

SOFTWARE DESIGN DOCUMENT

FOR

PPTX TO HTML5

CONTENT

CONVERTER

PREPARED BY Limon

Shamil Farajullayev

Rustam Hashimov

Nahid Hamidli

Ömer Baykal

2

this page is intentionally left blank

3

Table of Contents
1. Introduction .. 7

1.1. Problem Definition ... 7

1.2. Purpose ... 8

1.3. Scope... 8

1.4. Overview ... 8

1.5. Definitions, Acronyms and Abbreviations .. 9

1.6. References .. 9

2. System Overview .. 10

3. Design Considerations .. 11

3.1. Design Assumptions, Dependencies and Constraints ... 11

3.1.1. Assumptions ... 11

3.1.2. Dependencies ... 11

3.1.3. Constraints .. 11

3.2. Design Goals and Guidelines ... 11

3.2.1. KISS Principle .. 11

3.2.2. Usability .. 12

4. Data Design ... 12

4.1. Data Description .. 12

4.1.1. External Data Objects... 12

4.1.1.1. PresentationML .. 12

4.1.1.2. HTML5 ... 20

4.1.2. Internal Data Objects ... 20

4.1.2.1. Hierarchy Tree Storage .. 20

4.1.2.2. Template Storage ... 20

4.2. Data Dictionary .. 20

5. System Architecture ... 21

5.1. Architectural Design .. 22

5.2. Description of Components .. 23

5.2.1. Add-In Tab Component .. 23

5.2.1.1. Processing Narrative of Add-In Tab Component.. 23

5.2.1.2. Interface Description of Add-In Tab Component ... 23

4

5.2.1.3. Processing Details of Add-In Tab Component .. 23

5.2.1.4. Dynamic Behavior of Add-In Tab Component .. 24

5.2.2. Hierarchy Component .. 24

5.2.2.1. Processing Narrative of Hierarchy Component .. 25

5.2.2.2. Interface Description of Hierarchy Component ... 25

5.2.2.3. Processing Details of Hierarchy Component .. 25

5.2.2.4. Dynamic Behavior of Hierarchy Component .. 28

5.2.3. Template Component .. 28

5.2.3.1. Processing Narrative of Template Component .. 29

5.2.3.2. Interface Description of Template Component ... 29

5.2.3.3. Processing Details of Template Component .. 30

5.2.3.3.1. Template Editor Class ... 30

5.2.3.3.2. Template Handler Class .. 31

5.2.3.3.3. Template Class .. 31

5.2.3.4. Dynamic Behavior of Template Component .. 31

5.2.4. XMLParser Component .. 32

5.2.4.1. Processing Narrative of XMLParser Component .. 32

5.2.4.2. Interface Description of XMLParser Component ... 32

5.2.4.3. Processing Details of XMLParser Component .. 32

5.2.4.4. Dynamic Behavior of XMLParser Component .. 33

5.2.5. Publish Component .. 34

5.2.5.1. Processing Narrative of Publish Component .. 34

5.2.5.2. Interface Description of Publish Component ... 34

5.2.5.3. Processing Details of Publish Component .. 34

5.2.5.4. Dynamic Behavior of Publish Component .. 35

6. User Interface Design ... 36

6.1. Overview of User Interface ... 36

6.1.1. Main Window Interface (Publish Interface) ... 36

6.1.2. Hierarchy Editor Window Interface .. 36

6.1.3. Template Editor Window Interface .. 37

6.2. Screen Images .. 38

7. Detailed Design ... 41

5

7.1. Add-In Tab Component ... 41

7.1.1. Classification ... 41

7.1.2. Definition .. 41

7.1.3. Responsibilities ... 41

7.1.4. Constraints .. 42

7.1.5. Composition.. 42

7.1.6. Interactions ... 42

7.1.7. Processing ... 42

7.2. Hierarchy Component ... 43

7.2.1. Classification ... 43

7.2.2. Definition .. 43

7.2.3. Responsibilities ... 43

7.2.4. Constraints .. 43

7.2.5. Composition.. 44

7.2.6. Uses & Interactions .. 45

7.2.7. Resources .. 45

7.2.8. Processing ... 46

7.3. XML Parser Component... 46

7.3.1. Classification ... 46

7.3.2. Definition .. 46

7.3.3. Responsibilities ... 46

7.3.4. Constraints .. 46

7.3.5. Composition.. 46

7.3.6. Resources .. 47

7.3.7. Processing ... 47

7.4. Publish Component.. 47

7.4.1. Classification ... 47

7.4.2. Definition .. 47

7.4.3. Constraints .. 48

7.4.4. Uses & Interactions .. 48

8. Libraries and Tools .. 48

8.1. Microsoft Visual C# .. 48

6

8.1.1. Description .. 48

8.1.2. Usage in the Project ... 48

8.2. Microsoft .NET Framework ... 48

8.2.1. Description .. 48

8.2.2. Usage in the Project ... 49

8.3. Microsoft Visual Studio ... 49

8.3.1. Description .. 49

8.3.2. Usage in the Project ... 49

8.4. Open XML SDK 2.0 ... 49

8.4.1. Description .. 49

8.4.2. Usage in the Project ... 50

8.5. JSON .. 50

8.5.1. Description .. 50

8.5.2. Usage in the Project ... 50

8.6. HTML5 ... 50

8.6.1. Description .. 50

8.6.2. Usage in the Project ... 51

9. Time Planning .. 52

9.1. Term 1 ... 52

9.2. Term 2 ... 53

10. Conclusion .. 54

7

1. Introduction

This is the Software Design Document of “PPTX to HTML5 Content Converter” project. This

document provides how the software system will be designed to satisfy the requirements

and functionalities that were stated in the Software Requirements Analysis Document of the

project [1]. It is the crucial document for developers of the project, since it includes details

that ease the implementation of the project. This document is written based on standard of

SDD writing that are stated in IEEE Std 1016‐1998: IEEE Recommended Practice for Software

Design Descriptions [2].

1.1.Problem Definition

Educational institutions that have their lectures online and departments of companies that

are responsible from education of employees are faced with the problem that they are

unable to keep track of the development of their students. To solve this problem, for

example, companies are making lecturers to go to the towns of employees and educate

them by arranging instructive meetings. Some companies even bringing their employees to

headquarters of the company and arranging meetings in there. These methods are seemed

to solve the problem but they also have some problems. They are not much efficient and

they cost the companies a lot of time, effort and money. Hence, they are started to look at

for alternative solutions like cooperating with consulting companies. Since most of the

documents prepared by lecturers are presented as PowerPoint slides and it is impossible to

follow the process of learning, these consulting companies convert the PowerPoint files to e-

learning packages manually. We intend to solve this difficulty by developing a Microsoft

PowerPoint plug-in which will automatically convert PPTX documents to HTML5 formatted

documents without almost any human effort while keeping the structure of slides. The

software we intended to create will have two main advantages.

Firstly, the created product from PPTX file will obey the SCORM [3] standard. The SCORM

standard defines communication between client side content and a host system

(generally referred as learning management system) and how content of may be

packaged into a transferable ZIP file “Package Interchange Format”. So, obeying SCORM

standard will provide the product ability of being tracked.

Secondly, the created product will keep its content in HTML5 [4] format. HTML5 files are

accessible from any platform and its only requirement is a web browser. HTML5 will

provide the product independency. Users of the product will be able to use the system

from any environment; any operating system (like MAC OS, Windows, iOS, Android and

Linux distributions), any device (like MACs, PCs, Smart Phones, Tablets); and any time

they demand.

