

SOFTWARE DESIGN

DOCUMENT

For Cloudy Mesh

12/3/2012

Prepared by

Lucky People:

Umut Ağıl

Emre Avan

Gökhan Uras

Burak Üçok

1

Change History

VERSION

NUMBER

DATE NUMBER OF

FIGURE,

TABLE OR

PARAGRAPH

ADDED/

MODIFIED/

DELETED

TITLE OR BRIEF

DESCRIPTION

Version

1.0

11.11.2012 Original version

Version

1.1

17.01.2013 All the document Modified The document layout

has been changed to

make it more readable.

Version

1.1

17.01.2013 Section 3.2 Modified Reference is given

according to SRS

Version

1.1

17.01.2013 Section 3.1 Modified Data flow diagram

description has been

added.

Version

1.1

17.01.2013 Section 3.2.1 Modified Function description

has been modified

Version

1.1

17.01.2013 Section 3.2.2 Modified Function description

has been modified

Version

1.1

17.01.2013 Section 3.2.3 Modified Function description

has been modified

Version

1.1

17.01.2013 Section 3.2.4 Modified Function description

has been modified

Version

1.1

17.01.2013 Section 3.1.4 Modified Server module has been

modified

2

Version

1.1

17.01.2013 Section 3.2.28 Added Description of

uploadMesh() function

has been added

Version

1.1

17.01.2013 Section 3.2.29 Added Description of convert()

function has been added

Version

1.1

17.01.2013 Section 3.2.30 Added Description of

neighborSelection()

function has been added

Version

1.1

17.01.2013 Section 3.2.31 Added Description of

findNeighbor() function

has been added

Version

1.1

17.01.2013 Section 3.2.31 Added Description of

sendCloudFunction()

function has been added

Version

1.1

17.01.2013 Section 5.28 Added Pseudo-code of

uploadMesh() function

of browser module has

been added.

Version

1.1

17.01.2013 Section 5.29 Added Pseudo-code of

uploadMesh() function

of server module has

been added.

Version

1.1

17.01.2013 Section 5.30 Added Pseudo-code of

convert() function has

been added.

Version

1.1

17.01.2013 Section 5.31 Added Pseudo-code of

findNeighbor() function

has been added.

Version

1.1

17.01.2013 Section 6 Added Pseudo-code of

findNeighbor() function

has been added.

