.

8.3.2. Usage in the Project
Microsoft Visual Studio 2010 will be the primary tool that is used on development phase of
the project. Considering the libraries planned to be used and content of the project, Visual
Studio is the native tool for creating the project.

8.4.0pen XML SDK 2.0

8.4.1. Description
Office Open XML (also known as Open XML) is a zipped, XML-based file format developed by
Microsoft for representing spreadsheets, charts, presentations and word processing
documents. The Office Open XML specification was initially standardized by ECMA and later

by ISO. Starting with Microsoft Office 2007, the Office Open XML file formats have become
the default target file format of Microsoft Office.

The Open XML SDK 2.0 for Microsoft Office, which is also supplied by Microsoft, simplifies
the task of manipulating Open XML packages and the Open XML schema elements within a
package. The classes in the Open XML SDK 2.0 encapsulate many common tasks (like getting
animations, themes, and elements) that developers perform on Open XML packages, so that
they can perform complex operations with just a few lines of code [9].

8.4.2. Usage in the Project
Since input documents of the project are PPTX documents, which are said to be an Office
Open XML file format in previous section (7.4.1), managing the contents of these documents
is essential to convert them to HTML5 formatted documents. Theoretically, the XMLs
contained by these documents can be parsed manually because the documentation of
structures of them is online. However, it costs developers lots of effort and time. Therefore,
the libraries in Microsoft .NET Framework that are supplied by Open XML SDK 2.0 will be
used to handle these issues with a few lines of code.

8.5.JSON

8.5.1. Description
JSON [10] or JavaScript Object Notation is a lightweight text-based open standard designed
for human-readable data interchange. It is derived from the JavaScript scripting language for
representing simple data structures and associative arrays, called objects. Despite its
relationship to JavaScript, it is language-independent, with parsers available for most
languages. JSON is a low-overhead alternative to XML.

8.5.2. Usage in the Project
The XMLs contained by PPTX documents are very detailed. There are lots of tags and
attributes used in these files. JSON is a good alternative to XML. Because it is more human-
readable, in the debugging phases of development, JSON will be preferred to be used to
make it easier to check the validity of the returned results of the codes.

8.6.HTML5

8.6.1. Description
HTMLS is a language for structuring and presenting content for the World Wide Web, and is
core technology of the Internet. It is the fifth revision of the HTML standard (created in 1990
and standardized as HTML4 as of 1997) and is still under development. Its core aims have
been to improve the language with support for the latest multimedia while keeping it easily
readable by humans and consistently understood by computers and devices.

In particular, HTML5 adds many new syntactical features. These include the <video>,
<audio>, <header> and <canvas> elements. These features are designed to make it easy to
include and handle multimedia and graphical content on the web without having to resort to
proprietary plug-ins and APIs. Other new elements, such as <section>, <article>,
<header> and <nav> are designed to enrich the semantic content of documents. New
attributes have been introduced for the same purpose, while some elements and attributes
have been removed. The APls and document object model (DOM) are fundamental parts of
the HTMLS5 specification.

8.6.2. Usage in the Project
As stated in Section 1.1 (problem definition), HTML5 will have many advantages com pared
to its opponents. To benefit from those advantages, the target document format is decided
to be HTMLS in project proposition phase. Therefore, the elements from older versions of
HTML and new elements and APIs from HTML5 will be widely used in the project.

52

9. Time Planning

9.1.Term 1

-

-

™

-

a4

204

il

be

1]
5t

11

5T

1

1

il

vl

Ll

T

s
1/znsse
1u/zifon

s
st

s
TH/zr/se
T/

mnn

mnn
mnn
iz
iz
mnn
401
tifs
1t/zi/et
1i/ii/se
TU/T/TE
i

At

1fiati1s
Tzt/on
1e
oz
s
Lt
TzTt
Tzt
izt
e
izt
sz
sz
e
s
T/21/s
e
11/01/1e
ATt
TH/aT/ST