8

1.2.Purpose

In the Software Requirements Analysis Document of the PPTX to HTML5 Content Converter

project [1]; desired features, functionalities and requirements were stated. This Software

Design Document is intended to create a software design which will satisfy the stated

functionalities and requirements based on the constraints and assumptions made in SRS of

the project. This document is intended to be viewed by development team of the project

because design issues are mainly related to development phase of the project and therefore

they are related to developers of the project.

1.3.Scope

Scope of this Software Design Document is to explain design related issues of the project in

detail. This document is a Detailed Software Design Document. Therefore, it includes a

detailed design. It includes the overall system architecture and data architecture. Design

considerations like assumptions, dependencies, and constraints; detailed design of software

components; design of user interfaces; development schedule and development tools are

also covered in this document.

1.4.Overview

This first chapter of this SDD is an introduction to the project. It includes information about

this document (its purpose, scope and contents), the clear statement of problem that the

project intends to solve, definitions and abbreviations used and references referred

throughout this document. The rest of the document covers the sections, respectively:

System Overview; provides general description of the software system. It explains major

parts of the software to be created.

Design Considerations; addresses special design issues which need to be resolved before

dividing into design. Some examples are time and performance constraints, hardware or

software related limitations.

Data Design; explains how data is stored, processed and organized in the product.

System Architecture; provides description of the program architecture.

User Interface Design; covers the information of how the users of the product will be

able to use the system. Also there are some screen images of designed user interfaces.

Detailed Design; covers the details of software components of the project. Also there are

some use-case diagrams to support the design.

Libraries and Tools; lists the libraries and tools that are planned to be used throughout

the development phase of the project.

9

Time Planning; demonstrates time planning and scheduling issues by representing a

Gantt Chart.

Conclusion; sums up this Initial Software Design Document.

1.5.Definitions, Acronyms and Abbreviations

Definitions, acronyms and abbreviations that are used throughout this document are listed

in the following table.

The Project PPTX to HTML5 Content Converter Project

SRS Software Requirements Specification

SDD Software Design Document

ISDD Initial Software Design Document

SCORM Sharable Content Object Reference Module

IDE Integrated Development Environment

ECMA An international standards organization for Information
Communication Technology and Consumer Electronics

ISO International Organization for Standardization

JSON Java Script Object Notation

1.6.References

[1] Software Requirements Specification of PPTX to HTML5 Content Converter Project

The SRS document of PPTX to HTML5 Content Converter Project, written according to

IEEE Std 830-1998: IEEE Recommended Practice for Software Requirements

Specifications.

[2] IEEE Std 1016‐1998: IEEE Recommended Practice for Software Design Descriptions

A common software engineering standard to provide some guidance and

recommended approaches for specifying software design descriptions.

[3] SCORM Standard,

http://en.wikipedia.org/wiki/Sharable_Content_Object_Reference_Model

[4] Specifications of HTML5 in W3 Consortium Page for Developers,

http://dev.w3.org/html5/spec/Overview.html

[5] Microsoft Visual C#,

 http://en.wikipedia.org/wiki/Microsoft_Visual_C_Sharp

[6] John Sharp, “Microsoft Visual C# 2010 Step by Step”, Microsoft Press, 2010

10

[7] Microsoft .NET Framework,

 http://en.wikipedia.org/wiki/.NET_Framework

[8] Visual Studio in Microsoft Developer Network Page (MSDN),

 http://msdn.microsoft.com/en-us/library/fx6bk1f4.aspx

[9] Getting Started with the Open XML SDK 2.0 in Microsoft Developer Network Page

(MSDN),

 http://msdn.microsoft.com/en-us/library/bb456488.aspx

[10] JSON in Wikipedia,

 http://en.wikipedia.org/wiki/JSON

[11] User Control Class Documentation in MSDN

 http://msdn.microsoft.com/en-us/library/system.web.ui.usercontrol.aspx

[12] Ribbon Class Documentation in MSDN

http://msdn.microsoft.com/en-us/library/microsoft.office.tools.ribbon.aspx

2. System Overview

As explained in detail at the Problem Definition section (1.1), the aim of our product is to

make it easier for the educators to keep track of the employee training programs, so that

they can know how much of the presentation slides they have learned. But how this can be

achieved? What should be concerned while implementing the application in terms of

design? User interface had to be very easy, since the consumer might have almost no

PowerPoint knowledge. That’s why we created an add-in for PowerPoint application of

Microsoft Office so that every operation happens inside a single program. In addition, we

have decided to implement object oriented programming to treat every element as a

separate object.

As the means of interface; Template, Interface and general Add-in (Ribbon) windows will sit

inside the PowerPoint. By a few mouse clicks only, output will be ready. Open XML SDK will

be used to parse the XML files to ParsedSlides format, which is described in following

sections of this document, taken from PPTX files. Hierarchy window will let the user see and

edit hierarchy of slides in real time. Template window will let the users to select the best

fitting template for each slide, so that our static HTML generator creates the appropriate

11

HTML5 code. By pressing publish button in Add-in tab interface, user will be asked to choose

the save directory, and after HTML5 files are crated for each slide, a SCORM based

compressed file will be published. In Detailed Design section, there are some details of

SCORM standard.

3. Design Considerations

In this chapter of SDD, some design considerations about the project PPTX to HTML5

Content Converter such as basic assumptions, constraints and dependencies as well as goals

and guidelines will be described.

3.1.Design Assumptions, Dependencies and Constraints

General assumptions, dependencies and constraints are discussed respectively in the

following subsections.

3.1.1. Assumptions

 First goal is to implement a PowerPoint add-in as a final product. However,

depending on the circumstances (based on the permissions to developers given by

Microsoft Office PowerPoint) a windows application can also be developed

separately.

 It is assumed that users of system will be aware that video and audio contents in

slides will not be transferred to the final outcome of conversion process.

3.1.2. Dependencies

 Microsoft Visual Studio 2010.

 Open XML SDK v2.0.

 Microsoft Office PowerPoint 2007 or a later version.

 Microsoft Office running on machines with Microsoft Windows.

3.1.3. Constraints

 Time Constraint: Project will be finalized by the mid of June 2012.

 Performance Constraint: The conversion duration will be depends on both device

and input PPTX file’s size. On the other hand, it is desired and planned that the

conversion process will finish in a few seconds.

3.2.Design Goals and Guidelines

3.2.1. KISS Principle

KISS is the abbreviation for “Keep it simple, Stupid”. As the name says it all, we tried to keep

our product as simple as possible to make it easy for both developer to develop, and the

user to use.

12

3.2.2. Usability

Since our product will be implemented as an add-in to Microsoft Office PowerPoint, it will

provide the user ability to see the add-in specific windows and original PowerPoint windows

at the same time. Therefore, user sees every change made at real time without leaving

PowerPoint application. If the product was an application, it would be weaker in the means

of interface, consequently making the application difficult to use.

4. Data Design

4.1.Data Description

Several files are processed during the process of conversion and running of the system. In

addition some files are created and stored by the system that keeps the changes made by

users before the conversion that makes the conversion and final product more effective. In

following subsections, detailed information can be found.

4.1.1. External Data Objects

4.1.1.1. PresentationML

Using the Open XML SDK 2.0, we can create document structure and content that uses

strongly-typed classes that correspond to PresentationML elements. The table 4.1 lists the

class names of the classes that correspond to some of the important presentation elements.