3

Table of Contents

1. Introduction .. 7

1.1. Purpose .. 7

1.2. Scope ... 7

1.3. Overview ... 7

1.4. Reference Material .. 7

1.5. Definitions and Acronyms.. 7

2. System Overview .. 8

3. System Architecture .. 9

3.1. Architectural Design .. 9

3.1.1. Database Module ... 11

3.1.2. Browser Module .. 11

3.1.3. Cloud Module .. 12

3.1.4. Server Module ... 12

3.2. Decomposition Description ... 13

3.2.1. login() .. 14

3.2.2. draw() .. 14

3.2.3. saveMeshData() ... 14

3.2.4. loadMeshData() ... 14

3.2.5. translateObject() .. 14

3.2.6. rotateObject() .. 15

3.2.7. scaleObject() ... 15

3.2.8. addGeometry() ... 15

3.2.9. createvertices() .. 15

3.2.10. deleteVertices() ... 15

3.2.11. createEdges() ... 15

3.2.12. deleteEdges() ... 16

3.2.13. zoomIn() .. 16

3.2.14. zoomOut() ... 16

4

3.2.15. chooseVertices() .. 16

3.2.16. chooseEdges() ... 16

3.2.17. chooseMeshes() ... 17

3.2.18. groupVertices() ... 17

3.2.19. groupEdges() ... 17

3.2.20. generateMeshes() .. 17

3.2.21. saveLogFile() .. 17

3.2.22. loadLogFile() ... 17

3.2.23. getLastLoginRecord() ... 18

3.2.24. insertLoginRecord() .. 18

3.2.25. insertFile() ... 18

3.2.26. getProjectName() .. 18

3.2.27. getListOfFile() ... 18

3.2.28. uploadMesh() .. 18

3.2.29. convert().. 18

3.2.30. neighborSelection() .. 19

3.2.31. findNeighbor() .. 19

3.2.32. sendCloudFunction() .. 19

Data flow diagram of the system .. 20

3.3. Design Rationale ... 22

4. Data Design ... 22

4.1. Data Description .. 22

4.1.1. Vertices Array ... 22

4.1.2. Indices Array ... 22

4.1.3. Tables on Database ... 22

4.2. Data Dictionary ... 26

5. Component Design .. 31

5.1. login() .. 31

5.2. draw() ... 31

5

5.3. saveMeshData() ... 31

5.4.loadMeshData ... 32

5.5. translateObject() ... 32

5.6. rotateObject() .. 32

5.7. scaleObject() ... 33

5.8. addGeometry() .. 33

5.9. createVertices() .. 33

5.10. deleteVertices() ... 33

5.11. createEdges() ... 33

5.12. deleteEdges() ... 34

5.13. zoomIn() .. 34

5.14. zoomOut() ... 34

5.15. chooseVertices().. 34

5.16. chooseEdges() ... 34

5.17. chooseMeshes() ... 35

5.18. groupVertices() ... 35

5.19. groupEdges() ... 35

5.20. generateMeshes() .. 35

5.21. saveLogFile() .. 35

5.22. loadLogFile() .. 35

5.23. getLastLoginRecord() ... 36

5.24. insertLoginRecord() .. 36

5.25. createNewFile() ... 36

5.26. getProjectName() .. 36

5.27. getFileName() ... 36

5.28. uploadMesh() ... 37

5.29 upload Mesh() ... 37

5.30. convert()... 37

5.31 findNeighbor() .. 37

6

6. Human Interface Design ... 38

6.1. Overview of User Interface ... 38

6.2. Screen Images .. 38

6.3. Screen Objects and Actions ... 43

7. Requirements Matrix ... 46

8. Appendices .. 48

8.1 Appendix A:Glossary ... 48

7

1. Introduction

1.1. Purpose

This SDD document ensures detailed description of system architecture and software

design of a Cloudy Mesh. Features, modules and functions of the software are explained

in the document. Software developer can begin implementing through this document.

This document also contains required UML diagrams and GUI information.

1.2. Scope

This document is prepared considering SRS of Cloudy Mesh which is published before.

This document covers software design stage of Cloudy Mesh and contains crucial

information relevant to software implementation. System structure of the software is also

described in this document. Updated version of this document will be published if any

update happens related to the software implementation.

1.3. Overview

This document is composed of eight sections. The first section is an introduction to

document. The second section gives general overview of the system. Third part explains

the architecture of the system. Fourth part includes the data design and description. Fifth

part is about the details of the component design. Sixth part shows and explains the user

interfaces. Eighth part contains cross-reference to SRS document. The last part is

appendix.

1.4. Reference Material

 IEEE Std 1016-1998 - IEEE Recommended Practice for Software Design

1.5. Definitions and Acronyms

Mesh: Compilation of vertices, edges and faces of object.

Vertex: Corner of a polygon.

Edge: Line between two vertices.

Cloud Computing: Use of computing resources delivered as a service over a network.

Database: Structured collection of data.

8

Server: A physical computer dedicated to run one or more services (as a host), to serve

the needs of the users of other computers on a network.

2. System Overview

This software system will be a mesh editing tool which will work on browsers using a

cloud computing system. The GUI (graphic user interface) provides the user options that

will allow her/him edit meshes. The program functionalities are planned to be:

 Grouping individual meshes

 Disintegrating groups of meshes

 Importing and exporting meshes

 Scaling objects

 Zooming in and out

 Rotating and translating objects

 Selecting geometric objects from list

The program is generally composed of two main parts. One is WebGL part where the user

interacts with the program and the program visualizes the data. The other one is cloud

part, where the user and mesh information are stored and the computations are done.

However, the program has many modules which consists different parts of program that

interact with each other. The modules are:

 Database – login, storing user and mesh information

 Browser – WebGL, GUI

 Python Server

 Cloud component

9

3. System Architecture

3.1. Architectural Design

Cloudy Mesh system consists of four modules; database, browser, cloud and server

module. These modules interact with each other according to user requests. Browser

module has GUI elements which are necessary to take the user commands. Commands

that do not require mesh editing or database operations are done in browser module using

JavaScript. Otherwise, if user commands a mesh editing operation then the function name

and input parameters are sent to cloud module through server module. The application in

cloud module calls the function with the given name. Functions in the cloud and server

module are written in Python. After the function completes, it sends the resulting data

back to browser module. Remaining operations are database related and they are done by

server and database modules.