LT/t

ssaquiey wee] |y
ssaquiey wee] |y

ljpiuiey piyep - AowiyseH Wewny

shaiuiB|Y Weay |1y
nafeqn(esey jueys - [IPIWEH pIYEN

ABUINSEH WEYSY - [exfeg B

nafeynfaey Jumys - pILTH PIYEN
|Fyfng sawig) - ADwSRY WRISNY
AOUINSEH WRSNY - [Fyfng g
siquay weay |y

safeynleieg pueys - jeyfeg sawg

ssoqualy wea Iy
siaql Wik Iy
sivql ik Iy
sivql ik Iy

SHUIRH WEB] 1Y

uoieyusiiajduw] soyipg apejduis |
uaipeuiadi] ioyip3 Apieieiy
ueneyuaLiajdu BInyanIG U]-ppY [RieuBs
N T M EV T TS|
sasel g Bufyeay WL pue fusieg Bueibanug
Eje() pasie wio sajly 1WLH Buneary
A0S N uad i 1 4d Jo 1K Busieg
spanodwoy jo suaneuawa|du] owag
STHLH
LN ypyin o anag ul-pRY #3150 SIN
0°Z ¥as Ty uadg
OTOZ QIpmIg [Ensip Hasoiany
JHOMWHURL] [IN HOSOIUN PUR 3 [FISIA HOSOINY
sisfjeuy ooy pue Aieign
owag adfjoioig pue uolriuasalg wea |
yatnseq ubiseq eiemyjos pajitieq
Jugiliioog uiseq eiemijos [equ]
vioday sishjeuy suaisinbey aieayos
esodoig 128foig
Juaafeue pafoi

JLAGT W) STNIH 0 Xldd

£y

43

It

111

143

L1

L4

£

[

1T

1

5 v o e e Y O

53

9.2.Term 2

- o1

a

- It

1 5L

- 51
- 5

14

SE

e R

In/a/s1
Z1/9/%
ZLL/E
zu/s/st
Tu/si
L
ILE
zu/s/st
Z/5/51
zu/r/0z
It
Z1/efot
fuzing
zi/aist
1/8/51
I/9/51
ZU/LfE

z1/afs
2s/st
Zu/s/st
s/
40
ZUEN
e
ien
Zt/vioz
v
Z1/EfoT
Zuzioz
e
e
mnien
e

T

Saaquuiagy wes) |y

slaquiagy wea |y

SIAguIagy wea |y
[Fqfeg g - ADWIYSRY Wejsny
[PHAEY JHUE - ADWIYSEH WESTY

APMIEH PIYEN - ACUIYSEH WEISITY

siaquiay wea |y
saquiay wea) ||y
saquiay wea) ||y
Afejjnleiey uieys - ipiuey piyey

ROUISEY Wessny - [eyeg sewg

nakejnfeiey [uieys - [exieg suip

U ELLES [EUL

1npoig ay) Bujrjoag pue fupsa |
Uopeneay

WURIAIUEYLT PUR WolRIBa Y [Puly

uap euswadwy soypg ayejdwa |

uofEuawapdwy soypl fparany

uopEuawad 3InjanJ5 Uf-pRY [RERUaE
suonejuawaydus] asepaup [euly

uaLIAIuRY pur uotriBaju jeul

SpURpumS IWH00S Bunuawajduwy

saseyg Buiyeas) T LH pur Burieg BuneiBayug

ejeQ pasieg W) sl JWLH bunear)

A5 TAX uedD yum X1 dd yo STNK Buisieq
spuaundines jo suoieueweduy ey

Burpepdp pue Juawdojasag abey gag
awabeuepy pafoid

BUBAUDD WD) STNLH 01 X1dd

o

v

FE

EE

(47

TE

5

P

EL

£t

¥4

IT

10. Conclusion

In this document which is the Software Design Document of PPTX to HTML5 Content
Converter project; design considerations, data and system architecture, the detailed design
of the project, information about development phase of the project like what to be used
during, interfaces that will form the communication between users and the system, and
scheduling of the project is discussed. The document describes the project very detailed, and
it will be very helpful for developers of the project.