In the following subsections, there is parent, child elements, and attributes details of these

classes.

Package

Part:

Top Level

PresentationML

Element:

Open XML SDK 2.0

Class:

Description:

Presentation <presentation> Presentation The root element for the

Presentation part. This element

specifies within it fundamental

presentation-wide properties.

Presentation

Properties

<presentationPr> PresentationProperties The root element for the

Presentation Properties part.

This element functions as a

parent element within which

additional presentation-wide

document properties are

contained.

13

Slide Master <sldMaster> SlideMaster The root element for the Slide

Master part. Within a slide

master slide are contained all

elements that describe the

objects and their corresponding

formatting for within a

presentation slide.

Slide Layout <sldLayout> SlideLayout The root element for the Slide

Layout part. This element

specifies the relationship

information for each slide

layout that is used within the

slide master.

Theme <officeStyleSheet> Theme The root element for the

Theme part. This element holds

all the different formatting

options available to a

document through a theme and

defines the overall look and

feel of the document when

themed objects are used within

the document.

Slide <sld> Slide The root element for the Slide

part. This element specifies a

slide within a slide list.

Table 4.1: Table of Presentation Element Classes

Presentation Class:

This element specifies within it fundamental presentation-wide properties.

Parent Elements:

Root element of PresentationML Presentation part

14

Child elements:

custDataLst (Customer Data List)

defaultTextStyle (Presentation Default Text Style)

embeddedFontLst (Embedded Font List)

extLst (Extension List)

handoutMasterIdLst (List of Handout Master IDs)

kinsoku (Kinsoku Settings)

modifyVerifier (Modification Verifier)

notesMasterIdLst (List of Notes Master IDs)

notesSz (Notes Slide Size)

photoAlbum (Photo Album Information)

sldIdLst (List of Slide IDs)

sldMasterIdLst (List of Slide Master IDs)

sldSz (Presentation Slide Size)

smartTags (Smart Tags)

Attributes: Description:

autoCompressPictures

(Automatically Compress

Pictures)

Specifies whether the generating application should

automatically compress all pictures for this presentation.

The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

bookmarkIdSeed (Bookmark

ID Seed)

Specifies a seed for generating bookmark IDs to ensure IDs

remain unique across the document. This value specifies

the number to be used as the ID for the next new bookmark

created.

compatMode (Compatibility

Mode)

Specifies whether the generating application is to be in a

compatibility mode which serves to inform the user of any

loss of content or functionality when working with older

formats.

conformance (Document

Conformance Class)

Specifies the conformance class to which the

PresentationML document conforms.

If this attribute is omitted, its default value is transitional.

[Example: Consider the following PresentationML

Presentation part markup:

XML

<p:presentation conformance="strict">

_

15

</p:presentation>

This document has a conformance attribute value of strict,

therefore it conforms to the PML Strict conformance class

end example]

The possible values for this attribute are defined by

the ST_ConformanceClass simple type.

embedTrueTypeFonts (Embed

True Type Fonts)

Specifies whether the generating application should

automatically embed true type fonts or not.

The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

firstSlideNum (First Slide

Number)

Specifies the first slide number in the presentation.

The possible values for this attribute are defined by the

W3C XML Schema int datatype.

removePersonalInfoOnSave

(Remove Personal Information

on Save)

Specifies whether to automatically remove personal

information when the presentation document is saved.

The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

rtl (Right-To-Left Views) Specifies if the current view of the user interface is oriented

right-to-left or left-to-right. The view is right-to-left is this

value is set to true, and left-to-right otherwise.

The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

saveSubsetFonts (Save Subset

Fonts)

Specifies to save only the subset of characters used in the

presentation when a font is embedded.

The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

serverZoom (Server Zoom) Specifies the scaling to be used when the presentation is

embedded in another document. The embedded slides are

to be scaled by this percentage.

The possible values for this attribute are defined by

the ST_Percentage simple type.

showSpecialPlsOnTitleSld

(Show Header and Footer

Placeholders on Titles)

Specifies whether to show the header and footer

placeholders on the title slides.

The possible values for this attribute are defined by the

16

W3C XML Schema boolean datatype.

strictFirstAndLastChars (Strict

First and Last Characters)

Specifies whether to use strict characters for starting and

ending lines of Japanese text.

The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

PresentationProperties Class:

This element functions as a parent element within which additional presentation-wide

document properties are contained. All properties and their corresponding settings are

defined within the child elements.

Parent Elements:

Root element of PresentationML Presentation Properties part

Child elements:

clrMru (Color MRU)

extLst (Extension List)

prnPr (Printing Properties)

showPr (Presentation-wide Show Properties)

SlideMaster Class:

This element specifies an instance of a slide master slide. Within a slide master slide are

contained all elements that describe the objects and their corresponding formatting for

within a presentation slide. Within a slide master slide there are two main elements. The

cSld element specifies the common slide elements such as shapes and their attached text

bodies. Then the txStyles element specifies the formatting for the text within each of these

shapes. The other properties within a slide master slide specify other properties for within a

presentation slide such as color information, headers and footers, as well as timing and

transition information for all corresponding presentation slides.

Parent Elements:

Root element of PresentationML Slide Master part

Child elements:

clrMap (Color Scheme Map)

cSld (Common Slide Data)

extLst (Extension List with Modification Flag)

17

hf (Header/Footer information for a slide master)

sldLayoutIdLst (List of Slide Layouts)

timing (Slide Timing Information for a Slide Layout)

transition (Slide Transition for a Slide Layout)

txStyles (Slide Master Text Styles)

Attributes: Description:

preserve (Preserve Slide

Master)

Specifies whether the corresponding slide layout is deleted

when all the slides that follow that layout are deleted. If

this attribute is not specified then a value of false should

be assumed by the generating application. This would

mean that the slide would in fact be deleted if no slides

within the presentation were related to it.

The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

SlideLayout Class:

This element specifies an instance of a slide layout. The slide layout contains in essence a

template slide design that can be applied to any existing slide. When applied to an existing

slide all corresponding content should be mapped to the new slide layout.

Parent Elements:

Root element of PresentationML Slide Layout part

Child elements:

clrMapOvr (Color Scheme Map Override)

cSld (Common Slide Data)

extLst (Extension List with Modification Flag)

hf (Header/Footer information for a slide master)

timing (Slide Timing Information for a Slide Layout)

transition (Slide Transition for a Slide Layout)

Attributes: Description:

matchingName (Matching

Name)

Specifies a name to be used in place of the name attribute

within the cSld element. This is used for layout matching in

response to layout changes and template applications.

The possible values for this attribute are defined by the

W3C XML Schema string datatype.

18

preserve (Preserve Slide

Layout)

Specifies whether the corresponding slide layout is deleted

when all the slides that follow that layout are deleted. If this

attribute is not specified then a value of false should be

assumed by the generating application. This would mean

that the slide would in fact be deleted if no slides within the

presentation were related to it.

The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

showMasterPhAnim (Show

Master Placeholder

Animations)

Specifies whether or not to display animations on

placeholders from the master slide.

The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

showMasterSp (Show Master

Shapes)

Specifies if shapes on the master slide should be shown on

slides or not.

The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

type (Slide Layout Type) Specifies the slide layout type that is used by this slide.

The possible values for this attribute are defined by

the ST_SlideLayoutType simple type.

userDrawn (Is User Drawn) Specifies if the corresponding object has been drawn by the

user and should thus not be deleted. This allows for the

flagging of slides that contain user drawn data.