In the diagram below, structural decomposition and the functions that form it can be seen.

Functions are grouped with respect to their generalized features.

10

Figure 1: Structural decomposition diagram of the system

11

3.1.1. Database Module

This module is for storing whole data of the system. Users’ log histories, saved mesh data,

static geometry lists, information about mesh editing tools are stored in the database.

When user wants to use the program, first s/he must login to the system. After logged in

the user can use the program and reach the database. By doing this, user’s data can be

saved to database or previously saved data can be loaded into application page. Besides,

some properties of the system can be stored in the database.

Figure 2: Entity – Relationship Diagram

3.1.2. Browser Module

This module is for interacting with users and displaying meshes. As the name implies it

consists web page and the functionalities that exists within the page. Users can select

editing options they needed and edit the mesh directly. All the GUI components are part

12

of this module. In addition to these, WebGL component, where shaders and draw calls

exist, is included in here. Namely, all the graphical properties are part of this module.

3.1.3. Cloud Module

This module consists of the works that will be handled in the cloud side of the program.

When the user wants to edit the mesh, information of the mesh will be sent to cloud via

python server. Then required computation such as generating meshes for certain objects,

giving specific properties to a group of meshes will be done by this module. After the

computations are done, resulting data sent back to browser module to be displayed on the

screen.

3.1.4. Server Module

Server Module is hub between database, cloud and browser module. The server supplies

connection to database and all the database operations handled by the server. The server

also provides the data path between browser and cloud. All the data passes to cloud from

the server. Naturally, server also delivers the dynamically created web pages to browser

using HTTP. For developing the server, CherryPy framework has been used since it is

fast, easy to use and open source.

Figure 3: Diagram showing the subsystems 1

13

3.2. Decomposition Description

Each module has following functions and function descriptions are listed below.

Browser Module:

login(), draw(), saveMeshData(), loadMeshData(), translateObject(), rotateObject(),

scaleObject(), addGeometry(), zoomIn(), zoomOut(), chooseVertices(), chooseEdges(),

chooseMeshes(), uploadMesh(), findNeighbor();

Server Module:

login(), saveMeshData(), loadMeshData(), saveLogFile(), loadLogFile(), parse(),

sendCloudFunction() , uploadMesh();convert();

Cloud Module:

 createEdges(), deleteEdges(), generateMeshes(), groupEdges(), groupVertices(),

neighborSelection();

Database Module:

getLastLoginRecord(), insertLoginRecord(), createNewFile(), getListofFileName(),

getProjectName()

Some of the functions belong to more than one module, since the user request and

computation are done in different modules. Those functions are login, saveMeshData,

loadMeshData. Modules of each function are mentioned in detail in the section below.

14

3.2.1. login()

This function takes user name and password as input then checks them. If true it lets the

user to use the program and to reach his/her data in database. First, the operation is

requested in browser module and after that it is completed in server module. (Reference to

3.21 at SRS)

3.2.2. draw()

This function takes a vertex list and index list as input. Then it draws the given object to

the screen with respect to given lists.

3.2.3. saveMeshData()

This function takes a file name as input. Then it saves the mesh data of the current mesh

that is displayed on the screen to the file which is given as input. First, the request is done

by user in browser module and after that in server module saving operation is finished.

(Reference to 3.18 at SRS)

3.2.4. loadMeshData()

This function takes a file name as input. Then it gets the mesh data in the given file,

which is stored in the database, and draws the mesh on the screen and adds the object Id

to the object list. This function remains in both browser module and server module. User

does the request in browser module and operation continues in server module to load

mesh data.

(Reference to 3.19 at SRS)

3.2.5. translateObject()

This function takes an object Id and a 3D vector. Then it translates the vertices of the

objects by the given vector.

Reference to (3.13 at SRS)

15

3.2.6. rotateObject()

This function takes an object Id, an axis and a degree as input. Then it rotates the object

around the given axis by the given degree.