The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

Theme Class:

This element defines the root level complex type associated with a shared style sheet (or

theme). This element holds all the different formatting options available to a document

through a theme and defines the overall look and feel of the document when themed

objects are used within the document.

Parent Elements:

Root element of DrawingML Theme part

Child elements:

19

custClrLst (Custom Color List)

extLst (Extension List)

extraClrSchemeLst (Extra Color Scheme List)

objectDefaults (Object Defaults)

themeElements (Theme Elements)

Attributes: Description:

name (Name) Specifies the name given to the theme.

The possible values for this attribute are defined by the

W3C XML Schema string datatype.

Slide Class:

This element specifies a slide within a slide list. The slide list is used to specify an ordering of

slides

Parent Elements:

Root element of PresentationML Slide part

Child elements:

clrMapOvr (Color Scheme Map Override)

cSld (Common Slide Data)

extLst (Extension List with Modification Flag)

timing (Slide Timing Information for a Slide Layout)

transition (Slide Transition for a Slide Layout)

Attributes: Description:

show (Show Slide in Slide

Show)

Specifies that the current slide should be shown in slide

show. If this attribute is omitted then a value of true is

assumed.

The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

showMasterPhAnim (Show

Master Placeholder

Animations)

Specifies whether or not to display animations on

placeholders from the master slide.

The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

20

showMasterSp (Show Master

Shapes)

Specifies if shapes on the master slide should be shown on

slides or not.

The possible values for this attribute are defined by the

W3C XML Schema boolean datatype.

4.1.1.2. HTML5

As stated before, HTML5 is the last version of HTML. So, all the tags, attributes, properties

supplied by the HTML including the new ones and the APIs provided that comes with HTML5

will be used. Since the output data will be stored as HTML formatted files, the structure of

the files determined by HTML standards.

4.1.2. Internal Data Objects

4.1.2.1. Hierarchy Tree Storage

Since users of the software product will add some hierarchy information to the process and

document, that information has to be kept. It is decided that it will be stored in XML files; so

that users will be able to reuse the hierarchy they have structured before and also will be

able to modify it. Detailed information is provided in Detailed Design section.

4.1.2.2. Template Storage

The software will have built-in templates stored in it. Those templates will be represented in

Template Editor Window Interface. Just like with Hierarchy Editor, users will be able to set

templates for slides manually. Again to make those choices reusable by the users, they

should be stored. Template choice information is also going to be kept as XML files. Detailed

information is provided in Detailed Design section.

4.2.Data Dictionary

Function Reference

int index(void)

int parent(void)

Vector<int> children(void)

int which_child(void)

int set_parent(int)

int add_child(int)

int remove_child(int)

int ShowTree(int)

int convert(string)

21

int createHtml(void)

int savefile(void)

void Add-In_Ribbon_Load (object sender, RibbonUIEventArgs e)

void publish_button_Click (object sender, RibbonControlEventArgs e)

void hierarchy_button_Click (object sender, RibbonControlEventArgs e)

void template_button_Click (object sender, RibbonControlEventArgs e)

void TemplateEditor_Load (object sender, EventArgs e)

void ShowTemplates(Template[])

void Preview(Slide)

 void apply_button_Click(object sender, EventArgs e)

 void preview_button_Click(object sender, EventArgs e)

Slide Convert(Slide activeSlide, Template template)

void Save ()

5. System Architecture

The converter application will be highly object oriented. Architecture will contain a Ribbon

class for the add-in tab, 2 interface classes namely Hierarchy class and Template class.

However, those classes will not be doing any conversion or calculation. These will be

handled by Hierarchy editor class, Template editor class, Node class, XmlParser class and

Publish class which will be described in detail in section 5.2. In section 5.1, there is the

general architectural design figure, which is Figure 5.1.

22

5.1.Architectural Design

Figure 5.1: General Architectural Design

23

5.2.Description of Components

5.2.1. Add-In Tab Component

Add-In Tab Component is main user interface part of software. This component creates a tab

in Microsoft PowerPoint. The tab contains buttons: "Publish", "Hierarchy" and "Template".

By pressing these three buttons, user starts to use the three main functionalities: Publish,

Hierarchy Editor, Template Editor. The component has a class, named Add-In Ribbon. This

class is derived from OfficeRibbon Interface [11].

5.2.1.1. Processing Narrative of Add-In Tab Component

The Add-In Tab component is designed to serve a tab in Microsoft PowerPoint. Its

responsibility is to handle button clicks and to activate Template, Hierarchy and Publish

components.

5.2.1.2. Interface Description of Add-In Tab Component

This component does not have any input-output relation with other components. Add-In

Ribbon only has Event Handler methods for each buttons.

5.2.1.3. Processing Details of Add-In Tab Component

Class Add-In Ribbon : OfficeRibbon

Element Type Description

void Add-In_Ribbon _Load
(object sender,
RibbonUIEventArgs e)

Method Loader method, called
automatically, when Microsoft
PowerPoint is opened.

void publish_button_Click
(object sender,
RibbonControlEventArgs e)

Method EventHandler, called when the user
pushes "Publish" button.
This function calls Publish()
function in Publish class.

void hierarchy_button_Click
(object sender,
RibbonControlEventArgs e)

Method EventHandler, called when the user
pushes "Hierarchy" button.
This function makes visible the
HierarchyEditor taskpane.

void template_button_Click
(object sender,
RibbonControlEventArgs e)

Method EventHandler, called when the user
pushes "Template" button.
This function makes visible the
TemplateEditor taskpane.

24

5.2.1.4. Dynamic Behavior of Add-In Tab Component

In Figure 5.2, dynamic behavior of add-In tab is described by a sequential diagram.

Figure 5.2 : Add-In Tab Component Sequential Diagram

5.2.2. Hierarchy Component

Hierarchy is one of the main components of the application. Since the aim of the product is

to keep the trace of the training program by SCORM standard, hierarchical structure is the

most important necessity. Application will create a tree structure out of the slides included

in PowerPoint file, briefly explained, each subchapter being the child node of the chapter

above it. This hierarchy, or in other words, tree structure, will be saved in a temporary file so

that SCORM modifications are applied depending on this user-created hierarchy of slides.

25

5.2.2.1. Processing Narrative of Hierarchy Component

The main responsibility of the component is to create a file with a pre-defined structure

which will contain the hierarchical relationship between slides. User will use “Hierarchy”

window lying on the right side panel of the MS PowerPoint program to create/edit/reset the

structure. There will be “up”, “down”, “left”, “right”, “load”, “save”, “delete” and “reset”

buttons. They will be explained later in following subsections 5.2.2.2 and 5.2.2.3.

5.2.2.2. Interface Description of Hierarchy Component

Hierarchy component will be not visible by default. When the user presses “hierarchy”

button in add-in tab of the application, a new side pane will be opened at the right. Buttons

will be at the bottom side of the panel, and the panel will let user maximize it as a new

window to see the structure in detail in case it doesn’t fit in the pane because of the number

of the slides. Detailed interface description will be given at section 6.2. The Hierarchy

interface class description is given in the Figure 5.3.

Figure 5.3: Hierarchy Component Interface Diagram

5.2.2.3. Processing Details of Hierarchy Component

In this subsection, all the details and algorithms of the Hierarchy component will be

explained. To being with, the Node class is a class similar to the Slide class of the

PresentationML given in chapter 4 while explaining data models. We decided not to use

Slide class directly in order to get rid of massive temporary memory; therefore

26

implementation will use arrays of nodes and node indexes only pointing to the real Slide

class objects.

Node Class

Element Type Description

Index Attribute (int) Holds which slide this node
corresponds to.

Parent

Attribute (int) Holds index of parent node

Children

Attribute(vector<int>) Vector of children indices

Which_child

Attribute(int) Holds which child of the parent
the node is

int index(void) Method Returns index

int parent(void) Method Returns parent index

Vector<int> children(void) Method Returns pointer to the children
array

int which_child(void) Method Returns Which_child

int set_parent(int) Method Sets argument to Node::parent
Returns 1 if successful;
0 otherwise

int add_child(int) Method Adds arg. to Node::children
Returns 1 if successful;
0 otherwise

int remove_child(int) Method Removes arg. indexed child
from Node::Children
Returns 1 if successful;
0 otherwise

Buttons will be a “package” of functions used by Hierarchy Editor Class.

Button name Description

Int move_up(int) Moves the node with arg. index up in hierarchy meaning
to decrease the Node::which_child
Returns 1 if successful;
0 otherwise

Int move_down(int) Moves the node with arg. index down in hierarchy
meaning to increase the Node::which_child
Returns 1 if successful;

27

0 otherwise

Int move_left(int) Decreases the depth of node in hierarchy making the
node its parent’s sibling
Returns 1 if successful;
0 otherwise

Int move_right(int) Increases the depth of node in hierarchy making the node
the child of its left sibling
Returns 1 if successful;
0 otherwise

File * load(string) Loads the file with directory of the arg. and applies
hierarchical structure in that file to current structure.
Returns the file’s pointer

File * save(string) Saves the structure to the file with directory of the arg.
Returns the file’s pointer.

Int delete(int) Removes the slide with arg. index from the hierarchy.
Returns 1 is successful,
0 otherwise.

Int reset(void) Resets the structure to its default state, which is all nodes
having same depth=1

Hierarchy interface will be displayed by a function named “int ShowTree(int)” called for

every change taken from EventHandler() function. This can be saved to a file which is hold by

an attribute “Structure” and loaded later.

Hierarchy Editor Class

Element Type Description

Structure Attribute (File *) It is the pointer to the file where
the structure is saved

 Int ShowTree(int)

Method It displays the current hierarchy of
slides inside the hierarchy window.

We will keep the subchapters of a chapter as a vector of children slide indices, and ShowTree

function will do a depth-first-search in this tree-like structure. ShowTree will be called each

time a change is made in hierarchy window.

28

5.2.2.4. Dynamic Behavior of Hierarchy Component

In Figure 5.4, dynamic behavior of hierarchy component is described by a sequential

diagram.

Figure 5.4 : Hierarchy Component Sequential Diagram

5.2.3. Template Component

Template Component is designed to support Template Editor functionality of Software. It
has three parts: UI part, named TemplateEditor class, Control part, named TemplateHandler
class and Template class. Firstly, TemplateEditor is a User Control class [12]. It is a panel, in
which software (our plug-in) templates are shown . Secondly, Template Handler class is in
interaction with UI part in order to convert the active presentation slide to chosen template
in Template Editor panel. The converted result is represented in "Preview" part of Template

29

Editor panel. Lastly, Template class is a data structure, used to create templates for
Template Component.

5.2.3.1. Processing Narrative of Template Component

Template Component has four responsibilities:
 Representation of all templates that our software suggests to its user.
 Auto-Conversion of active presentation slide to template, in case a template

selected.
 Preview the result of conversion.
 Save the result in memory for Publish Component.

5.2.3.2. Interface Description of Template Component

The basic description of input and output of the classes are showed in Figure 5.5. The

description for each method is given in section 5.2.3.3.

Figure 5.5: Template Component Interface Diagram

30

5.2.3.3. Processing Details of Template Component

Template Component has 3 classes:

5.2.3.3.1. Template Editor Class

Class TemplateEditor : UserControl

Element Type Description

void TemplateEditor_Load
(object sender, EventArgs e)

Method Loader method, called
automatically, when
TemplateEditor.Visible() is
changed to true.
 This is basic method for creation
of TemplateEditor.

void
ShowTemplates(Template[])

Method Fills the part, templates
represented in panel, with the
templates that software suggests
to user. Templates are saved in
memory.

void Preview(Slide) Method Updates the part, converted slide
is showed.

void apply_button_Click(object
sender, EventArgs e)

Method EventHandler, called when the
user pushes "Apply" button.
This function calls Save(Slide)
function in Template Handler
class in order to save new version
of slide in memory.

void
preview_button_Click(object
sender, EventArgs e)

Method EventHandler, called when the
user pushes "Preview" button.
This function creates Preview
class instance

31

5.2.3.3.2. Template Handler Class

Class TemplateHandler

Element Type Description

m_Slide Attribute(Type
Slide)

Slide type parameter, is used to
keep the converted version of the
latest slide.

m_Index Attribute(Type int) Integer type parameter, is used to
keep the index of latest
converted object.

Slide Convert(Slide activeSlide,
Template template)

Method Called by Template Editor class.
It converts the form of the slide
to template form. Before
conversion, by using XMLParser
component, it gets content of
slide.

void Save () Method Called by TemplateEditor ::
apply_button_Click function.
This function saves the latest
form of the slide in memory for
the use of Publish functionality.

5.2.3.3.3. Template Class

The detailed information about this class is given in Detailed Design section.

5.2.3.4. Dynamic Behavior of Template Component

In Figure 5.6, dynamic behavior template component is described by a sequential diagram.

32

Figure 5.6: Template Component Sequential Diagram

5.2.4. XMLParser Component

This component of the product, in brief, is going to parse the xml contents of the PPTX file

and save it for OpenXML classes to use it. The output of the parsing operation and the way it

is going to be handed is discussed in Detailed Design section. Component contains only

XmlParser class.

5.2.4.1. Processing Narrative of XMLParser Component

XmlParser class has a simple duty: taking a PPTX file exact directory, it sends the contents to

its parser (converter) function and saves it in ParsedSlides class object created after parsing.

5.2.4.2. Interface Description of XMLParser Component

XmlParser component takes a slide as an input and outputs an object of type ParsedSlides

class. This component will be used by Publish component - section 5.2.5 and Template

component – 5.2.3.

5.2.4.3. Processing Details of XMLParser Component

XmlParser Class

Element Type Description

M_slide Attribute (ParsedSlides) It is a data structure type
containing parsed content

33

 Int convert(string)

Method Taking PPTX file directory as an
argument, it converts PPTX to
ParsedSlides type object and
assigns it to M_slide.
Returns 1 is successful,
0 otherwise.

Int convert(string) function will use OpenXML SDK functions in general to retrieve each

element one by one (such as titles, subtitles, standard text, image, bulleted lists etc.)

5.2.4.4. Dynamic Behavior of XMLParser Component

In Figure 5.7, dynamic behavior of XML parser is described by a sequential diagram.

Figure 5.7 : XMLParser Component Sequential Diagram

34

5.2.5. Publish Component

Publish component, in brief, is the class creating the output HTML files in a compressed zip
folder. It contains one class only as in XmlParser component. Publish Class does the main
conversion operation from ParsedSlides (which are in templates already) to HTML5 format
with a given directory address.

5.2.5.1. Processing Narrative of Publish Component

The scenario of the publishing process is quite straightforward. User does any necessary

operation with Hierarchy editor and Template editor before clicking Publish button in Add-in

window. This button will trigger a standard “Windows Directory Selection” pop-up window

to select the directory for the output compressed zip file. The directory will be kept in

Publish class and saving operation will be done.