(Reference to 3.9 at SRS)

3.2.7. scaleObject()

This function takes an object Id and scale factor as input. Then is scales the object with

respect to given scale factor.

(Reference to 3.12 at SRS)

3.2.8. addGeometry()

This function takes a pre-computed geometric object Id as input. Then it draws the object

in the middle of the screen and adds the object ID to the object list.

(Reference to 3.1 at SRS)

3.2.9. createvertices()

This function takes a point coordinate in the scene as input. Then it adds a new vertex to

the vertices list and draws a circle to the given point.

(Reference to 3.14 at SRS)

3.2.10. deleteVertices()

This function takes a list of vertex numbers as input. It removes them from vertex list and

index list. Then it rearranges the index list and the object that is displayed in the scene.

(Reference to 3.15 at SRS)

3.2.11. createEdges()

This function takes two vertexes ID as input. It creates a new edge in the index list and

draws an edge between the given vertices in the screen.

(Reference to 3.16 at SRS)

16

3.2.12. deleteEdges()

This function takes a list of index numbers as input. It removes them from the index list

then rearranges the list and the object which is displayed in the scene.

(Reference to 3.17 at SRS)

3.2.13. zoomIn()

This function takes a zoom factor value as input. Then it moves the camera through

camera’s viewing direction by the given zoom factor.

(Reference to 3.8 at SRS)

3.2.14. zoomOut()

This function takes a zoom factor value as input. Then it moves the camera through

inverse direction of the camera’s viewing direction by the given zoom factor.

(Reference to 3.8 at SRS)

3.2.15. chooseVertices()

This function takes mouse coordinates as input when mouse is clicked and hold. It finds

the vertices which are in the area that is decided via mouse movement. Then the index

numbers of these vertices are stored in a list, created for holding current vertices to be

edited.

(Reference to 3.4 at SRS)

3.2.16. chooseEdges()

This function takes mouse coordinates as input when mouse is clicked and hold. It finds

the edges which are in the area that is decided via mouse movement. Then the index

numbers which, forms these edges, are stored in a list, created for holding current edges to

be edited.

(Reference to 3.3 at SRS)

17

3.2.17. chooseMeshes()

This function takes mouse coordinates as input when mouse is clicked and hold. It finds

the meshes which are in the area that is decided via mouse movement. Then the index

numbers of these meshes are stored in a list, created for holding current meshes to be

edited.

3.2.18. groupVertices()

This function takes group name and vertices that will be grouped as input parameter.

Then it writes the indices stored in the current vertex list to an array that represents this

group.

(Reference to 3.10 at SRS)

3.2.19. groupEdges()

This function takes group name and edges that will be grouped as input parameter. Then it

writes the edges stored in the current edges list to an array that represents this group.

(Reference to 3.10 at SRS)

3.2.20. generateMeshes()

This function takes an object Id and mesh type as input. Then it divides the object to small

groups of meshes with respect to given mesh type. This function uses certain triangulation

methods provided by EDA

(Reference to 3.2 at SRS).

3.2.21. saveLogFile()

This function works automatically after user done any operation in the browser module.

All the information will be stored in the database.

3.2.22. loadLogFile()

This function returns the entire log that is done by the user to browser module. User can

see what s/he has done while working on the project.

18

3.2.23. getLastLoginRecord()

This function takes userId as parameter. It is called when user logged in. It returns last

login date and ip of computer last login happened which are stored on userLogHistory

table on database.

3.2.24. insertLoginRecord()

This function takes userId as parameter. It is called when user logged in. It inserts userID,

current date, and ip of users computer to userLogHistory table on database.

3.2.25. insertFile()

This function called when new file is created and takes filename and name of project as

parameter. It inserts these records to MeshFile table on database.

3.2.26. getProjectName()

This function takes project userId as parameter. It returns names of projects for which

user works currently which are stored on project table on database.

3.2.27. getListOfFile()

This function takes project name as parameter. It returns list of file names of the project

which are stored on meshFile table on database.

3.2.28. uploadMesh()

This function takes mesh file name with “.obj”, “.ply” or “.3ds” format as input then it

calls convert function of server module. First, the operation is requested in browser

module and after that it is completed in server module.

(Reference to 3.6 at SRS)

3.2.29. convert()

This function takes name that comes from uploadMesh() function as input and converts

the file data to JSON format then stores it in the server.

19

3.2.30. neighborSelection()

This function takes type and index of selected part (edge, vertex, polygon) and depth of

neighborhood as input. Then finds its neighbors with respect to given depth and add them

to selected section.

(Reference to 3.23 at SRS)

3.2.31. findNeighbor()

This function takes type and index of selected part (edge, vertex, polygon) and depth of

neighborhood as input and sends it to sendCloudFunction() function in server module.

 3.2.32. sendCloudFunction()

This function provides interaction between browser module and cloud module. Function

that is called by user in browser module sends its data to sendCloudFunction() then

matching cloud function will be called.

20

Data flow diagram of the system

In our system, the user starts the data flow by giving commands to the browser module,

using the functions mentioned above in 3.2. But for a user to use all of the commands,

first s/he needs to verify his/her account with login command. This verifies operation is

handled between server and database module. User can interact only with browser module

as can be seen from the diagram, and only the displayed scene is shown to the user as

result. All other operations are done between other components without user interaction.

After verification, the user can load his/her mesh data by using browser module but

browser module gets the data from the database module through server module, which

acts as a core module. Then the user can edit the mesh, change the position of camera,

edit the scene and do all the specified functionalities by user commands.

 When a user gives a command, if it does not require mesh editing computation then it is

handled in browser module. However, if it requires, the data is sent to cloud module

through server module. After the computation is finished then the result is sent back to

browser module to be displayed to user. Displaying the result is done by browser module

with draw calls of WebGL.

21

Figure 4: Data flow diagram of the system

22

3.3. Design Rationale

Developers of the Cloudy Mesh decided to use this architecture that is mentioned above.

Developing and designing the system will be simpler by using this architecture. Also

testing and debugging will be much simpler by packaging the system.

4. Data Design

4.1. Data Description

4.1.1. Vertices Array

Vertices array stores all the vertices data in tightly packed array. For every vertices there

are three floats which contains x, y, z coordinates of the vertices then there are three floats

which contains r, g, b components of the color of the vertices.

4.1.2. Indices Array

Indices array stores faces of the polygons as integer doublets for lines, integer triplets for

triangles, integer quadruplets for quads.

4.1.3. Tables on Database

4.1.3.1. Company

This table keeps information of Companies. CompanyID is primary key of this table and

CompanyName is unique field of this table.

23

4.1.3.2. Department

Department table stores information of departments. DepartmentID is primary key of this

table and CompanyID is foreign key of Company table. DepartmentName is weak entity,

i.e., each company has unique DepartmentName.

4.1.3.3. User

User table stores information of users. UserID is primary key of table. E-mail is unique

filed of table, because each user have to have unique e-mail. DepartmenID is foreign key

of Department table.

4.1.3.4. Project Table

This table keeps data of projects. On this table, ProjectID is primary key.

24

4.1.3.5. User Log History

This table is created to save login history of each user. When user is logged in, user id,

login date and ip is inserted to table. UserID is foreign key of user table.

4.1.3.6. Mesh File

ProjectID is foreign key of project table and name field is a weak entity, i.e., each project

has unique file name.

4.1.3.7. Project & Department

In this table ProjectID is foreign key of Project table and DepartmentID is foreign key of

department table. This table is created to keep which departments are involved to do each

project.

25

4.1.3.8. Project & user

In this table ProjectID is foreign key of Project table and UserID is foreign key of user

table. This table is created to keep which users are involved to do each project.