5.2.5.2. Interface Description of Publish Component

Publish component takes the directory input from user interface, through a Windows
Directory Selection pop-up and saves it as a string to argument Publish::outputDirectory. In
addition, Publish component will receive ParsedSlides type object and convert it to HTML5
using dynamic or static html generator. Product will provide static conversion, meaning that
converting from a premade template to html5 for any document. However dynamic
conversion, which implies conversion from PPTX slide directly to HTML5 without using any
templates, will not be available for all document types depending on their designs.

5.2.5.3. Processing Details of Publish Component

Publish Class

Element Type Description

outputDirectory Attribute (String) Keeps the directory selected from
Directory Selection Pop-up
Window

 Int createHtml(void)

Method This function does all the main
html5 generation from either a
template or a slide directly.
Returns 1 is successful,
0 otherwise.

Int savefile(void) Method Creates a zip compressed file with
HTML files inside and saves it the
directory Publish::outputDirectory
Returns 1 is successful,
0 otherwise.

Int createHtml(void) function will use the advantages and some methods of ASP.NET

framework to be handle calculations and controls of data objects. Those ASP codes will be

embedded inside HTML5 code in this function. ASP.NET framework will enable us to create

html codes as simple as inserting arguments to some methods. To illustrate, let’s take a

Template to hand. Let’s assume that this template will contain a title in the middle of the

35

slide, an image at the bottom right corner, and a simple text box at the bottom left corner

without any backgrounds. In this case, we know approximately how the html code will look

like, except the exact title, text and image contents. Therefore, using 3 functions for each,

we can generate proper HTML codes using this framework such that, for the title “HTML

create_title($title)”, “HTML create_image($image_directory)” and “HTML

create_text($text_body)” for title, image and text respectively.

5.2.5.4. Dynamic Behavior of Publish Component

In Figure 5.8, dynamic behavior of publish component is described by a sequential diagram.

Figure 5.8 : Publish Component Sequential Diagram

36

6. User Interface Design

This section describes the Graphical User Interfaces (GUI) offered by the software product

for PPTX to HTML Content Converter project. Both information about the planned interfaces

and some screen images of them are given in the following subsections.

6.1.Overview of User Interface

As stated in previous sections, the targeted software product for PPTX to HTML Content

Converter project is a Microsoft Office PowerPoint add-in. Therefore, the interfaces

supported by this software product will be visible to the users only through the Microsoft

Office PowerPoint program, assuming that this add-in is installed. So, the interfaces that will

be provided by the system are going to be windows that are belong and embedded to the

Microsoft Office PowerPoint program.

There will be only three graphical user interfaces. The details of those interfaces and the

facilities they provide will be listed in following subsections. In addition, there are also some

screen images of those interfaces in the next subsection (6.2).

6.1.1. Main Window Interface (Publish Interface)

The main window of the add-in will contain only three buttons and nothing more. The names

and functions of the buttons are as followed;

Publish Button: This is the button that will start the conversion process. After this

button is pressed, user will not be able to interfere in the process. All the

modifications that are done by the user (they will be explained), are occurred before

this button have been clicked.

Hierarchy Editor Button: This button has the effect of toggling the Hierarchy Editor

Window, which is explained in next section (6.1.2), on and off.

Template Editor Button: Just like the hierarchy editor button, this button closes and

opens the Template Editor Window as it is clicked. Template Editor Window is also

explained in section 6.1.3.

In section 6.2, there is a screen image of the main window interface design (Figure 6.1).

6.1.2. Hierarchy Editor Window Interface

Microsoft Office PowerPoint does not provide any facilities that allows categorization;

crating a tree-like hierarchy; of the slides. It just keeps them sequentially. This is not a

problem for presentations, but it is against the nature of e-learning contents, which are

targets of this project. Dividing the whole content into subgroups that builds sense of

chapters is so common for this kind of contents.

37

Since Microsoft Office PowerPoint do not provide hierarchy facilities, it has to be done by

the add-in. The Hierarchy Editor accomplishes this mission. The system fetches all the slides

and lists them sequentially in the editor window. There are 7 buttons that let the user to

alter the hierarchy of the slides. Their missions are explained below using the tree notation.

Move Up Button: This button is to change the order of the slide that is checked with

the sibling slide that comes before it.

Move Down Button: This button is the opposite of move up button. Order switch

occurs between checked slide and sibling slide after the checked one.

Move Right Button: This button achieves the real categorization. It makes the slide

that is selected, child of the sibling slide that comes before it.

Move Left Button: This is the button that undoes the hierarchy that is created

before, only one step. It makes the slide that is selected, sibling of the slide that is the

parent slide of it.

Load Hierarchy Button: This button pop-ups a window to make user to select a

hierarchy XML file that is created before for the PPTX that is open.

Save Hierarchy Button: This button is to save the Hierarchy that is created (or

modified).

Reset Hierarchy Button: This button have the function of resetting the currently

loaded hierarchy so that slides are again in sequential order.

In section 6.2, there is a screen image of the hierarchy editor window interface design

(Figure 6.2).

6.1.3. Template Editor Window Interface

During the conversion of PPTX documents to HTML5 it is crucial to keep the structure of the

slides. For example, if there is a bulleted list in the slide, there should be one in

corresponding HTML5 file. Presenting that bulleted list as a newline separated sequence of

texts is not enough. Moreover, locations of the elements in slides also have to be transferred

similarly to the newly created HTMLs. If a text is the title of the slide, or there is an image at

the bottom-right corner of the slide, they should also be in corresponding HTML in same

positions.

Template editor is to solve this issue. The PPTX to HTML5 Content Converter will solve this

problem automatically. It will recognize the content and structure of the slide that is wanted

to be converted and try to conserve them. However, it will not be 100% precise especially

for abnormally designed slides. So, using the template editor users will be able to increase

the correctness performance of the conversion process.

38

There will be built-in templates that can be selected by the user. User will be able to

determine a template for each of the slides. Choosing a template for a slide will not be

mandatory and initially all slides will be marked to be their templates selected automatically

by the system.

The Template Editor Window will be divided into two parts. In the first part all slides will be

listed. In the second part, all the built-in templates will be listed. User will choose the slide

that he/she wants to choose its template, and then from second menu, will choose the

desired template.

There are 3 buttons that let the user to affect the template choices of the slides. Their

missions are explained below.

Load Template Button: This button pop-ups a window to make user to select a

template XML file that is created before for the PPTX that is open.

Save Template Button: This button is to save the Template that is created (or

modified).

Reset Template Button: This button have the function of resetting the currently

loaded template selections so that all slides’ templates are selected automatically.

In section 6.2, there is a screen image of the template editor window interface design (Figure

6.3).

6.2.Screen Images

In Figure 6.1, there is the descriptive screen image of the main window interface.

Figure 6.1 : Main Window Interface

39

In Figure 6.2, there is the descriptive screen image of the hierarchy editor window interface.

Figure 6.2 : Hierarchy Editor Window Interface

40

In Figure 6.3, there is the descriptive screen image of the template editor window interface.

Figure 6.3 : Template Editor Window Interface

41

And in Figure 6.4, there is all three interfaces located on Microsoft Office PowerPoint

program.

Figure 6.4 : All three interfaces together on MS Office PowerPoint program

7. Detailed Design

This section contains the details of the design entities that are stated in the system

architecture section.