26

4.2. Data Dictionary

Server Module

login() Function Name

username Username of the user string

password Password of the user string

saveMeshData() Function Name

filename Filename of the mesh string

loadMeshData() Function Name

filename Filename of the mesh string

saveLogFile() Function Name

loadLogFile() Function Name

uploadMesh() Function Name

filename Filename of the mesh string

convert() Function Name

filename Filename of the mesh string

sendCloudFunction() Function Name

functionname Name of the Function string

parameters Parameters for function String

27

Browser Module

login() Function Name

username Username of the user string

password Password of the user string

draw() Function Name

vertices Vertex array of the object float3*

indices Index array of the object int*

saveMeshData() Function Name

filename Name of the file string

loadMeshData() Function Name

filename Name of the file string

translateObject() Function Name

id Id of the Object int

translation Changes in coordinates of the object float3

rotateObject() Function Name

id Id of the Object int

axis Axis of the rotation int

angle Change in angle of the object float3

scaleObject() Function Name

28

id Id of the Object int

factor Change in size coefficient of the object float

addGeometry() Function Name

id Id of the Object that will added to screen int

zoomIn() Function Name

factor Coefficients that will multiplied with distance float

zoomOut() Function Name

factor Coefficients that will multiplied with distance float

chooseVertices() Function Name

coord1 Mouse coordinates before start dragging float3

coord2 Mouse coordinates after finish dragging float3

chooseEdges() Function Name

coord1 Mouse coordinates before start dragging float3

coord2 Mouse coordinates after finish dragging float3

chooseMeshes() Function Name

coord1 Mouse coordinates before start dragging float3

coord2 Mouse coordinates after finish dragging float3

uploadMesh() Function Name

filename Filename of the mesh string

29

findNeighbor() Function Name

index Index of Edge,Vertex or Polygon int

type Type of selected part of mesh string

depth Depth of neighborhood int

Cloud Module

createEdges() Function Name

vertex1 Vertex ID int

vertex2 Vertex ID int

deleteEdges() Function Name

delete_indices Array of indices that will be deleted int*

generateMeshes() Function Name

Id ID number of the object int

Type mesh type of the triangulation operation string

groupEdges() Function Name

groupName name of the group that will be generated string

Edges list of edges that will make a group edges*

groupVertices() Function Name

30

groupName name of the group that will be generated string

Vertices list of vertices that will make a group vertex*

neighborSelection() Name of Function

index Index of Edge,Vertex or Polygon int

type Type of selected part of mesh string

depth Depth of neighborhood int

Database Module

getLastLoginRecord() Function Name

userId User ID int

insertLoginRecord() Function Name

userId User ID int

createNewFile() Function Name

fileName Name of file which will be created string

getProjectName() Function Name

userId User ID int

31

getFileName() Function Name

projectName Name of project string

5. Component Design

Here pseudo-codes of the functions can be seen:

5.1. login()

login(string username, string password):

 result = database query result with username and password

if result == empty:

throw error

else:

 create session with username

 redirect to main page

5.2. draw()

draw(float3 vertices[], int indices[]):

 map vertex buffer

 copy vertices array into vertex buffer

 map index buffer

 copy indices array into index buffer

 make draw call

5.3. saveMeshData()

saveMeshData(string filename):

 open file

 write number of the vertices

 for each vertex in vertices in meshes:

 write position vector to file

32

 write number of indices

 for each index in indices in meshes:

 write index to file

 close file

5.4.loadMeshData

loadMeshData(string filename):

 open the file

 read number of vertices

 for i=0 to number of vertices:

 read position vector

 push position vector into vertices array

 read number of indices

 for i=0 to number of indices:

 read index

 push index into vertices array

 close the file

5.5. translateObject()

translateObject(Object id, float3 translation):

 get the object with id

 construct translation matrix from translation vector

 for each vertex in vertices:

vertex_position = translation_matrix * vertex_position

5.6. rotateObject()

rotateObject(Object id, int axis, float degree):

 get the object with id

 construct rotation matrix from axis and degree

 for each vertex in vertices:

33

vertex_position = rotation_matrix * vertex_position

5.7. scaleObject()

scaleObject(Object id, int axis, float factor):

 get the object with id

 construct scale matrix from scale factor

 for each vertex in vertices:

vertex_position = scale_matrix * vertex_position

5.8. addGeometry()

addGeometry(int Id)

 for each object in objectArray

 if object.Id == Id

 return draw()

5.9. createVertices()

createVertices(float3 coord):

 push coord into vertices array

5.10. deleteVertices()

deleteVertices(int vertices_indices[])

 for each delete_index in vertices_indices:

 delete vertex from vertices

 for each index in indices

 if index == delete_index :

delete index from indices

5.11. createEdges()

createEdges(int vertex1, int vertex2):

 push vertex1 into indices array

 push vertex2 into indices array

34

5.12. deleteEdges()

deleteEdges(int delete_indices):

 for each delete_index in delete_indices:

 for each in index in indices_array:

 if index == delete_index:

 delete index from indices

5.13. zoomIn()

zoomIn(float factor)

 cam_translate = factor * view direction

 add cam_translate to view matrix’s traslation coluonm

5.14. zoomOut()

zoomOut(float factor)

 cam_translate = factor * -1 * view direction

 add cam_translate to view matrix’s traslation coluonm

5.15. chooseVertices()

chooseVertices(float3 coord1,float3 coord2)

 find and push vertices index into chosenVerticesList

 for each vertices in chosenVerticesList

give different color to vertices

5.16. chooseEdges()

chooseEdges(float3 coord1,float3 coord2)

 find and push vertices index into chosenEdgesList

 for each vertices in chosenEdgesList

 give different color to edges

35

5.17. chooseMeshes()

chooseMeshes(float3 coord1,float3 coord2)

 find and push vertices index into chosenMeshesList

 for each vertices in chosenMeshesList

 give different color to meshed

5.18. groupVertices()

groupVertices(string groupName,vertex* Vertices)

 create an group array with name groupName

 push every Vertices in Array

5.19. groupEdges()

groupEdges(string groupName,edges* Edges)

 create an group array with name groupName

 push every Edges in Array

5.20. generateMeshes()

generateMeshes(int Id, string Type)

 find Object with id Id

 execute mesh algorithm with Type on Object

5.21. saveLogFile()

saveLogFile():

 insert last operation to database

5.22. loadLogFile()

loadLogFile():

 query database to acquire log information

 return the result

36

5.23. getLastLoginRecord()

getLastLoginRecord(int userId)

 get last login date from database

 get ip of computer last login happened

 return ip and date

5.24. insertLoginRecord()

insertLoginRecord(int userID)

 use procedure implemented in SQL, give userID and ip as parameter

5.25. createNewFile()

createNewFile(string filaName)

 create file on hard disc

 insert records on database

5.26. getProjectName()

getProjectName(int userID)

 getProjectNames from database

 for each name

 push name on nameList

return nameList

5.27. getFileName()

getListofFileName(string projectName)

 getfilename from database

 for each name

 push name on fileNameList

return fileNameList

37

5.28. uploadMesh()

 uploadMesh()

 open file chooser dialog

 post file name and file data to server’s uploadMesh() function

5.29 upload Mesh()

 uploadMesh(string filename, string filedata)

 convert(filename, filedata)

5.30. convert()

 Convert(string filename, string filedata)

 Parse filedata according to obj specification

 Write mesh data in json format with filename

5.31 findNeighbor()

 findNeighbor(string type, int index, int depth)

 check type

 according to type find vertices, edge or face

 sendCloudFunction(“findNeighbour”, parameterlist)

38

6. Human Interface Design

6.1. Overview of User Interface

Cloudy Mesh has a convenient user interface that can be used by a user that has

introductory level of experience in CAD programs. In order to achieve this reliability,

developer of the Cloudy Mesh has implemented and designed the system as clearly as

possible.

Buttons and menus are grouped according to its context. Therefore users can easily find

what they are searching. Since Cloudy Mesh is a visualized program all the operations

that done by the user have a feedback. And all the feedbacks can be seen in the program

environment.

As it can be seen in the pictures of the GUI design below, project team first main aim is to

keep the system simple.

All the pictures in the section 6.2 will be explained thoroughly in the section 6.3.

One can see the GUI design, screen objects and actions below, but the environment may

be changed according to the project leader opinions and changes in the requirements.

6.2. Screen Images

Figure 1 : Login Screen

39

Figure 6 : Menu Design (SI 01)

Figure 7 : Objects (SI 012)

40

Figure 8 : Vertex Selection (SI 03)

Figure 9 : Edge Selection (SI 04)

41

Figure 10 : Mesh Selection (SI 05)

Figure 2 : Translate (SI 06)

42

Figure 3 : Rotate (SI 07)

Figure 4 : Scale (SI 08)

43

Figure 5 : Early Prototype (SI 09)

6.3. Screen Objects and Actions

In the image SI 01, one can see the environment area that has 4 different screen and

buttons. The screens are enable users to see their objects from different positions and

make decisions according to it easily. The perspective camera screen is the most

commonly used screen, therefore other images are taken while perspective camera screen

is maximized.