7.1.Add-In Tab Component

7.1.1. Classification

Add-In Tab is a user-interface subsystem, which will be seen as a tab in Microsoft
PowerPoint. It is contains main class for plug-in.

7.1.2. Definition

Definition is given in section 5.2.1.

7.1.3. Responsibilities

Ribbon class tab: the main purpose of this tab is to give access to Hierarchy editor,
Template Editor, Publish components.

42

ThisAddIn class: the purpose of this class is to start and shut-down the plug-in.
Besides, the hierarchy and template windows are defined in startup of this class as a
CustomTaskPane.

7.1.4. Constraints

Since ThisAddIn class is the core of software, any problem in startup of this class will
be resulted as failure of software.

7.1.5. Composition

The component has two parts:

Ribbon class: derived from OfficeRibbon class, creates tab.

ThisAddIn class: this class is the main structure of our software. Microsoft Visual
Studio gives developers the opportunity to produce software for Microsoft Office
Programs, by serving class templates such as Excel Add-In, Outlook Add-In,
PowerPoint Add-In etc. So, when we create new project, which PowerPoint Add-In
type, we automatically have ThisAddIn class in project.

This class is called when Microsoft PowerPoint is opened. The basic parameters of class are:
PowerPoint = Microsoft.Office.Interop.PowerPoint
Office = Microsoft.Office.Core

These parameters enable access to Microsoft PowerPoint's data.

7.1.6. Interactions

As stated before, Ribbon class is responsible for starting other components. In order to start
Hierarchy and Template components, it changes the status of hierarchy and template task
panes, respectively:

private void hierarchy_button_Click(object sender, RibbonControlEventArgs e)

{

Globals.ThisAddIn.HierarchyTaskPane.Visible = true;

}

private void template_button_Click(object sender, RibbonControlEventArgs e)

{

Globals.ThisAddIn.TemplateTaskPane.Visible = true;

}

7.1.7. Processing

Add-In Tab Component processing steps are shown below:

 ThisAddIn class Startup() function is called.
 Ribbon class Load() function is called.
 In this function Hierarchy and Template Task Panes are defined.

 If publish button is clicked in Ribbon, event handler for publish functionality is
called.

 If template button is clicked in Ribbon, event handler for template
functionality is called.

43

 If hierarchy button is clicked in Ribbon, event handler for hierarchy
functionality is called.

 When Microsoft PowerPoint is closed, Shutdown() function of ThisAddIn class is
called.

7.2.Hierarchy Component

As explained in detail in section 5.2.2, Hierarchy component of the product is supposed to

handle the hierarchical structure of the slides of the presentation based on the user’s desire.

In other words, through a user interface, the user will be creating the hierarchy tree of the

slides, defining subchapters and subsections of the presentation, which will be controlled by

Hierarchy component at the lower levels. As this process needs more clarification and

explanation, the details will be provided in the following subsections:

7.2.1. Classification

Hierarchy component is a subsystem inside of our main system. That’s because of the fact

that, this component includes a class for calculations, a package, another class for user

interface, and directly affects the output of the product, since it is going to produce a

hierarchy tree based on SCORM standards.

7.2.2. Definition

Hierarchy component can be defined as the main low level calculation component of the

system, creating the hierarchy tree among the slide objects. Further details can be found in

section 5.2.2.1.

7.2.3. Responsibilities

The main responsibility of Hierarchy component is to create tree like structure by editing the

children vector of each Node (in other words: slide). This vectors corresponding to each slide

will help the publish class to create a file named imsmanifest.xml, which will be explained in

section 7.2.5.

Another responsibility of Hierarchy component is to be able to understand user-triggered

events, which will come from the “buttons” package including “move up”, “move down”,

“move left”, “move right”, “delete”, “reset”, “load”, “save”. Buttons are well defined in

section 5.2.2.3.

7.2.4. Constraints

There are no constraints specifically defined for this component; however all main project

constraints are applicable, which are explained in section 3.1.

44

7.2.5. Composition

7.2.5.1. Buttons Package

At this phase in order to make it clearer, Buttons package is going to be a separate function

library virtually used by Hierarchy class. Description of the buttons are explained at section

5.2.2.3

7.2.5.2. SCORM

SCORM is an e-learning standard which, in our case, enables instructors to track down the

learning process of the employees. The output of our plug-in will be a compressed zip folder

containing an HTML file for each slide, and an XML file called “hierarchy.xml” saving

hierarchical structure created by the user. A hierarchy file as shown below:

<hierarchy>
 <slide id=”1”>
 <slide id=”2”>

<slide id=”5”>
<slide id=”6”>

 <slide3>
 <slide4>
 <slide7>
 <slide8>

</hierarchy>

will correspond to a presentation where slides 2,5,6 are subchapters of slide 1. SCORM

servers are going to use this file named “hierarchy.xml” to understand the hierarchical

structure.

45

7.2.6. Uses & Interactions

Figure 7.1 is describing the user interactions of hierarchy component.

Figure 7.1 : Hierarchy Component Use-Case Diagram

Figure 7.2 : Template Component Use-Case Diagram

7.2.7. Resources

Hierarchy component uses User Control Class to show the user interface so that users can

create the structure. Since the structure is going to be saved in a file, hierarchy component

will use the computer hard disk as a resource.

46

7.2.8. Processing

All the methods are clearly explained in section 5.2.2.3, except ShowTree() function. The

algorithm of ShowTree function will as below:

int ShowTree()

{

 //Makes a depth-first-search inside the “children” vectors for each node (slide)

1) Take the 1st slide and its children;

2) Start with the unprocessed 1st child and get its own children;

3) Proceed in this manner (step2) until there is no child;

4) Then return to last processed children vector and do step 2

}

7.3.XML Parser Component

As described with details in section 5.2.4, what XML Parser component does is to parse the

presentation slides and save the elements (e.g. text, image) as the ParsedSlides class which

is explained in section 7.3.5

7.3.1. Classification

XML Parser is a simple class described in section 5.2.4.3.

7.3.2. Definition

XML Parser class takes a PowerPoint file pointer as an argument to convert() function and

parses all the necessary information and saves it at M_slide attribute which is type

ParsedSlides (explained in 7.3.5)

7.3.3. Responsibilities

As explained in sections 5.2.4 and 7.3.2, XML Parser is responsible to retrieve the text

information such as text coordinates, font size, font type, font color, font background color,

image size, image coordinate and image file destination and save it to M_slide attribute of

the same class.

7.3.4. Constraints

All the general constraints stated at section 3.1 for the product is applicable for this

component too.

7.3.5. Composition

7.3.5.1. ParsedSlides Data Type

Class ParsedSlides

{

public:

vector<std::string> texts;

vector<File*> imageDestinations;

}

47

ParsedSlides Class

Name Type Description

texts Attribute (vector<std::string>) Vector of strings, holding all
the texts (titles, subtitles,
bullet lists) the top one having
the least index number

imageDestinations Attribute (vector<File*>) This is a vector of file pointers
pointing to the image
destinations inside the slides

7.3.6. Resources

XML Parser uses some functions (shown in 7.3.7) from Open XML SDK v2.0, thus it is the

main resource for this component.

7.3.7. Processing

To illustrate the processing progress, we can take all the texts in a slide and save them in an

array of strings. Moreover, the paths of image files in the document should also be gathered.

7.4.Publish Component

7.4.1. Classification

Publish component does not have user interface. This component is an internal component.