On the top left of the environment screen, New File, Open File, Save File, Undo and Redo

button are placed accordingly. Below of these buttons, there are Group, Create and Mesh

menu accordingly. In the Group menu Group and Ungroup buttons are exist. User can

group objects or ungroup them by using these buttons. In the Create menu, user will see

all the predefined objects and can choose one from there. User can also create object by

44

clicking hollow square that is at the right side of the screen. After user clicks square

Object Type and Name and Color parts will be visible (that can be also seen in the image

SI 01) and user can choose a predefined object from there. Predefined objects can be

drawn easily. In the image SI 02 one can see an environment area that contains

predefined objects.

Vertex Selection is one of the important features of Cloudy Mesh. User can select vertices

by clicking left button of and dragging mouse. But in order to select vertices user must

click on the object that s/he want to choose vertices from first. After user clicks the object

Selection menu will be visible. In that menu user clicks the first button (that is highlighted

as yellow in IS 03) and then user can choose vertices.

Edge Selection can be done easily in Cloudy Mesh. User can select edges by clicking left

button of and dragging mouse. But in order to select edges user must click first on the

object that s/he want to choose edges from. After user clicks the object Selection menu

will be visible. In that menu user clicks the second button (that is highlighted as yellow in

IS 04) and then user can choose vertices.

Mesh Selection also can be done easily in Cloudy Mesh. User can select meshes by

clicking left button of and dragging mouse. But in order to select meshes user must click

first on the object that s/he want to choose meshes from. After user clicks the object

Selection menu will be visible. In that menu user clicks the second button (that is

highlighted as yellow in IS 05) and then user can choose vertices.

User can translate the object by clicking the first button in 3
rd

 row at the top left corner of

the screen (navigation like button). After user clicks that button and choose an object,

there will be a 3D coordinate system at the middle of the object. By dragging the line that

is intended dimension, user can drag the object. User can also translate the object with

using the input text boxes at the right bottom of the screen, coordinates x, y, z

accordingly. Coordinate system can be seen at the image IS 06

45

User can rotate the object by clicking the second button in 3
rd

 row at the top left corner of

the screen (circle like button). After user clicks that button and choose an object, there

will be a 3D sphere coordinate system at the middle of the object. By dragging the arc that

is intended dimension, user can rotate the object. User can also rotate the object with

using the input text boxes at the right bottom of the screen, angle x, y, z accordingly.

Coordinate system can be seen at the image IS 08

User can scale the object by clicking the third button in 3
rd

 row at the top left corner of the

screen. After user clicks that button and choose an object, there will be a 3D coordinate

system at the middle of the object. By dragging the line that is intended dimension, user

can scale the object. User can also scale the object with using the input text boxes at the

right bottom of the screen, size coefficients of x, y, z accordingly.

In IS 09, one can see the early version of the Cloudy Mesh. In that image the object

“bunny” is rotated and translated. After those operations are done, scale function is

applied. Buttons “Scale” and “Translate” and Textbox for Scale interact with the browser

module to do its operation.

46

7. Requirements Matrix

Adding geometries from list to the scene ✔

Generating meshes for certain objects ✔

Choosing Edges with Mouse ✔

Choosing Vertices with Mouse ✔

Choosing Meshes with Mouse ✔

Importing Meshes ✔

Exporting Meshes ✔

Zooming ✔

Rotating Objects ✔

Grouping meshes & vertices & edges and giving specific attributes to groups ✔

Disintegrating the groups of meshes into individual meshes ✔

Scale Objects ✔

Translate Objects ✔

Creating Vertices ✔

Deleting vertices ✔

47

Creating Edges ✔

Deleting Edges ✔

Save Mesh ✔

Load Mesh ✔

Create an Account ✔

Login into an Account ✔

Logout from an Account ✔

48

8. Appendices

8.1 Appendix A:Glossary

GUI: Graphical User Interface

CAD: Computer Aided Design.

WebGL: Web graphics library.

HTML5: Hypertext Markup Language

Python: General purpose programming language.

HTTP: Hypertext Transfer Protocol

UML: Unified Modeling Language

SRS: Software Requirement Specification

IEEE: Institute of Electrical and Electronics Engineers