As we mentioned in section 5.2.5.1, publish component is accessed when the publish button

in add-in tab is pressed. After the button pressed, createHtml() function will be called. By

means of this function, the HTML5 file generation will start. By the way, the generated

product will obey the SCORM standards.

After the createHtml() function, saveFile() function creates compressed file which holds

HTML files, and saves it into the directory Publish::outputDirectory. We have explained some

other details about these two functions which are createHtml() function and saveFile()

function in section 5.2.5.3.

7.4.2. Definition

Publish component has Publish class which is in our AddIn.Library.

AddIn.Library :
 namespace AddIn.Library

{

 public class Publish

 {

 }

}

 In this library we keep the classes which do not have user interface.

48

7.4.3. Constraints

Because ParsedSlides class is used by Publish component to get slide elements such as title,

text, and image, it is a constraint. Otherwise, it will not be published. The constraints in

section 3.1.3 are also valid with publish component.

7.4.4. Uses & Interactions

Publish class has interaction with the XMLParser class. In section 5.2.4, we have mentioned

about XMLParser component.

8. Libraries and Tools

Many libraries and tools will be used by the PPTX to HTML5 Content Converter project

during the development phase. Descriptions of those libraries and tools, and their planned

usage in the project are stated in following subsections.

8.1.Microsoft Visual C#

8.1.1. Description

Microsoft Visual C# is Microsoft’s implementation of the C# specification. It is based on the

ECMA/ISO specification of the C# language, which Microsoft also created. While multiple

implementations of the specification exist, Microsoft Visual C# is by far the one most

commonly used [5]. It is a powerful but simple language aimed primarily developers creating

applications by using the Microsoft .NET Framework [6]. It inherits many of the best features

of C++ and Microsoft Visual Basic, but few of the inconsistencies and anachronisms, resulting

in a cleaner and more logical language.

8.1.2. Usage in the Project

Microsoft Visual C# programming language will be the primary programming language used

during the development of the project. Considering the libraries that needed to be used for

easing the development (those libraries are explained in following subsections), Microsoft

Visual C# is obviously the best choice for the project.

8.2.Microsoft .NET Framework

8.2.1. Description

The Microsoft .NET Framework [7] is a software framework that runs primarily on Microsoft

Windows. It includes a large library and supports several programming languages which

allow language interoperability (each language can use code written in other languages).

49

Programs written for the Microsoft .NET Framework execute in a software environment

known as the Common Language Runtime (CLR), an application virtual machine that

provides important services such as security, memory management, and exception handling.

The class library and the CLR together constitute the .NET Framework. The .NET Framework's

Base Class Library provides user interface, data access, database connectivity, web

application development, and network communications. The .NET Framework is intended to

be used by most new applications created for the Windows platform.

8.2.2. Usage in the Project

Microsoft .NET Framework will be widely used in the project. As stated in previous section

(7.2.1) this framework can be used with different programming languages. However, again

stated in the section 7.1.2, Microsoft Visual C# is chosen and it will be used. The final

software product of the project will be a Microsoft PowerPoint plug-in. Microsoft .NET

Framework provides capability of creating plug-ins for Microsoft Office programs. In

addition, it includes the Open XML library that provides handy ways of parsing XML files that

constructs the Microsoft Office formatted documents like .pptx and .docx documents. So,

Microsoft .NET Framework is kind of a requirement for the project.

8.3.Microsoft Visual Studio

8.3.1. Description

Microsoft Visual Studio [8] is an integrated development environment (IDE) from Microsoft.

Microsoft Visual Studio is a complete set of development tools for building ASP.NET Web

applications, XML Web Services, desktop applications, and mobile applications. Visual Basic,

Visual C++, Visual C#, and Visual J# all use the same IDE, which allows them to share tools

and facilitates in the creation of mixed-language solutions. In addition, these languages

leverage the functionality of the .NET Framework, which provides access to key technologies

that simplify the development of applications.

8.3.2. Usage in the Project

Microsoft Visual Studio 2010 will be the primary tool that is used on development phase of

the project. Considering the libraries planned to be used and content of the project, Visual

Studio is the native tool for creating the project.

8.4.Open XML SDK 2.0

8.4.1. Description

Office Open XML (also known as Open XML) is a zipped, XML-based file format developed by

Microsoft for representing spreadsheets, charts, presentations and word processing

documents. The Office Open XML specification was initially standardized by ECMA and later

50

by ISO. Starting with Microsoft Office 2007, the Office Open XML file formats have become

the default target file format of Microsoft Office.

The Open XML SDK 2.0 for Microsoft Office, which is also supplied by Microsoft, simplifies

the task of manipulating Open XML packages and the Open XML schema elements within a

package. The classes in the Open XML SDK 2.0 encapsulate many common tasks (like getting

animations, themes, and elements) that developers perform on Open XML packages, so that

they can perform complex operations with just a few lines of code [9].

8.4.2. Usage in the Project

Since input documents of the project are PPTX documents, which are said to be an Office

Open XML file format in previous section (7.4.1), managing the contents of these documents

is essential to convert them to HTML5 formatted documents. Theoretically, the XMLs

contained by these documents can be parsed manually because the documentation of

structures of them is online. However, it costs developers lots of effort and time. Therefore,

the libraries in Microsoft .NET Framework that are supplied by Open XML SDK 2.0 will be

used to handle these issues with a few lines of code.

8.5.JSON

8.5.1. Description

JSON [10] or JavaScript Object Notation is a lightweight text-based open standard designed

for human-readable data interchange. It is derived from the JavaScript scripting language for

representing simple data structures and associative arrays, called objects. Despite its

relationship to JavaScript, it is language-independent, with parsers available for most

languages. JSON is a low-overhead alternative to XML.

8.5.2. Usage in the Project

The XMLs contained by PPTX documents are very detailed. There are lots of tags and

attributes used in these files. JSON is a good alternative to XML. Because it is more human-

readable, in the debugging phases of development, JSON will be preferred to be used to

make it easier to check the validity of the returned results of the codes.

8.6.HTML5

8.6.1. Description

HTML5 is a language for structuring and presenting content for the World Wide Web, and is

core technology of the Internet. It is the fifth revision of the HTML standard (created in 1990

and standardized as HTML4 as of 1997) and is still under development. Its core aims have

been to improve the language with support for the latest multimedia while keeping it easily

readable by humans and consistently understood by computers and devices.

51

In particular, HTML5 adds many new syntactical features. These include the <video>,

<audio>, <header> and <canvas> elements. These features are designed to make it easy to

include and handle multimedia and graphical content on the web without having to resort to

proprietary plug-ins and APIs. Other new elements, such as <section>, <article>,

<header> and <nav> are designed to enrich the semantic content of documents. New

attributes have been introduced for the same purpose, while some elements and attributes

have been removed. The APIs and document object model (DOM) are fundamental parts of

the HTML5 specification.

8.6.2. Usage in the Project

As stated in Section 1.1 (problem definition), HTML5 will have many advantages compared

to its opponents. To benefit from those advantages, the target document format is decided

to be HTML5 in project proposition phase. Therefore, the elements from older versions of

HTML and new elements and APIs from HTML5 will be widely used in the project.

52

9. Time Planning

9.1.Term 1

53

9.2.Term 2

54

10. Conclusion

In this document which is the Software Design Document of PPTX to HTML5 Content

Converter project; design considerations, data and system architecture, the detailed design

of the project, information about development phase of the project like what to be used

during, interfaces that will form the communication between users and the system, and

scheduling of the project is discussed. The document describes the project very detailed, and

it will be very helpful for developers of the project.

